2020-2021 Academic Calendar*

Fall Semester

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Thursday, August 27, 2020</th>
<th>Instruction Begins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Monday, September 07, 2020</td>
<td>Labor Day Recess</td>
</tr>
<tr>
<td></td>
<td>Friday, September 11, 2020 at 12:00 p.m.</td>
<td>K-day Recess</td>
</tr>
<tr>
<td>Week 3</td>
<td>Monday, September 14, 2020</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Week 4</td>
<td>Wednesday, September 23, 2020</td>
<td>Virtual Career Fair</td>
</tr>
<tr>
<td></td>
<td>Thursday, September 24, 2020</td>
<td>Virtual Career Fair</td>
</tr>
<tr>
<td>Week 6</td>
<td>Friday, October 09, 2020 at 3:00 p.m.</td>
<td>Homecoming Recess</td>
</tr>
<tr>
<td>Week 7</td>
<td>Thursday, October 15, 2020</td>
<td>Fall Recess Begins</td>
</tr>
<tr>
<td>Week 8</td>
<td>Monday, October 19, 2020</td>
<td>Classes Resume</td>
</tr>
<tr>
<td></td>
<td>Sunday, October 25, 2020 at 12:00 p.m.</td>
<td>Spring/Summer Registration Begins</td>
</tr>
<tr>
<td>Week 10</td>
<td>Monday, November 2, 2020</td>
<td>Thanksgiving Recess Begins</td>
</tr>
<tr>
<td>Week 12</td>
<td>Monday, November 30, 2020</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Week 14</td>
<td>Friday, December 11, 2020</td>
<td>Last Day of Regular Classes</td>
</tr>
</tbody>
</table>

Finals Week

Monday, December 14, 2020	Final Exam Period
December 18, 2020	Fall Semester Ends
December 19, 2020	Midyear Commencement

Spring Semester

Week 1	Monday, January 11, 2021	Instruction Begins
Week 2	Monday, January 18, 2021	Martin Luther King Day Recess
Week 4	Wednesday, February 03, 2021 at 10:00 p.m.	Winter Carnival Recess Begins
Week 5	Monday, February 08, 2021	Classes Resume
Week 8	Monday, March 05, 2021 at 10:00 p.m.	Spring Break Begins
	Sunday, March 14, 2021 at 12:00 p.m.	Fall Registration Begins
Week 9	Monday, March 15, 2021	Classes Resume
Week 10	Sunday, March 28, 2021 at 12:00 a.m.	Fall Registration Ends
Week 14	Friday, April 23, 2021	Last Day of Regular Classes
Monday, April 26, 2021	Final Exam Period	
Friday, April 30, 2021	Spring Semester Ends	
Saturday, May 01, 2021	Spring Commencement	

Summer Semester

Week 7	Thursday, June 24, 2021	Session A Ends
	Friday, June 25, 2021	Session A Exams
Week 8	Monday, June 28, 2021	Session B Begins
Week 9	Monday, July 05, 2021	Independence Day Recess
	Tuesday, July 06, 2021	Classes Resume
Week 14	Thursday, August 12, 2021	Full Session Ends
	Thursday, August 12, 2021	Session B Ends
	Friday, August 13, 2021	Final Exam Period

Academic calendar as of November 5, 2020
TABLE OF CONTENTS

DEGREE OPTIONS .. 1
 BACHELOR’S DEGREES ... 1
 MINORS ... 1
 CERTIFICATES .. 1
 DOUBLE MAJORS ... 2
 ADDITIONAL DEGREES ... 2
 ACCELERATED MASTER’S PROGRAMS ... 3
 CHANGE YOUR ACADEMIC PROGRAM ... 3
 GENERAL EDUCATION ... 3

ACADEMIC AND CURRICULAR POLICIES ... 4
 ACADEMIC INTEGRITY ... 4
 ACADEMIC PROGRESS .. 5
 ACADEMIC STANDING .. 7
 CLASS ATTENDANCE .. 10
 EXAM POLICIES ... 12
 GRADE POLICIES .. 15
 GRADUATION REQUIREMENTS .. 18
 REGISTRATION ... 19
 RESIDENCY POLICY ... 21
 STUDENT FINANCE POLICIES .. 23
 TRANSFER CREDIT ... 25
 WITHDRAWAL POLICIES .. 25

GENERAL EDUCATION: CORE AND HUMANITIES, ARTS AND SOCIAL SCIENCES (HASS) LIST 27
SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS (STEM) COURSES ... 31
CO-CURRICULAR COURSES .. 33
ACADEMIC PROGRAM CODES ... 35
SCHOLASTIC STANDARDS CODES ... 42
UNDERGRADUATE COURSE DESCRIPTIONS (FALL 2020) ... 43
Degree Options

Bachelor's Degrees
Michigan Tech has a variety of four-year degree programs. Some degrees also specify requirements for particular concentrations. Students interested in obtaining a minor, certificate, double major, or an additional degree should consult with their academic advisors.

Minors
The purpose of a Minor in Degree Program is to officially recognize a student who successfully completes a prescribed set of courses in a discipline outside their major. To receive a minor, students must be currently enrolled in a bachelor’s degree program at Michigan Tech, have added the minor to their student record, and have completed all requirements for the minor. The award will be noted on the official transcript.

A student must add a minor to their record no later than the time when the student submits his/her application for graduation. A student cannot be awarded a minor that has the same title as their major or major concentration. No credits may be double counted between minors or between minors and certificates. In addition to meeting the requirements of the minor as specified by the academic unit offering the minor, a student must:

- Maintain a minimum cumulative grade point average of 2.0 for courses completed as part of the minor.
- Complete at least 9 credit hours of the 3000-level or higher minor-required courses at Michigan Tech (residency requirement for a minor). Courses that meet the “at Michigan Tech” requirement are defined as courses listed in the course catalog and taught by a Michigan Tech instructor either on campus, at field locations, or through distance learning.

Certificates
A certificate is a credential awarded for the completion of a body of courses focused on a disciplinary or interdisciplinary theme. Certificates are noted on official transcripts and allow departments to offer curricular options not able to be met by a minor or a concentration within a major degree.

Certificates are offered to post-degree students who have previously completed a Bachelor’s degree. Post-degree students need to comply with current admissions and enrollment practices and will be awarded certificates when the requirements of the certificate are completed. In all cases students seeking a certificate should indicate their interest to the academic unit responsible for the certificate. No credits can be applied (double counted) to the requirements of both a certificate program and a minor or to two certificate programs.

In addition to meeting the requirements of the certificate as specified by the academic unit offering the certificate, a student must:

- Complete all credits used to meet certificate requirements with a grade of C or higher.
- Complete a minimum of 12 hours, with no more than 25 hours for the certificate.
- Complete at least nine of the credits must be at the 3000 or higher level.
- Complete at least nine credits at the 3000 or higher level and one-half of the total credits used to fulfill the requirements of the certificate program of courses listed in the Michigan Tech course catalog and taught by Michigan Tech faculty members either on campus, at a field location, or through distance learning.
Double Majors
A single Michigan Technological University bachelor's degree with two majors is granted when all requirements of both majors are satisfied at the same time. A student who completes a double major will be awarded one diploma listing both majors, for example, "Bachelor of Science in Mechanical Engineering with an Additional Major in Mathematics."

- The double major is distinctly different from the second degree. Majoring in two subjects does not require additional credit hours beyond departmental requirements and only a single degree is granted. Double majors work best for degree programs with similar curricular structures. When two majors have very different requirements necessitating the completion of 32 or more "additional" credits, students should consider a second degree program that results in the awarding of two distinct baccalaureate degrees and diplomas.
- A student pursuing a double major will designate one as the primary major. Students planning to earn a double major should declare both majors and begin planning their course work as early as possible. Advisors must be identified in the departments of both majors in order to assure that the degree requirements of both are met.
- Students may only earn an additional major if that major is offered under the same degree type (Bachelor of Science or Bachelor of Arts) as the primary major. If the degree types for the majors are different then the student must pursue a second degree.
- If a single department offers two distinct majors, it is possible to complete a double major within that department by fulfilling the requirements for both majors. However, student may not earn a double concentration or option within a single major.
- In the event that both majors require a senior project, a student may petition both departments to accept one project for both majors prior to beginning the senior project.
- Students who have previously been awarded a degree cannot have the double major designation added to their transcript.

Students desiring a double major should meet with the advisor of the double major's department. The student must then use the Curriculum Change Portlet to add the double major.

Additional Degrees
A student enrolled at Michigan Tech who is currently pursuing (or already has) a baccalaureate degree or degrees can obtain an additional baccalaureate degree from Michigan Tech. Students must initiate the process for obtaining an additional degree by completing a degree audit with their additional degree advisor. Unlike a double major, an additional baccalaureate degree (or degrees) will grant the student an entirely separate diploma.

A student enrolled at Michigan Tech and pursuing a baccalaureate degree can earn an additional baccalaureate degree or degrees at the same time if they:
- Satisfy the degree requirements for each baccalaureate program.
- Earn at least 32 of the credit hours required for each additional degree through Michigan Tech without having applied those credits to any other baccalaureate or minor degree program. The academic unit offering the additional degree can allow course substitutions provided that the 32 credit hour minimum is maintained.
A student interested in pursuing an additional degree should first express interest to the additional degree's department. The student must then use the Curriculum Change Portlet to add the degree. An enrolled student who already has earned a baccalaureate degree (either from Michigan Tech or from a regionally accredited institution of higher education) can obtain an additional baccalaureate degree from Michigan Tech if they:

- Satisfy the degree requirements for the additional baccalaureate program.
- Earn at least 32 of the credit hours required for the additional degree through Michigan Tech without having applied those credits to any other baccalaureate or minor degree program. The academic unit offering the additional degree can allow course substitutions provided that the 32 credit hour minimum is maintained.

A student who has obtained a prior baccalaureate degree must complete an Additional Baccalaureate Degree Completion Form with an academic advisor from the degree-granting department.

Accelerated Master's Programs

Undergraduate students may pursue a master’s degree in conjunction with their baccalaureate degree by applying a limited number of credits toward both the master’s and bachelor’s degrees. As there are several guidelines and requirements to follow, interested undergraduate students should contact the Graduate School early on in their academic career for information regarding accelerated master’s programs.

Change Your Academic Program

Degree-seeking undergraduate students considering a change of major, minor, or concentration should contact the prospective department for information regarding admission requirements.

After discussing the curriculum change with the appropriate advisor, students may use the Curriculum Change Portlet to request the change.

Questions regarding the curriculum change process may be directed to degree@mtu.edu or the academic advisor.

General Education

General Education is an important and required component of every Michigan Tech degree. Michigan Tech's General Education program enables all students, regardless of major, to develop an understanding of science and the social and cultural contexts of our contemporary world. Please visit Michigan Tech's General Education page for additional information.
Academic and Curricular Policies

Academic Integrity

Academic integrity and honesty are central components of a student's education, and the ethical conduct maintained in an academic context will be taken eventually into a student's professional career. Academic integrity is essential in a community of scholars searching and learning to search for truth. Anything less than total commitment to integrity undermines the efforts of the entire academic community. Both students and faculty are responsible for insuring the academic integrity of the university. This policy applies to the academic conduct of all persons at Michigan Tech who have ever matriculated at the University, whether or not the person is enrolled at the time an allegation of academic misconduct is made. This policy addresses academic misconduct in course work. Allegations of misconduct in research or publication are addressed under Misconduct in Research, Scholarly and Creative Endeavors Policy.

Procedures to ensure fairness and due process for all parties involved in any apparent violation of the Academic Integrity Policy will be developed, and periodically reviewed, by the Dean of Students Office in consultation with the Dean of the Graduate School and members of the Academic Integrity Committee appointed by the University Senate.

Definition of Academic Misconduct

Plagiarism: Knowingly copying another's work or ideas and calling them one's own or not giving proper credit or citation. This includes but is not limited to reading or hearing another's work or ideas and using them as one's own; quoting, paraphrasing, or condensing another's work without giving proper credit; purchasing or receiving another's work and using, handling, or submitting it as one's own work.

Cheating: Intentional, unauthorized use of any study aids, equipment, or another's work during an academic exercise. This includes but is not limited to unauthorized use of notes, study aids, electronic or other equipment during an examination; copying or looking at another individual's examination; taking or passing information to another individual during an examination; taking an examination for another individual; allowing another individual to take one's examination; stealing examinations. Cheating also includes unauthorized collaboration. All graded academic exercises are expected to be performed on an individual basis unless otherwise stated by the instructor. An academic exercise may not be submitted by a student for course credit in more than one course without the permission of all instructors.

Fabrication: Intentional and/or unauthorized falsification or invention of any information or citation during an academic exercise. This includes but is not limited to changing or adding an answer on an examination and resubmitting it to change the grade; inventing data for a laboratory exercise or report.

Facilitating Academic Misconduct: Knowingly or recklessly allowing or helping another individual to plagiarize, cheat, or fabricate information.

Sanctions under the Academic Integrity Policy. These sanctions are listed in increasing order of severity.

Academic Integrity Warning: An official written warning that a student has inadvertently violated the academic integrity policy.

Disciplinary Probation: A written reprimand for violation of the Academic Integrity Policy.
Probation is for a designated period of time not to exceed 18 months and includes the probability of more severe disciplinary sanctions if the student is found to violate any institutional regulation(s) during the probationary period.

Suspension: A sanction of Suspension terminates the person's status as an enrolled student for an indefinite period of time and prohibits the student from attending classes. Reinstatement and conditions for reinstatement, if any, shall depend upon an evaluation by the Dean of Students or Dean of the Graduate School following an application for reinstatement by the student.

Expulsion: A sanction of Expulsion terminates the person's status as an enrolled student with no opportunity for reinstatement. Expulsion which results from a violation of the Academic Integrity Policy is listed as such on the student's academic transcript.

Grading Sanctions: In addition to the sanctions described above, the decision maker (Academic Integrity Committee or hearing officer) may also assign a grading sanction of “F*”, “E*”, or “U*” in the course as a disciplinary measure. In such cases, the faculty member responsible for teaching the course will submit an F, E or U in the course for the student and the decision maker will require the student to complete an educational assignment on ethics and integrity. F*. If the student has not completed an educational assignment within the time specified in the disciplinary decision, the decision maker will instruct the Registrar’s Office to add an “*” to the F grade and the transcript reads "failure due to academic misconduct". Students with an F* remaining on their transcripts may not serve as an officer of any recognized student organization, nor represent the university in events external to the university, including varsity sports, student contests and competitions, and similar events. E* and U*. A student receives a grade of E* for pass/fail courses or U* for audited courses. These grades will be administered in the same manner as a grade of F*. If a grading sanction of “F*”, “E*” or “U*” is not assigned, the decision maker may make other recommendations to the instructor regarding grading including lowering the grade by one whole letter, but such recommendations are not required to be adopted by the instructor. Grades may also be lowered at the discretion of the instructor in any case where the decision maker finds a violation of academic integrity.

Educational Conditions: All students receiving sanctions ranging from Academic Integrity Warning to Suspension will also be required to complete an educational assignment on ethics and integrity assigned in the disciplinary decision letter.

Academic Progress

Credits
Academic advancement is measured in terms of semester credit hours or, simply, credits. The number of credits required for the bachelor’s degree, which varies among departments, averages about 128 semester credits. Students may receive an undergraduate degree in approximately eight semesters, depending on their semester course load and degree requirements.

Class Standing
Class standing is determined by the number of credit hours a student has earned, including Advanced Placement credit, transfer credit received, and credits earned at Michigan Tech. Class standings are defined as follows:
- Freshman 0–29.5 credits
- Sophomore 30–59.5 credits
- Junior 60–89.5 credits
- Senior 90+ credits
Full-Time Load
Full-time load is defined as 12–18 credits per semester. Students must be enrolled for at least 12 credit hours to be considered full-time for the semester. When deciding the pace of academic advancement, students should consider their cumulative course workload as well as number of credit hours. Two hours of outside preparation are expected for each hour of lecture and recitation. A student in a 4-credit class would be expected to spend eight hours weekly in outside preparation.

Maximum Credit Load
The maximum load a student may carry will be subject to the following limits:

1. The student load is prescribed by individual departments; the maximum is 18 credits per semester.
2. A student with a 3.00 cumulative grade point average may be permitted to take additional credits with the approval of the student's academic advisor.
3. A student on academic probation shall not be permitted to register for more than 16 credits per semester unless approval is granted by the Dean of Students Office.

Disabilities (ADA)
Michigan Tech is committed to ensuring that all qualified individuals with disabilities have the opportunity to take part in educational programs and services on an equal basis. The aim is to provide this opportunity in an integrated setting that fosters independence and meets the guidelines of the Americans with Disabilities Act (ADA) and the Rehabilitation Act of 1973. Please see the Michigan Tech Student Disability Policy.

Satisfactory Academic Progress
Federal financial aid regulations require students to make satisfactory academic progress towards their degree to remain eligible for financial aid.

NCAA Eligibility Requirements
The National Collegiate Athletic Association (NCAA) requires that student-athletes be in good academic standing and maintain satisfactory academic progress toward a baccalaureate degree to remain eligible to represent an institution in intercollegiate athletics competition. See the Michigan Tech Athletics page for NCAA regulation information.

Veterans’ Standards of Progress
The veterans’ standards of progress are the same as for all other University students as listed under Academic Policies and Procedures.

1. All students receiving veterans’ benefits must maintain a cumulative grade point average of 2.00. Failure to maintain that GPA will result in the student being placed on probation. A student will be allowed two terms, including the summer session, to raise the cumulative GPA to that required for graduation to come off probation. If the student fails to remove himself or herself from probation, the US Department of Veterans Affairs (USDVA) will be notified in writing. Requests for reinstatement of VA benefits will be made only after a veteran has been removed from probation and has attained a cumulative GPA of 2.00 (on a 4.00 scale).

2. All student veterans receiving benefits must schedule a minimum of 12 credits of their major core requirements to receive full benefits.
3. Repeated courses are authorized for student veterans receiving benefits only if the course being repeated is a major, minor, or core requirement. Repeating a non-failing grade is not considered VA certifiable.

4. All accepted applicants who are requesting veterans' benefits will be given credit for previous training, where appropriate. The total length of time will be reduced proportionately toward completion of degree requirements. All students receiving veterans' benefits must submit transcripts and other documents showing credit for previous training to the Admissions Office by the end of the first term of enrollment. Failure to do so will result in no further certification for veterans' benefits until those transcripts have been provided.

Academic Standing

It is the responsibility of students to stay informed about their academic standing at all times. The academic progress of degree-seeking and of nondegree-seeking undergraduate students is monitored.

Good Academic Standing

The following are conditions of Good Academic Standing:

1. The University cumulative GPA is 2.00 or greater.
2. The GPA for the most recent semester is 2.00 or greater.
3. The cumulative GPA in the major department is 2.00 or greater, based on at least 16 credits.

University Honors List

University Honors are reserved for degree-seeking students who rank in the top 2 percent of their class and maintain at least a 3.5 cumulative GPA while carrying 12 credits or more for fall and spring semesters.

Dean's List

Degree-seeking undergraduate students who complete 12 or more grade point credits with a GPA of 3.50 or higher in any semester are placed on the Dean's List. Dean's List status is recorded on the students’ transcripts and is also released to hometown newspapers and posted by the Dean of Students Office on an online Dean's List.

Academic Difficulty

Students having academic difficulty may be asked to withdraw from specific courses, be placed on academic probation, be academically suspended, or dismissed from the University.

Academic Probation

Students who are not making satisfactory progress toward a degree are placed on academic probation. Academic probation is a strong warning to students that their scholastic performance is less than that expected by the University. Notices of academic probation are sent to students at the same time grades are available at the end of the semester. Failure to improve after receiving a probation notice can result in academic suspension or dismissal from the University (see below).

A student seeking an undergraduate degree is placed on academic probation under any of the following three conditions:

1. The University cumulative GPA is below 2.00.
2. The GPA for the most recent semester is below 2.00.
3. The cumulative departmental GPA is below 2.00, based on at least 16 credits.

A student on academic probation is not permitted to register for more than 16 credits per semester unless approval is granted by the Dean of Students Office.
A student is removed from probation when the following conditions have been met:
1. The University cumulative GPA is 2.00 or greater.
2. The GPA for the most recently completed semester is 2.00 or greater.
3. The cumulative departmental GPA is 2.00 or greater, based on at least 16 credits.

Academic Suspension and Dismissal
A student is placed on academic suspension if the cumulative GPA is below 2.0 after a semester of academic probation or if the student is not restored to good academic standing after two semesters of probation regardless of the cumulative GPA. A student is also placed on academic suspension if the term GPA is 0.0 when a student attempts 12 or more credits. A suspended student will have the right to appeal. Students will be informed of their suspension and given information on the appeal process after grades are processed each term. More detailed information about the appeal process can be found on the Dean of Students website.

A student who receives a notice of academic suspension will not be permitted to enroll at the University for a specified period of time. Upon receiving a first notice of academic suspension, a student must sit out for at least one semester, plus a summer. That is, a student suspended at the end of a fall semester may not re-enroll until the following fall, and a student suspended at the end of a spring semester may not re-enroll until the following spring. A student who is suspended at the end of a summer term will be permitted to request reinstatement the following spring. Upon receiving a second notice of academic suspension, a student must sit out two semesters, plus a summer. Upon reinstatement after a second suspension, failure to achieve good academic standing or show substantial academic progress within one semester will result in academic dismissal. Students may appeal an academic dismissal. However, if no appeal is submitted or the appeal is denied, there is no opportunity for reinstatement after academic dismissal.

Appeals of Academic Suspension/Dismissal
An appeal of academic suspension or dismissal will be considered if documentation can be provided to show unusual or extenuating circumstances surrounding a student's academic performance. The student must also be confident in his or her ability to show significant academic progress. A student wishing to make an appeal must do so in writing to the dean of students by accessing the appeal form through the Academic Standing link in MyMichiganTech.

Academic Renewal
Students who withdraw from the university following one or more terms of poor academic performance occasionally return to the university to continue their education. Their prior low GPA may not be indicative of their potential and may pose a significant challenge to achieving university standards of acceptable academic performance. Prior low grades may also serve as a deterrent to re-enrollment to resume study. Academic Renewal is designed to give returning students a second chance by providing an opportunity to remove a certain portion of prior course work from grade point computation.

Degree seeking undergraduate students reenrolling (i.e., being readmitted or reinstated) at Michigan Tech after an absence of five (5) years may elect Academic Renewal through the Registrar's Office for up to two (2) calendar years of prior work. Courses in the terms for which Academic Renewal is elected will neither be considered in grade point computation nor counted for academic credit toward graduation.
Academic Renewal Qualifications

- A student enrolling at Michigan Tech after an absence of five (5) years or more may elect Academic Renewal. This renewal will affect only those courses taken prior to the five (5) year absence and may be elected only once. Academic Standing will be initialized to ‘Good Standing’ for students electing Academic Renewal.

- Academic Renewal is open only to undergraduate students admitted into a degree program. Academic Renewal is forfeited if a degree program is not completed.

- Academic Renewal must be invoked prior to graduation and is not available to students who have previously completed requirements for a Michigan Tech Bachelor’s or Associate’s degree.

- If more than one term is elected for Academic Renewal, the terms must be consecutive and have been completed within a maximum of two (2) calendar years for Bachelor’s degrees or one (1) calendar year for Associate’s degrees.

- A student receiving a Bachelor’s or Associate’s degree from Michigan Tech must meet the University residency for graduation requirement in the interval between the most recent course work elected for renewal and the completion of courses at Michigan Tech.

- To qualify for Academic Renewal, a student must have an overall GPA below 2.0 for the renewal period.

- Renewal will apply to all courses taken during the period for which it is elected regardless of the grade earned. No course credit is granted for any courses in Academic Renewal terms. Academic Renewal courses are not subject to the existing Repeat Policy rules.

- All courses and grades in Academic Renewal terms will remain on the student’s transcript with a notation that “Academic Renewal has been granted”. All grades will be annotated with an ‘R’ indicating Renewal, e.g. RD or RF. Grades thus annotated will be excluded from University grade point average computation.

- Academic renewal is a policy of Michigan Technological University. As such, students should be aware it may not be recognized by outside institutions or agencies (e.g. U.S. Department of Education, other universities and colleges).

- Once elected, Academic Renewal is irrevocable. Students must consult with their academic advisor prior to election of Academic Renewal. Signed application forms will be processed and retained by the Registrar’s Office.

Students may obtain a petition form through the Registrar’s Office and must consult with their academic advisor prior to election of Academic Renewal. Students who left the university voluntarily may re-enroll by contacting the Registrar’s Office. Those who did not leave voluntarily must seek re-enrollment through the Dean of Students Office. Requests are evaluated on a case-by-case basis.
Class Attendance

Attention
Attending class is essential for academic success. The University expects students to attend all scheduled class times unless an absence is excused under this policy. An excused absence is one in which a student is absent due to an off-campus event (see below) or involves a legitimate extenuating circumstance which causes the student to miss class, miss a major assignment, examination or other graded requirement of the class. Students should contact the Dean of Students Office for excused absences of 3 or more consecutive days or if their absence resulted in missing a major assignment, examination or other graded requirement of the class. Students do not need to contact the Dean of Students Office for excused absences involving fewer than 3 consecutive days. Students are expected to notify their instructors of any absences as soon as possible. Instructors have the discretion to excuse student absences for reasons other than described in this attendance policy.

