Effective Proposal Development Strategies
With an Emphasis on NSF and NIH Proposals

Sean J. Kirkpatrick, Ph.D.
Professor & Chair, Biomedical Engineering
April 3, 2013

Disclaimer

• I do not now, and never have, worked for a federal agency. So my views may not always agree with the official line from the agency.

• I do a lot of reviewing for NIH. In the past I have done a lot of reviewing for NSF, however, I’ve fallen off their list lately.

• I’ve also reviewed proposals for the U.S. Department of State, other federal and state agencies, and numerous foreign funding agencies.

• Anything I say today is based entirely on my experiences of getting a lot proposals rejected, several funded, and from my experiences as a reviewer.

• Others will have different opinions and experiences. Learn from all.
What leads to proposal not being funded?

Technical reasons:

1. No compelling justification given; Not an exciting proposal; Not novel
2. Weak and/or disorganized hypothesis or goal; Weak specific aims
3. Not enough preliminary data
4. Poorly written; bad organization; puts reviewers in a foul mood.

Programmatic reasons:

1. Submitted to wrong agency
2. Submitted to wrong program
3. Reviewed by inappropriate study section (NIH)
4. Fiscally poor program, institute, agency
5. Didn’t follow agency guidelines – not even reviewed

Components of Effective Proposal Writing

1. **Identify a need** – Arrive at a compelling argument as to why this need should be addressed.
2. **Identify an appropriate funding source** – Know your sponsors and what their priorities are. Talk to people. Develop white papers.
3. **Gather preliminary data** – Lots of it. Plan ahead (years ahead).
4. **Generate hypothesis/goals and specific aims** – Clear and concise. Not too many, not too few. Short, sweet and to the point. Avoid jargon and fluff. Don’t try to impress reviewers with your ability to obfuscate the obvious.
5. **Develop an outline of your proposal** – Allows you to attack the proposal in bite-sized pieces and to stay focused.
6. **Fill in outline** – Again, be clear and concise. Tell the reviewers what they already know. Stroke their egos a little bit. Don’t try to impress reviewers with your ability to obfuscate the obvious.
7. **Submit** – For NIH, assignment to proper Scientific Review Panel is key. Ensure that you are submitting to the right program at other agencies.
Identifying a Need

- Not as easy as it sounds.
- What is obvious to you is not obvious to reviewers or program officers.
- The need for the research must be compelling and real (Money and suffering always make for a compelling arguments).
- Need to take a page from a Marketing Handbook – sell your idea.
- Must excite reviewers and program officers.
- Think large scale. Just because your lab has a need, that doesn’t make it a national priority!
- If you have a hard time expressing the need for your own research in just a very few concise statements, you will never convince a panel of reviewers that they should give a favorable review.

Identifying a Sponsor

- Are you submitting your proposal to the right agency (e.g., NSF vs NIH)? What are the priorities of the agency or foundation?
- Are you submitting to the right Program? Call around; Ask questions; Find out where similar proposals have been funded; If NIH, what study section reviewed the proposal?
- Who are the reviewers? NIH publishes the study section rosters. Do you know any of the reviewers? Have you irritated any of the reviewers?
- If responding to a PA, are you really being responsive to the call?
- What is the funding rate of the institute or program you submitted to? Some programs and/or institutes have better funding rates.
- Are you submitting the right type of grant? For example, NIH R01, R03, R15, R21, etc.
Preliminary Data

- Rarely can you have too much preliminary data – unless you have published all of your results already and your proposal is no longer novel. Can be a fine line.

- Old (NIH) adage, “If you have 4 Specific Aims, you need to have 2 of them finished, 1 almost done and the 4th must have compelling preliminary data”. This is a bit of an overstatement, but not by too much.

- Even for NIH R21’s (Exploratory high-risk, high reward proposals) you still need preliminary data, even though the instructions say otherwise.

- Plan years ahead. Every piece of data you collect in the laboratory/field is preliminary data for the next grant proposal.

- Treat preliminary data gathering as a component of your career development.

- Preliminary data must be directly relevant to 1 or more of your specific aims. Tell the reviewers which SA the preliminary data is relevant to. Do not make them guess. (Never make the reviewers guess about anything. They will guess wrongly).

Hypothesis or Goal and Specific Aims

The Specific Aims page is the single most important part of your proposal

- As a reviewer, if I don’t understand the who, what, where, when and why of your proposal by the time I get to the bottom of the Specific Aims page, you will not get a good score from me.

