The Space Systems research group is involved in aerospace engineering, ion space propulsion, planetary exploration, control systems, and ultra-strong composites.
Space Systems Groups
- Michigan Tech Aerospace Engineering Research Center (MARC) is a focal point for activities related to aerospace engineering.
- Aerospace Enterprise team places an emphasis on space mission design and analysis, vehicle integration,systems engineering, and comprehensive ground testing and qualification.
- Institute for Ultra-Strong Composites by Computational Design (US-COMP) is a NASA Space Technology Research Institute awarded in 2017. Its mission is computational development of materials for space applications.
- Ion Space Propulsion Lab (ISP Lab) involves next-generation plasma thrusters for spacecraft.
- Multiplanetary INnovation Enterprise (MINE) seeks to design, test, and implement robotic technologies for extracting and using local resources, construction, and characterization in extreme environments.
- Planetary Surface Technology Development Lab (PSTDL) develops technology solutions for planetary surface exploration of the Moon, Mars, and beyond while training the next generation of engineers.
Faculty + Research = Discovery
Our department boasts world-class faculty who have access to numerous innovative research labs and are committed to discovery and learning.
This encompasses a range of research areas, experiences, and expertise related to space systems. Learn more about our faculty and their research interests:
Research Projects
Our faculty engage in a number of research projects, many of which are publicly funded.
A sample listing of research projects appears below. You can also view a broader list of research projects taking place across the mechanical engineering-engineering mechanics department.
- Co-Investigator: Michael Roggemann
- College/School: College of Engineering
- Department(s): Mechanical and Aerospace Engineering
- Awarded Amount: $113,000
- Sponsor: Utah State University Research Foundation, Space Dynamics Lab
Abstract:
Dozens of commercial and government spacecraft occupy the geostationary belt to provide global telecommunications service for their customers and operators. As more spacecraft occupy the GEO region the potential for interference grows. Spacecraft in GEO can interfere with each other by (1) close physical proximity, which increases collision risk, and (2) electromagnetic interference (antenna beam overlap) which can degrade communication performance. We propose a mission called Auris, Latin for "the ear," to characterize the interference potential of GEO communications satellites. Using CubeSats in LEO, Auris can spatially map out the antenna spot beam pattern of a GEO comsat and also pinpoint the physical location in space of the GEO emitter. The spot beams are mapped by registering received signal strength, latitude, longitude, and altitude as the CubeSat passes through the beam during multiple orbits. The emitter location is established via time-difference-of-arrival measurements from multiple receivers.
The Auris mission data has actionable relevance and will be useful for SMC's Space Superiority Directorate (SMC/SY) and they will be the data customer for the proposed mission; Auris will serve as a pathfinder to mature technologies for future programs of record supported under SMC/SY's strategic direction. The Auris project's data output is aligned to AFSPC tech needs, most directly with TN1022 "Next Generation Space C2 Information Display and Visualization," related to JMS.
The nanosatellite design activity will be perfom1ed by an interdisciplinary team of undergraduate students through the Michigan Tech Aerospace Enterprise Program. The Aerospace Enterprise team has participated in the UNP competition three times, earning two Third Place awards (UN3 and UN5) and one First Place Award (UN6). The team's Oculus-ASR nanosatellite is presently being readied for flight on the 2016 STP-2 mission that will be launched on a SpaceX Falcon Heavy.
Proposed Mission:
We propose a mission called Auris, Latin for "the ear," to characterize the interference potential of GEO communications satellites. The Auris mission was inspired by, and heavily leverages, LaSarge's concept to gather intelligence on GEO emitters using cubesats in LEO. Our proposed mission has two goals:
- Spatially map out the antenna spot beam patterns radiated from geostationary communications satellites
- Demonstrate the ability of cubesat-based receivers to locate the position of RF emitters using multilateration
Mission Goal 1: As CubeSats traverse their LEO orbits they fly through the path of spot beams transmitted from GEO. The CubeSat operates as a simple detector, registering the time and location when it receives the signal from the target emitter. After many orbits the locus of "hits" reported by the CubeSat maps out the shape of the antenna spot beam pattern. The time required to converge on an adequately filled beam map can be accelerated by using multiple CubeSats.