Categories of University excused absences:

- **Off-campus events:**
 - Including intercollegiate athletics; fine arts performances; program-sponsored competitions; program-sponsored field trips; and similar official events where students represent the University in an official capacity.

 - The instructor or staff supervising students participating in these events must provide notice to the students’ instructors and the Dean of Students Office prior to the date of the activity. The notice must include the name of the activity, the date(s) of class absence, the name of the supervising instructor or staff, and the names of all participating students.

- **Absences involving legitimate extenuating circumstances beyond a student’s control:**
 - These include student illness or injury that prevents a student from participating in class. Other examples are the death or critical illness of a family member; wedding of an immediate family member or member of the wedding party, birth of a child; military duty; jury duty or subpoena for court appearances; and similar extenuating circumstances.

Documentation Requirements: With the exception of extended absences related to COVID-19, documentation will be required for all absences of three or more consecutive days or when the student missed a major assignment, examination or other graded requirement of the class.

- **COVID-19 related absences** - Students will contact the Dean of Students Office for assistance and support services. Students are encouraged to seek COVID-19 testing as per the recommendations of the CDC, Western Upper Peninsula Health Department, etc. Following the recommendation of the American College Health Association in their document Considerations for Reopening Institutions of Higher Education in the COVID-19 Era, students who become ill due to COVID-19 will not be required to make unnecessary visits to a healthcare provider for the purposes of obtaining documentation. Students advised by the university or through government recommendations/regulations to self-isolate for a period of time, will not be required to provide documentation from a healthcare provider. These students will work with the Dean of Students Office for assistance and support services.

Instructors retain the discretion to excuse student absences for reasons other than those described in the above paragraphs. Students participating in activities on behalf of a student organization may obtain a verified absence letter from the Student Activities Office. This letter is meant to confirm a student’s participation in an extracurricular activity and may be presented to the instructor when requesting an absence from class.

Students are responsible for notifying their instructors prior to missing a class and arranging a mutually-acceptable make-up procedure. In emergency situations, where students are unable to notify their instructors, students should promptly contact the Dean of Students Office for assistance.
Students with an excused absence shall be allowed to earn full credit for missing assignments by performing equivalent work, as long as the instructor deems that the learning objectives of the course can still be met. Where this is in question, it should be determined in conversation between the student and the instructor, if necessary in consultation with the Dean of Students. This conversation should happen as soon as possible. The substance of the equivalent work and the deadline for its completion shall be determined by the instructor.

Instructors concerned with a student’s excessive absence should contact the Dean of Students Office for advice and assistance.

The Dean of Students Office may be contacted by an instructor or a student for assistance in informally resolving any disputes under this policy. If a dispute cannot be resolved informally, the student may follow the Student Academic Grievance policy.

Religious Observance

It is the policy of Michigan Tech to permit students to observe those holidays celebrated by their chosen religious faith. It is the responsibility of those students who wish to be absent to make arrangements in advance with their instructors. In cases where examinations or assignments need to be made up, faculty has the right to determine the content and the conditions of administration, giving due consideration to equitable treatment. While recognizing that some religious observances may include extended periods of time, instructors may expect a reasonable limit to the number of requested absences by any student.
Exam Policies

Final Exams

Final exams are those tests scheduled for a special period following the last week of instruction which is referred to as "final exam week". This period begins and ends with the first and last officially scheduled final examinations. Each department shall designate all courses or sections of courses in which final examinations are to be given.

A comprehensive final examination designed to measure the student's overall knowledge is considered good teaching policy. However, no regulations shall attempt to govern the content of a final exam. A final exam could be either incremental or comprehensive.

No final examination will be given earlier than the final exam week. In classes which do not have final exams the instructor may not give any major tests or examinations during the last week of regularly scheduled classes, because such a test would be in effect a final examination given earlier than the final exam week. However, departments with lab courses can choose to exempt lab examinations from this policy. Make-up exams for illness or other excused absences may be administered before or after the scheduled time, consistent with maintenance of exam security.

No final exams shall be scheduled on Sunday, unless the regular instruction periods are also scheduled on Sunday.

No regular instruction is to be continued during the final exam week, except that the final examination time assigned to a course can be used for instruction if an instructor so desires.

The University shall not schedule, nor shall the students participate in, any official function during the scheduled final exam period, except events whose date is beyond the control of the University.

It is the responsibility of the chair of each department to prevent violations of the final examination policy. Students may report violations of the policy to the chair of the instructor's department either in person or by anonymous note. Students may similarly report violations to the office of the Dean of Student Affairs; these reports will be forwarded to the departmental chair for appropriate action.

Any departures from an officially scheduled examination time must be approved by the scheduling office.

Absences from final exams need not be excused when caused by a student scheduling courses with conflicting final examination times.

No student shall be required to take more than three exams per calendar day. For students with an accommodation for extended time on examinations, the limit may be fewer than three examinations per day, since Policy 605.1 limits the total amount of time that such students may be required to spend on examinations to six hours per day.

Conflicts will be resolved by the Dean of Students Office.

Evening Exams

Regular exams are exams and quizzes that are not defined as final examinations. Evening exams are regular exams held outside of scheduled class times, usually after 6 p.m.

Regular exams should be given during scheduled class meeting times when possible. Students required to take an evening exam shall be excused from one scheduled class.

Evening examinations must be arranged through the scheduling office to avoid conflicts and to allow effective use of University resources. Evening exams should be scheduled for 6-7 p.m., Monday-Thursday. The University shall not schedule classes for this time period.
Faculty scheduling evening exams must provide alternative examination times for students with the following conflicts:

1. In the case of two conflicting evening exams (inside or outside of the 6-7 p.m. period), the larger class takes priority.
2. In the case of an evening exam conflicting with a regularly scheduled class, the class has priority over the exam.

Regular exams shall not be given on Friday evenings, nor on Saturday or Sunday.

Winter Carnival Week Exams
That hour examinations shall not be given during that portion of Winter Carnival week beginning at 6 p.m. Tuesday. An hour examination is taken to be any major examination comprising a significant portion of a student’s overall grade and which would require major preparation.

Career Fair Exams
Regular examinations, major projects and papers, and presentations shall not be given or be due on the day of career fair. All Instructors are encouraged to consider how involved the students in each of their classes are with career fair and address other days in the week appropriately.

Lower level students are encouraged to attend career fair to learn the ropes, and seek internships and co-ops. Faculty in courses with high numbers of lower level students, new to managing the conflicting demands of being an adult student, should consider providing more support to help those students develop good habits of planning ahead and communicating clearly, early, and respectfully about conflicts.

A regular examination, major projects or papers, or presentation is taken to be any assignment comprising a significant portion of a student’s overall grade and which would require major preparation. Evening exams are included as they are regular exams held outside of scheduled class times (senate policy 601.1).

Regular weekly assignments, such as lab reports, are not considered major papers. However, instructors of lower division classes with career fair attending students are encouraged to move the due date a day earlier or in some other way help lower level students plan ahead.

Regular examinations, major projects and papers, and presentations shall not be given or be due on the day of career fair.

Accommodated Examinations
Any student requiring accommodations due to a documented disability must provide the instructor of the course notification of needed accommodations no later than five business days prior to the use of the accommodations. In situations where fewer than five days' notice is given, the instructor is encouraged, but not obligated, to provide accommodations. The instructor will determine, in consultation with the Testing Center in the Jackson Center for Teaching and Learning, whether these accommodations can be met.

Students who have an accommodation for extended time allowed on tests shall not be required to spend more than six hours per calendar day in final examinations. For a student with an accommodation for extended time, this may imply no more than two examinations per day. To resolve time conflicts between two overlapping exams (either regular exams or final examinations), the current practices of the University shall be followed.

Online Course Examinations
To maintain the academic integrity of its online courses, Michigan Technological University requires that students in online courses follow these guidelines for examinations*.
1) Students that reside within a 30-mile radius of Michigan Tech must complete examinations on campus at the Michigan Tech Testing Center (MTTC), with the instructor, or with a designated proctor (as defined below).

2) Students outside of the 30-mile radius are responsible for finding a proctor (as defined below) when taking exams at an alternate location.

3) Students that cannot meet these requirements or who have special needs should contact the instructor as soon as possible to request alternate arrangements, which can reasonably be expected to maintain academic integrity at a level consistent with those examples above.

*An examination is defined as a set of questions or exercises students are asked to complete individually in a limited amount of time (usually less than 3 hours) with limited access to outside resources, which constitutes more than 15% of an overall course grade.

Students violating this policy are guilty of academic misconduct, and subject to disciplinary actions as defined by Michigan Tech Senate Policy 109.1. Proctors who violate examination rules or the academic integrity policy of Michigan Tech will be reported to their employers.

Proctor Guidelines
A proctor is a person that administers examinations to students within the parameters established by the course instructor. Final proctor approval rests with the instructor. Michigan Technological University instructors reserve the right to deny or terminate a proctor at any time, for any reason.

Michigan Tech requires that proctors regularly monitor students during examinations, either in person or by video and audio. Proctors must be sufficiently proficient in English to fully understand and implement examination instructions.

Approved proctors are, in order of preference:
- A Michigan Tech faculty member, graduate student, or academic staff member.
- A staff member, administrator or educator at a designated testing center ** affiliated with another university, a military education center, or operating independently.
- A person from the students' place of employment may proctor, with instructor approval, provided there is not a direct reporting relationship.
- A public librarian or a public library testing center staff member.

If none of the above is available, an online proctoring service can be arranged through MTTC for an additional charge. An educator, counselor, librarian or administrator in another collegiate or high school educational system or other individual may also be designated with instructor approval. A proctor CANNOT be a relative, close personal friend, student, spouse or significant other or anyone else who might appear to have a conflict of interest.

Michigan Tech students can take course exams with Michigan Tech faculty or through the MTTC free of charge. All other proctoring fees are the sole responsibility of the student.

Students are responsible for providing all required proctor contact information indicated on the proctor form. An alternative method of providing equivalent information may be specified by an instructor.

To allow adequate time for needed proctor-instructor communication, students should provide this contact information to the instructor at least 5 business days before an exam occurs. Instructors should confirm its acceptability to students as soon as possible after receiving it. Emergencies due to proctor or student unavailability (proctor illness, family death, power outages, etc.) which require changes in proctoring arrangements within this 5- day window should be communicated to the instructor as early as possible.
Changes will be allowed at the instructor’s discretion. The instructor may require formal documentation or proctor confirmation of the emergency.

A designated testing center is defined as an organization or unit within an organization that routinely provides classroom, accommodated, or sponsored examinations. This organization should meet typical testing standards such as providing lockers for disallowed materials, using security cameras, and verifying student identity. A list of such testing centers associated with the National Collegiate Testing Association can be found at https://www.ncta-testing.org/find-a-ccctc-participant.

Grade Policies

Mid-Semester Grades
Grades of "satisfactory" (C or better) or "unsatisfactory" are given to all first-year students enrolled in a course offered for credit at mid-semester. Final letter grades are provided at the end of each semester.

Semester Grades
Students may access final semester grades and cumulative grades through MyMichiganTech.

Grade Point Average (GPA)
The grade and credit earned for any course taken by a student at Michigan Tech will become part of the student's permanent record and will be used in the computation of the University grade point average (GPA).

The GPA is computed by dividing the grade points by the grade point hours and truncating the result. Grade point hours include those course credits with grades of A, AB, B, BC, C, CD, D, F, and X. Any performance below a GPA of 2.00 is considered a grade point deficiency.

Minimum GPA
It is required that a student earn a minimum cumulative 2.00 GPA and a minimum 2.00 GPA in the student's major department for an undergraduate degree. Incomplete (I) grades remaining at graduation are considered failing (F) grades in computing the final GPA.

Grading System
The grades awarded by the University are

- A (excellent)—4.00 grade points/credit
- AB (very good)—3.50 grade points/credit
- B (good)—3.00 grade points/credit
- BC (above average)—2.50 grade points/credit
- C (average)—2.00 grade points/credit
- CD (below average)—1.50 grade points/credit
- D (inferior)—1.00 grade point/credit
- F (failure)—0.00 grade point/credit
- F* (failure due to academic dishonesty)—0.00 grade point/credit
- I (incomplete) not computed in GPA calculation appropriate when:
 - the student has a legitimate extenuating circumstance prohibiting the completion of the course; and
 - the student has the ability to complete the course requirements without re-enrolling in the course; and
 - the student currently has a passing grade in the course.
Extenuating circumstances may include (but are not limited to):

- car accident
- sudden illness or injury (Doctor’s office/hospital documented)
- birth of a child
- death of a family member
- conditions of close friends (suicide, accident/injury)
- divorce (individual and parental)

An incomplete grade must be made up within 1 semester of being assigned regardless of residency according to the following schedule:

- assigned fall semester: course must be completed by the end of spring semester;
- assigned spring semester: course must be completed by the end of fall semester;
- assigned summer semester: course must be completed by the end of fall semester.

An I grade should not be used as a substitute for a failing grade or a withdrawal.

Failure to complete the coursework within the timeframes defined above will result in the conversion of the I to an F. Incomplete grades at graduation are considered (F) grades in computing the final grade point average.

- **IS** (in-session)—temporary grade indicating a course that remains in session and ends after the semester’s final grade deadline.
- **X** (conditional)—computed into the grade point average as an (F) grade given only when the student is at fault in failing to complete a segment of a course, but in the judgment of the instructor does not need to repeat the course. An X is appropriate when:
 - the student does not have a legitimate extenuating circumstance for failing to complete course requirements that meets the standards for the I grade (above);
 - the student has the ability to complete the course requirements without re-enrolling in the course;
 - the student currently has a passing grade in the course.

Example circumstances appropriate for an X grade may include:

- oversleeping on the day of an exam
- flat tire/unexpected car trouble
- incomplete assignments

X grades must be made up within the next semester according to the same schedule summarized above for the I grade. Failure to complete the course accordingly will result in the conversion of the X grade to an F.

- **M** (missing grade)—grade not submitted by instructor. See instructor for clarification.
- **N** (no grade)—no credit, no grade points; given when a student officially withdraws from the University after the regular drop period. In these cases, the registrar notifies the instructor that the student has withdrawn from the University and should receive an N grade if passing as of the date of withdrawal. The student's grade form will come to the instructor at the end of the course in the normal manner.
- **P** (progress)—may be used for approved 3000- or 4000-level project courses, where projects carry over for more than one semester.
- **Q** (inadequate progress)—may be used for approved 3000- or 4000-level project courses where projects carry over for more than one semester.
• W (late drop)—no credit, no grade points; indicates a course was dropped between the beginning of the fourth week and the end of the tenth week; after the tenth week, a student may only request a late drop from the Dean of Students Office, which will consider only those requests that clearly involve extenuating circumstances beyond the student’s control.
• Cr (credit)—by advanced placement or examination.
• S (satisfactory)—credit given, no grade points, and not included in student's GPA; given for courses taken under the Pass-Fail option. A grade of S is given for work equal to letter grades of A to C.
• E (effort unsatisfactory)—no credit, no grade points; given for courses taken under the Pass-Fail option. A grade of E is given for work equal to letter grades CD to F.
• E* (effort unsatisfactory due to academic dishonesty)—no credit, no grade points; given for courses taken under the Pass-Fail option.
• V (satisfactory audit)—no credit, no grade points; given for courses taken for audit.
• U (unsatisfactory audit)—no credit, no grade points; given for courses taken for audit.
• U* (unsatisfactory audit due to academic dishonesty)—no credit, no grade points; given for courses taken for audit.
• SCV (satisfactory) - credit given, no grade points and not included in student's GPA; given for courses taken under the COVID-19 Pass-Fail option. A grade of SCV is given for work equal to letter grades of A to C.
• LCV (satisfactory low) - credit given, no grade points and not included in student's GPA; given for courses taken under the COVID-19 Pass-Fail option. A grade of LCV is given for work equal to letter grades of CD and D.
• ECV (effort unsatisfactory) - no credit, no grade points and not included in student's GPA; given for courses taken under the COVID-19 Pass-Fail option. A grade of ECV is given for work equal to a letter grade of F.

Pass-Fail Grade Option
Requests to change from a normal grade mode (A-F) to pass-fail for a course must be received in the Registrar’s Office by the close of business on Wednesday of the second week of the semester (the last day to add/drop a course). Courses taken for a letter grade may not be repeated under the pass-fail option. Courses taken under the pass-fail option may only be used to fulfill free electives.

Audit Grade Option
Requests to change from a normal grade mode (A-F) to audit for a course must be received in the Registrar’s Office by the close of business on Wednesday of the second week of the semester (the last day to add/drop a course).

Students auditing a course will receive a grade of V for a satisfactory audit or U for an unsatisfactory audit.

A course taken as an audit may be taken at a later date for degree credit subject to the approval of the course instructor and student’s academic advisor.

A course taken under the normal grade mode (A-F) may be taken for an audit at a later date, not for degree credit, subject to the approval of the course instructor and student’s academic advisor.

Audit grades are not to be used as a substitute for a failing grade.

Audited courses may not be used to fulfill academic requirements.

Disputed Grades
A student having an error in a final course grade should contact the instructor and the Registrar’s Office as soon as possible but no later than one month after the beginning of the next semester. In case of a grade dispute, students should follow the Academic Grievance Policy. Graded student work (exams, papers, homework, etc.) which has not been returned to the student should be retained by the instructor of record for at least one month after the beginning of the next semester or until existing disputes have been resolved.
Graduation Requirements
The Michigan Tech undergraduate catalog, including degree requirements, is updated annually and expires after seven years. Students may not graduate using a catalog that is more than seven years old.

- Students maintaining continuous enrollment at Michigan Tech may expect to graduate under the degree requirements in effect at the time that they became a degree-seeking student at Michigan Tech.
- Students changing majors will follow the degree requirements in effect at the time of the change of major.
- Students adding a major or minor will follow the requirements for the additional curriculum in effect at the time it is added.
- Students who have been absent from the University for three or more consecutive semesters (including summer) will follow the degree requirements in effect at the time of re-enrollment.

With approval from the academic department, students may follow the degree requirements from an earlier catalog. The catalog selected must be within seven years prior to the student's graduation or the first term the student was enrolled as a degree-seeking student at a regionally accredited institution, whichever is shortest.

Grade Point Requirement
A minimum cumulative grade point average of 2.00 and a minimum grade point average of 2.00 in the designated major department are required for graduation in a baccalaureate or associate degree program. The President may establish minimum grade point average requirements greater than 2.00 for minors or certificates. The President shall advise the Board when any new minimum minor or certificate grade point average requirements are established.

Graduation Residency Policy
The requirement for a student to receive a baccalaureate degree from Michigan Technological University is:

1. Thirty (30) semester credit hours of advanced level courses (3000 or higher) which apply to the degree must be completed at Michigan Tech.

Courses which meet the "at Michigan Tech" requirement are defined as courses that were taken as part of a university-approved study abroad program or as courses that are listed in the course catalog and taught by Michigan Tech faculty either on campus, at field locations, or through distance learning.

The President or the Provost and Senior Vice President for Academic Affairs is authorized to grant exceptions to this requirement in extraordinary individual cases.

Degree programs with special requirements may apply for exemptions. The President or the Provost and Senior Vice President for Academic Affairs may grant such programmatic exemptions upon recommendation of the Senate.

Graduation with Honors
Michigan Tech recognizes outstanding honors achievements of baccalaureate and associate degree candidates at commencement, on diplomas, and on transcripts with the Latin scholastic distinctions of summa cum laude, magna cum laude, and cum laude. Individual honor designation is determined by their cumulative grade point average.

All grades, which are on a point basis, are used to determine the cumulative GPA. Grades such as I, M, N, P, Q, S, V, etc. are not included in GPA calculations.
Graduation with Honors
Michigan Tech recognizes outstanding honors achievements of baccalaureate and associate degree candidates at commencement, on diplomas, and on transcripts with the Latin scholastic distinctions of summa cum laude, magna cum laude, and cum laude. Individual honor designation is determined by their cumulative grade point average.

All grades, which are on a point basis, are used to determine the cumulative GPA. Grades such as I, M, N, P, Q, S, V, etc. are not included in GPA calculations.

Commencement program honor designations are based on the cumulative GPA at the close of the preceding semester. Diploma and transcript honor designations are based on the cumulative GPA achieved after successful completion of all degree requirements.

Academic Honors are granted on the following basis:

- 3.9–4.0 summa cum laude (highest honors)
- 3.7–3.89 magna cum laude (high honors)
- 3.5–3.69 cum laude (honors)

Registration
Registration periods for each semester are listed in the University Academic Calendar. While every effort is made to ensure that the Schedule of Classes is accurate, unforeseen circumstances or low enrollments may cause the cancellation of some section(s) or course(s). Michigan Tech also reserves the right to change the days, times, rooms, or instructors of section(s) or course(s) as deemed necessary.

The Schedule of Classes can be found on the web at Prepare for Registration.

Adding Classes
The last day to officially add a full semester course is Wednesday of the second week of the semester*.

First-Year Students
Through the first five business days of the semester*, signature approval must be obtained from the student's academic advisor. After the fifth business day of the semester*, signature approval must be obtained from the student's academic advisor and the course instructor. Section changes for the same course do not require an academic advisor approval signature.

All Other Students
Through the first five business days of the semester*, no signature approval is required. After the fifth business day of the semester*, students must obtain signature approval from the course instructor to add a course or change a section.

* Or the same percentage of time if a course is offered in a time module other than a fourteen-week semester

Dropping Classes
Courses dropped by the close of business on Wednesday of the second week of the semester* will be refunded 100 percent. Courses dropped after this date will not be refunded.
During the first three weeks of a semester, courses dropped will not be recorded on the student’s permanent record. Beginning the fourth week through the end of the tenth week of the semester, courses dropped will be indicated by a grade of 'W' on the student’s permanent record.

First-Year Students
During the first three weeks of instruction*, signature approval must be obtained from the student’s academic advisor. Students must be made aware of how dropping a course affects their progress toward graduation. After the third week of instruction*, signature approval must be obtained from the student’s academic advisor and the course instructor.

All Other Students
During the first week through the end of the tenth week of instruction*, no signature approval is required to drop a course.

* Or the same percentage of time, if a course is offered in a time module other than a fourteen week semester.

After the tenth week, a student may request a late drop from the Dean of Student’s Office, which will only consider those requests that clearly involve extenuating circumstances beyond a student's control. Comments from the academic advisor and instructor will be requested prior to final approval. The course will appear on the student's permanent record with the grade of 'W.'

NOTE: Students that drop all of their courses will be withdrawn from school as of the date the last course was dropped.

Prerequisites
Prerequisite courses are required to be satisfactorily completed before a student may register in a course requiring the prerequisite. Students who earn a CD or D in a prerequisite course should retake the prerequisite course before registering for the advanced course.

Departments may also require C or better grades in some prerequisite courses. Students should check both the course number and the required grade to determine if they are qualified to move to the next course.

Concurrent prerequisites are courses that may be taken either simultaneously in the same semester or in a prior semester.

Co-requisites are courses that are required to be taken in the same semester as the course requiring the co-requisite.

The course instructor has the right to waive prerequisites, if openings are available, in the case of a student who has demonstrated competence or who has had academic experience equivalent to that represented by the prerequisite. The waiver does not grant credit for the prerequisite course but indicates the instructor's willingness to accept the student into their class without the student officially taking the prerequisite course.
Repeating a Course
Undergraduate students may not repeat courses in which they have earned a grade of C or better. When a course is repeated, the most recent grade will be used to calculate the GPA, credits earned toward graduation, and determination of class standings. When a course is repeated, any credit previously earned under the course number is forfeited and the transcript will indicate NR (no grade-repeated) for the earlier attempt. Students must have the permission of the Dean of Students Office and their academic advisor for the third attempt at any one course. Courses exempt from the repeat rule are those that may be repeated for credit as indicated in the course description.

In situations where an original course is no longer offered and no active direct equivalent exists, students may seek the permission of their academic advisor and their department chair or school dean to substitute a different course (a "similar repeat") which covers comparable material at a similar level.

Variable Credit Courses
The last day to change credit amounts on variable credit courses is Wednesday of the second week of the semester (or the same percentage of time if a course is offered in a time module other than a fourteen-week semester). Decreases in credits after this date will not be refunded.

Enrollment in Graduate Courses under "Senior Rule"
While completing an undergraduate degree, students are permitted to take courses which could apply to a graduate degree. However, a course cannot be applied to both a graduate and an undergraduate degree.

A Senior Rule form must be completed and submitted to the Registrar's Office by Wednesday of the second week of class for the term in which the class is taken. Upon submission, the student's academic record will be changed to show graduate status for the course(s) designated. Once the academic record has been changed to show graduate status for a particular course, it cannot be changed back to count toward an undergraduate degree, nor can courses from previous semesters be reclassified.

Students will receive two transcripts once the Senior Rule is applied to a course—one for undergraduate courses and one for graduate courses. Courses completed previously under Senior Rule (but not classified as such in the student's academic record) will not be reclassified to appear on the graduate transcript, but the courses may be accepted on the graduate degree schedule with department advisor's approval.