- Three “C’s”: Clear, Concise, and Compelling

- Avoid too much jargon and obfuscation. But demonstrate that you have a firm, working knowledge of the lingo.

- Need to develop excitement in the reviewers; Put on your Marketing hat; Think in terms of an ‘elevator speech’;

- In 1 page or less, you need to demonstrate a tremendous need for your work, present a solid hypothesis or goal and provide an explanation of how your are going to test your hypothesis (or reach goal).

- If you sound bored, the reviewers will be bored, too.
Proposal Organization

• A poorly organized proposal with a confusing layout will put reviewers in a bad mood. Don’t make the reviewers work to find key information. Put everything in a logical order.

• Put yourself in a reviewer’s shoes – can you follow the train of thought and organization?

• Have others read it – can they follow your organizational pattern, or do others find it confusing?

• Avoid too much jargon. Don’t try to sound ‘smart’. That just turns reviewers off. Write in clear, easy to understand sentences.

• Follow agency guidelines

Proposal Organization – Generic example

Maintain a consistent organizational pattern – Seems obvious, but apparently it isn’t

1. Specific Aims (Indent, bullet, etc. each SA – Make them obvious)
2. Background and Significance
3. Preliminary Data
 a) Preliminary data for Aim 1
 b) Preliminary data for Aim 2
 c) Preliminary data for Aim 3
4. Experimental Design
 a) Experiments for Aim 1
 i. Experiments
 ii. Expected results
 iii. Potential Challenges and Solutions/Alternatives
 b) Experiments for Aim 2
 ...
 c) Experiments for Aim 3
 ...
5. Outcomes
6. Timeline
Submitting your proposal

Internal:

• Get as many sets of eyes on your proposal before you submit it. Don’t worry too much about areas of expertise. Just find successful grant writers and reviewers to read your proposal.

• Give them your specific aims page as soon as you generate it so you don’t waste time.

• Eventually, you will get to a point of minimal (zero) return. Do your best to eliminate typos, grammatical errors, strangely formatted citations etc., but accept the fact that some will make it into your proposal. Don’t sweat it. A few of these things will not doom your proposal.

• Get it to Sponsored Programs early. Get the budget stuff etc. out of the way very early in the process.

Submitting your proposal

External:

• Include a cover letter that indicates what announcement you are submitting to (Follow agency specific rules).

• If agency allows, indicate what sort of expertise is needed to adequately review the proposal

• If agency allows, suggest reviewers and also list reviewers you do not want

• For NIH: Indicate 1) Study Section 2) Institute or Institutes. Take great care to get your proposal to the right Study Section. (This is the key to the whole thing!)

• Once submitted, ensure that the proposal went to where you wanted it to go. That is, pay attention to the acknowledgement letter or e-mail

• For NIH, did the proposal go to the right study section? If not you can request that it be reassigned. Talk to SROs and see if your guess as to the right study section was the right one.

• For NIH, check back a few weeks prior to review date – Has the study section roster changed? Are there conflicts?
Final thoughts that didn’t fit elsewhere

- Persistence is key; Don’t take reviews personally; Don’t get discouraged.

- Collaboration is a good thing. Do not look down on being a Co-PI or Co-I. As long as you are named on a proposal, it counts for you.

- Treat your proposal writing as part of your career plan. Think ahead. Think long term.

- You will not get grants if you don’t publish.

- You will have a tougher time getting grants if you do not network at conferences, etc. Become active in your professional society and your are instantly considered to be an expert.

Questions?
Pursuing Large, Interdisciplinary Team Science Grants

Kathleen E. Halvorsen¹ and Alex S. Mayer²

¹Department of Social Sciences/School of Forest Resources and Environmental Science
²Department of Civil and Environmental Engineering/Department of Geological and Mining Sciences and Engineering

My experience

- Mostly NSF, mostly NSF SEES (Science, Engineering, and Education for Sustainability)
- Highly interdisciplinary proposals and grants
- 3-40 social, natural, and engineering scientists
- Large (300K-4.8 million)
- Multi-year (2-5 years)
- Successfully garnered recent/current NSF WSC, GK12, MUSES, PIRE, RCN, and IDR grants
NSF Interdisciplinary (ID) team science proposals

- RFP specifies required components: “Proposal Preparation Instructions” and NSF Grants Guide “GPG” (document formatting matters!)
- 15-20 pp main body of proposal with required sections, can vary across RFPs
- Document requirements can vary
 - Project summary: Intellectual Merit and Broader Impacts, etc.
 - Project description: Intellectual Merit and Broader Impacts, etc.