Mission Goal 2: Is to demonstrate a technique to locate the position of a spot beam emitter. LaSarge's original work explored this objective using angle-of-arrival (AOA) information at the CubeSat receiver to detem1ine the line-of-sight vector to the source. This technique was shown to require unreasonable attitude knowledge on the CubeSat in addition to bulky directional antennas. To physically locate an RF emitter we propose, instead, to use time difference of arrival (TDOA) information recorded from multiple receivers.
- College/School: College of Engineering
- Department(s): Mechanical and Aerospace Engineering
- Awarded Amount: $456,539
- Sponsor: Air Force Office of Scientific Research
At present there exists no single propulsion technology capable of meeting both orbit-raising and stationkeeping requirements for communications satellites. Contemporary satellites thus carry two completely separate propulsion systems and incur the mass penalty associated with each. It is conceivable that a single propellant could be used for both a high-thrust chemical thruster that performs orbit raising as well as a high-specific-impulse electric thruster to perform stationkeeping. In this case the mass burden on the spacecraft bus would be significantly reduced simply by eliminating one of the large propellant storage vessels. Although no single propellant has been identified yet, recent developments suggest that it is possible to synthesize custom nanostructured propellants that could be used in both chemical combustion-based thrusters as well as electrostatic thrusters.
The goal of work proposed here is to fabricate and implement an experimental test bed that is capable of fully characterizing the electrostatic acceleration and chemical combustion of nanostructured propellants for spacecraft propulsion. The instruments will be developed through collaboration between Michigan Technological University and the University of Maryland. The proposed test-bed represents the first-ever facility devoted to combustion and electrospray research on nanostructured colloidal propellants.
The investigators on this project together are presently engaged in DoD research with total funding exceeding $4M. Agencies supporting this research include Office of Naval Research, Air Force Office of Scientific Research, and the Defense Threat Reduction Agency. All of this work is devoted to studies, in one form or another, of the behavior of nano-structured propellants for either chemical or electric propulsion. The test equipment proposed here will be directly relevant to these on-going activities.
- College/School: College of Engineering
- Department(s): Mechanical and Aerospace Engineering
- Awarded Amount: $939,442
- Sponsor: University of Michigan
This five year research program consists of research in three areas: electrospray propulsion, field-reversed configuration devices, and non-invasive plasma optical diagnostics.
- 1. Electrospray Propulsion
MTU has pioneered a unique micromachining technique for fabricating all-metal electrospray structures for space propulsion. Unlike devices built using silicon MEMS protocols, the all-metal emitters are suitable for use with reactive propellants such as AF315. The all-metal structures can also tolerate very high temperatures. The electrode needles in this array are solid tungsten, while the substrate is solid molybdenum. MTU will investigate the use of externally wetted emitters - as well as internally wetted capillaries for use as electrospray sources for space propulsion. Research will focus on the use of AF315 as a propellant. Investigations will address fabrication challenges, device performance, plume characterization, and spacecraft interaction.
2. Field-Reversed Configurations
The FRC presents a unique plasma geometry that is well suited for plasma propulsion.
Because the FRC plasmoid is not linked to the structural magnetic flux, the plasma is not attached to the open field lines and can be ejected from the formation region as a self-contained entity. Furthermore, FRCs result from inductive "electrodeless" formation, avoiding the failure mode imposed by electrode erosion that is common to contemporary plasma thrusters. Motivated by the surprising stability of FRCs and their ability to translate while remaining coherent, MTU and the Air Force Research Laboratory (AFRL) at Edwards AFB will collaborate on an investigation into the feasibility of FRC space propulsion. MTU has designed and built a unique co-axial FRC mounted to a large expansion chamber that will be used for MACEEP research.