Senior Citizen Enrollment
Individuals who are 60 years of age or older can have the tuition and related fees waived for up to two on-campus courses per semester. Those individuals taking courses for the first time at Michigan Tech must apply through the Admissions Office. Persons who are not assessed fees are not entitled to receive any associated benefits.

Residency Policy
Residents of the State of Michigan benefit from a lower tuition fee than is charged residents of other states. For the purposes of these regulations, a resident student is defined as a student that is domiciled in the state of Michigan. For University purposes, "domicile" is defined as the place where the student intends their true, fixed and permanent home (both during and after they complete their education at the University) and principal establishment to be, and to which the individual intends to return whenever he or she is absent. The fact that a presumption of resident status may apply to a student does not mean that the student will automatically be classified as a resident. The burden of proving domicile, with clear and convincing evidence, is on the student.
A nonresident student is one whose domicile is elsewhere. Students who enroll in the University as non-residents shall continue to be so classified throughout their attendance as students unless residency reclassification is granted.

Special Circumstances
In-state tuition rates apply to the following persons regardless of domicile:

- United States military veterans who have been honorably discharged and/or students entitled to educational assistance under Title 38 of the United States Code, asamended.

Residency Guidelines
The following facts and circumstances, although not necessarily conclusive, have probative value in support of a claim for residence classification:

- Both parents (in the case of divorce, a parent) permanently domiciled in Michigan as demonstrated by permanent employment, establishment of a household and severance of out of state ties.
- Applicant employed in the State in a full-time, permanent position provided that the applicant's employment is the primary purpose for the applicant's presence in Michigan.
- Spouse employed in the State in a full-time, permanent position provided that the spouse's employment is the primary purpose for the student's presence in Michigan.
- Continuous domicile in the state of Michigan, while not enrolled as a full-time student, for one full calendar year prior to reclassification.
- If financially dependent, parent and/or guardian have become Michigan residents since the student's first enrollment.
- Other factors indicating an intent to make Michigan the student's domicile will be considered by the University in classifying of a student.

The following circumstances, standing alone, shall not constitute sufficient evidence of domicile to affect classification of a student as a resident under these regulations:

- Continuous enrollment in a community college or university
- Participation in a graduate program, fellowship or internship
- Employment that is temporary or short-term
- Employment in a position normally held by a student
- Ownership of property
- Presence of relatives (other than parents)
- Possession of a Michigan's driver's license or voter's registration
- Payment of Michigan income or property taxes
- Applicant's statement of intent to be domiciled in Michigan

Residency Status of Immigrants and Aliens
Only persons who are entitled to reside permanently in the United States may be eligible for resident classification at the University. These individuals, like U.S. citizens, must still prove that they have established a Michigan domicile as defined in the Michigan Technological University Residency Guidelines. Having the privilege of remaining permanently in the United States, in itself, does not entitle a person to resident classification for University purposes. The Admissions Office will review the circumstances of the following classes of immigrants:

- Permanent Resident Aliens who have been fully processed and possess a permanent resident alien card or stamp in their passport verifying final approval or
- Refugees (I-94 card must designate "Refugee").
Student Finance Policies

Financial Obligations
Having fulfilled all other requirements, a student is eligible for registration or graduation only if all financial obligations to the University have been met. Students with an outstanding balance will have a hold placed on their account. This hold denies access to registration and prevents the distribution of grades and transcripts.

Return of Title IV Funds
Students who completely withdraw from all courses prior to completing more than 60 percent of a semester will have their eligibility for aid recalculated based on the percent of the semester completed. This policy shall apply to all students who withdraw, drop out, receive failing grades in all courses or are dismissed from the University and receive financial aid from Title IV funds.

The term "Title IV Funds" refers to the following federal financial aid programs: Federal Direct Unsubsidized Loan, Federal Direct Subsidized Loan, Federal Direct PLUS Loans, Federal Perkins Loan, Federal Pell Grant, Federal Supplemental Educational Opportunity Grant, Iraq Afghanistan Service Grant.

Title IV aid is earned in a prorated manner on a per diem basis up to and including the 60 percent point in the semester. Title IV funds and all other aid are viewed as 100 percent earned after that point in time.

The percentage of Title IV aid earned shall be calculated as follows:

\[
\frac{\text{Number of days completed by the student}}{\text{Total number of days in the semester}^*} = \text{Percent of Title IV aid earned}
\]

**The total number of days in the semester includes weekends, but does not include any scheduled breaks of more than five days.

Withdrawal Dates
A student's withdrawal date is determined by the University as (1) the date the student began the University's withdrawal process or officially notified the Registrar's Office of intent to withdraw; or (2) the midpoint of the semester for a student who leaves without notifying the University; or (3) the student's last date of attendance at a documented academically related activity.

University's Portion to be Returned
The percentage of Title IV aid unearned (i.e., to be returned to the appropriate program) shall be 100 percent minus the percent earned. Any unearned aid to be returned by the University is the lesser of (1) the entire amount of unearned aid or (2) the total institutional charges multiplied by the percentage of unearned aid.

Unearned Title IV aid shall be returned according to the following priority up to the amount received for the semester:
1. Direct Unsubsidized Loan
2. Direct Subsidized Loan
3. Perkins Loan
4. Direct PLUS Loan (Graduate Student)
5. Direct PLUS Loan (Parent)
6. Federal Pell Grant
7. Federal SEOG
8. Iraq Afghanistan Service Grant
Student's Portion to be Returned
When the total amount of unearned aid is greater than the amount returned by the University from the student's account, the student is responsible for returning unearned aid to the appropriate program(s). The same priority as above should be used. Any loan funds that must be returned by the student will be repaid according to the terms of the promissory note. There is a 50-percent discount on any grant funds that are to be repaid. Grant funds that must be returned are considered a federal grant overpayment. The student can either repay the amount in full or make satisfactory arrangements with the University or the Department of Education to repay the amount due. These arrangements must be completed within forty-five days of the date the University notifies the student of the overpayment status or the student risks losing eligibility for further federal financial assistance.

Post-Withdrawal Disbursements
As of the withdrawal date, if the total amount of earned Title IV aid exceeds the amount of Title IV aid disbursed, the difference between these amounts will be treated as a post-withdrawal disbursement. The university must get permission from the student and/or parent before Federal loan funds can be applied to the student’s account as a post-withdrawal disbursement. Any loan funds must be disbursed within 30 days and any grant funds within 45 days of the date the university determined that the student withdrew.

Return of Non-Title IV Funds
The portion of state, University, and other assistance that must be returned will be calculated based on the particular program's return policy.

The student will be billed for any amount due to the University resulting from the return of Title IV and Non—Title IV funds.

Refund/Repayment Policies

Refunds of Tuition/Fees
Students will be assessed tuition and fees according to the number of credits for which they are registered on Wednesday of the second week of the semester. Credits added after this date will be assessed tuition, but financial aid will not be adjusted.

Schedule Adjustments
Courses dropped by the close of business on Wednesday of the second week of the semester will be refunded 100 percent for tuition and fees. Courses dropped after this time for students who otherwise remain enrolled at Michigan Tech will not be refunded, and additional tuition and fees will be incurred if credits are added.

Half-semester courses, including most summer-semester courses or any other courses offered in a time module other than a fourteen-week semester, will be prorated according to the refund schedule and the equivalent percentage of time.

Refund dates for half-semester and full-semester courses are posted on the Academic Calendar. Contact the Registrar's Office for information on refund dates for all other courses.
Transfer Credit

Transfer Credit Evaluation

Collegiate and non-collegiate sources of credit are evaluated as transfer credit when it has been determined that they meet accreditation standards, and that the student has demonstrated an acceptable level of performance in regard to the credit.

The qualifications are:
1. Each course considered for evaluation must have been satisfactorily completed with a grade of C (2.0) or better and must be comparable in content, nature, and intensity to courses offered at Michigan Tech.
2. Grades and grade point averages are not transferable. Grades are not used in computation of the University or Departmental Grade Point Averages (GPAs).
3. The limit on the number of credits that can be transferred is at the discretion of the degree granting department/college/school.
4. All transfer credit awarded is recorded on the academic transcript.

Withdrawal Policies

University Withdrawal
The following refund schedule applies when students drop all classes and leave the University. This does NOT apply to students making schedule adjustments who otherwise remain enrolled at Michigan Tech.

Students receive a 100 percent refund of tuition and fees when all classes are dropped prior to the first day of the semester.

Refunds for classes offered in a time module other than a fourteen-week semester will be prorated according to this schedule and the equivalent percentage of time.

<table>
<thead>
<tr>
<th>Time of Withdrawal</th>
<th>Refund Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Wednesday of the first week</td>
<td>100%</td>
</tr>
<tr>
<td>Thursday and Friday of the first week</td>
<td>90%</td>
</tr>
<tr>
<td>Second week</td>
<td>80%</td>
</tr>
<tr>
<td>Third week</td>
<td>70%</td>
</tr>
<tr>
<td>Fourth week</td>
<td>60%</td>
</tr>
<tr>
<td>Fifth week</td>
<td>50%</td>
</tr>
<tr>
<td>Sixth week</td>
<td>40%</td>
</tr>
</tbody>
</table>

Room and Board Refunds
Refunds of room-and-board charges will be prorated on the basis of the number of weeks used.
Enrollment Deposit

The enrollment deposit is refundable within six months of leaving the University. Unpaid charges such as library fines, traffic fines, lab charges, and other penalties will be deducted from the refund of the deposit.

Credit Balance Refunds

Credit balance refunds resulting from the receipt of financial aid or overpayment will be issued during the third week of the semester. Credit balances as a result of Federal Direct Loan proceeds will be refunded when the credit appears on the student’s account. Checks are mailed or direct deposited into the student’s checking or savings account.

It is the student’s responsibility to maintain correct addresses. Mailing addresses (local address where refund checks will be sent) may be updated through Banweb (Student Information System).

A $10 fee will be assessed to the student’s account if he or she requests a stop payment and reissue of a credit balance check within fifteen days from the date of issue. No fee will be assessed if the request comes fifteen days or later after the date of issue.

Withdrawal Procedure

Students withdrawing from the University will have their tuition assessed based on the Withdrawal Refund Schedule. Failure to withdraw will result in F grades and in payment of tuition and fees which otherwise may be avoided.

Complete the Withdrawal Form and bring to the Dean of Students Office in the Administration Building.

If you live in on-campus housing, remember to contact the Housing and Residential Life Office (906-487-2682) regarding your withdrawal.

Involuntary Medical Withdrawal

In those cases where a counseling and/or medical evaluation indicates that it is necessary for a student to withdraw from Michigan Technological University, and the student refuses to withdraw voluntarily, an involuntary withdrawal may be imposed by the Dean of Students (in the case of undergraduate students) or by the Dean of the Graduate School (in the case of graduate students). The procedures to implement this policy are on the Dean of Students website: https://www.mtu.edu/deanofstudents/academic-policies/withdrawing/.

Withdrawal of Students Called to Active Military Service

Students called to active duty are guaranteed readmission upon completion of active service. Enrolled Michigan Tech students who are called to active military duty will be given the opportunity to work out the best possible solution for maintaining their academic status. They must choose one of the following options before departing for active service:

- Leave for active service with a tuition refund of 100 percent. Refunds involving financial aid will be adjudicated to decrease the payback required from the student to the lowest possible amount.
- Agree that temporary grades will be issued for enrolled courses. The temporary grades will be P for Progress or I for Incomplete. In some cases, arrangements can be made to complete the course work while on active duty. Otherwise, the student may complete the courses when he or she returns to the University.

Required Course Withdrawal

The Dean of Students Office may, on the recommendation of the department chair, require students to withdraw from any course or courses in which their preparation, progress, effort, or conduct is deemed unsatisfactory.
General Education: Core & Humanities, Arts and Social Sciences (HASS)

24 credits required: 12 credits from Core & 12 credits from HASS

2020-2021

Core Courses: 12 credits required

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN1015 Composition: 3 credits</td>
<td></td>
</tr>
<tr>
<td>UN1025 Global Issues: 3 credits or 3000-level or higher Modern Language course: 3 credits</td>
<td></td>
</tr>
<tr>
<td>Critical and Creative Thinking: 3 credits</td>
<td>Select one course</td>
</tr>
<tr>
<td>- FA2330 Art Appreciation</td>
<td></td>
</tr>
<tr>
<td>- FA2520 Music Appreciation</td>
<td></td>
</tr>
<tr>
<td>- FA2720 Sound in Art and Science</td>
<td></td>
</tr>
<tr>
<td>- FA2820 Theatre Appreciation</td>
<td></td>
</tr>
<tr>
<td>- HU2130 Introduction to Rhetoric</td>
<td></td>
</tr>
<tr>
<td>- HU2324 Introduction to Film</td>
<td></td>
</tr>
<tr>
<td>- HU2501 American Experience in Literature</td>
<td></td>
</tr>
<tr>
<td>- HU2503 Introduction to Literature</td>
<td></td>
</tr>
<tr>
<td>- HU2538 British Experience in Literature</td>
<td></td>
</tr>
<tr>
<td>- HU2700 Introduction to Philosophy</td>
<td></td>
</tr>
<tr>
<td>- HU2820 Communication and Culture</td>
<td></td>
</tr>
<tr>
<td>- HU2910 Language and Mind</td>
<td></td>
</tr>
<tr>
<td>- SS2300 Environment and Society</td>
<td></td>
</tr>
<tr>
<td>- TA2XX4 Critical & Creative Thinking Core</td>
<td></td>
</tr>
<tr>
<td>(Transfer Agreement credit only)</td>
<td></td>
</tr>
</tbody>
</table>

Social Responsibility & Ethical Reasoning: 3 credits

Select one course

- EC2001 Principles of Economics
- PSY2000 Introduction to Psychology
- SS2100 Introduction to Cultural Anthropology
- SS2200 Introduction to Archaeology
- SS2400 Introduction to Human Geography
- SS2500 United States History to 1877
- SS2501 US History Since 1877
- SS2502 European History to 1650
- SS2503 European History Since 1650
- SS2504 World History to 1500
- SS2505 World History Since 1500
- SS2600 American Government and Politics
- SS2610 Introduction to Law and Society
- SS2700 Introduction to Sociology
- TA2XX8 Social Responsibility & Ethical Reasoning Core
(Transfer Agreement credit only)

Humanities, Arts, and Social Sciences (HASS): 12 credits required

Students must take a minimum of 12 credits in HASS following these requirements:

- 6 credits must be upper level (3000-4999) courses
 - UN1015 AND (UN1025 or Modern Language – 3000 level or higher) are prerequisites to all upper level non-language HASS courses
 - Prerequisites for upper level language courses are appropriate placement score OR required lower level language course
- 3 credits are required from each of the following lists:
 - Communication and Composition
 - Humanities and Fine Arts (HU/FA)
 - Social and Behavioral Sciences (EC/PSY/SS)
- No more than 3 credits from the Restricted HASS list may be counted toward the HASS requirement
- Some courses are on more than one HASS list, on a HASS list and a Core list, or on the HASS list and the STEM list, but each course can satisfy only one requirement

Communication and Composition

Minimum of 3 credits required

- HU2810 Research & Writing in Communication 3
- HU2830 Public Speaking & Multimedia 3
- HU3015 Advanced Composition 3
- HU3120 Technical and Professional Communication 3
- HU3130 Rhetoric of Science and Technology 3
- HU3151 The Rhetoric of Everyday Texts 3
- HU3621 Introduction to Journalism 3
- HU3693 Science Writing 3
- HU3694 Grant Writing 3
- HU3832 Advanced Digital Presentation 3
- HU4625 Risk Communication 3
- TA1XX5 Communication Elective
(Transfer Agreement credit only) var
- TA3XX5 Communication Elective
(Transfer Agreement credit only) var
Humanities and Fine Arts (HU/FA)
- Minimum of 3 credits required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA2050</td>
<td>Drawing I</td>
<td>3</td>
</tr>
<tr>
<td>FA2110</td>
<td>Outdoor Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>FA2123</td>
<td>World Music</td>
<td>3</td>
</tr>
<tr>
<td>FA2150</td>
<td>Creative Drawing Processes</td>
<td>3</td>
</tr>
<tr>
<td>FA2160</td>
<td>Creative Practices: A Studio Course in Making</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA2190</td>
<td>Art and Nature</td>
<td>3</td>
</tr>
<tr>
<td>FA2222</td>
<td>Film Music</td>
<td>3</td>
</tr>
<tr>
<td>FA2300</td>
<td>Art and Design Studio</td>
<td>3</td>
</tr>
<tr>
<td>FA2305</td>
<td>Ceramics I</td>
<td>3</td>
</tr>
<tr>
<td>FA2315</td>
<td>Beginning Wheel Throwing</td>
<td>3</td>
</tr>
<tr>
<td>FA2520</td>
<td>Music Appreciation</td>
<td>3</td>
</tr>
<tr>
<td>FA2600</td>
<td>Beginning Acting</td>
<td>3</td>
</tr>
<tr>
<td>FA2720</td>
<td>Sound in Art and Science</td>
<td>3</td>
</tr>
<tr>
<td>FA2820</td>
<td>Theatre Appreciation</td>
<td>3</td>
</tr>
<tr>
<td>FA3133</td>
<td>Contemporary Music: The Search for New Sounds</td>
<td>3</td>
</tr>
<tr>
<td>FA3305</td>
<td>Creative Ceramics</td>
<td>3</td>
</tr>
<tr>
<td>FA3330</td>
<td>Art History-Prehistory to Renaissance</td>
<td>3</td>
</tr>
<tr>
<td>FA3333</td>
<td>Contemporary Sculpture Studio</td>
<td>3</td>
</tr>
<tr>
<td>FA3335</td>
<td>Traditional Sculpture Studio</td>
<td>3</td>
</tr>
<tr>
<td>FA3340</td>
<td>Art History-Renaissance to Today</td>
<td>3</td>
</tr>
<tr>
<td>FA3550</td>
<td>History of Jazz</td>
<td>3</td>
</tr>
<tr>
<td>FA3560</td>
<td>Music History</td>
<td>3</td>
</tr>
<tr>
<td>FA3600</td>
<td>Advanced Acting</td>
<td>3</td>
</tr>
<tr>
<td>FA3625</td>
<td>History of Rock</td>
<td>3</td>
</tr>
<tr>
<td>FA3630</td>
<td>Beatles and Beach Boys</td>
<td>3</td>
</tr>
<tr>
<td>FA3640</td>
<td>Puppetry: Puppet Construction & Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>FA3760</td>
<td>Costume Design</td>
<td>3</td>
</tr>
<tr>
<td>FA3810</td>
<td>Theatre History I</td>
<td>3</td>
</tr>
<tr>
<td>FA3821</td>
<td>Theatre History II</td>
<td>3</td>
</tr>
<tr>
<td>FA3860</td>
<td>Costume History</td>
<td>3</td>
</tr>
<tr>
<td>FA4620</td>
<td>Musical Theatre Performance</td>
<td>3</td>
</tr>
<tr>
<td>HU2130</td>
<td>Introduction to Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HU2241</td>
<td>Level I-A Less Commonly Taught Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(transfer or study abroad credit only)</td>
<td>var</td>
</tr>
<tr>
<td>HU2242</td>
<td>Level I-B Less Commonly Taught Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(transfer or study abroad credit only)</td>
<td>var</td>
</tr>
<tr>
<td>HU2271</td>
<td>Level I-A French Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2272</td>
<td>Level I-B French Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2273</td>
<td>Transitional Level I French Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2281</td>
<td>Level I-A German Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2282</td>
<td>Level I-B German Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2291</td>
<td>Level I-A Spanish Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2292</td>
<td>Level I-B Spanish Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2293</td>
<td>Transitional Level I Spanish Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2324</td>
<td>Introduction to Film</td>
<td>3</td>
</tr>
<tr>
<td>HU2500</td>
<td>Ways of Reading</td>
<td>3</td>
</tr>
<tr>
<td>HU2501</td>
<td>American Experience in Literature</td>
<td>3</td>
</tr>
<tr>
<td>HU2503</td>
<td>Introduction to Literature</td>
<td>3</td>
</tr>
<tr>
<td>HU2510</td>
<td>Intro to Creative Writing</td>
<td>3</td>
</tr>
<tr>
<td>HU2538</td>
<td>British Experience in Literature</td>
<td>3</td>
</tr>
<tr>
<td>HU2548</td>
<td>Young Adult Literature</td>
<td>3</td>
</tr>
<tr>
<td>HU2633</td>
<td>Fundamentals of Digital Imaging</td>
<td>3</td>
</tr>
<tr>
<td>HU2700</td>
<td>Introduction to Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>HU2702</td>
<td>Ethical Theory and Moral Problems</td>
<td>3</td>
</tr>
<tr>
<td>HU2810</td>
<td>Research & Writing in Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU2820</td>
<td>Communication and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU2830</td>
<td>Public Speaking & Multimedia</td>
<td>3</td>
</tr>
</tbody>
</table>

Humanities and Fine Arts (HU/FA) cont

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU2840</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU2910</td>
<td>Language and Mind</td>
<td>3</td>
</tr>
<tr>
<td>HU2920</td>
<td>Language and Society</td>
<td>3</td>
</tr>
<tr>
<td>HU3015</td>
<td>Advanced Composition</td>
<td>3</td>
</tr>
<tr>
<td>HU3120</td>
<td>Technical and Professional Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU3130</td>
<td>Rhetoric of Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>HU3150</td>
<td>Topics in Literacy Studies</td>
<td>3</td>
</tr>
<tr>
<td>HU3151</td>
<td>The Rhetoric of Everyday Texts</td>
<td>3</td>
</tr>
<tr>
<td>HU3241</td>
<td>Level II-A Less Commonly Taught Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(transfer or study abroad credit only)</td>
<td>var</td>
</tr>
<tr>
<td>HU3242</td>
<td>Level II-B Less Commonly Taught Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(transfer or study abroad credit only)</td>
<td>var</td>
</tr>
<tr>
<td>HU3261</td>
<td>Communicating Across Cultures</td>
<td>3</td>
</tr>
<tr>
<td>HU3262</td>
<td>Topics in Francophone Cultures</td>
<td>3</td>
</tr>
<tr>
<td>HU3263</td>
<td>Topics in German-Speaking Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3264</td>
<td>Topics in Spanish-Speaking Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3271</td>
<td>Level II-A French Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3272</td>
<td>Level II-B French Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3274</td>
<td>Level III French Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3275</td>
<td>French for Special Purposes</td>
<td>3</td>
</tr>
<tr>
<td>HU3280</td>
<td>Level I-C German Language and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3281</td>
<td>Level II-A German Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3282</td>
<td>Level II-B German Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3283</td>
<td>Level II German for Special Purposes</td>
<td>3</td>
</tr>
<tr>
<td>HU3284</td>
<td>Level III German Literature & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3285</td>
<td>Level III German Film & Media</td>
<td>3</td>
</tr>
<tr>
<td>HU3291</td>
<td>Level II-A Spanish Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3292</td>
<td>Level II-B Spanish Language & Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3293</td>
<td>Level II-C Spanish Composition & Conversation</td>
<td>3</td>
</tr>
<tr>
<td>HU3294</td>
<td>Hispanic Literatures and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3295</td>
<td>Level III Advanced Spanish for Literacies</td>
<td>3</td>
</tr>
<tr>
<td>HU3296</td>
<td>Introduction to Hispanic Literatures and Cultures</td>
<td>3</td>
</tr>
<tr>
<td>HU3326</td>
<td>Topics in World Cinema</td>
<td>3</td>
</tr>
<tr>
<td>HU3327</td>
<td>Film Style and Genre</td>
<td>3</td>
</tr>
<tr>
<td>HU3400</td>
<td>Topics in Diversity Studies</td>
<td>3</td>
</tr>
<tr>
<td>HU3401</td>
<td>Gender and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3410</td>
<td>Introduction to Diversity Studies</td>
<td>3</td>
</tr>
<tr>
<td>HU3502</td>
<td>Mythology</td>
<td>3</td>
</tr>
<tr>
<td>HU3504</td>
<td>Studies in the Novel</td>
<td>3</td>
</tr>
<tr>
<td>HU3505</td>
<td>Literary Forms, Genres, and Modes</td>
<td>3</td>
</tr>
<tr>
<td>HU3506</td>
<td>Major Authors</td>
<td>3</td>
</tr>
<tr>
<td>HU3507</td>
<td>Cultural Traditions in Literature</td>
<td>3</td>
</tr>
<tr>
<td>HU3508</td>
<td>Literature and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>HU3513</td>
<td>Shakespeare</td>
<td>3</td>
</tr>
<tr>
<td>HU3514</td>
<td>Workshop Creative Nonfiction</td>
<td>3</td>
</tr>
<tr>
<td>HU3515</td>
<td>Workshop in Poetry</td>
<td>3</td>
</tr>
<tr>
<td>HU3516</td>
<td>Workshop in Fiction</td>
<td>3</td>
</tr>
<tr>
<td>HU3517</td>
<td>Literary Theory and Criticism</td>
<td>3</td>
</tr>
<tr>
<td>HU3518</td>
<td>Workshop in Sci Fi Writing</td>
<td>3</td>
</tr>
<tr>
<td>HU3519</td>
<td>Workshop in Nature Writing</td>
<td>3</td>
</tr>
<tr>
<td>HU3545</td>
<td>Literature across Borders</td>
<td>3</td>
</tr>
<tr>
<td>HU3554</td>
<td>Science Fiction</td>
<td>3</td>
</tr>
<tr>
<td>HU3557</td>
<td>Literature and Science</td>
<td>3</td>
</tr>
<tr>
<td>HU3621</td>
<td>Introduction to Journalism</td>
<td>3</td>
</tr>
<tr>
<td>HU3693</td>
<td>Science Writing</td>
<td>3</td>
</tr>
<tr>
<td>HU3694</td>
<td>Grant Writing</td>
<td>3</td>
</tr>
<tr>
<td>HU3700</td>
<td>Philosophy of Science</td>
<td>3</td>
</tr>
<tr>
<td>HU3701</td>
<td>Philosophy of Technology</td>
<td>3</td>
</tr>
<tr>
<td>HU3702</td>
<td>Philosophy of Religion</td>
<td>3</td>
</tr>
<tr>
<td>HU3710</td>
<td>Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td>HU3711</td>
<td>Biomedical Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>
Humanities and Fine Arts (HU/FA) cont