ID Team Science Advantages

- ID teams have broader expertise, better fit to complex research problems
- Can go after multi-million dollar grants
- Can go after longer term grants
- 20% of NSF funds = SEES = fundamentally ID team science proposals
- Learning across disciplines
- More glory!
Challenges!

- Bigger $ = lower odds of success
- Complex proposal in limited space
- Massive supporting docs
- Managing ID science teams is very hard

Research Teams = Small Work Groups

- Small group development requires:
 - Identification with group,
 - Shared norms of respect, trust, processes,
 - Shared goals,
 - Structure: leadership and division of labor,
 - Sustained interaction over time (Babbie 1995)
Interdisciplinarity = Heterogeneity

- Of knowledge,
- scientific norms (research questions v. hypotheses; experimental v. research design; credit),
- language (gradients v. variation),
- respect (unintended insults: soft v. hard science; science social science; STEM v. HASS);
- scale, etc.
- HETEROGENEOUS SMALL GROUP MANAGEMENT IS HARD!!!!!

Best Practices

(from Halvorsen and Mayer In Prep)

- The development and management of a successful ID scientific team is hard.
- Choose members wisely.
- The development of group cohesion and identity takes time but it is essential to success.
Best Practices (cont)

- Draw upon existing relationships helps kick-start cohesion, identity, and commitment.

- Invest time in the development of team member and/or leader training in social interaction and task skills.

- Smoothly functioning small groups require clear roles and expectations.

Best Practices (cont)

- Cohesive, well-functioning groups develop over time through sustained, structured interaction.

- Successful ID teamwork requires the development of and compliance with shared norms.

- The creation of successful ID teams requires good leadership.
Best Practices (cont)

♦ Successful teams have a shared purpose.

♦ Include critical mass of scientists of various types, avoid “tokens.”

Lessons for You

♦ Successful grant writing is 33% exciting, compelling ideas; 33% hard work; and 34% luck.

♦ **Exciting, compelling ideas**: synthesize existing science, show a key gap, and how your innovative, dynamic, credible research design fills that gap

♦ **Hard work**: EDIT THE HELL OUT OF YOUR PROPOSAL AND SUPPORT DOCS. Don’t give reviewers excuses to turn you down, “dot your i’s,” do a great job with “non-science” pieces (such as outreach, diversity components)
Lessons for You

- **You Can Increase Your Luck:** Talk to program officers about fit. Agencies frequently request suggested reviewers – TAKE THEM UP ON IT! BUT ultimately your reviewers mostly come from the luck of the draw.

- Take advantage of resources:
 - Centers
 - Staff support
 - Senior scientists

Lessons for You

- For ID team science proposals, full INTEGRATION of all the sciences throughout: from significance of research to peer reviewed lit review to research questions/design is key.
New Course: SS5340 Principles of Interdisciplinary Sustainability Research

- Offered Fall 2013.
- Will build student skills in creating and managing ID science teams through hands-on exercises and proposal writing.
- Open to any graduate student or advanced undergraduate.
- Diverse group of international social, natural, and engineering science students.
Effective Proposal Development Strategies

BEYOND THE RESEARCH PLAN

Chris S. Anderson
Office for Institutional Diversity

April 3, 2013

NSF’s BROADER IMPACT =

- Promoting teaching, training & learning
 - Broadening participation (diversity*)
 - Enhance infrastructure for research & education
 - Dissemination
 - Benefits to society

*“NSF is committed to the principle of diversity and deems it central to the programs, projects, and activities it considers and supports.”
DEVELOPING BROADER IMPACT COMPONENT/S
STEP ONE

What do you want to do?
What is Michigan Tech currently doing?
How can you broaden or enhance efforts?
What resources do we have?

BROADER IMPACTS- ACTIVITY EXAMPLES
Support an undergraduate research student/s
Support a new graduate student
Develop a visiting scholar series
Support a community college research faculty experience
Develop an interactive lab or demonstration for middle or high school students
Present public lectures at a local school district
Develop partnership, i.e. with a Minority Serving Institution (MSI)

For more examples see Appendix B and NSF Merit Review Broader Impacts Criterion: Representative Activities
PROGRAMS

- A Comprehensive Approach to Diversity (handout)

