Xiaoqing Tang

Xiaoqing Tang


  • Associate Professor, Biological Sciences
  • PhD, Weizmann Institute of Science, Israel, 2003

Research Description

Diabetes is caused by either the loss of the insulin producing beta cells in the pancreas, leading to a deficiency of insulin (type 1 diabetes), or insulin resistance, reduced insulin sensitivity, and reduced insulin secretion (type 2 diabetes). In both types of diabetes, the patients develop serious secondary complications, such as microvascular complications, oxidative stress and endothelial dysfunction, cardiovascular disease, and kidney failure.

MicroRNAs (miRNAs) are newly discovered, 21-24nt in size, non-coding RNAs. miRNAs negatively regulate the expression of protein-coding genes by binding to the 3'-untranslated region (3'-UTR) of specific targeted gene transcripts (mRNAs). Each miRNA regulates the expression of hundreds of target genes. One mRNA can be targeted by multiple miRNAs. An emerging body of evidence suggests that miRNAs play a central role in many physiological processes and human diseases, such as cancer, neurodegeneration, cardiovascular disease, and diabetes.

Our laboratory is focused on the function of miRNAs in control of insulin production and secretion in pancreatic beta cells. We have successfully developed a high-throughput miRNA array technology for the study of miRNAs in human and mouse tissues. Using this technology, we have screened out many glucose-regulated miRNAs in beta cells and identified the miRNAs that regulates insulin production and secretion. We believe that the understanding of the fine-tuning interplay between miRNAs and their target genes will be beneficial in developing new approaches to restore insulin production and secretion from beta cells. In addition, we are interested in identification and characterization of type-2 diabetes-associated miRNAs by high-throughput profiling of miRNA expressions using a diabetic mouse model. The ultimate objective is to identify key miRNAs as diagnostic biomarkers for diabetes and develop novel miRNA drugs for the therapeutic treatment of diabetes.

Research Interests

  • Diabetes
  • Obesity
  • Insulin Production, Secretion, and Signaling
  • microRNA and Human Diseases (Diabetes, Cancers, etc.)
  • microRNA Technologies for Plants and Animals: Small Tandem Target Mimic (STTM) and MicroRNA Array

Recent Publications

  • Sachin Teotia, Deepali Singh, Xiaoqing Tang, Guiliang Tang (2016) Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends in Biotechnology 34 (2): 106-23. Read More
  • Wang X, Chen L, Jin H, Wang S, Zhang Y, Tang X, Tang G (2016) Screening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population. OncoTargets and Therapy. 9: 1159-1166. Read More
  • Mohan R, Mao Y, Zhang S, Zhang YW, Xu CR, Gradwohl G, Tang X. (2015) Differentially Expressed MicroRNA-483 Confers Distinct Functions in Pancreatic β- and α-Cells. J Biol Chem. 290(32):19955-66. Read More
  • Xiaoyun Jia, Na Ding, Weixin Fan, Jun Yan, Yiyou Gu, Xiaoqing Tang, Runzhi Li, Guiliang Tang (2015) Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Science, 233: 11-21. Read More
  • Mao Y, Mohan R, Zhang S, Tang X. (2013) MicroRNAs as pharmacological targets in diabetes. Pharmacol Res. (In press. doi:pii: S1043-6618(13)00102-3. 10.1016/j.phrs.2013.06.005.) Read More
  • Tang G* and Tang X*. (2013) Short Tandem Target Mimic: A Long Journey to the Engineered Molecular Landmine for Selective Destruction/Blockage of microRNAs in Plants and Animals. Journal of Genetics and Genomics. 40 (6): 291–296. Read More
  • Tang G*, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X*. (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods (in press, *Corresponding authors) Read More
  • Zhao X, Mohan R, Ozcan S, Tang X. (2012) MicroRNA-30d Induces Insulin Transcription Factor MafA and Insulin Production by Targeting Mitogen-activated Protein 4 Kinase 4 (MAP4K4) in Pancreatic β-Cells. J Biol Chem. 287(37):31155-64. Read More

Recent Funding

  • Xiaoqing Tang (Bio Sci) (2015), a $75,000 research contract from the U.S. Highbush Blueberry Council for the project "Blueberry Protects Pancreatic Beta-Cells."
  • Xiaoqing Tang (Bio Sci/LSTI) (2015), a $421,652 grant from the US Department of Health and Human Services, National Institutes of Health for the research project, Role of miR-483 in Pancreatic Alpha and Beta Cells. This is a three-year project.