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU3800</td>
<td>Media and Society</td>
<td>3</td>
</tr>
<tr>
<td>HU3802</td>
<td>Media and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>HU3810</td>
<td>Technology and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3825</td>
<td>Environmental Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU3830</td>
<td>Creativity, Culture, & Change</td>
<td>3</td>
</tr>
<tr>
<td>HU3832</td>
<td>Advanced Digital Presentation</td>
<td>3</td>
</tr>
<tr>
<td>HU3840</td>
<td>Organizational Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU3850</td>
<td>Cultural Studies</td>
<td>3</td>
</tr>
<tr>
<td>HU3852</td>
<td>Surveillance, Media, and Film</td>
<td>3</td>
</tr>
<tr>
<td>HU3860</td>
<td>Popular Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3871</td>
<td>New Media Theory</td>
<td>3</td>
</tr>
<tr>
<td>HU3872</td>
<td>Color, Visuality, and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HU3882</td>
<td>Media Industries</td>
<td>3</td>
</tr>
<tr>
<td>HU3890</td>
<td>Documentary</td>
<td>3</td>
</tr>
<tr>
<td>HU3910</td>
<td>Language and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>HU4271</td>
<td>Modern Language Seminar I-French</td>
<td>3</td>
</tr>
<tr>
<td>HU4272</td>
<td>Modern Language Seminar II-French</td>
<td>3</td>
</tr>
<tr>
<td>HU4273</td>
<td>Modern Language Seminar III-French</td>
<td>3</td>
</tr>
<tr>
<td>HU4281</td>
<td>Modern Language Seminar I-German</td>
<td>3</td>
</tr>
<tr>
<td>HU4282</td>
<td>Modern Language Seminar II-German</td>
<td>3</td>
</tr>
<tr>
<td>HU4283</td>
<td>Modern Language Seminar III-German</td>
<td>3</td>
</tr>
<tr>
<td>HU4291</td>
<td>Modern Language Seminar I-Spanish</td>
<td>3</td>
</tr>
<tr>
<td>HU4292</td>
<td>Modern Language Seminar II-Spanish</td>
<td>3</td>
</tr>
<tr>
<td>HU4293</td>
<td>Modern Language Seminar III-Spanish</td>
<td>3</td>
</tr>
<tr>
<td>HU4625</td>
<td>Risk Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU4701</td>
<td>Political Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>HU4725</td>
<td>Existentialism and Phenomenology</td>
<td>3</td>
</tr>
<tr>
<td>HU4890</td>
<td>Topics in Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

IS2001 (study abroad credit only)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title, Humanities/Fine Arts, Minimum of 3 credits required</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS3001</td>
<td>International Studies in situ, Humanities/Fine Arts</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences (EC/PSY/SS)

- Minimum of 3 credits required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2001</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC3002</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EC3003</td>
<td>Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EC3100</td>
<td>International Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC3300</td>
<td>Industrial Organization</td>
<td>3</td>
</tr>
<tr>
<td>EC3400</td>
<td>Economic Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EC4050</td>
<td>Game Theory/Strategic Behavior</td>
<td>3</td>
</tr>
<tr>
<td>EC4400</td>
<td>Banking and Financial Institutions</td>
<td>3</td>
</tr>
<tr>
<td>EC4500</td>
<td>Public Sector Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4620</td>
<td>Energy Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4630</td>
<td>Mineral Industry Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4640</td>
<td>Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4650</td>
<td>Environmental Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4710</td>
<td>Labor/Human Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>FW3313</td>
<td>Sustainable Science</td>
<td>3</td>
</tr>
<tr>
<td>FW3760</td>
<td>Human Dimensions of Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>GE4630</td>
<td>Mineral Industry Economics</td>
<td>3</td>
</tr>
<tr>
<td>IS3002</td>
<td>International Studies in situ-Social/Behavioral Sci</td>
<td></td>
</tr>
<tr>
<td>MGT3650</td>
<td>Intellectual Property Management</td>
<td>3</td>
</tr>
<tr>
<td>PSY2000</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

PSY2080 (study abroad credit only)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY2110</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY2300</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY2400</td>
<td>Health Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY2600</td>
<td>Death and Dying</td>
<td>3</td>
</tr>
<tr>
<td>PSY2900</td>
<td>An Introduction to Restorative Practices</td>
<td>3</td>
</tr>
<tr>
<td>PSY3010</td>
<td>Theories of Personality</td>
<td>3</td>
</tr>
<tr>
<td>PSY3030</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY3070</td>
<td>Cross-Cultural Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY3720</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY4080</td>
<td>Topics in Psychology</td>
<td>3</td>
</tr>
<tr>
<td>SS2100</td>
<td>Introduction to Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>SS2200</td>
<td>Introduction to Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>SS2210</td>
<td>Evolution of Cities</td>
<td>3</td>
</tr>
<tr>
<td>SS2300</td>
<td>Environment and Society</td>
<td>3</td>
</tr>
<tr>
<td>SS2400</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>SS2500</td>
<td>United States History to 1877</td>
<td>3</td>
</tr>
<tr>
<td>SS2501</td>
<td>United States History since 1877</td>
<td>3</td>
</tr>
<tr>
<td>SS2502</td>
<td>European History to 1650</td>
<td>3</td>
</tr>
<tr>
<td>SS2503</td>
<td>European History since 1650</td>
<td>3</td>
</tr>
<tr>
<td>SS2504</td>
<td>World History to 1500</td>
<td>3</td>
</tr>
<tr>
<td>SS2505</td>
<td>World History since 1500</td>
<td>3</td>
</tr>
<tr>
<td>SS2510</td>
<td>Gender and the Past</td>
<td>3</td>
</tr>
<tr>
<td>SS2600</td>
<td>American Government & Politics</td>
<td>3</td>
</tr>
<tr>
<td>SS2610</td>
<td>Introduction to Law and Society</td>
<td>3</td>
</tr>
<tr>
<td>SS2635</td>
<td>Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>SS2700</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SS3105</td>
<td>Native American and Indigenous Communities</td>
<td>3</td>
</tr>
<tr>
<td>SS3110</td>
<td>Food Systems and Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>SS3200</td>
<td>Archaeology of the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>SS3210</td>
<td>Field Archaeology</td>
<td>var</td>
</tr>
<tr>
<td>SS3225</td>
<td>Capitalism and the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>SS3230</td>
<td>Archaeology of Industry</td>
<td>3</td>
</tr>
<tr>
<td>SS3240</td>
<td>Reading the Landscape</td>
<td>3</td>
</tr>
<tr>
<td>SS3250</td>
<td>Biological Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>SS3260</td>
<td>Latin American Cultural History</td>
<td>3</td>
</tr>
<tr>
<td>SS3270</td>
<td>Archaeology of the African Diaspora</td>
<td>3</td>
</tr>
<tr>
<td>SS3280</td>
<td>Anthropology of Energy</td>
<td>3</td>
</tr>
<tr>
<td>SS3300</td>
<td>Environmental Problems</td>
<td>3</td>
</tr>
<tr>
<td>SS3313</td>
<td>Sustainability Science</td>
<td>3</td>
</tr>
<tr>
<td>SS3315</td>
<td>Population and Environment</td>
<td>3</td>
</tr>
<tr>
<td>SS3400</td>
<td>Contemporary Europe</td>
<td>3</td>
</tr>
<tr>
<td>SS3505</td>
<td>Military History of the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>SS3510</td>
<td>History of American Technology</td>
<td>3</td>
</tr>
<tr>
<td>SS3511</td>
<td>History of Science in America</td>
<td>3</td>
</tr>
<tr>
<td>SS3513</td>
<td>History of Making Things: Craft and Industry in America</td>
<td>3</td>
</tr>
<tr>
<td>SS3515</td>
<td>History of American Architecture</td>
<td>3</td>
</tr>
<tr>
<td>SS3520</td>
<td>U.S. Environmental History</td>
<td>3</td>
</tr>
<tr>
<td>SS3530</td>
<td>The Automobile in America</td>
<td>3</td>
</tr>
<tr>
<td>SS3540</td>
<td>History of Michigan</td>
<td>3</td>
</tr>
<tr>
<td>SS3541</td>
<td>The Copper Country</td>
<td>3</td>
</tr>
<tr>
<td>SS3552</td>
<td>Renaissance & Reformation</td>
<td>3</td>
</tr>
<tr>
<td>SS3553</td>
<td>Empires in World History</td>
<td>3</td>
</tr>
<tr>
<td>SS3560</td>
<td>History of England I</td>
<td>3</td>
</tr>
<tr>
<td>SS3561</td>
<td>History of England II</td>
<td>3</td>
</tr>
<tr>
<td>SS3570</td>
<td>History of Canada</td>
<td>3</td>
</tr>
<tr>
<td>SS3580</td>
<td>Technology and Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>SS3581</td>
<td>History of Science</td>
<td>3</td>
</tr>
<tr>
<td>SS3600</td>
<td>American Foreign Policy</td>
<td>3</td>
</tr>
<tr>
<td>SS3612</td>
<td>International Relations</td>
<td>3</td>
</tr>
</tbody>
</table>
Social and Behavioral Sciences (EC/PSY/SS) cont.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS3621</td>
<td>Introduction to Public Policy and Public Management</td>
<td>3</td>
</tr>
<tr>
<td>SS3630</td>
<td>Environmental Policy & Politics</td>
<td>3</td>
</tr>
<tr>
<td>SS3636</td>
<td>Perceptions of the Modern State and Governance</td>
<td>3</td>
</tr>
<tr>
<td>SS3640</td>
<td>Selected Topics in Cyber-Law</td>
<td>3</td>
</tr>
<tr>
<td>SS3650</td>
<td>Intellectual Property Management</td>
<td>3</td>
</tr>
<tr>
<td>SS3660</td>
<td>Constitutional Law</td>
<td>3</td>
</tr>
<tr>
<td>SS3661</td>
<td>Civil Rights & Civil Liberties</td>
<td>3</td>
</tr>
<tr>
<td>SS3665</td>
<td>Crime, Incarceration, and Policy</td>
<td>3</td>
</tr>
<tr>
<td>SS3760</td>
<td>Human Dimensions of Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>SS3800</td>
<td>Energy Policy and Technology</td>
<td>3</td>
</tr>
<tr>
<td>SS3801</td>
<td>Science, Technology, & Society</td>
<td>3</td>
</tr>
<tr>
<td>SS3805</td>
<td>Environmental Justice</td>
<td>3</td>
</tr>
<tr>
<td>SS3811</td>
<td>Energy Security and Justice</td>
<td>3</td>
</tr>
<tr>
<td>SS3815</td>
<td>Energy and Society</td>
<td>3</td>
</tr>
<tr>
<td>SS3910</td>
<td>Histories and Cultures</td>
<td>3</td>
</tr>
<tr>
<td>SS3920</td>
<td>Topics in Anthropology/Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>SS3950</td>
<td>Topics in American History</td>
<td>3</td>
</tr>
<tr>
<td>SS3951</td>
<td>Topics in European History</td>
<td>3</td>
</tr>
<tr>
<td>SS3952</td>
<td>Topics in World History</td>
<td>3</td>
</tr>
<tr>
<td>SS3961</td>
<td>Preparing for Cross-Cultural Immersion Experiences</td>
<td>3</td>
</tr>
<tr>
<td>SS3990</td>
<td>Topics in the Social Science</td>
<td>3</td>
</tr>
<tr>
<td>SS4001</td>
<td>History of Social Thought</td>
<td>3</td>
</tr>
<tr>
<td>SS4120</td>
<td>Anthropology of International Development</td>
<td>3</td>
</tr>
<tr>
<td>SS4200</td>
<td>Environmental Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>SS4220</td>
<td>Archaeological Thought in Society</td>
<td>3</td>
</tr>
<tr>
<td>SS4390</td>
<td>Seminar in Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>SS4530</td>
<td>Deindustrialization and the Urban Environment</td>
<td>3</td>
</tr>
<tr>
<td>SS4550</td>
<td>History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>SS4552</td>
<td>Historical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>SS4553</td>
<td>Material Culture Studies</td>
<td>3</td>
</tr>
<tr>
<td>SS4700</td>
<td>Communities and Research</td>
<td>3</td>
</tr>
<tr>
<td>SS4921</td>
<td>Washington Experience Seminar</td>
<td>var</td>
</tr>
</tbody>
</table>

Restricted HASS

- No more than 3 credits

APPROVED TRANSFER COURSES

The following courses are available ONLY by transfer.

Communication and Composition

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU1XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
<tr>
<td>HU2XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
<tr>
<td>HU3XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
<tr>
<td>HU4XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
</tbody>
</table>

Humanities and Fine Arts (HU/FA)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>FA2XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>FA3XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>FA4XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>HU1XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>HU2XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>HU3XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>HU4XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>HU1XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
<tr>
<td>HU2XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
<tr>
<td>HU3XX5</td>
<td>Approved Transfer HASS Communication/Comp</td>
<td>3</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences (EC/PSY/SS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>EC2XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>EC3XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>EC4XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>PSY1XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>PSY2XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>PSY3XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>PSY4XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>SS1XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>SS2XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
<tr>
<td>SS3XXX</td>
<td>Approved Transfer HASS Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

The Rest of This Page Intentionally Left Blank
General Education: Science, Technology, Engineering and Mathematics (STEM)
15 credits required: 4 credits (minimum) from Mathematics & 7 credits (minimum) from Science

2020-2021

Students must take a minimum of 15 credits in STEM following these requirements:

- A minimum of 4 credits are required from the Mathematics list
- Complete at least two courses in two different disciplines (different course prefixes) from the Science list
 - Minimum of 7 Science credits required
 - At least one of the Science courses must include or be taken with the accompanying laboratory
- No more than 4 credits from the Restricted STEM list may be counted toward the STEM requirement
- Some courses are on the STEM list and the HASS list, but each course can satisfy only one requirement

Some degree programs specify some or all STEM requirements; students should check with their academic advisor for specific requirements

Mathematics

- Minimum of 4 credits required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS2300</td>
<td>Quantitative Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MA1020</td>
<td>Quantitative Literacy</td>
<td>4</td>
</tr>
<tr>
<td>MA1030</td>
<td>College Algebra I and</td>
<td></td>
</tr>
<tr>
<td>MA1031</td>
<td>College Algebra II with Trigonometry</td>
<td>6</td>
</tr>
<tr>
<td>MA1032</td>
<td>Precalculus</td>
<td>4</td>
</tr>
<tr>
<td>MA1120</td>
<td>Single-Variable Calculus with Integrated Precalculus I</td>
<td>4</td>
</tr>
<tr>
<td>MA1135</td>
<td>Calculus for Life Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MA1160</td>
<td>Calculus with Technology I</td>
<td>4</td>
</tr>
<tr>
<td>MA1161</td>
<td>Calculus Plus with Technology I</td>
<td>5</td>
</tr>
<tr>
<td>MA2720</td>
<td>Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>PSY2720</td>
<td>Statistics for the Behavioral Sciences</td>
<td>4</td>
</tr>
<tr>
<td>SS4010</td>
<td>Social Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Science

- At least two courses in two different disciplines are required; at least one must include or be taken with the accompanying laboratory
- Courses or course-groups satisfying the laboratory requirement are designated by an asterisk (*)
- Minimum of 7 credits required

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1010*</td>
<td>General Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BL1020*</td>
<td>General Biology II (applies to Science list if student receives transfer credit for a first-semester Biology course; applies to Restricted STEM list if taken at Michigan Tech)</td>
<td>4</td>
</tr>
<tr>
<td>BL1040*</td>
<td>Principles of Biology</td>
<td>4</td>
</tr>
<tr>
<td>BL1100*</td>
<td>General Biology I (plus BL1110**)</td>
<td>4</td>
</tr>
<tr>
<td>BL1200*</td>
<td>General Biology II (plus BL1210**)</td>
<td>4</td>
</tr>
<tr>
<td>BL1400*</td>
<td>Principles of Biology (plus BL1410**)</td>
<td>4</td>
</tr>
<tr>
<td>BL2010*</td>
<td>Anatomy & Physiology I (plus BL2011)</td>
<td>4</td>
</tr>
<tr>
<td>BL2160*</td>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>BL2940</td>
<td>Human Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>BL3970</td>
<td>Current Health Issues</td>
<td>3</td>
</tr>
<tr>
<td>BL4090</td>
<td>Tropical Island Biology</td>
<td>2</td>
</tr>
<tr>
<td>CH1000</td>
<td>Introductory Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CH1112*</td>
<td>University Chemistry – Studio Lab I</td>
<td>5</td>
</tr>
<tr>
<td>CH1150*</td>
<td>University Chemistry I (plus CH1151/1153)</td>
<td>4/5</td>
</tr>
<tr>
<td>FW1035*</td>
<td>Wood Anatomy and Properties</td>
<td>4</td>
</tr>
<tr>
<td>FW2010*</td>
<td>Vegetation of North America</td>
<td>4</td>
</tr>
<tr>
<td>FW3075</td>
<td>Introduction to Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>FW3320</td>
<td>Fundamentals of Forest Genetics & Genomics</td>
<td>3</td>
</tr>
<tr>
<td>FW3330*</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>FW3610*</td>
<td>Ornithology</td>
<td>4</td>
</tr>
<tr>
<td>FW3620</td>
<td>Field Ornithology</td>
<td>1</td>
</tr>
<tr>
<td>FW4120</td>
<td>Tree Physiology</td>
<td>3</td>
</tr>
<tr>
<td>FW4128</td>
<td>Conservation Genetics</td>
<td>3</td>
</tr>
<tr>
<td>FW4220*</td>
<td>Wetlands</td>
<td>4</td>
</tr>
<tr>
<td>FW4240*</td>
<td>Mammalogy</td>
<td>4</td>
</tr>
<tr>
<td>FW4260*</td>
<td>Population Ecology</td>
<td>3</td>
</tr>
<tr>
<td>GE2000*</td>
<td>Understanding the Earth</td>
<td>3</td>
</tr>
<tr>
<td>KIP3100*</td>
<td>Exercise Assessment and Prescription</td>
<td>3</td>
</tr>
<tr>
<td>KIP3700*</td>
<td>Lifetime Fitness</td>
<td>3</td>
</tr>
<tr>
<td>PH1090*</td>
<td>The Physics Behind Music (plus PH1091**)</td>
<td>4</td>
</tr>
<tr>
<td>PH1110*</td>
<td>College Physics I (plus PH1111)</td>
<td>4</td>
</tr>
<tr>
<td>PH1140*</td>
<td>Applied College Physics I (plus PH1141)</td>
<td>4</td>
</tr>
<tr>
<td>PH1160*</td>
<td>Honors Physics I-Mechanics (plus PH1161 or PH1100)</td>
<td>5</td>
</tr>
<tr>
<td>PH1600*</td>
<td>Introductory Astronomy (plus PH1610**)</td>
<td>3</td>
</tr>
<tr>
<td>PH2100*</td>
<td>University Physics I-Mechanics (plus PH1100)</td>
<td>4</td>
</tr>
<tr>
<td>SS3221*</td>
<td>Archaeological Sciences (plus SS3222)</td>
<td>4</td>
</tr>
</tbody>
</table>

**This laboratory is optional with the associated course. If the laboratory is not taken, the associated course can count as a Science course, but it will not satisfy the laboratory portion of the requirement.

Restricted STEM

- No more than 4 credits
- No course may count in a degree audit toward both STEM and HASS requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1020</td>
<td>General Biology II</td>
<td>4</td>
</tr>
<tr>
<td>BL1200</td>
<td>General Biology II (plus BL1210**)</td>
<td>4</td>
</tr>
<tr>
<td>CH1112</td>
<td>University Chemistry Studio Laboratory II</td>
<td>5</td>
</tr>
<tr>
<td>CH1160</td>
<td>University Chemistry II (plus CH1161/1163)</td>
<td>4/5</td>
</tr>
<tr>
<td>CMG1000</td>
<td>Introduction to Construction Management</td>
<td>3</td>
</tr>
<tr>
<td>CS1121</td>
<td>Introduction to Programming I</td>
<td>3</td>
</tr>
<tr>
<td>CS1122</td>
<td>Introduction to Programming II</td>
<td>3</td>
</tr>
<tr>
<td>CS1131</td>
<td>Accelerated Introduction to Programming</td>
<td>5</td>
</tr>
<tr>
<td>CS1142</td>
<td>Programming at the Hardware Software Interface</td>
<td>3</td>
</tr>
<tr>
<td>EC3002</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EC4050</td>
<td>Game Theory/Strategic Behavior</td>
<td>3</td>
</tr>
<tr>
<td>EC4100</td>
<td>Mathematical Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC4200</td>
<td>Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>EET1120</td>
<td>Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EET1411</td>
<td>Basic Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ENG1001</td>
<td>Engineering Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>ENG1003</td>
<td>Introduction to Computer Aided Drafting</td>
<td>1</td>
</tr>
<tr>
<td>ENG1100</td>
<td>Engineering Analysis</td>
<td>2</td>
</tr>
<tr>
<td>ENG1101</td>
<td>Engineering Analysis and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>ENG1102</td>
<td>Engineering Modeling and Design</td>
<td>3</td>
</tr>
<tr>
<td>FA2701</td>
<td>Drafting for the Entertainment Industry</td>
<td>3</td>
</tr>
</tbody>
</table>
Restricted STEM cont'

FA4740 Transducer Theory 3
FA4741 Transducer Theory Lab 1
HU3700 Philosophy of Science 3
HU3701 Philosophy of Technology 3
KIP1500 Foundations of Kinesiology 3
MIS2100 Introduction to Business Programming 3
PH1210 College Physics II (plus PH1200) 4
PH1360 Honors Physics II (plus PH1361) 3
PSY3060 Physiological Psychology 3
SAT1700 Cyber Ethics 3
SS2050 Fundamentals of GIS 3
SS2200 Introduction to Archaeology 3
SS3210 Field Archaeology var
SS3230 Archaeology of Industry 3
SS3250 Biological Anthropology 3
SS3510 History of American Technology 3
SS3511 History of Science in America 3
SS3580 Technology and Western Civilization 3
SS3820 Ethical, Legal, and Societal Implications (ELSI) of Nanotechnology 3
SS4009 Survey Methods 3
SS4050 GIS Applications for Social Science 3

***A maximum of 4 credits will count toward STEM requirements

Any course at the 2000-level or higher in the following STEM disciplines (with the exceptions of BE2100, CM3410, ENG2060, ENG3060, ENG4060, and ENG4070):

- Biological Sciences (BL), Chemistry (CH), Computer Science (CS),
- Engineering (BE, CE, CEE, CM, EE, ENG, ENVE, GE, MEEM, MY, MSE, SSE), Forest Resources and Environmental Science (FW),
- Geological Sciences (GE), Kinesiology (KIP), Mathematics (MA),
- Physics (PH), Technology (EET, MET, SAT, SU, TE)

APPROVED TRANSFER COURSES

The following courses are available ONLY by transfer.

