Xiaoqing Tang

Xiaoqing Tang

Contact

Assistant Professor, Biological Sciences

  • PhD, Weizmann Institute of Science, Israel, 2003

Research Description

Diabetes is caused by either the loss of the insulin producing beta cells in the pancreas, leading to a deficiency of insulin (type 1 diabetes), or insulin resistance, reduced insulin sensitivity, and reduced insulin secretion (type 2 diabetes). In both types of diabetes, the patients develop serious secondary complications, such as microvascular complications, oxidative stress and endothelial dysfunction, cardiovascular disease, and kidney failure.

MicroRNAs (miRNAs) are newly discovered, 21-24nt in size, non-coding RNAs. miRNAs negatively regulate the expression of protein-coding genes by binding to the 3'-untranslated region (3'-UTR) of specific targeted gene transcripts (mRNAs). Each miRNA regulates the expression of hundreds of target genes. One mRNA can be targeted by multiple miRNAs. An emerging body of evidence suggests that miRNAs play a central role in many physiological processes and human diseases, such as cancer, neurodegeneration, cardiovascular disease, and diabetes.

Our laboratory is focused on the function of miRNAs in control of insulin production and secretion in pancreatic beta cells. We have successfully developed a high-throughput miRNA array technology for the study of miRNAs in human and mouse tissues. Using this technology, we have screened out many glucose-regulated miRNAs in beta cells and identified the miRNAs that regulates insulin production and secretion. We believe that the understanding of the fine-tuning interplay between miRNAs and their target genes will be beneficial in developing new approaches to restore insulin production and secretion from beta cells. In addition, we are interested in identification and characterization of type-2 diabetes-associated miRNAs by high-throughput profiling of miRNA expressions using a diabetic mouse model. The ultimate objective is to identify key miRNAs as diagnostic biomarkers for diabetes and develop novel miRNA drugs for the therapeutic treatment of diabetes.

Research Interests

  • Diabetes
  • Obesity
  • Insulin Production, Secretion, and Signaling
  • microRNA and Human Diseases (Diabetes, Cancers, etc.)
  • microRNA Technologies for Plants and Animals: Small Tandem Target Mimic (STTM) and MicroRNA Array

Recent Publications

  • Mao Y, Mohan R, Zhang S, Tang X. (2013) MicroRNAs as pharmacological targets in diabetes. Pharmacol Res. (In press. doi:pii: S1043-6618(13)00102-3. 10.1016/j.phrs.2013.06.005.) Read More
  • Tang G* and Tang X*. (2013) Short Tandem Target Mimic: A Long Journey to the Engineered Molecular Landmine for Selective Destruction/Blockage of microRNAs in Plants and Animals. Journal of Genetics and Genomics. 40 (6): 291–296. Read More
  • Tang G*, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X*. (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods (in press, *Corresponding authors) Read More
  • Zhao X, Mohan R, Ozcan S, Tang X. (2012) MicroRNA-30d Induces Insulin Transcription Factor MafA and Insulin Production by Targeting Mitogen-activated Protein 4 Kinase 4 (MAP4K4) in Pancreatic β-Cells. J Biol Chem. 287(37):31155-64. Read More
  • Tang X, Tang X, Gal J, Kyprianou N, Zhu H, Tang G. (2011) Detection of microRNAs in prostate cancer cells by microRNA array. Methods Mol Biol. 732:69-88. Read More
  • Tang, X., Muniappan, L., Tang, G., and Ozcan, S. (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287-293.
  • Tang, X.*, Tang, G., and Özcan S*. (2008) Role of microRNAs in diabetes. BBA-Gene Regulatory Mechanisms. 1779: 697-701 (* Corresponding authors).
  • Tang, G., Tang, X., Mendu, V., Tang, XH., and Jia, X. (2008) The art of microRNA: Various strategies leading to gene silencing via an ancient pathway. BBA-Gene Regulatory Mechanisms. 1779: 655-662.
  • Tang, G., Xiang, Y., Kang, Z., Mendu, V., Tang, X., Jia, X., and Tang, X. (2008) Small RNA technologies: siRNA, miRNA, antagomiR, target mimicry, miRNA sponge and miRNA profiling. Current Perspectives in MicroRNAs (miRNA), Springer Netherlands, pp 17-33.
  • Tang, X., Gal J., Zhang X., Zhu H. and Tang G. (2007) A simple array platform for microRNA analysis and its application in mouse tissues. RNA 13,1803-22.
  • Tang, X., Guilherme A, Chakladar A, Powelka AM, Konda S, Virbasius JV, Nicoloro SM, Straubhaar J, Czech MP. (2006) An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci U S A. 103, 2087-2092.
  • Powelka, A.M., Seth, A., Virbasius, J.V., Kiskinis, E., Nicoloro, S.M., Guilherme, A., Tang, X., Straubhaar, J., Cherniack, A.D., Parker, M.G., Czech, M.P. (2006) Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest. 116,125-136.
  • Tang, X., Powelka, A.M., Soriano, N.A., Czech, M.P. and Guilherme A. (2005) PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 Adipocytes. J Biol Chem. 280,22523-22529.
  • Zhou, Q.L., Park, J.G., Jiang, Z.Y., Holik, J.J., Mitra, P., Semiz, S., Guilherme, A., Powelka, A.M., Tang, X., Virbasius, J., Czech, M.P. (2004) Analysis of insulin signalling by RNAi-based gene silencing. Biochem Soc Trans. 32(Pt 5), 817-821.