The goal of MACEEP research will be to determine the optimal physical and electrical configuration of a coaxial FRC for space propulsion and to characterize the conversion of stored electrical energy into plasmoid kinetic energy during translation and ejection. MTU researchers will employ a number of diagnostic techniques - to include magnetic field probes, electrostatic probes, and optical diagnostics - to quantify the energy conversion process during FRC formation and ejection. Thrust will be estimated from exhaust plume properties.
3. Non-invasive Optical Diagnostics
MTU is currently developing an optical diagnostic technique that can, for the first time, obtain direct measurements of electron density and electron energy distribution function (EEDF) within the discharge chamber and near-field plume of a Hall thruster. The MTU technique uses a
1,000-mJ-per-pulse Nd-YAG laser to induce laser Thomson scattering (LTS) from the free electrons in a plasma. The scattered radiation is measured using a triple-grating spectrograph and electron-multiplied CCD camera with single-photon detection capability. The scattered spectra can directly provide density and EEDF without perturbing the plasma. Researchers will use MACEEP funding to demonstrate this technique and apply the measurement to Hall thrusters and FRC plasmas. It is anticipated that knowledge gained from LTS measurements will provide insight into Hall thruster cross-field mobility as well as FRC internal energy storage and conversion.
- College/School: College of Engineering
- Department(s): Mechanical and Aerospace Engineering
- Awarded Amount: $921,051
- Sponsor: U.S. Dept of Defense, Air Force Office of Scientific Research
The term "electrospray" refers to the charged droplets and molecular ions that are emitted from the meniscus of a conducting liquid due to a strong electric field. The applied electric field induces a layer of surface charge on the liquid resulting in an electrostatic stress on the surface; if the stress is strong enough to overcome liquid surface tension the result is an ejected beam of charged particles. In 2013 Meyer and King demonstrated a completely new mechanism of electrospray that is fundamentally different from anything observed to date. This new electrospray was enabled by a unique and exotic fluid that was synthesized for the first time by Jain and Hawkett in 2011. This new fluid is called an ionic liquid ferrofluid (ILFF), which is a superparamagnetic, electrically conductive, room-temperature molten salt. Because the ILFF is superparamagnetic it can be stressed by magnetic fields; because the ILFF is also electrically conductive it can be stressed by electric fields. Meyer and King induced a magnetostatic instability in the ILFF surface known as a Rosensweig instability, which caused a regular array of static fluid spikes in the free surface. An applied electric field then further stressed and deformed the magnetically formed peaks causing their amplitude to increase and tip radius to decrease. A sufficiently strong electric field was shown to cause electrospray emission from the tip of each spike in the array.
This combined magneto-electrostatic instability has never before been observed and hence no description is available. The phenomenon was observed in two different fluids and under various values of applied electric field, but systematic investigation of the effect has not yet been addressed. This document proposes an integrated experimental, theoretical, and numerical investigation of electrospray from Rosensweig-Taylor instabilities that is designed to uncover the governing processes in this new phenomenon. The goal of work proposed here is to quantify how the combination of electric and magnetic surface stress components affect electrospray behavior in a superparamagnetic liquid. A two year research effort is proposed to
- Design and fabricate an apparatus that isolates a single Rosensweig-Taylor tip and permits controlled variation of both electric and magnetic field
- Measure rheology, surface tension, magnetic nanoparticle concentration, and electric conductivity for each ionic liquid ferrofluid tested
- Measure the critical voltage required to induce electrospray from a magneto-electrostatic instability as a function of (I) fluid magnetization, (2) magnetic field strength, (3) and fluid conductivity
- Establish the relationship between applied voltage, spray current, and total spray mass flow as a function of magnetic field strength
- Measure the angular divergence of the emitted electrospray beam as a function of electric and magnetic field strength
- Numerically model the fluid emission site using molecular dynamics simulations
- Measure the mass-to-charge ratio of emitted products using mass spectrometry
- Attempt a theoretical description of the static instability as a function of fluid parameters and electric/magnetic field strength.
- Co-Investigator: L. King
- College/School: College of Engineering
- Department(s): Mechanical and Aerospace Engineering
- Awarded Amount: $134,000
- Sponsor: National Science Foundation