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1XXX</td>
<td>Approved Transfer STEM Math Elective</td>
<td>var</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL1XXX</td>
<td>Approved Transfer Science-Biology</td>
<td>var</td>
</tr>
<tr>
<td>BL2XXX</td>
<td>Approved Transfer Science-Biology</td>
<td>var</td>
</tr>
<tr>
<td>BLL1XXX*</td>
<td>Approved Transfer Lab Science-Biology</td>
<td>var</td>
</tr>
<tr>
<td>BLL2XXX*</td>
<td>Approved Transfer Lab Science-Biology</td>
<td>var</td>
</tr>
<tr>
<td>CH1XXX</td>
<td>Approved Transfer Science-Chemistry</td>
<td>var</td>
</tr>
<tr>
<td>CH2XXX</td>
<td>Approved Transfer Science-Chemistry</td>
<td>var</td>
</tr>
<tr>
<td>CHL1XXX*</td>
<td>Approved Transfer Lab Science-Chemistry</td>
<td>var</td>
</tr>
<tr>
<td>CHL2XXX*</td>
<td>Approved Transfer Lab Science-Chemistry</td>
<td>var</td>
</tr>
<tr>
<td>FW1XXX</td>
<td>Approved Transfer Science-Forestry</td>
<td>var</td>
</tr>
<tr>
<td>FW2XXX</td>
<td>Approved Transfer Science-Forestry</td>
<td>var</td>
</tr>
<tr>
<td>FWL1XXX*</td>
<td>Approved Transfer Lab Science-Forestry</td>
<td>var</td>
</tr>
<tr>
<td>FWL2XXX*</td>
<td>Approved Transfer Lab Science-Forestry</td>
<td>var</td>
</tr>
<tr>
<td>GE1XXX</td>
<td>Approved Transfer Science-Geology/Mining</td>
<td>var</td>
</tr>
<tr>
<td>GE2XXX</td>
<td>Approved Transfer Science-Geology/Mining</td>
<td>var</td>
</tr>
<tr>
<td>GEL1XXX*</td>
<td>Approved Transfer Lab Science-Geology/Mining</td>
<td>var</td>
</tr>
<tr>
<td>GEL2XXX*</td>
<td>Approved Transfer Lab Science-Geology/Mining</td>
<td>var</td>
</tr>
<tr>
<td>KIP1XXX</td>
<td>Approved Transfer Science-Kinesiology</td>
<td>var</td>
</tr>
<tr>
<td>KIP2XXX</td>
<td>Approved Transfer Science-Kinesiology</td>
<td>var</td>
</tr>
<tr>
<td>KIPL1XXX*</td>
<td>Approved Transfer Lab Science-Kinesiology</td>
<td>var</td>
</tr>
<tr>
<td>KIPL2XXX*</td>
<td>Approved Transfer Lab Science-Kinesiology</td>
<td>var</td>
</tr>
<tr>
<td>PH1XXX</td>
<td>Approved Transfer Science-Physics</td>
<td>var</td>
</tr>
<tr>
<td>PH2XXX</td>
<td>Approved Transfer Science-Physics</td>
<td>var</td>
</tr>
<tr>
<td>PHL1XXX*</td>
<td>Approved Transfer Lab Science-Physics</td>
<td>var</td>
</tr>
<tr>
<td>PHL2XXX*</td>
<td>Approved Transfer Lab Science-Physics</td>
<td>var</td>
</tr>
<tr>
<td>SCI1XXX</td>
<td>Approved Transfer Science</td>
<td>var</td>
</tr>
<tr>
<td>SCI2XXX</td>
<td>Approved Transfer Science</td>
<td>var</td>
</tr>
<tr>
<td>SCIL1XXX*</td>
<td>Approved Transfer Lab Science</td>
<td>var</td>
</tr>
<tr>
<td>SCIL2XXX*</td>
<td>Approved Transfer Lab Science</td>
<td>var</td>
</tr>
</tbody>
</table>

THE REST OF THIS PAGE INTENTIONALLY LEFT BLANK
Co-curricular Courses
2020-2021 Academic Year

Three co-curricular units are required for graduation. A unit involves the same time commitment as an academic semester credit.

Co-curricular units:
- Count toward full-time status for financial aid
- Are not included in GPA calculation
- Are not included in the total credits required for a degree
- Will appear on the transcript with a Pass/Fail grade
- Will count toward satisfactory progress for financial aid purposes
- Will not count toward the 12 credits of gradable courses required for recognition on the dean’s list or other university honors.

Repeatability for general education:
- .5 co-curricular unit courses may be repeated once for general education co-curricular credit.
- 1 co-curricular unit courses may not be repeated for general education co-curricular credit.

Co-curricular Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF0120</td>
<td>Physical Conditioning</td>
<td>.5</td>
</tr>
<tr>
<td>AF0130</td>
<td>Air Force Elite Forces Workout</td>
<td>1</td>
</tr>
<tr>
<td>AF0230</td>
<td>Precision Drill Team</td>
<td>.5</td>
</tr>
<tr>
<td>AF0340</td>
<td>Field Training</td>
<td>1</td>
</tr>
<tr>
<td>AR0340</td>
<td>Internship in Advanced Military Leadership</td>
<td>3</td>
</tr>
<tr>
<td>AR2068</td>
<td>Fall Military Physical Conditioning</td>
<td>1</td>
</tr>
<tr>
<td>AR2069</td>
<td>Spring Military Physical Conditioning</td>
<td>1</td>
</tr>
<tr>
<td>AR3068</td>
<td>Physical Training Leadership I</td>
<td>1</td>
</tr>
<tr>
<td>AR3069</td>
<td>Physical Training Leadership II</td>
<td>1</td>
</tr>
<tr>
<td>FA2400</td>
<td>Huskies Pep Band</td>
<td>1</td>
</tr>
<tr>
<td>FA2402</td>
<td>Campus Concert Band</td>
<td>1</td>
</tr>
<tr>
<td>FA2570</td>
<td>Private Music Instruction</td>
<td>1</td>
</tr>
<tr>
<td>PE0101</td>
<td>Flag Football</td>
<td>.5</td>
</tr>
<tr>
<td>PE0103</td>
<td>Bait and Fly Casting</td>
<td>.5</td>
</tr>
<tr>
<td>PE0104</td>
<td>Ultimate Frisbee</td>
<td>.5</td>
</tr>
<tr>
<td>PE0105</td>
<td>Beginning Bowling I</td>
<td>.5</td>
</tr>
<tr>
<td>PE0106</td>
<td>Beginning Golf</td>
<td>.5</td>
</tr>
<tr>
<td>PE0107</td>
<td>Floor Hockey</td>
<td>.5</td>
</tr>
<tr>
<td>PE0108</td>
<td>Broomball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0109</td>
<td>Aikido</td>
<td>.5</td>
</tr>
<tr>
<td>PE0113</td>
<td>Disc Golf</td>
<td>.5</td>
</tr>
<tr>
<td>PE0115</td>
<td>Beginning Swimming</td>
<td>.5</td>
</tr>
<tr>
<td>PE0116</td>
<td>Beginning Basketball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0117</td>
<td>Beginning Hockey</td>
<td>.5</td>
</tr>
<tr>
<td>PE0118</td>
<td>Beginning Weight Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0119</td>
<td>Beginning Fitness Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0120</td>
<td>Beginning Alpine Skiing (Downhill)</td>
<td>.5</td>
</tr>
<tr>
<td>PE0121</td>
<td>Beginning Snowboarding</td>
<td>.5</td>
</tr>
<tr>
<td>PE0122</td>
<td>Softball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0123</td>
<td>Telemark Skiing</td>
<td>.5</td>
</tr>
<tr>
<td>PE0125</td>
<td>Sand Volleyball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0126</td>
<td>Beginning Volleyball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0130</td>
<td>Water Aerobics</td>
<td>.5</td>
</tr>
<tr>
<td>PE0132</td>
<td>Beginning Soccer</td>
<td>.5</td>
</tr>
<tr>
<td>PE0135</td>
<td>Beginning Cross Country Skiing</td>
<td>.5</td>
</tr>
<tr>
<td>PE0137</td>
<td>Table Tennis</td>
<td>.5</td>
</tr>
<tr>
<td>PE0138</td>
<td>Beginning Racquetball/Squash</td>
<td>.5</td>
</tr>
<tr>
<td>PE0139</td>
<td>Beginning Badminton</td>
<td>.5</td>
</tr>
<tr>
<td>PE0140</td>
<td>Beginning Tennis</td>
<td>.5</td>
</tr>
<tr>
<td>PE0142</td>
<td>Introduction to Brazilian Jiu Jitsu</td>
<td>.5</td>
</tr>
<tr>
<td>PE0145</td>
<td>Beginning Rife</td>
<td>.5</td>
</tr>
<tr>
<td>PE0146</td>
<td>Beginning Billiards</td>
<td>.5</td>
</tr>
<tr>
<td>PE0148</td>
<td>Beginning Skating</td>
<td>.5</td>
</tr>
<tr>
<td>PE0150</td>
<td>Outdoor Lifetime Activities</td>
<td>.5</td>
</tr>
<tr>
<td>PE0151</td>
<td>Indoor Lifetime Activities</td>
<td>.5</td>
</tr>
<tr>
<td>PE0152</td>
<td>Social Dance I</td>
<td>.5</td>
</tr>
<tr>
<td>PE0153</td>
<td>Aerobics I</td>
<td>.5</td>
</tr>
</tbody>
</table>

Co-curricular Courses cont.

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0155</td>
<td>Beginning Road Biking</td>
<td>.5</td>
</tr>
<tr>
<td>PE0156</td>
<td>Beginning Mountain Biking</td>
<td>.5</td>
</tr>
<tr>
<td>PE0165</td>
<td>Introduction to Rowing</td>
<td>.5</td>
</tr>
<tr>
<td>PE0166</td>
<td>Moving for Fitness</td>
<td>.5</td>
</tr>
<tr>
<td>PE0167</td>
<td>Beginning Yoga</td>
<td>.5</td>
</tr>
<tr>
<td>PE0169</td>
<td>Indoor Cycling</td>
<td>.5</td>
</tr>
<tr>
<td>PE0170</td>
<td>TaeKwonDo and Hapkido I</td>
<td>.5</td>
</tr>
<tr>
<td>PE0175</td>
<td>Hiking</td>
<td>.5</td>
</tr>
<tr>
<td>PE0177</td>
<td>Fundamentals of Laser Tag</td>
<td>.5</td>
</tr>
<tr>
<td>PE0205</td>
<td>Bowling II</td>
<td>.5</td>
</tr>
<tr>
<td>PE0206</td>
<td>Intermediate Golf</td>
<td>.5</td>
</tr>
<tr>
<td>PE0209</td>
<td>Intermediate Aikido</td>
<td>.5</td>
</tr>
<tr>
<td>PE0210</td>
<td>Special Topics in Physical Education</td>
<td>.5</td>
</tr>
<tr>
<td>PE0215</td>
<td>Intermediate Swimming</td>
<td>.5</td>
</tr>
<tr>
<td>PE0216</td>
<td>Intermediate Basketball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0217</td>
<td>Intermediate Hockey</td>
<td>.5</td>
</tr>
<tr>
<td>PE0218</td>
<td>Intermediate Weight Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0219</td>
<td>Intermediate Fitness Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0220</td>
<td>Intermediate Alpine Ski (Downhill)</td>
<td>.5</td>
</tr>
<tr>
<td>PE0221</td>
<td>Intermediate Snowboarding</td>
<td>.5</td>
</tr>
<tr>
<td>PE0226</td>
<td>Intermediate Volleyball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0230</td>
<td>Water Polo</td>
<td>.5</td>
</tr>
<tr>
<td>PE0232</td>
<td>Intermediate Soccer</td>
<td>.5</td>
</tr>
<tr>
<td>PE0235</td>
<td>Intermediate Cross Country Skiing</td>
<td>.5</td>
</tr>
<tr>
<td>PE0237</td>
<td>Intermediate Table Tennis</td>
<td>.5</td>
</tr>
<tr>
<td>PE0238</td>
<td>Intermediate Racquetball/Squash</td>
<td>.5</td>
</tr>
<tr>
<td>PE0239</td>
<td>Intermediate Badminton</td>
<td>.5</td>
</tr>
<tr>
<td>PE0240</td>
<td>Intermediate Tennis</td>
<td>.5</td>
</tr>
<tr>
<td>PE0242</td>
<td>Brazilian Jiu Jitsu II</td>
<td>.5</td>
</tr>
<tr>
<td>PE0245</td>
<td>Intermediate Rifle</td>
<td>.5</td>
</tr>
<tr>
<td>PE0246</td>
<td>Intermediate Billiards</td>
<td>.5</td>
</tr>
<tr>
<td>PE0248</td>
<td>Intermediate Skating</td>
<td>.5</td>
</tr>
<tr>
<td>PE0250</td>
<td>Paintball</td>
<td>.5</td>
</tr>
<tr>
<td>PE0252</td>
<td>Social Dance II</td>
<td>.5</td>
</tr>
<tr>
<td>PE0253</td>
<td>Aerobics II</td>
<td>.5</td>
</tr>
<tr>
<td>PE0256</td>
<td>Intermediate Mountain Biking</td>
<td>.5</td>
</tr>
<tr>
<td>PE0266</td>
<td>Running for Fitness</td>
<td>.5</td>
</tr>
<tr>
<td>PE0267</td>
<td>Intermediate Yoga</td>
<td>.5</td>
</tr>
<tr>
<td>PE0270</td>
<td>Cardio TaeKwonDo</td>
<td>.5</td>
</tr>
<tr>
<td>PE0277</td>
<td>Strategies of Laser Tag</td>
<td>.5</td>
</tr>
<tr>
<td>PE0315</td>
<td>Fitness Swimming</td>
<td>.5</td>
</tr>
<tr>
<td>PE0320</td>
<td>Advanced Skiing</td>
<td>.5</td>
</tr>
<tr>
<td>PE0321</td>
<td>Advanced Snowboarding</td>
<td>.5</td>
</tr>
<tr>
<td>PE0330</td>
<td>Club Sports</td>
<td>.5</td>
</tr>
<tr>
<td>PE0352</td>
<td>Social Dance III</td>
<td>.5</td>
</tr>
<tr>
<td>PE0353</td>
<td>Aerobics III</td>
<td>.5</td>
</tr>
<tr>
<td>PE0355</td>
<td>Advanced Road Biking</td>
<td>.5</td>
</tr>
<tr>
<td>PE0367</td>
<td>Mindful Yoga</td>
<td>.5</td>
</tr>
<tr>
<td>PE0420</td>
<td>Ski Instructor Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0421</td>
<td>Snowboard Instructor Training</td>
<td>.5</td>
</tr>
<tr>
<td>PE0425</td>
<td>Intramurals</td>
<td>.5</td>
</tr>
<tr>
<td>PE0430</td>
<td>Club Sports Leadership</td>
<td>.5</td>
</tr>
<tr>
<td>PE0450</td>
<td>Physical Education Fusion – Full</td>
<td>1</td>
</tr>
<tr>
<td>PE0451</td>
<td>Mountain/Road Bike Fusion</td>
<td>.5</td>
</tr>
<tr>
<td>PE0520</td>
<td>Alpine Skiing Fusion</td>
<td>.5</td>
</tr>
<tr>
<td>PE0521</td>
<td>Snowboard Fusion</td>
<td>.5</td>
</tr>
<tr>
<td>PE1000</td>
<td>Fitness Foundations</td>
<td>1</td>
</tr>
<tr>
<td>PE1010</td>
<td>Active Michigan Tech</td>
<td>1</td>
</tr>
<tr>
<td>PE1028</td>
<td>Ski Patrol (Hill)</td>
<td>1</td>
</tr>
<tr>
<td>PE1101</td>
<td>Team Sports</td>
<td>1</td>
</tr>
<tr>
<td>PE1105</td>
<td>Bowling</td>
<td>1</td>
</tr>
<tr>
<td>PE1106</td>
<td>Golf</td>
<td>1</td>
</tr>
<tr>
<td>PE1113</td>
<td>Disc Sports</td>
<td>1</td>
</tr>
<tr>
<td>PE1118</td>
<td>Weight/Fitness Training</td>
<td>1</td>
</tr>
<tr>
<td>PE1119</td>
<td>Conditioning</td>
<td>1</td>
</tr>
<tr>
<td>PE1138</td>
<td>Racquet Sports</td>
<td>1</td>
</tr>
<tr>
<td>PE1140</td>
<td>Tennis</td>
<td>1</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PE1169</td>
<td>Indoor Cycling</td>
<td>1</td>
</tr>
<tr>
<td>PE1170</td>
<td>TaeKwonDo</td>
<td>1</td>
</tr>
<tr>
<td>PE1210</td>
<td>Special Topics</td>
<td>1</td>
</tr>
<tr>
<td>PE1215</td>
<td>Introduction to Backcountry Travel</td>
<td>1</td>
</tr>
<tr>
<td>PE1220</td>
<td>Introduction to Canoeing</td>
<td>1</td>
</tr>
<tr>
<td>PE1225</td>
<td>Indoor Rock Climbing</td>
<td>1</td>
</tr>
<tr>
<td>PE1230</td>
<td>Introduction to Kayaking</td>
<td>1</td>
</tr>
<tr>
<td>PE1235</td>
<td>Introduction to Log Rolling</td>
<td>1</td>
</tr>
<tr>
<td>PE1240</td>
<td>Snowshoeing</td>
<td>1</td>
</tr>
<tr>
<td>PE1245</td>
<td>Wilderness First Responder</td>
<td>1</td>
</tr>
<tr>
<td>PE1435</td>
<td>Self-Defense for Women</td>
<td>1</td>
</tr>
<tr>
<td>PE1436</td>
<td>Self-Defense for Men</td>
<td>1</td>
</tr>
<tr>
<td>PE1470</td>
<td>Lifeguard Swimming</td>
<td>1</td>
</tr>
<tr>
<td>PE2010</td>
<td>Varsity Football</td>
<td>1</td>
</tr>
<tr>
<td>PE2020</td>
<td>Varsity Basketball</td>
<td>1</td>
</tr>
<tr>
<td>PE2030</td>
<td>Varsity Hockey</td>
<td>1</td>
</tr>
<tr>
<td>PE2040</td>
<td>Varsity Nordic Skiing</td>
<td>1</td>
</tr>
<tr>
<td>PE2050</td>
<td>Varsity Soccer</td>
<td>1</td>
</tr>
<tr>
<td>PE2080</td>
<td>Varsity Track</td>
<td>1</td>
</tr>
<tr>
<td>PE2090</td>
<td>Varsity Tennis</td>
<td>1</td>
</tr>
<tr>
<td>PE2130</td>
<td>Varsity Volleyball</td>
<td>1</td>
</tr>
<tr>
<td>PE2140</td>
<td>Varsity Cross Country</td>
<td>1</td>
</tr>
<tr>
<td>PE2150</td>
<td>Cross Training</td>
<td>1</td>
</tr>
<tr>
<td>PE0XXX</td>
<td>Co-Curricular Activities (transfer credit only)</td>
<td>.5</td>
</tr>
<tr>
<td>PE1XXX</td>
<td>Co-Curricular Activities (transfer credit only)</td>
<td>1</td>
</tr>
</tbody>
</table>

THE REST OF THIS PAGE INTENTIONALLY LEFT BLANK
College of Business

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting (BS) (MS)</td>
<td>BACC</td>
</tr>
<tr>
<td>Data Analytics (Conc)</td>
<td>BAC1</td>
</tr>
<tr>
<td>Economics (BS)</td>
<td>BEC</td>
</tr>
<tr>
<td>Engineering Management (BS)</td>
<td>BEM</td>
</tr>
<tr>
<td>Engineering Management (MEM)</td>
<td>BMEM</td>
</tr>
<tr>
<td>Finance (BS)</td>
<td>BFIN</td>
</tr>
<tr>
<td>General Business</td>
<td>BGN</td>
</tr>
<tr>
<td>Management (BS)</td>
<td>BMGT</td>
</tr>
<tr>
<td>Entrepreneurship (Conc)</td>
<td>BMG2</td>
</tr>
<tr>
<td>Supply Chain and Operations Management (Conc)</td>
<td>BMG1</td>
</tr>
<tr>
<td>Management Information Systems (BS)</td>
<td>BMIS</td>
</tr>
<tr>
<td>Marketing (BS)</td>
<td>BMKT</td>
</tr>
<tr>
<td>Applied Natural Resource Economics (MS)</td>
<td>BNRE</td>
</tr>
<tr>
<td>Master of Business Administration (MBA)</td>
<td>BMBA</td>
</tr>
<tr>
<td>Business (Minor)</td>
<td>BUSM</td>
</tr>
<tr>
<td>Economics (Minor)</td>
<td>BECM</td>
</tr>
<tr>
<td>Financial Technology (Minor)</td>
<td>BFTM</td>
</tr>
<tr>
<td>Global Business (Minor)</td>
<td>BGBM</td>
</tr>
<tr>
<td>Accounting Analytics (GR Certificate)</td>
<td>CAA</td>
</tr>
<tr>
<td>Forensic Accounting (GR Certificate)</td>
<td>CFA</td>
</tr>
</tbody>
</table>

College of Computing

General Computing

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>SCS</td>
</tr>
<tr>
<td>Applications (Conc)</td>
<td>SCS1</td>
</tr>
<tr>
<td>Computer Science (Conc)</td>
<td>SCS2</td>
</tr>
<tr>
<td>Computer Systems (Conc)</td>
<td>SCS6</td>
</tr>
<tr>
<td>Game Development (Conc)</td>
<td>SCS7</td>
</tr>
<tr>
<td>Software Engineering (BS)</td>
<td>SSEN</td>
</tr>
<tr>
<td>Cybersecurity (MS)</td>
<td>SCSC</td>
</tr>
<tr>
<td>Computer Science (Minor)</td>
<td>SCSM</td>
</tr>
</tbody>
</table>

Applied Computing

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Network and System Administration (BS)</td>
<td>TCASA</td>
</tr>
<tr>
<td>Cybersecurity (BS)</td>
<td>CCY</td>
</tr>
<tr>
<td>Software Security (Conc)</td>
<td>CCY1</td>
</tr>
<tr>
<td>System and Network Security (Conc)</td>
<td>CCY2</td>
</tr>
<tr>
<td>Electrical Engineering Technology (BS)</td>
<td>TEET</td>
</tr>
<tr>
<td>Health Informatics (MS)</td>
<td>CHI</td>
</tr>
<tr>
<td>Cybersecurity (Minor)</td>
<td>TCYM</td>
</tr>
<tr>
<td>Data Acquisition and Industrial Control (Minor)</td>
<td>TDAC</td>
</tr>
<tr>
<td>Artificial Intelligence in Healthcare (GR Certificate)</td>
<td>CAIH</td>
</tr>
<tr>
<td>Security and Privacy in Healthcare (GR Certificate)</td>
<td>CSPH</td>
</tr>
</tbody>
</table>

College of Engineering

General Engineering

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering (BS) (MS) (PhD)</td>
<td>EBE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EBE</td>
</tr>
<tr>
<td>Biomaterials (Minor)</td>
<td>EBMM</td>
</tr>
<tr>
<td>Biomedical Engineering (Minor)</td>
<td>EBEM</td>
</tr>
</tbody>
</table>

Biomedical Engineering - Continued

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering (BS) (MS) (PhD)</td>
<td>EBE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EBE</td>
</tr>
<tr>
<td>Biomaterials (Minor)</td>
<td>EBMM</td>
</tr>
<tr>
<td>Biomedical Engineering (Minor)</td>
<td>EBEM</td>
</tr>
</tbody>
</table>

College of Engineering - Continued

Biomedical Engineering - Continued

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Devices & Instrumentation (Minor)</td>
<td>EMDM</td>
</tr>
<tr>
<td>Tissue & Stem Cell Engineering (Minor)</td>
<td>ETSM</td>
</tr>
</tbody>
</table>

Chemical Engineering

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering (BS) (MS) (PhD)</td>
<td>ECM</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>ECME</td>
</tr>
<tr>
<td>Mineral Processing (Minor)</td>
<td>CMMP</td>
</tr>
<tr>
<td>Polymer Science and Engineering (Minor)</td>
<td>ECMM</td>
</tr>
</tbody>
</table>

Civil and Environmental Engineering

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering (BS) (MS) (PhD)</td>
<td>ECE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>ECEE</td>
</tr>
<tr>
<td>Environmental Engineering (BS) (MS)</td>
<td>EEN</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EENE</td>
</tr>
<tr>
<td>Geospatial Engineering (BS)</td>
<td>ECGE</td>
</tr>
<tr>
<td>Environmental Engineering Science (MS)</td>
<td>EEVS</td>
</tr>
<tr>
<td>Integrated Geospatial Technology (MS)</td>
<td>TGT</td>
</tr>
<tr>
<td>Humanitarian Engineering (Minor)</td>
<td>ECHM</td>
</tr>
<tr>
<td>Municipal Engineering (Minor)</td>
<td>ECEN</td>
</tr>
<tr>
<td>Rail Transportation (Minor)</td>
<td>ECRM</td>
</tr>
<tr>
<td>Surveying (Minor)</td>
<td>TSUM</td>
</tr>
</tbody>
</table>

Electrical and Computer Engineering

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Engineering (BS) (MS) (PhD)</td>
<td>ECP</td>
</tr>
<tr>
<td>Computer Engineering Enterprise (Conc)</td>
<td>ECPE</td>
</tr>
<tr>
<td>Electrical and Computer Engineering (MS)</td>
<td>ECEC</td>
</tr>
<tr>
<td>Electrical Engineering (BS) (MS) (PhD)</td>
<td>EEE</td>
</tr>
<tr>
<td>Biomedical Applications (Conc)</td>
<td>EBEB</td>
</tr>
<tr>
<td>Electric Power Engineering (Conc)</td>
<td>EEEW</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EEEE</td>
</tr>
<tr>
<td>Environmental Applications (Conc)</td>
<td>EEVE</td>
</tr>
<tr>
<td>Photonics (Conc)</td>
<td>EEEP</td>
</tr>
<tr>
<td>Robotics Engineering (BS)</td>
<td>ERE</td>
</tr>
<tr>
<td>Electrical Engineering (Minor)</td>
<td>EEEM</td>
</tr>
<tr>
<td>Electric Power Engineering (Certificate)</td>
<td>CEPE</td>
</tr>
<tr>
<td>Advanced Electric Power Engineering (GR Certificate)</td>
<td>CAEP</td>
</tr>
</tbody>
</table>