An excerpt from *Diversity Facts 2012*

PARTNERS

At the National Level

Michigan Tech is an __________ institution

- **ADVANCE** – Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers

- **LSAMP** – Louis Stokes Alliances for Minority Participation

 http://www.engin.umich.edu/students/mi-lsamp/

- **AGEP** – Alliances for Graduate Education and the Professoriate

- **GEM** – Graduate Education for Minorities

PARTNERS

At the National Level

Michigan Tech is active in

- **SWE** – Society of Women Engineers (collegiate & professional)
- **AISES** – American Indian Science & Engineering Society (collegiate)
- **SHPE** – Society of Hispanic Professional Engineers (collegiate)
- **NSBE** – National Society of Black Engineers (collegiate)
- **WEPAN** – Women in Engineering Programs & Advocates Network (professional)

 [Link to WEPAN website](http://www.wepan.org/)

PARTNERS

At the State Level

Michigan Tech is a King-Chavez-Parks (KCP) Initiative Partner

- **MICUP** – Michigan College/University Partnership/MI-Louis Stokes Alliances for Minority Program
- **GEAR UP / College Day**
- **FFF** – Future Faculty Fellowship Program
- **VWMLS** – Visiting Women & Minority Lecturer/Scholars Series Program
PARTNERS

At the State Level

Michigan Tech collaborates with the

- DAPCEP – Detroit Area Precollege Engineering Program
- GRAPCEP – Grand Rapids Area Precollege Engineering Program
- CCISD – Copper Country Intermediate School District Science/Mathematics Center
- Individual School Districts & Community Colleges
- Individual Minority Serving Institutions (MSI)

PARTNERS

At the University Level

Established Internal Infrastructures & Expertise

- Cognitive and Learning Sciences Department (Education division)
- Office of Institutional Diversity
- Center for Diversity & Inclusion (CDI)
- Center for Precollege Outreach (CPO)
- Graduate School
- Individual faculty, staff & administrators
- ME-EM Engineering Education faculty group
- Civil & Environmental Engineering, Great Lakes Research Center – Environmental Outreach Office
- Hybrid Electric Vehicle (HEV) Mobile laboratory
- Summer Undergraduate Research Fellowship (SURF)
WRITE THE BROADER IMPACT PLAN

STEP TWO

Leverage existing programs and partnerships

Know your partners and invite their input

Be explicit-need, current research, activities, expected outcomes, etc.

ALSO INCLUDE

STEP THREE

A Reasonable Budget

Assessment and Evaluation
 Goal/s ⇔ Actions ⇔ Outcomes
 Accountability
 Measures

Institutionalization Discussion

Dissemination Plan
Diversity enriches the educational experience.

It promises personal growth and a healthy society.

It strengthens communities and the workplace.

It enhances economic competitiveness.
QUESTIONS?

APPENDIX A: PREPARATION-THINGS TO THINK ABOUT
Some Questions to Think About

- What aspects of your research will you emphasize?
- On what aspects of broader impacts do you want to focus?
- What group/s might you want to target?
- What group/s might benefit?
- What internal resources might you need or involve?
- What external partners might you need or involve?
- How much time and budget do you want to commit each year?
- How could you disseminate this work?
- How will you evaluate this component?

Determine your Target Participants or Audience

- Precollege – Students or Educators (elementary or secondary)
- Undergraduate Students
- Graduate Students
- Post Docs
- Community College – Students or Faculty
- General Public
- Faculty
Determine Broader Impact Approaches

- Outreach Programs
- Education Programs – formal or informal
- Professional Development Programs – including your own
- Research Mentor
- Collaborations
- Other

Match Approach/es with Target Audience and Potential Partners

Investigate University Resources

Develop your plan for each year of the award

APPENDIX B: A FEW MORE EXAMPLES
Activity A:

Design a one week (36 hours class/field time) exploration highlighting your discipline and research project

Impact: ~ 20 diverse students/week; offered multiple years (sustained effort)

Time Commitment: Development of exploration week (variable); summer instruction ~ 40 hours

Budget: Instruction, supplies & materials, administrative costs, evaluation & dissemination

Activity B:

Design a partial week module for a current Youth Program offered by your department or related department

Impact: ~ 20 diverse students/week; offered multiple years (sustained effort)

Time Commitment: Development of exploration module (variable); instruction ~ 6-10 hours

Budget: Instruction, supplies & materials, administrative costs, evaluation & dissemination

Resource:

Center for Precollege Outreach

Over 70 different explorations of disciplines and career areas for youth ages 11-17 years (http://www.youthprograms.mtu.edu)

Activity:

Interactive laboratory demonstrations of related research

Impact: Variable number of diverse students, dependent on participating schools and number of visits scheduled, sustained effort

Time Commitment: Development of laboratory activities (variable); instruction, etc. (approximately 3 days)

