Accreditation and Objectives

ABET Accreditation

ABET is the recognized accreditor for college and university programs in applied science, computing, engineering, and engineering technology. ABET is a federation of 35 professional and technical societies representing these fields. Among the most respected accreditation organizations in the United States, ABET has provided leadership and quality assurance in higher education for over 90 years.

ABET accredits over 4,500 programs at 895 colleges and universities in 40 countries. Over 2,200 dedicated volunteers participate annually in ABET evaluation activities.

The undergraduate Materials Science and Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and the Materials, Metallurgical, Ceramics, and Similarly Named Engineering Programs Program Criteria.


Materials Science and Engineering Program Objectives

The Materials Science and Engineering Department’s undergraduate Program Educational Objectives (PEOs), as collectively established, modified, and updated by its faculty and other constituencies, state that within a few years after graduation from Michigan Tech, alumni of the program will have:

  • leveraged their education and MSE degree to begin a professionally-satisfying career compatible with their interests and goals.
  • demonstrated an ability to perform their duties that meet or exceed the expectations of their employers, peers, employees, and/or customers.
  • pursued personal, intellectual, and professional development and opportunities in their chosen profession and career.

Student Educational Outcomes

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.