Engineering Fundamentals

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (BS)</td>
<td>EBS</td>
</tr>
<tr>
<td>Systems Engineering (Minor)</td>
<td>ESEM</td>
</tr>
</tbody>
</table>

Geological and Mining Engineering and Sciences

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Geophysics (BS)</td>
<td>EAG</td>
</tr>
<tr>
<td>Geological Engineering (BS) (MS) (PhD)</td>
<td>EGE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EGE</td>
</tr>
<tr>
<td>Geology (BS) (MS) (PhD)</td>
<td>EGL</td>
</tr>
<tr>
<td>Geophysics (MS) (PhD)</td>
<td>EGP</td>
</tr>
<tr>
<td>Mining Engineering (BS)(MS) (PhD)</td>
<td>EMG</td>
</tr>
<tr>
<td>Applied Geophysics (Minor)</td>
<td>EAGM</td>
</tr>
<tr>
<td>Earth Sciences (Minor)</td>
<td>EGLM</td>
</tr>
<tr>
<td>Geological Engineering (Minor)</td>
<td>EGE</td>
</tr>
<tr>
<td>Mining (Minor)</td>
<td>EGMG</td>
</tr>
</tbody>
</table>

Major cannot be pursued without a concentration.
<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Engineering - Continued</td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Mechanical Engineering Technology</td>
<td>TMET</td>
</tr>
<tr>
<td>Mechanical Engineering Technology (BS)</td>
<td>TMET</td>
</tr>
<tr>
<td>Manufacturing Systems (Minor)</td>
<td>EMSM</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering (BS) (MS) (PhD)</td>
<td>EMSE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>MSEE</td>
</tr>
<tr>
<td>Electronic Materials (Minor)</td>
<td>MSEM</td>
</tr>
<tr>
<td>Structural Materials (Minor)</td>
<td>MSSM</td>
</tr>
<tr>
<td>Mechanical Engineering – Engineering Mechanics</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering (BS) (MS)</td>
<td>EME</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EMEE</td>
</tr>
<tr>
<td>Mechanical Engineering-Engineering Mechanics (PhD)</td>
<td>MEEM</td>
</tr>
<tr>
<td>Aerospace Engineering (Minor)</td>
<td>EMAE</td>
</tr>
<tr>
<td>Manufacturing (Minor)</td>
<td>EMMF</td>
</tr>
<tr>
<td>Naval Systems Engineering (Minor)</td>
<td>EMNS</td>
</tr>
<tr>
<td>College of Forest Resources and Environmental Science</td>
<td></td>
</tr>
<tr>
<td>Applied Ecology and Environmental Sciences (BS)</td>
<td>FES</td>
</tr>
<tr>
<td>Forestry (BS) (MS)</td>
<td>FFR</td>
</tr>
<tr>
<td>Natural Resources Management (BS)</td>
<td>FNRM</td>
</tr>
<tr>
<td>Sustainable Bioproducts* (BS)</td>
<td>FSB</td>
</tr>
<tr>
<td>Bioproducts Business (Conc)</td>
<td>FSB1</td>
</tr>
<tr>
<td>Sustainable Structures (Conc)</td>
<td>FSB2</td>
</tr>
<tr>
<td>Circular Economy (Conc)</td>
<td>FSB3</td>
</tr>
<tr>
<td>Wildlife Ecology and Conservation (BS)</td>
<td>FWEC</td>
</tr>
<tr>
<td>Applied Ecology (MS)</td>
<td>FAE</td>
</tr>
<tr>
<td>Forest Ecology and Management (MS)</td>
<td>FFM</td>
</tr>
<tr>
<td>Forest Molecular Genetics and Biotechnology (MS) (PhD)</td>
<td>FMGB</td>
</tr>
<tr>
<td>Forest Science (PhD)</td>
<td>FFS</td>
</tr>
<tr>
<td>Master of Forestry (MF)</td>
<td>FMF</td>
</tr>
<tr>
<td>Master of Geographic Information Science (MGIS)</td>
<td>FGIS</td>
</tr>
<tr>
<td>Sustainable Biomaterials (Minor)</td>
<td>FSBM</td>
</tr>
<tr>
<td>College of Sciences and Arts</td>
<td></td>
</tr>
<tr>
<td>General Sciences and Arts</td>
<td>SGSA</td>
</tr>
<tr>
<td>Aerospace Studies (Air Force ROTC)</td>
<td>AFAS</td>
</tr>
<tr>
<td>Military Science (Army ROTC)</td>
<td>AMAS</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology (BS)</td>
<td>SMBB</td>
</tr>
<tr>
<td>Bioinformatics (BS)</td>
<td>SBI</td>
</tr>
<tr>
<td>Biological Sciences* (BS) (MS) (PhD)</td>
<td>SBL</td>
</tr>
<tr>
<td>Ecology (Conc)</td>
<td>SBL3</td>
</tr>
<tr>
<td>General Biology (Conc)</td>
<td>SBL1</td>
</tr>
<tr>
<td>Pre-professional (Conc)</td>
<td>SBL5</td>
</tr>
<tr>
<td>Ecology and Evolutionary Biology (BS)</td>
<td>SEEB</td>
</tr>
<tr>
<td>Human Biology (BS)</td>
<td>SHB</td>
</tr>
<tr>
<td>Medical Laboratory Science* (BS)</td>
<td>SML</td>
</tr>
<tr>
<td>3+1 Medical Laboratory Science (Conc)</td>
<td>SML8</td>
</tr>
<tr>
<td>4+1 Medical Laboratory Science (Conc)</td>
<td>SML9</td>
</tr>
<tr>
<td>3+1 Cytotechnology (Conc)</td>
<td>SML4</td>
</tr>
<tr>
<td>4+1 Cytotechnology (Conc)</td>
<td>SML6</td>
</tr>
<tr>
<td>4+1 Histotechnology (Conc)</td>
<td>SML7</td>
</tr>
<tr>
<td>Biochemistry (Minor)</td>
<td>BLBC</td>
</tr>
<tr>
<td>College of Science and Arts - Continued</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences - Continued</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Cellular or Genetic Track</td>
<td>BLGT</td>
</tr>
<tr>
<td>Organismal Track</td>
<td>BLOT</td>
</tr>
<tr>
<td>Fish Biology (Minor)</td>
<td>BLFB</td>
</tr>
<tr>
<td>Microbiology (Minor)</td>
<td>BLMB</td>
</tr>
<tr>
<td>Pre-Health Professions (Minor)</td>
<td>BLPH</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology (BS)</td>
<td>SMBC</td>
</tr>
<tr>
<td>Cheminformatics (BS)</td>
<td>SCHI</td>
</tr>
<tr>
<td>Chemistry (BS) (MS) (PhD)</td>
<td>SCH2</td>
</tr>
<tr>
<td>Biochemistry (Conc)</td>
<td>SCH3</td>
</tr>
<tr>
<td>Chemical Physics (Conc)</td>
<td>SCH4</td>
</tr>
<tr>
<td>Environmental (Conc)</td>
<td>SCH5</td>
</tr>
<tr>
<td>Polymers (Conc)</td>
<td>SCH1</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (BS)</td>
<td>SCHP</td>
</tr>
<tr>
<td>Chemistry (Minor)</td>
<td>SCHM</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (Minor)</td>
<td>CHPM</td>
</tr>
<tr>
<td>Cognitive and Learning Sciences</td>
<td></td>
</tr>
<tr>
<td>Psychology (BS)</td>
<td>SPSY</td>
</tr>
<tr>
<td>Applied Cognitive Science and Human Factors (MS) (PhD)</td>
<td>SACS</td>
</tr>
<tr>
<td>Applied Science Education (MS)</td>
<td>SASE</td>
</tr>
<tr>
<td>Psychology (Minor)</td>
<td>PSYM</td>
</tr>
<tr>
<td>Post-Secondary STEM Education (GR Certificate)</td>
<td>CPSE</td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
</tr>
<tr>
<td>Humanities (ASC)</td>
<td>SAH</td>
</tr>
<tr>
<td>Communication, Culture, and Media (BA)</td>
<td>SCCM</td>
</tr>
<tr>
<td>English (BA)</td>
<td>SEN</td>
</tr>
<tr>
<td>Liberal Arts (BA)</td>
<td>SHU</td>
</tr>
<tr>
<td>Scientific and Technical Communication (BA)</td>
<td>STA</td>
</tr>
<tr>
<td>Scientific and Technical Communication (BS)</td>
<td>STC</td>
</tr>
<tr>
<td>Rhetoric, Theory and Culture (MS) (PhD)</td>
<td>SRTC</td>
</tr>
<tr>
<td>Bioethics (Minor)</td>
<td>HUB</td>
</tr>
<tr>
<td>Communication Studies (Minor)</td>
<td>HUCS</td>
</tr>
<tr>
<td>Diversity Studies (Minor)</td>
<td>HUDS</td>
</tr>
<tr>
<td>Ethics and Philosophy (Minor)</td>
<td>HUEP</td>
</tr>
<tr>
<td>French (Minor)</td>
<td>HUF</td>
</tr>
<tr>
<td>French International (Minor)</td>
<td>HUIF</td>
</tr>
<tr>
<td>German (Minor)</td>
<td>HUG</td>
</tr>
<tr>
<td>German International (Minor)</td>
<td>HUIG</td>
</tr>
<tr>
<td>Journalism (Minor)</td>
<td>HUJN</td>
</tr>
<tr>
<td>Media Production (Minor)</td>
<td>HUME</td>
</tr>
<tr>
<td>Spanish (Minor)</td>
<td>HUS</td>
</tr>
<tr>
<td>Spanish International (Minor)</td>
<td>HUIS</td>
</tr>
<tr>
<td>Writing (Minor)</td>
<td>HUW</td>
</tr>
<tr>
<td>Kinesiology and Integrative Physiology</td>
<td></td>
</tr>
<tr>
<td>Exercise Science (BS)</td>
<td>SESC</td>
</tr>
<tr>
<td>Sports and Fitness Management (BS)</td>
<td>SSFM</td>
</tr>
<tr>
<td>Integrative Physiology (PhD)</td>
<td>SKIP</td>
</tr>
<tr>
<td>Kinesiology (MS)</td>
<td>SKIN</td>
</tr>
<tr>
<td>Coaching Fundamentals (Minor)</td>
<td>PECF</td>
</tr>
<tr>
<td>Public Health (Minor)</td>
<td>PHM</td>
</tr>
<tr>
<td>Coaching Endorsement (Certificate)</td>
<td>CCE</td>
</tr>
</tbody>
</table>

*Major cannot be pursued without a concentration.
<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Sciences and Arts - Continued</td>
<td></td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td></td>
</tr>
<tr>
<td>Mathematics (BS)</td>
<td>SMA</td>
</tr>
<tr>
<td>Actuarial Science (Conc)</td>
<td>SMA6</td>
</tr>
<tr>
<td>Applied/Computational (Conc)</td>
<td>SMA8</td>
</tr>
<tr>
<td>Business Analytics (Conc)</td>
<td>SMA9</td>
</tr>
<tr>
<td>Discrete Mathematics (Conc)</td>
<td>SMA5</td>
</tr>
<tr>
<td>Education Preparation (Conc)</td>
<td>SMA9</td>
</tr>
<tr>
<td>General Mathematics (Conc)</td>
<td>SMA2</td>
</tr>
<tr>
<td>Statistics (Conc)</td>
<td>SMA3</td>
</tr>
<tr>
<td>Mathematics and Computer Science (BS)</td>
<td>SMCS</td>
</tr>
<tr>
<td>Statistics (BS) (MS) (PhD)</td>
<td>SST</td>
</tr>
<tr>
<td>Applied Statistics (MS)</td>
<td>SAST</td>
</tr>
<tr>
<td>Mathematical Sciences (MS) (PhD)</td>
<td>SMAG</td>
</tr>
<tr>
<td>Mathematical Sciences (Minor)</td>
<td>SMAM</td>
</tr>
<tr>
<td>Statistics (Minor)</td>
<td>SSTM</td>
</tr>
<tr>
<td>Actuarial Science (Certificate)</td>
<td>CASC</td>
</tr>
<tr>
<td>Business Analytics (Certificate)</td>
<td>CBA</td>
</tr>
<tr>
<td>Applied Statistics (GR Certificate)</td>
<td>CAS</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Applied Physics (BS) (MS) (PhD)</td>
<td>SAP</td>
</tr>
<tr>
<td>Physics (BA)</td>
<td>SPA</td>
</tr>
<tr>
<td>Physics (BS) (MS) (PhD)</td>
<td>SPH</td>
</tr>
<tr>
<td>Astrophysics (Minor)</td>
<td>SPHA</td>
</tr>
<tr>
<td>Physics (Minor)</td>
<td>SPHM</td>
</tr>
<tr>
<td>Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Anthropology (BS)</td>
<td>SANT</td>
</tr>
<tr>
<td>History (BA)</td>
<td>SSH</td>
</tr>
<tr>
<td>Social Sciences (BS)</td>
<td>SSS</td>
</tr>
<tr>
<td>Policy, Law, and Society (Conc)</td>
<td>SSSS</td>
</tr>
<tr>
<td>Sustainability Science and Society (BS)</td>
<td>SSSU</td>
</tr>
<tr>
<td>Environmental and Energy Policy (MS) (PhD)</td>
<td>SEEP</td>
</tr>
<tr>
<td>Industrial Heritage and Archaeology (MS) (PhD)</td>
<td>SIHA</td>
</tr>
<tr>
<td>American Studies (Minor)</td>
<td>SSAS</td>
</tr>
<tr>
<td>Environmental Studies (Minor)</td>
<td>SSES</td>
</tr>
<tr>
<td>Historical Studies (Minor)</td>
<td>SSHS</td>
</tr>
<tr>
<td>International Studies (Minor)</td>
<td>SSIS</td>
</tr>
<tr>
<td>Law and Society (Minor)</td>
<td>SSLS</td>
</tr>
<tr>
<td>Social and Behavioral Studies (Minor)</td>
<td>SSBH</td>
</tr>
<tr>
<td>Visual and Performing Arts</td>
<td></td>
</tr>
<tr>
<td>Audio Production and Technology (BS)</td>
<td>SFAT</td>
</tr>
<tr>
<td>Sound Design (BA)</td>
<td>SFSD</td>
</tr>
<tr>
<td>Theatre and Electronic Media Performance (BA)</td>
<td>SEMP</td>
</tr>
<tr>
<td>Theatre and Entertainment Technology (BS)</td>
<td>SFET</td>
</tr>
<tr>
<td>Art (Minor)</td>
<td>FAAR</td>
</tr>
<tr>
<td>Music (Minor)</td>
<td>FAMU</td>
</tr>
<tr>
<td>General Music Focus</td>
<td>MUGM</td>
</tr>
<tr>
<td>Music Technology Focus</td>
<td>MUFT</td>
</tr>
<tr>
<td>Jazz Idiom Focus</td>
<td>MUJI</td>
</tr>
<tr>
<td>Music Composition (Minor)</td>
<td>FAMC</td>
</tr>
<tr>
<td>Music Performance (Minor)</td>
<td>FAMP</td>
</tr>
<tr>
<td>Technical Theater (Minor)</td>
<td>FATT</td>
</tr>
<tr>
<td>Theater Arts (Minor)</td>
<td>FATA</td>
</tr>
<tr>
<td>Interdisciplinary Programs – Administering Department(s)</td>
<td></td>
</tr>
<tr>
<td>Construction Management (BS) – CB/CEE</td>
<td>TCMG</td>
</tr>
<tr>
<td>Mechatronics (BS) – Applied Computing/MMET</td>
<td>IMX</td>
</tr>
<tr>
<td>Atmospheric Sciences (PhD) – Grad School</td>
<td>IAS</td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology (PhD) – Grad School</td>
<td>IBMB</td>
</tr>
<tr>
<td>Data Science (MS) – Grad School</td>
<td>IDS</td>
</tr>
<tr>
<td>Engineering (PhD) – Grad School</td>
<td>EPD</td>
</tr>
<tr>
<td>Engineering-Computational Science and Engineering (PhD) – Grad School</td>
<td>EPDS</td>
</tr>
</tbody>
</table>

Interdisciplinary Programs - Continued

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering-Environmental Engineering (PhD) – Grad School</td>
<td>EPD2</td>
</tr>
<tr>
<td>Master of Engineering (MEG) – Grad School</td>
<td>EGR</td>
</tr>
<tr>
<td>Mechatronics (MS) – CMH Division</td>
<td>ISE</td>
</tr>
<tr>
<td>Alternative Energy Technology (Minor) – Chemistry</td>
<td>IMAE</td>
</tr>
<tr>
<td>Bioprocess Engineering (Minor) – Bio Sci/Chem Eng</td>
<td>IMBE</td>
</tr>
<tr>
<td>Business of Forestry (Minor) – CB/CFRES</td>
<td>IMBF</td>
</tr>
<tr>
<td>Ecology (Minor) – Bio Sci/CFRES</td>
<td>IMEC</td>
</tr>
<tr>
<td>Nanoscale Science and Engineering (Minor) – Physics</td>
<td>IMNT</td>
</tr>
<tr>
<td>Plant Biotechnology (Minor) – Bio Sci/CFRES</td>
<td>IMPB</td>
</tr>
<tr>
<td>Plant Sciences (Minor) – Bio Sci/CFRES</td>
<td>IMPS</td>
</tr>
<tr>
<td>Automotive Systems and Controls (GR Certificate) – Grad School</td>
<td>IASC</td>
</tr>
<tr>
<td>Data Science (GR Certificate) – Grad School</td>
<td>IDSC</td>
</tr>
<tr>
<td>Data Science Foundations (GR Certificate) – Grad School</td>
<td>IDSF</td>
</tr>
<tr>
<td>Hybrid Electric Drive Vehicle Engineering (GR Certificate) – Grad School</td>
<td>CHEV</td>
</tr>
<tr>
<td>Mechatronics (GR Certificate) – Grad School</td>
<td>CMEC</td>
</tr>
<tr>
<td>Safety and Security of Autonomous Cyber-Physical Systems (GR Certificate) – Grad School</td>
<td>ISSC</td>
</tr>
<tr>
<td>Sustainability (GR Certificate) – Sustainable Futures Institute/Grad School</td>
<td>IGCS</td>
</tr>
<tr>
<td>Sustainable Water Resources Systems (GR Certificate) – Grad School</td>
<td>ICSW</td>
</tr>
</tbody>
</table>

Pavlis Honors College

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise (Minor)</td>
<td>ENTM</td>
</tr>
<tr>
<td>Global Community Development Partnerships (Minor)</td>
<td>IMGC</td>
</tr>
<tr>
<td>Leadership (Minor)</td>
<td>IMLE</td>
</tr>
</tbody>
</table>

Administrative Major Codes

<table>
<thead>
<tr>
<th>Program/Degree Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>English as a Second Language</td>
<td>IESL</td>
</tr>
<tr>
<td>Non-Degree Seeking (Undergraduate level)</td>
<td>NDS</td>
</tr>
<tr>
<td>Post-Degree Studies</td>
<td>PDS</td>
</tr>
<tr>
<td>Non-Degree Seeking (Graduate level)</td>
<td>NGD</td>
</tr>
</tbody>
</table>

Major cannot be pursued without a concentration.
Co-curricular Courses cont.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1169</td>
<td>Indoor Cycling</td>
<td>1</td>
</tr>
<tr>
<td>PE1170</td>
<td>TaeKwonDo</td>
<td>1</td>
</tr>
<tr>
<td>PE1210</td>
<td>Special Topics</td>
<td>1</td>
</tr>
<tr>
<td>PE1215</td>
<td>Introduction to Backcountry Travel</td>
<td>1</td>
</tr>
<tr>
<td>PE1220</td>
<td>Introduction to Canoeing</td>
<td>1</td>
</tr>
<tr>
<td>PE1225</td>
<td>Indoor Rock Climbing</td>
<td>1</td>
</tr>
<tr>
<td>PE1230</td>
<td>Introduction to Kayaking</td>
<td>1</td>
</tr>
<tr>
<td>PE1235</td>
<td>Introduction to Log Rolling</td>
<td>1</td>
</tr>
<tr>
<td>PE1240</td>
<td>Snowshoeing</td>
<td>1</td>
</tr>
<tr>
<td>PE1245</td>
<td>Wilderness First Responder</td>
<td>1</td>
</tr>
<tr>
<td>PE1435</td>
<td>Self-Defense for Women</td>
<td>1</td>
</tr>
<tr>
<td>PE1436</td>
<td>Self-Defense for Men</td>
<td>1</td>
</tr>
<tr>
<td>PE1470</td>
<td>Lifeguard Swimming</td>
<td>1</td>
</tr>
<tr>
<td>PE2010</td>
<td>Varsity Football</td>
<td>1</td>
</tr>
<tr>
<td>PE2020</td>
<td>Varsity Basketball</td>
<td>1</td>
</tr>
<tr>
<td>PE2030</td>
<td>Varsity Hockey</td>
<td>1</td>
</tr>
<tr>
<td>PE2040</td>
<td>Varsity Nordic Skiing</td>
<td>1</td>
</tr>
<tr>
<td>PE2050</td>
<td>Varsity Soccer</td>
<td>1</td>
</tr>
<tr>
<td>PE2080</td>
<td>Varsity Track</td>
<td>1</td>
</tr>
<tr>
<td>PE2090</td>
<td>Varsity Tennis</td>
<td>1</td>
</tr>
<tr>
<td>PE2130</td>
<td>Varsity Volleyball</td>
<td>1</td>
</tr>
<tr>
<td>PE2140</td>
<td>Varsity Cross Country</td>
<td>1</td>
</tr>
<tr>
<td>PE2150</td>
<td>Cross Training</td>
<td>1</td>
</tr>
<tr>
<td>PE0XXX</td>
<td>Co-Curricular Activities (transfer credit only)</td>
<td>0.5</td>
</tr>
<tr>
<td>PE1XXX</td>
<td>Co-Curricular Activities (transfer credit only)</td>
<td>1</td>
</tr>
</tbody>
</table>