Budget: Travel, instruction, supplies & materials, evaluation & dissemination

Contact: Jeremy Worm, ME-EM

jjworm@mtu.edu

Resource: Hybrid Electric Vehicle (HEV) Mobile Laboratory
Activity: Sponsored research related seminars, classroom lectures, collaborative meetings in your research area and related research; introduces campus community to diverse researchers/potential faculty

Impact: An opportunity for our faculty and students to interact with scholars and role models, highlight interdisciplinary work

Budget: $3,000 – 10,000/year; target Michigan Tech faculty and students

Contact: Chris S. Anderson, Office for Institutional Diversity
csanders@mtu.edu

Resource: Visiting Women & Minority Lecturer/Scholar Series, Institutional Diversity

Activity: Active participant/s as part of PI’s research team

Target: Diverse Michigan Technological University or other university partner students, or community college students

Time Commitment: ~ 7-10 weeks, summer or academic year (14 weeks); PI and research team mentorship

Budget: ~ $3,500 – 7,500/student; variable depending on number of weeks, housing and supervision needs, seminar costs, administrative costs for recruitment, evaluation & dissemination

Contact: Chris S. Anderson, Office for Institutional Diversity
csanders@mtu.edu

Resource: Undergraduate Summer Research – MICUP, SURF, Individual Career Award Research Teams, Individual Community Colleges, LSAMP
Activity: Collaborate with faculty member/s at a partner community college or minority serving institution (MSI) to share research and/or develop skills

Activity: Participate in diversity-focused conferences, workshops and field activities

Activity: Organize a series of public presentations

Resource: Institutional Diversity, Graduate School, CDI, other Michigan Tech Faculty

APPENDIX C: DATA & ACTIVITY RESOURCES
Data & Activity Resources

- Institutional Diversity: http://www.diversity.mtu.edu
- Institutional Analysis: http://www.admin.mtu.edu/ia/
- WEPAN Knowledge Center: http://www.wepanknowledgecenter.org/home
A Comprehensive Approach to Diversity

Institutional Support
Academic Diversity Strategic Plans and Annual Reviews
Alumnae—Presidential Council of Alumnae (PCA)
Corporate Advisory Board for Institutional Diversity
Cultural Climate Study
Dual Career Program
Higher Education Excellence in Diversity Awardee
Little Huskies Child Development Center
Making Our Mark @ Michigan Tech website
NSF ADVANCE Institution
Out for Work Certification
Services for Disabled Students
Special Assistant to the President for Institutional Diversity
University Diversity Framework/Strategic Plan
Women in Science and Engineering (WISE)

Undergraduate and Graduate Groups
American Indian Science and Engineering Society (AISES)
Keweenaw Pride (KP)
National Society of Black Engineers (NSBE)
out in Science, Technology, Engineering, and Mathematics (oSTEM)

Society of African American Men (SAAM)
Society of Intellectual Sisters (SIS)
Society of Women Engineers (SWE)
Society of Hispanic Professional Engineers (SHPE)
Wade McCree Program
Women in Computer Science (WICS)
Women of Promise

Pre-College Outreach
Michigan Tech/DAPCEP College Access Programs
Engineering Scholars Program (ESP)
Get Wise Day
NSF Math and Science Partnership/Michigan Teaching Excellence Program (MSP/MITEP)
Women in Engineering (WIE)
Pre-College Summer Academic Programs

Sample University/Partner Programs
360° Partner Scholarship Program
Detroit Area Pre-College Engineering Program (DAPCEP)
Detroit Compact
Graduate Engineering for Minorities (GEM)
Grand Rapids Area Pre-College Engineering Program (GRAPCEP)
King Chavez Parks Future Faculty Fellowships (KCP FFF)

Louis Stokes Alliances for Minority Participation (LSAMP)
Michigan Alliances for Graduate Education and the Professoriate (AGEP)
National Action Council for Minorities in Engineering Scholars Program (NACME)
Summer Undergraduate Research Fellowships (SURF)
SWE Dine with Industry

Academic and Other Education Programs
Black History Month and Cultural Celebrations
Diversity Education—Professional Development
Diversity Minor
Excelling the Student Experience of Learning (ExSEL)
Hispanic Heritage Month and Cultural Celebrations
KCP Michigan College/University Partnership (MICUP - Michigan Tech/LSAMP)
KCP Visiting Women and Minority Lecturer/Scholar Series (VVMLS)
Native American History Month and Cultural Celebrations
Parade of Nations
Study Abroad
Transfer Scholars Research Program
World Cultures (required course)
Women's History Month and Cultural Celebrations