THE REST OF THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Majors – Undergraduate (BS, BA, ASC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting (BS) Data Analytics (Conc)</td>
<td>BACC</td>
</tr>
<tr>
<td>Anthropology (BS)</td>
<td>SANT</td>
</tr>
<tr>
<td>Applied Ecology and Environmental Sciences (BS)</td>
<td>FES</td>
</tr>
<tr>
<td>Applied Geophysics (BS)</td>
<td>EAG</td>
</tr>
<tr>
<td>Applied Physics (BS)</td>
<td>SAP</td>
</tr>
<tr>
<td>Audio Production and Technology (BS)</td>
<td>SFAT</td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology (BS)</td>
<td>SMBB</td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology (BS)</td>
<td>SMBC</td>
</tr>
<tr>
<td>Bioinformatics (BS)</td>
<td>SBI</td>
</tr>
<tr>
<td>Biological Sciences* (BS)</td>
<td>SBL</td>
</tr>
<tr>
<td>- Ecology (Conc)</td>
<td>SBL3</td>
</tr>
<tr>
<td>- General Biology (Conc)</td>
<td>SBL1</td>
</tr>
<tr>
<td>- Pre-professional (Conc)</td>
<td>SBL5</td>
</tr>
<tr>
<td>Biomedical Engineering (BS)</td>
<td>EBE</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>EBEE</td>
</tr>
<tr>
<td>Chemical Engineering (BS)</td>
<td>ECM</td>
</tr>
<tr>
<td>Engineering Enterprise (Conc)</td>
<td>ECME</td>
</tr>
<tr>
<td>Cheminformatics (BS)</td>
<td>SCHI</td>
</tr>
<tr>
<td>Chemistry (BS) Biochemistry (Conc)</td>
<td>SCH2</td>
</tr>
<tr>
<td>- Chemical Physics (Conc)</td>
<td>SCH4</td>
</tr>
<tr>
<td>- Environmental (Conc)</td>
<td>SCH5</td>
</tr>
<tr>
<td>- Polymers (Conc)</td>
<td>SCH1</td>
</tr>
<tr>
<td>Civil Engineering (BS) Engineering Enterprise (Conc)</td>
<td>ECE</td>
</tr>
<tr>
<td>Communication, Culture, and Media (BA) Computer Engineering (BS) Computer Engineering Enterprise (Conc)</td>
<td>SCCM</td>
</tr>
<tr>
<td>Computer Network and System Administration (BS) Computer Science* (BS) Computer Science Enterprise (Conc)</td>
<td>TCSA</td>
</tr>
<tr>
<td>Computer Science* (BS)</td>
<td>SCS</td>
</tr>
<tr>
<td>- Applications (Conc)</td>
<td>SCS1</td>
</tr>
<tr>
<td>- Computer Science (Conc)</td>
<td>SCS2</td>
</tr>
<tr>
<td>- Computer Systems (Conc)</td>
<td>SCS6</td>
</tr>
<tr>
<td>- Game Development (Conc)</td>
<td>SCS7</td>
</tr>
<tr>
<td>Construction Management (BS)</td>
<td>TCMG</td>
</tr>
<tr>
<td>Cybersecurity (BS) Software Security (Conc)</td>
<td>CCY</td>
</tr>
<tr>
<td>- System and Network Security (Conc)</td>
<td>CCY2</td>
</tr>
<tr>
<td>Economics (BS)</td>
<td>BEC</td>
</tr>
<tr>
<td>Ecology and Evolutionary Biology (BS)</td>
<td>SSEE</td>
</tr>
<tr>
<td>Electrical Engineering (BS) Biomedical Applications (Conc)</td>
<td>EEE</td>
</tr>
<tr>
<td>- Electric Power Engineering (Conc)</td>
<td>EEEW</td>
</tr>
<tr>
<td>- Engineering Enterprise (Conc)</td>
<td>EEEE</td>
</tr>
<tr>
<td>- Environmental Applications (Conc)</td>
<td>EEEV</td>
</tr>
<tr>
<td>- Photonics (Conc)</td>
<td>EEEP</td>
</tr>
<tr>
<td>Electrical Engineering Technology (BS)</td>
<td>TEET</td>
</tr>
<tr>
<td>Engineering (BS)</td>
<td>EBS</td>
</tr>
<tr>
<td>Engineering Management (BS)</td>
<td>BEM</td>
</tr>
<tr>
<td>English (BA)</td>
<td>SEN</td>
</tr>
<tr>
<td>Environmental Engineering (BS) Engineering Enterprise (Conc)</td>
<td>EEN</td>
</tr>
<tr>
<td>Exercise Science (BS)</td>
<td>SESC</td>
</tr>
<tr>
<td>Finance (BS)</td>
<td>BFIN</td>
</tr>
<tr>
<td>Forestry (BS)</td>
<td>FFR</td>
</tr>
<tr>
<td>General Business</td>
<td>BGN</td>
</tr>
<tr>
<td>General Computing</td>
<td>CGN</td>
</tr>
<tr>
<td>General Engineering</td>
<td>EGN</td>
</tr>
<tr>
<td>General Sciences and Arts</td>
<td>SGSU</td>
</tr>
<tr>
<td>Geological Engineering (BS) Engineering Enterprise (Conc)</td>
<td>EGE</td>
</tr>
<tr>
<td>Geospatial Engineering (BS)</td>
<td>EGE</td>
</tr>
<tr>
<td>History (BA)</td>
<td>SSH</td>
</tr>
<tr>
<td>Human Biology (BS)</td>
<td>SHB</td>
</tr>
<tr>
<td>Humanities (ASC)</td>
<td>SAH</td>
</tr>
<tr>
<td>Liberal Arts (BA)</td>
<td>SHU</td>
</tr>
<tr>
<td>Management (BS) Entrepreneurship (Conc)</td>
<td>BMGT</td>
</tr>
<tr>
<td>- Supply Chain and Operations Management (Conc)</td>
<td>BMG1</td>
</tr>
<tr>
<td>Management Information Systems (BS)</td>
<td>BMIS</td>
</tr>
<tr>
<td>Marketing (BS)</td>
<td>BMKT</td>
</tr>
<tr>
<td>Materials Science and Engineering (BS) Engineering Enterprise (Conc)</td>
<td>EMSE</td>
</tr>
<tr>
<td>Mathematics* (BS) Actuarial Science (Conc)</td>
<td>SMA</td>
</tr>
<tr>
<td>- Applied/Computational (Conc)</td>
<td>SMA8</td>
</tr>
<tr>
<td>- Business Analytics (Conc)</td>
<td>SMA0</td>
</tr>
<tr>
<td>- Discrete Mathematics (Conc)</td>
<td>SMA5</td>
</tr>
<tr>
<td>- Education Preparation (Conc)</td>
<td>SMA9</td>
</tr>
<tr>
<td>- General Mathematics (Conc)</td>
<td>SMA2</td>
</tr>
<tr>
<td>Mathematics and Computer Science (BS)</td>
<td>SMCS</td>
</tr>
<tr>
<td>Mechanical Engineering (BS) Engineering Enterprise (Conc)</td>
<td>EME</td>
</tr>
<tr>
<td>Mechanical Engineering Technology (BS)</td>
<td>EMEE</td>
</tr>
<tr>
<td>Mechatronics (BS)</td>
<td>IMX</td>
</tr>
<tr>
<td>Medical Laboratory Science* (BS)</td>
<td>SML</td>
</tr>
<tr>
<td>- 3+1 Medical Laboratory Science (Conc)</td>
<td>SML8</td>
</tr>
<tr>
<td>- 4+1 Medical Laboratory Science (Conc)</td>
<td>SML9</td>
</tr>
<tr>
<td>- 3+1 Cytotechnology (Conc)</td>
<td>SML4</td>
</tr>
<tr>
<td>- 4+1 Cytotechnology (Conc)</td>
<td>SML6</td>
</tr>
<tr>
<td>- 4+1 Histotechnology (Conc)</td>
<td>SML7</td>
</tr>
<tr>
<td>Mining Engineering (BS)</td>
<td>EMG</td>
</tr>
<tr>
<td>Natural Resources Management (BS)</td>
<td>FNRM</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (BS)</td>
<td>SChP</td>
</tr>
<tr>
<td>Physics (BA)</td>
<td>SPA</td>
</tr>
<tr>
<td>Physics (BS)</td>
<td>SPH</td>
</tr>
<tr>
<td>Psychology (BS)</td>
<td>SPSY</td>
</tr>
<tr>
<td>Robotics Engineering (BS)</td>
<td>ERE</td>
</tr>
<tr>
<td>Scientific and Technical Communication (BA)</td>
<td>STA</td>
</tr>
<tr>
<td>Scientific and Technical Communication (BS)</td>
<td>STC</td>
</tr>
<tr>
<td>Social Sciences (BS) Policy, Law, and Society (Conc)</td>
<td>SSS</td>
</tr>
<tr>
<td>- Policy, Law, and Society (Conc)</td>
<td>SSS5</td>
</tr>
<tr>
<td>Software Engineering (BS)</td>
<td>SSEN</td>
</tr>
<tr>
<td>Sound Design (BA)</td>
<td>SFSD</td>
</tr>
<tr>
<td>Sports and Fitness Management (BS)</td>
<td>SSFM</td>
</tr>
<tr>
<td>Statistics (BS)</td>
<td>SST</td>
</tr>
<tr>
<td>Sustainability Science and Society (BS)</td>
<td>SSSU</td>
</tr>
<tr>
<td>Sustainable Bioproducts* (BS) Bioproducts Business (Conc)</td>
<td>FSB</td>
</tr>
<tr>
<td>- Bioproducts Business (Conc)</td>
<td>FSB1</td>
</tr>
<tr>
<td>- Sustainable Structures (Conc)</td>
<td>FSB2</td>
</tr>
<tr>
<td>- Circular Economy (Conc)</td>
<td>FSB3</td>
</tr>
<tr>
<td>Theatre and Electronic Media Performance (BA)</td>
<td>SEMP</td>
</tr>
<tr>
<td>Theatre and Entertainment Technology (BS)</td>
<td>SFET</td>
</tr>
<tr>
<td>Wildlife Ecology and Conservation (BS)</td>
<td>FWEC</td>
</tr>
</tbody>
</table>

*Major cannot be pursued without a concentration.
<table>
<thead>
<tr>
<th>Majors – Graduate (MBA, MEG, MEM, MF, MGIS, MS, PHD)</th>
<th>Minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting (MS) BACC</td>
<td>Aerospace Engineering Mech Eng EMAE</td>
</tr>
<tr>
<td>Applied Cognitive Science and Human Factors (MS) (PhD) SACS</td>
<td>Aerospace Studies Air Force ROTC AFAS</td>
</tr>
<tr>
<td>Applied Ecology (MS) FAE</td>
<td>Alternative Energy Technology Chem Eng IMAE</td>
</tr>
<tr>
<td>Applied Natural Resource Economics (MS) BNRE</td>
<td>American Studies Soc Sci SSAS</td>
</tr>
<tr>
<td>Applied Physics (MS) (PhD) SAP</td>
<td>Applied Geophysics GMES EAGM</td>
</tr>
<tr>
<td>Applied Science Education (MS) SASE</td>
<td>Art VPA FAAR</td>
</tr>
<tr>
<td>Applied Statistics (MS) SAST</td>
<td>Astrophysics Physics SPHA</td>
</tr>
<tr>
<td>Atmospheric Sciences (PhD) IAS</td>
<td>Biochemistry Bio Sci BLBC</td>
</tr>
<tr>
<td>Biotechnology Biomed Eng</td>
<td>Bioethics Humanities HUB</td>
</tr>
<tr>
<td>Biotechnology and Molecular Biology (PhD) IBMB</td>
<td>Biological Sciences Bio Sci SBLM</td>
</tr>
<tr>
<td>Biomedical Engineering (MS) (PhD) EBE</td>
<td>Cellular or Genetic Track BLGT</td>
</tr>
<tr>
<td>Chemical Engineering (MS) (PhD) ECM</td>
<td>Organisational Track BLOT</td>
</tr>
<tr>
<td>Chemistry (MS) (PhD) SCH</td>
<td>Biomaterials Biomed Eng EBMM</td>
</tr>
<tr>
<td>Civil Engineering (MS) (PhD) ECE</td>
<td>Biomedical Engineering Biomed Eng EBER</td>
</tr>
<tr>
<td>Computer Engineering (MS) (PhD) ECP</td>
<td>Bioprocess Engineering Bio Sci /Chem Eng IMBE</td>
</tr>
<tr>
<td>Computer Science (MS) (PhD) SCS</td>
<td>Business CB BUSM</td>
</tr>
<tr>
<td>Cybersecurity (MS) SCSC</td>
<td>Business of Forestry CFRES/CE FMBF</td>
</tr>
<tr>
<td>Data Science (MS) IDS</td>
<td>Chemistry Chemistry SCHM</td>
</tr>
<tr>
<td>Electrical and Computer Engineering (MS) EEE</td>
<td>Coaching Fundamentals KSIC/CE PECF</td>
</tr>
<tr>
<td>Electrical Engineering (MS) (PhD) EEE</td>
<td>Communication Studies Humanities HUCS</td>
</tr>
<tr>
<td>Engineering (PhD) EPD</td>
<td>Computer Science Comp Sci SCSM</td>
</tr>
<tr>
<td>Engineering-Computational Science and Engineering (PhD) EPD5</td>
<td>Cybersecurity Applied Computing TCYM</td>
</tr>
<tr>
<td>Engineering-Environmental Engineering (PhD) EPD2</td>
<td>Data Acquisition and Industrial Control Applied Computing</td>
</tr>
<tr>
<td>Engineering Management (MEM) BMEM</td>
<td>Diversity Studies Humanities HUDS</td>
</tr>
<tr>
<td>Engineering Mechanics (MS) EEM</td>
<td>Earth Sciences GMES EGLM</td>
</tr>
<tr>
<td>Environmental and Energy Policy (MS) (PhD) SEEP</td>
<td>Ecology Bio Sci/CFRES IMEC</td>
</tr>
<tr>
<td>Environmental Engineering (MS) EEN</td>
<td>Economics CB BECM</td>
</tr>
<tr>
<td>Environmental Engineering Science (MS) EENS</td>
<td>Electronic Engineering Elec & Comp Eng EEEM</td>
</tr>
<tr>
<td>Forest Ecology and Management (MS) FFEM</td>
<td>Environmental Materials Mat Sci & Eng MSEM</td>
</tr>
<tr>
<td>Forest Molecular Genetics and Biotechnology (MS) (PhD) FMGB</td>
<td>Enterprise Pavlis Honors College ENT</td>
</tr>
<tr>
<td>Forest Science (PhD) FFS</td>
<td>Environmental Studies Soc Sci SES</td>
</tr>
<tr>
<td>Forestry (MS) FFR</td>
<td>Ethics and Philosophy Humanities HUEP</td>
</tr>
<tr>
<td>Geological Engineering (MS) (PhD) EGE</td>
<td>Financial Technology CB BFTM</td>
</tr>
<tr>
<td>Geology (MS) (PhD) EGL</td>
<td>Fish Biology Bio Sci BLFB</td>
</tr>
<tr>
<td>Geophysics (MS) (PhD) EGP</td>
<td>French Humanities HUF</td>
</tr>
<tr>
<td>Health Informatics (MS) CHI</td>
<td>French International Humanities HFIF</td>
</tr>
<tr>
<td>Industrial Heritage and Archaeology (MS) (PhD) SIHA</td>
<td>Geological Engineering GMES EGER</td>
</tr>
<tr>
<td>Integrated Geospatial Technology (MS) TGT</td>
<td>German Humanities HU</td>
</tr>
<tr>
<td>Integrative Physiology (PhD) TGT</td>
<td>German International Humanities HUG</td>
</tr>
<tr>
<td>Kinesiology (MS) SKIN</td>
<td>Global Business CB BGBM</td>
</tr>
<tr>
<td>Master of Business Administration (MBA) BMBA</td>
<td>Global Community Development Partnerships Pavlis Honors College IMGC</td>
</tr>
<tr>
<td>Master of Engineering (MEG) EGR</td>
<td>Historical Studies Soc Sci SSHS</td>
</tr>
<tr>
<td>Master of Forestry (MF) FMF</td>
<td>Humanitarian Engineering CEE ECHM</td>
</tr>
<tr>
<td>Master of Geographic Information Science (MGIS) FGIS</td>
<td>International Studies Soc Sci SSSIS</td>
</tr>
<tr>
<td>Materials Science and Engineering (MS) (PhD) EMSE</td>
<td>Journalism Humanities HUJN</td>
</tr>
<tr>
<td>Mathematical Sciences (MS) (PhD) SMAG</td>
<td>Law and Society Soc Sci SSLS</td>
</tr>
<tr>
<td>Mechanical Engineering (MS) EME</td>
<td>Leadership Pavlis Honors College IMLE</td>
</tr>
<tr>
<td>Mechanical Engineering-Engineering Mechanics (PhD) MEEM</td>
<td>Manufacturing Mech Eng EMMF</td>
</tr>
<tr>
<td>Mechanics (PhD) IME</td>
<td>Manufacturing Systems MMET EMM</td>
</tr>
<tr>
<td>Mechatronics (MS) MEG</td>
<td>Mathematical Sciences Mathematics SMAM</td>
</tr>
<tr>
<td>Mining Engineering (MS) (PhD) EMG</td>
<td>Media Production Humanities HUME</td>
</tr>
<tr>
<td>Physics (MS) (PhD) SPH</td>
<td>Medical Devices & Instrumentation Biomed Eng EMDM</td>
</tr>
<tr>
<td>Rhetoric, Theory and Culture (MS) (PhD) SRTC</td>
<td>Microbiology Bio Sci BMB</td>
</tr>
<tr>
<td>Statistics (MS) (PhD) SST</td>
<td>Military Arts and Science Air Force ROTC AMAS</td>
</tr>
<tr>
<td>Mining GMES EGM</td>
<td>Mineral Processing Chem Eng CMMP</td>
</tr>
<tr>
<td>Naval Systems Engineering Mech Eng EMM</td>
<td>Music VPA FAMC</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry Chemistry CHPM</td>
<td>Music Composition VPA FAMC</td>
</tr>
<tr>
<td>Music Performance VPA FAMC</td>
<td>Nanoscale Science and Engineering Physics IMNT</td>
</tr>
<tr>
<td>Nanoscale Science and Engineering Physics IMNT</td>
<td>Naval Systems Engineering Mech Eng EMM</td>
</tr>
<tr>
<td>Naval Systems Engineering Mech Eng EMM</td>
<td>Pharmacology Chemistry CHPM</td>
</tr>
<tr>
<td>Nanoscale Science and Engineering Physics IMNT</td>
<td>Physics Physics SPH</td>
</tr>
<tr>
<td>Nuclear Engineering Nuclear Eng</td>
<td>Plant Biotechnology Bio Sci/CFRES IMPB</td>
</tr>
<tr>
<td>Oceanography (PhD) OCE</td>
<td>Plant Biotechnology Bio Sci/CFRES IMPB</td>
</tr>
</tbody>
</table>
Minors - Continued

<table>
<thead>
<tr>
<th>Minor</th>
<th>Department/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Sciences</td>
<td>Bio Sci/CFRES IMPS</td>
</tr>
<tr>
<td>Polymer Science and Engineering</td>
<td>Chem Eng ECMM</td>
</tr>
<tr>
<td>Pre-Health Professions</td>
<td>Bio Sci BLPH</td>
</tr>
<tr>
<td>Psychology</td>
<td>Cognitive and Learning Sci PSYM</td>
</tr>
<tr>
<td>Public Health</td>
<td>KIP PHM</td>
</tr>
<tr>
<td>Rail Transportation</td>
<td>CEE ECRM</td>
</tr>
<tr>
<td>Social and Behavioral Studies</td>
<td>Soc Sci SSBH</td>
</tr>
<tr>
<td>Spanish</td>
<td>Humanities HUS</td>
</tr>
<tr>
<td>Spanish International</td>
<td>Humanities HUIS</td>
</tr>
<tr>
<td>Statistics</td>
<td>Mathematics SSTM</td>
</tr>
<tr>
<td>Structural Materials</td>
<td>Mat Sci & Eng MSSM</td>
</tr>
<tr>
<td>Surveying</td>
<td>CEE TSUM</td>
</tr>
<tr>
<td>Sustainable Biomaterials</td>
<td>CFRES FSBM</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>Eng Fund ESEM</td>
</tr>
<tr>
<td>Technical Theater</td>
<td>VPA FATT</td>
</tr>
<tr>
<td>Theater Arts</td>
<td>VPA FATA</td>
</tr>
<tr>
<td>Tissue & Stem Cell Engineering</td>
<td>VPA FATA</td>
</tr>
<tr>
<td>Writing</td>
<td>Humanities HUW</td>
</tr>
</tbody>
</table>

Certificates – Post Graduate (CERT)

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Department/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuarial Science</td>
<td>Mathematics CASC</td>
</tr>
<tr>
<td>Business Analytics</td>
<td>Mathematics CBA</td>
</tr>
<tr>
<td>Coaching Endorsement</td>
<td>KIP CCE</td>
</tr>
<tr>
<td>Electric Power Engineering</td>
<td>Elec & Comp Eng CEPE</td>
</tr>
</tbody>
</table>

Certificates – Graduate (GRCERT)

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Department/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Analytics</td>
<td>CAA</td>
</tr>
<tr>
<td>Advanced Electric Power Engineering</td>
<td>CAEP</td>
</tr>
<tr>
<td>Applied Statistics</td>
<td>CAS</td>
</tr>
<tr>
<td>Artificial Intelligence in Healthcare</td>
<td>CAIH</td>
</tr>
<tr>
<td>Automotive Systems and Controls</td>
<td>IASC</td>
</tr>
<tr>
<td>Data Science</td>
<td>IDSC</td>
</tr>
<tr>
<td>Data Science Foundations</td>
<td>IDSF</td>
</tr>
<tr>
<td>Forensic Accounting</td>
<td>CFA</td>
</tr>
<tr>
<td>Hybrid Electric Drive Vehicle Engineering</td>
<td>CHEV</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>CMEC</td>
</tr>
<tr>
<td>Post-Secondary STEM Education</td>
<td>CPSE</td>
</tr>
<tr>
<td>Security and Privacy in Healthcare</td>
<td>CSPH</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Sustainable Futures Institute IGCS</td>
</tr>
<tr>
<td>Sustainable Water Resources Systems</td>
<td>ICSW</td>
</tr>
<tr>
<td>Safety and Security of Autonomous Cyber-</td>
<td>ISSC</td>
</tr>
<tr>
<td>Physical Systems</td>
<td></td>
</tr>
</tbody>
</table>

Administrative Codes

<table>
<thead>
<tr>
<th>Administrative Code</th>
<th>Department/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>English as a Second Language</td>
<td>IESL</td>
</tr>
<tr>
<td>Non-Degree Seeking (Undergraduate level)</td>
<td>NDS</td>
</tr>
<tr>
<td>Post-Degree Studies</td>
<td>PDS</td>
</tr>
<tr>
<td>Non-Degree Seeking (Graduate level)</td>
<td>NDG</td>
</tr>
</tbody>
</table>
SCHOLASTIC STANDARDS CODES

Good Standing: All GPAs (semester, cumulative, & departmental*) are 2.0 or greater

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Student has never been on probation</td>
</tr>
<tr>
<td>01</td>
<td>Good standing restored after first suspension/reinstatement</td>
</tr>
<tr>
<td>02</td>
<td>Good standing restored after second suspension/reinstatement</td>
</tr>
<tr>
<td>03</td>
<td>Good standing restored after a period of probation – no previous suspension</td>
</tr>
</tbody>
</table>

Academic Probation: Any (semester, cumulative, or departmental*) GPA below 2.0

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>First semester probation – no previous suspension</td>
</tr>
<tr>
<td>P2</td>
<td>Second semester probation – cumulative GPA above 2.0</td>
</tr>
<tr>
<td>A1</td>
<td>Student granted an additional semester of probation, on appeal, after meeting conditions for first suspension</td>
</tr>
<tr>
<td>R1</td>
<td>First semester probation after first reinstatement</td>
</tr>
<tr>
<td>P3</td>
<td>Second semester probation after first reinstatement – cumulative GPA above 2.0</td>
</tr>
<tr>
<td>A2</td>
<td>Student granted an additional semester of probation, on appeal, after meeting conditions for second suspension</td>
</tr>
<tr>
<td>R2</td>
<td>First semester probation after second reinstatement</td>
</tr>
<tr>
<td>P4</td>
<td>Second semester probation after second reinstatement – cumulative GPA above 2.0</td>
</tr>
<tr>
<td>A3</td>
<td>Student granted an additional semester of probation, on appeal, after meeting conditions for dismissal</td>
</tr>
</tbody>
</table>

Academic Suspension/Dismissal: Student’s cumulative GPA is below 2.0 after a semester of academic probation, or student is not restored to good academic standing after two semesters of probation regardless of the cumulative GPA, or student earns a term GPA of 0.0 while attempting 12 or more credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>First suspension – Student may apply for reinstatement after one semester, plus a summer of non-enrollment</td>
</tr>
<tr>
<td>D2</td>
<td>Second suspension – Student may apply for reinstatement after two semesters, plus a summer of non-enrollment</td>
</tr>
<tr>
<td>D3</td>
<td>Dismissal – There is no reinstatement after two previous suspensions</td>
</tr>
</tbody>
</table>

*At least 16 credits in department

8/16
ACC 2000 - Accounting Principles I
Introduction to basic principles, concepts, and theoretical framework of financial accounting with the emphasis on its use by economically rational decision makers. Topics include the decision-making environment and the accounting cycles, processes, and statements.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ACC 2100

ACC 2100 - Accounting Principles II
Emphasizes the role of accounting within a firm. Topics include budgeting, responsibility accounting, cost allocations, cost behavior, decision models, capital budgeting, and an introduction to product costing in manufacturing and service sector firms.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ACC 2000

ACC 3000 - Intermediate Accounting I
Studies the theory, concepts, and practices underlying financial reporting and measurement. Primary focus is on income measurement, and the valuation of assets, like cash, receivables, inventory, and long-lived assets, as well as multinational issues.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): ACC 2000

ACC 3100 - Intermediate Accounting II
A continuation of ACC 3000 with theories, concepts, and practices underlying financial measurement and reporting. Focuses on the measurement and reporting of liabilities and equities, and includes multinational issues.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 3000

ACC 3500 - Managerial/Cost Accounting I
The primary emphasis is on traditional and contemporary product costing techniques, cost allocation practices, and basic cost-management issues. Topics include process costing, standard costing, activity-based costing, backflush costing, cost allocation issues, balanced scorecard, strategic profitability analysis, and the role of accounting in contemporary management practices.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 2100

ACC 3500 - Foundations of Taxation
Introduction to basic principles, concepts, and theoretical framework of taxation systems, emphasizing income taxation and its impact on decision making. Topics include tax planning and compliance for individuals, corporations, and partnerships.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): ACC 2000

ACC 3000 - Accounting Data Analytics
Develop knowledge and competencies in data analytic techniques to generate accounting information used for business intelligence. Applied exercises with software tools are used to cover topics including data preparation, analysis, visualization, and scenario analysis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): ACC 2000 and ACC 3000(C)

ACC 4100 - Audit and Assurance
Auditing procedures and techniques associated with public accounting and with internal auditing for business entities. Topics include auditor's responsibilities, professional ethics, generally accepted auditing standards, purpose and types of audits, objectives, internal control, evidence, organization within the public accounting profession, the audit program, and auditing procedures and techniques.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): ACC 3000 or ACC 5050

ACC 4200 - Accounting Theory
The course will focus on the advanced theories of financial accounting. It identifies the conceptual framework of financial reporting and emphasis on the "how" of accounting. Topics include information asymmetry, Bayesian decision theory, efficient market hypotheses, efficient contracting, positive accounting theories, executive compensation, and earning management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): ACC 3000

ACC 4500 - Managerial/Cost Accounting II
Emphasizes information requirements of contemporary management decision-making and strategic-planning processes. Covers contemporary control and evaluation practices (such as activity-based management), determining the costs of quality, and productivity analysis in the context of accounting information systems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 3500
ACC 4600 - Advanced Tax Topics
Continuation of ACC3600. Introduction to advanced principles and concepts of taxation, emphasizing income taxation and its impact on decision making. Topics include tax planning and compliance for estates and trusts, gratuitous transfers, multi-jurisdictional operations, and entity formations, liquidations, and reorganizations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 3600

AF 0230 - Precision Drill Team
Techniques and skills involved in precision drill movements, including marching, rifle spinning, ceremonial sabre handling, and color guard performance. Each student must have or purchase an appropriate drill-team uniform. May be used once as a general education co-curricular course. Non-cadets are required to provide a uniform cleaning deposit and purchase some non-refundable uniform items.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

ACC 4700 - Governmental and Not-for-Profit Accounting
An in-depth study of the accounting principles and financial reporting unique to the governmental and not-for-profit sectors of the U.S. economy.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 3000

AF 0340 - Field Training
A rigorous program of physical conditioning, team activities, and survival training. Offered the summer semester after acceptance into the Field Training program. Course completed off campus.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Summer
Restrictions: Permission of instructor required
Pre-Requisite(s): AF 2002

ACC 4800 - Accounting Systems
Introduction to the basic principles, concepts, and theoretical framework for the design and operation of accounting information systems, emphasizing its use to enhance decision making. Topics include system design, internal controls, the use of databases, and electronic commerce.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): ACC 2100 or ACC 5050

AF 1001 - US Air Force Heritage and Values I
Introduction to the USAF and ROTC. Topics include Air Force mission and organization, officership, professionalism, military customs and courtesies, officer opportunities, and communication skills. Leadership Laboratory is mandatory for AFROTC cadets and provides cadets with followerhip experiences.
Credits: 1.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall

ACC 4990 - Special Topics in Accounting
Examines current issues in Accounting and other topics of interest to faculty and students in greater depth.
Credits: variable to 3.0; Repeatable to a Max of 6
Restrictions: Permission of instructor required
Pre-Requisite(s): ACC 3000

AF 1002 - US Air Force Heritage and Values II
Introduces students to the USAF and ROTC. Topics include Air Force operations and installations, evolution of USAF, principles of war and tenets of Airpower, ethical decision making under pressure and what our Air Force 'brings to the fight'. Leadership lab is mandatory for AFROTC cadets and provides cadet with followerhip and leadership experiences.
Credits: 1.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Spring

Air Force ROTC

AF 0120 - Physical Conditioning
Activities that promote physical conditioning. Emphasis is on individual conditioning through strength and aerobic training and team sports such as ultimate frisbee and football. May be used once as a general education co-curricular course. Sports physical required prior to start of class (contact instructor for details).
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

AF 2001 - Team and Leadership Fundamentals I
Introduction to team building and leadership development. Topics include effective listening, followerhip, and problem solving and motivation techniques for creating a successful workplace.
Credits: 1.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall

AF 0130 - Air Force Elite Forces Workout
An intense workout program that develops personal physical fitness and self-confidence. Workouts include an elite U.S. Military special operations training. Basic swimming skills required.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: On Demand
Restrictions: Permission of instructor required
Pre-Requisite(s): AF 0120

AF 2002 - Team and Leadership Fundamentals II
Advanced concepts for developing team and leadership abilities. Topics include human relations, conflict management, stress management and resiliency and the importance of ethical decision making in the workplace.
Credits: 1.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Spring
Pre-Requisite(s): AF 2001

Undergraduate Course Descriptions Effective Fall 2020, Page 2 of 162
AF 2010 - Team and Leadership Fundamentals I for Non-AFROTC Students
For non-AFROTC students. AFROTC cadets should enroll in AF2001. Introduction to team building and leadership development. Topics include effective listening, followership, and problem solving and motivation techniques for creating a successful workplace.
Credits: 3.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Permission of instructor required

AF 2020 - Team and Leadership Fundamentals II for Non-AFROTC Students
For non-AFROTC students. AFROTC students should enroll in AF2002. Advanced concepts for developing team and leadership abilities. Topics include human relations, conflict management, stress management and resiliency and the importance of ethical decision making in the workplace.
Credits: 3.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Permission of instructor required
Pre-Requisite(s): AF 2010

AF 3001 - Leading People and Effective Communication I
Study and practice of leadership in civilian and military organizations, with emphasis on development of effective oral and written communication. Topics include Air Force leader development, effective supervision, diversity, cross-cultural competence and ethics. The course includes discussion, informal lecture, case studies, self-evaluation of leadership traits, and experiential exercises.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

AF 3002 - Leading People and Effective Communication II
Study of leadership in civilian and military institutions. Topics include leadership theory, mentoring, feedback, organizational climate, and professionalism. The course includes discussion, informal lecture, case studies, and experiential exercises.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

AF 3010 - Leading People and Effective Communication I Non-AFROTC Students
For non-AFROTC students. AFROTC cadets should enroll in AF3001. Study and practice of leadership in civilian and military organizations, with emphasis on development of effective oral and written communication. Topics include Air Force leader development, effective supervision, diversity, cross-cultural competence and ethics. The course includes discussion, informal lecture, case studies, self-evaluation of leadership traits, and experiential exercises.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman

AF 3020 - Leading People and Effective Communication II for Non-AFROTC Students
For non-AFROTC students. AFROTC cadets should enroll in AF3002. Study of leadership and communication in civilian and military institutions. Topics include leadership theory, mentoring, feedback, organizational climate and professionalism. The course includes discussion, informal lecture, case studies, and experiential exercises.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman

AF 3001 - National Security Affairs I
This course is designed to develop an understanding of the nature of conflict and how the United States military forces are developed, organized, and employed. Topics include the need for national security, the evolution and formulation of American defense policy and strategy, the origins of regional security issues, cross cultural competence, and joint doctrine.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

AF 3002 - National Security Affairs II
This course examines selected roles of the military in society, unconventional warfare, current issues affecting the military profession, and the military justice system. Special topics of interest focus on information warfare, the law of armed conflict, the military as a profession, and officership.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
AF 4010 - National Security Affairs I - for Non-AFROTC Students

For non-AFROTC students. AFROTC cadets should enroll in AF4001. This course is designed to develop an understanding of the nature of conflict and how the United States military forces are developed, organized, and employed. Topics include the need for national security, the evolution, and formulation of American defense policy and strategy, the origins of regional security issues, cross cultural competence, and joint doctrine.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

AF 4020 - National Security Affairs II - for Non-AFROTC Students

For non-AFROTC students. AFROTC cadets should enroll in AF4002. This course examines selected roles of the military in society, unconventional warfare, current issues affecting the military profession, and the military justice system. Special topics of interest focus on information warfare, the law of armed conflict, security issues, cross cultural competence, and joint doctrine. Students will examine the Army profession in depth.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

ARMY ROTC

AR 1001 - Introduction to the Army and Critical Thinking

Introduces cadets to the competencies that are critical for effective leadership. Cadets learn how the personal development of "life skills" such as critical thinking, time management, goal setting, stress management, and comprehensive fitness relate to the Army profession.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall

AR 1003 - Leadership and Competence

Introduces Cadets to the competencies that are critical for adaptive leadership. Cadets learn the basics of the communication process and the importance of developing the essential skills to effectively communicate in the Army. Students will examine the Army profession in depth.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring

AR 1011 - Basic Leadership Lab I

Practicum in basic military topics such as drill and ceremony, emergency preparedness, survival skills, and military communication.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall

AR 1012 - Basic Leadership Lab II

Practicum in basic military topics such as first aid, teambuilding, orienteering, profession of arms, and ethics in problem solving.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring

AR 2001 - Leadership and Decision Making

Explores the dimensions of creative tactical leadership styles by examining team dynamics and historical leadership theories that form the basis of the Army leadership framework. Aspects of motivation and team building are practiced through planning, executing, and assessing team exercises.

Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall

AR 2002 - Army Doctrine and Team Development

Examines the challenges of leading teams in complex operational environments. The course highlights terrain analysis, patrolling, and operation orders. Cadets develop greater self-awareness as they assess their own leadership styles and practice communication and team building skills.

Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring

AR 2011 - Intermediate Leadership Lab I

Practicum in basic military topics, such as drill and ceremony, emergency preparedness, survival skills, and military communication.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall

AR 2012 - Intermediate Leadership Lab II

Practicum in basic military topics, such as first aid, teambuilding, orienteering, profession of arms, and ethics in problem solving.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring

AR 2068 - Fall Military Physical Conditioning

Develops physical fitness, personal confidence, self-esteem and military skills. Students are exposed to both individual and group physical fitness procedures and techniques. Emphasis is on developing a good fitness program for each individual student. May be used once as a general education co-curricular course.

Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall

AR 2069 - Spring Military Physical Conditioning

Develops physical fitness, personal confidence, self-esteem and military skills. Students are exposed to both individual and group physical fitness procedures and techniques. Emphasis is on developing a good fitness program for each individual student. May be used once as a general education co-curricular course.

Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
AR 3001 - Warfighting Functions
Teaches cadets to plan, coordinate, navigate, motivate, and lead a squad and platoon in the execution of mission during a classroom PE, a leadership lab, or during a leader training course.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall
Co-Requisite(s): AR 3011

AR 3002 - Leadership and Operations
Cadets will study, practice, and apply the fundamentals of Army leadership, officership, Army value and ethics, personal development, and small unit tactics at the platoon level.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Co-Requisite(s): AR 3001

AR 3011 - Advanced Leadership Lab I
Practicum in basic military topics, such as drill and ceremony, emergency preparedness, survival skills, and military communication.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Co-Requisite(s): AR 3001

AR 3012 - Advanced Leadership Lab II
Practicum in basic military topics, such as first aid, teambuilding, orienteering, profession of arms, and ethics in problem solving.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Co-Requisite(s): AR 3002
Pre-Requisite(s): AR 3011

AR 3068 - Military Physical Leadership I
Develops a cadet's leadership abilities to design, implement, and assess a platoon level Army physical training program. Cadets learn the basic leadership of designing and developing a physical conditioning program. May be used once as a general education core-curricular course.
Credits: 1.0; Repeatable to a Max of 12; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): AR 2068 and AR 2069

AR 3069 - Military Physical Leadership II
Develops a cadet's leadership abilities to design, implement, and assess a platoon level Army physical training program. Cadets improve their small group's level of physical conditioning while honing their own leadership skills. May be used once as a general education co-curricular course.
Credits: 1.0; Repeatable to a Max of 12; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): AR 3068

AR 4001 - Mission Command I and the Army Profession
Completes the Cadet to commissioned officer transition. Course stresses mission command and ethics to assist the Cadet in further embracing their role as an Army officer.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Co-Requisite(s): AR 4011
Pre-Requisite(s): AR 3001 and AR 3002

AR 4004 - Mission Command II and the Company Grade Officer
Course will teach critical knowledge, skills, abilities, and competencies that newly commissioned officers will need to succeed in their first unit of assignment. Cadets will examine the Army profession in depth.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Co-Requisite(s): AR 4012
Pre-Requisite(s): AR 3001 and AR 3002

AR 4011 - Battalion Staff Operations I
Develops personal confidence and advanced leadership ability using basic and advanced military skills. Students are given responsibility for planning and controlling the activities of the cadet battalion. Applied creativity, problem solving, decision making, and leadership are the cornerstones of this course.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Co-Requisite(s): AR 4001

AR 4012 - Battalion Staff Operations II
Develops personal confidence and advanced leadership ability using basic and advanced military skills. Students are given responsibility for planning and controlling the activities of the cadet battalion. Applied creativity, problem solving, decision making, and leadership are the cornerstones of this course.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Co-Requisite(s): AR 4004

AR 4100 - Special Topics Leadership Development
Study and discussion of topics in Military Leadership not included in regular undergraduate courses.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: On Demand
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

AR 4200 - Leadership Development
Study and discussion of Military Leadership.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Atmospheric Science

ATM 4640 - Fundamentals of Atmospheric Science
Fundamental principles of atmospheric science, including thermodynamics, aerosol and cloud physics, radiative transfer, and atmospheric dynamics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): (PH 2200 or PH 2260) and (PH 1360 or PH 2300) and MA 3160 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

Biomedical Engineering

BE 2100 - Undergraduate Biomedical Engineering Seminar
An overview of biomedical engineering designed especially for freshmen and sophomores that includes presentations by faculty, members of the community and other guest lecturers. Topics ranging from clinical engineering through basic biomedical engineering research are covered.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Freshman, Sophomore

BE 2110 - Statistical Methods for Biomedical Engineering
Topics include descriptive statistics, sampling methods, probability, statistical inference, causality, elementary design of experiments, statistical process improvement methods including Six-Sigma techniques, clinical trial methodology, and variance analysis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 1135 or MA 1160 or MA 1161

BE 2400 - Cellular and Molecular Biology
General principles and engineering applications of science and biology, including cell biology, physiology, molecular biology, genetics, and biotechnology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CH 1150 and MA 1160 or MA 1161

BE 2700 - Biomedical Signals & Systems
Introduces the origin, processing and interpretation of biological signals. Mathematical modeling techniques used in the analysis of linear systems. Topics include: Fourier, Laplace and z-transforms, signal comparison techniques, power spectrum analysis, 2-dimensional signals, transfer functions, convolution, and simulations. Prerequisite of CH1150, MA2160, and PH2100 with a C or better is required.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)

BE 2800 - Biomedical Engineering Science and Engineering
Introduction to the fundamental materials science principles and different classes of biomaterials (metals, ceramics, polymers and their composites), and some practical professional issues concerning the field of biomaterials.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BE 2400

BE 3300 - Biomechanics I: Statics and Dynamics
Course provides overview of two and three-dimensional force and structure systems and their applicability to human body. Course topics will include principle of equilibrium, concept of free-body diagram, moment of inertia, centroids, Kinematics and equations of motion, principle of energy, work and momentum. Course materials tailored for biological applications, particularly for applications at human organ level.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): BE 2400 and (MA 2321 or MA 2320 or MA 2330) and (MA 3521 or MA 3520 or MA 3530) and BL 2010

BE 3350 - Biomechanics II: Soft Tissue and Bio-Fluid Mechanics
This course teaches basic principles of mechanics that are closely related to human soft tissue and bio-flow, particularly, at the human organ level. Emphases are given to both engineering fundamentals and biomedical applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): BE 3300

BE 3400 - Experimental Techniques in Biomedical Engineering
Introduction to the experimental techniques used in biomedical engineering, technical report writing, and record keeping.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall
Pre-Requisite(s): BE 2800
BE 3550 - Fluid Mechanics
This course introduces fundamental fluid mechanics principles in a unified fashion so that students can describe biological fluid problems in precise mathematical language. Topics include nature of fluids, hydrostatics, differential and integral equations about conservation of mass and momentum, dimensional analysis and various types of flow.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): MA 2320 or MA 2321 and (MA 3520 or MA 3521) and (BE 3350 or MEEM 2150)
Level(s): Graduate

BE 3700 - Biomedical Instrumentation
Introductory theory of measurement and analysis from biological systems. Covers the principles and use of transducers, data recording and analysis systems and signal processing techniques. Example measurements include life science research and clinical measurements such as the vital signs.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Co-Requisite(s): BE 3701
Pre-Requisite(s): EE 3010 and PH 2200(C) and BL 2020(C) and BE 2700

BE 3701 - Biomedical Instrumentation Lab
Laboratory exercises to demonstrate basic instrumentation principles and biomedical measurements. Students will learn how to make non-invasive measurements on themselves and how to evaluate measurement instrumentation. Course will coincide with BE3700 lectures.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Co-Requisite(s): BE 3700

BE 3800 - Biomaterials II: Properties and Biological Interactions
Biomaterials properties including structure-function relationships (materials composition and properties), protein/cell materials interactions, characterization methods, and handling and processing considerations.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BE 2700(C) and BE 2800

BE 4000 - Independent Study
Students undertake an independent study under the guidance of a Biomedical Engineering faculty member. The course of study may either be research or academic and is decided upon between the student and faculty member.
Credits: variable to 6.0; Repeatable to a Max of 12
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor and department required

BE 4115 - Finite Element Modeling
This course teaches both fundamentals of finite element theory and hands-on experience for bio engineers.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): (MA 2320 or MA 2321) and (MA 3520 or MA 3521) and (BE 3350 or MEEM 2150)

BE 4200 - Cellular and Molecular Biology II
Covers, at an advanced level, the general principles and engineering applications of science and biology, including cell biology, physiology, molecular biology, genetics, and biotechnology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BE 2400

BE 4230 - Stem Cell and Tissue Engineering
This course will introduce basic concepts of tissue engineering; scaffold materials and biotechnologies for tissue engineering; basic concept of stem cells; review of stem cell sources and related policies; current progress in stem cell research, and application of stem cells in tissue engineering and regenerative medicine.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BE 2400 and BE 3350 and BE 3800

BE 4250 - Biomedical Optics
Light plays a significant role in modern clinical diagnostics and in the clinical treatment of disease. Examples include non-invasive surgery, optical biopsy, and cancer therapy. This course will focus on the study of how light propagates through biological tissue.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): (MA 2320 or MA 2321 or MA 2330) and (MA 3520 or MA 3521 or MA 3530 or MA 3560) and MA 3160

BE 4300 - Polymere Biomaterials
A specialized study of polymers used in biomedical engineering. Topics include: processing-structure-properties relationships for polymers, polymer fibers and composites, degradation of polymers, and medical applications for polymeric biomaterials.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BE 3800

Undergraduate Course Descriptions Effective Fall 2020, Page 7 of 162
BE 4330 - Biomimetic Materials
This course introduces students to biologically inspired approaches to design functional biomaterials. Topics include the discovery and incorporation of biological designs into novel materials and their application in the biomedical field.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BE 3350 and BE 3800

BE 4335 - Smart Polymers
This course introduces students to smart polymers that change their physical properties in response to various environmental stimuli. Topics include the molecular origin of the stimuli responsiveness of these materials and their applications in the biomedical field.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BE 3350 and BE 3800

BE 4350 - Cell Biomechanics and Mechanical Transduction
This course is designed to introduce the mechanical analysis and characterization of mammalian cells. Mechanotransduction, whereby cells detect loading and respond to the morphology and mechanical properties of the surrounding extracellular matrix, will be emphasized.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BE 2400 and BE 3350 and BE 3800

BE 4410 - Medical Imaging
This course covers the physical nature of the interactions between the waves and matter, especially the biological tissues, principle imaging modalities used in modern medicine and the common techniques used for the processing of the resulting images.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): BE 3700 and BE 3701

BE 4510 - Cardiovascular Engineering
Fundamental cardiovascular pathology and the biomedical engineering approaches being developed and used toward problems resulting in significant cardiovascular deficiency such as myocardial infarction, chronic kidney disease, atherosclerosis, and heart valve disease.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BL 2020 and BE 2400

BE 4520 - Industrial and Clinical Issues
This course covers many of the practical issues that are of concern to biomedical engineers both in academia and industry. It builds a foundation in ethics and applies these concepts to understand the history and future of issues concerning biomedical engineering as a field.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

BE 4670 - Micro & Nano Technologies
This course will introduce students to micro- and nano-technologies and the processes involved in manufacturing. Particular emphasis will be on their use in biomedical applications. Goal is to provide information beneficial in research and development, and the industry.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BE 3700

BE 4700 - Biosensors: Fabrication & Applications
This course introduces the student to the fundamentals of biosensor development and applications. It provides an understanding of biological components, immobilization methods, transducers, and fabrication techniques.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2009-2010 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BE 3700 and BE 3701

BE 4755 - Medical Devices
An introduction to medical devices used for diagnosis, monitoring, and treatment in clinical medicine. Topics covered include product planning, reliability, clinical trial design, regulatory as well as technical aspects of common medical devices.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
BE 4770 - Biomedical Microcontrollers
The focus of this course is to provide biomedical engineering students the necessary skills to develop microcontroller-based devices. Provides basic knowledge on computer programming languages, microcontrollers, digital circuits, and microcontroller development kits. Students will design and fabricate a microcontroller-based device using a microcontroller development kit for a specific biomedical application.
Credits: 3.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following
Level(s): Graduate
Pre-Requisite(s): BE 3700 and BE 3701

BE 4800 - Biomaterials Interfaces
This course introduces the students to the effects of topography and texture on the performance of biomaterials. Special emphasis is placed on tissue engineering scaffolds and microfabrication and nanofabrication techniques. Some of the topics also include self-organization of biomembranes and supramolecular systems, bioactive materials, and the molecular basis for surface recognition and masking.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2010-2011 academic year
Restrictions: May not be enrolled in one of the following
Level(s): Graduate
Pre-Requisite(s): BE 3800

BE 4850 - Tissue Mechanics
This course integrates continuum mechanics, experiments, and computational methods to understand soft tissue mechanics. The first half of the course is dedicated to building continuum mechanics foundation, which will be used to formulate constitutive equations for arteries and the heart in the second half.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2021-2022 academic year
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): BE 3350

BE 4870 - Computer Vision for Microscopic Images
This course teaches how to quantify data out of images, typically from optical microscopes. It covers thresholding, image derivatives, edge-detection, watershed, multi-scale and steerable filters, 3D image processing, feature extraction, PCA, classification, convolutional neural networks, particle tracking, and diffusion analysis.
Credits: 3.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BE 2700

BE 4900 - Biomedical Design Fundamentals
Design considerations and professional practice issues are addressed. Ethics, regulatory affairs, and intellectual property are addressed within the context of the biomedical engineering profession. Modern tools of biomedical design are presented and applied to current problems.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

BE 4901 - Biomedical Design Project I
Team approach is used to resolve a defined problem in biomedical engineering. Projects are selected and undertaken with faculty guidance and sponsor input. Must be senior project ready, as defined by major, substitutes for prerequisites.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biomedical Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): BE 3350 and BE 3700 and BE 3701 and BE 3800 and BE 4900

BE 4910 - Biomedical Design Project II
Continuation of Biomedical Design Project I (BE4901) under faculty guidance. Emphasizes design and testing of prototypes. Requires work project notebooks, oral and written reports, and presentations.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): BE 4900 and BE 4901

BE 4930 - Biomedical Engineering Topics
Biomedical engineering courses will be offered on new or emerging technical subjects depending on student demand and faculty interest and expertise.
Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Level(s): Graduate

Biological Sciences

BL 0600 - Clinical Practicum and Career Preparation Seminar
Presents an overview of hospital-based clinical practicum experiences and outlines pathways to national certification. Also addresses other career options for the clinical laboratory scientist. Credits do not count toward graduation.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science; May not be enrolled in one of the following Class(es): Freshman
BL 1100 - General Biology I: Introduction to Organismal Biology, Ecology, and Evolution
A discussion of the principles of ecology and organismal biology, using the theme of physiological ecology and adaptations. This course will emphasize biodiversity, scientific method, experimental design, and written and oral presentation of results.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

BL 1110 - General Biology I Laboratory: Introduction to Organismal Biology, Ecology, and Evolution
Covers principles of ecology and organismal biology, using the theme of physiological ecology and adaptations. This course will emphasize biodiversity, scientific method, experimental design, and written and oral presentation of results.
Credit: 1.0
Lab: 0
Semesters Offered: BL 1100

BL 1200 - General Biology II: Introduction to Cellular and Molecular Biology
Discussion of the major principles by which life is organized. Topics include scientific methods, biological chemistry, cell structure and organization, multicellular organization, diversity of organisms, energetics and photosynthesis, cellular reproduction genetics, gene structure and expression, and recombinant DNA.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

BL 1210 - General Biology II Laboratory: Introduction to Cellular and Molecular Biology
Topics include scientific methods, biological chemistry, cell structure and organization, multicellular organization, diversity of organisms, energetics and photosynthesis, cellular reproduction genetics, gene structure and expression, and recombinant DNA.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: BL 1200

BL 1400 - Principles of Biology
Basic principles through which biological systems operate. Topics include cell biology, structure and function, energy production, genetics, physiology, diversity, evolution, and ecology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

BL 1410 - Principles of Biology Laboratory
Topics include cell biology, structure and function, energy production, genetics, physiology, diversity, evolution, and ecology.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

BL 1500 - First-Year Experience in Biology
First-year experience course. Introduces the principles of biology, including ecological problems, and current issues in the biological sciences.
Credits: 1.0
Lab: 0
Semesters Offered: Fall

BL 1570 - First-Year Experience in Ecology
Study of a broad array of ecology disciplines, techniques, and ecological problems.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biological Sciences; Must be enrolled in one of the following Class(es): Freshman, Sophomore

BL 1580 - First-Year Experience in Biological Sciences
Introduction to fields and career opportunities in the biological sciences.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biological Sciences, Biochem & Molec Biology-Bio Sc, Bioinformatics; Must be enrolled in one of the following Class(es): Freshman, Sophomore

BL 1590 - First-Year Experience in Health Professions
Introduction to various careers in the health professions. Discusses required course work, entrance exams, and other requirements for entry to the various fields. Guest lecturers include representatives of many health areas.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Freshman, Sophomore

BL 1600 - First-Year Experience in Medical Laboratory Science
Introduction to subdisciplines, the clinical practicum, career opportunities, and current issues in medical laboratory science.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall

BL 1710 - Medical Terminology
Autotutorial course covers the fundamentals of medical terminology, including recognition and use of common prefixes, roots, and suffixes, as well as single-syllable words. Exercises also include spelling and pronunciation.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall

BL 2000 - Biology of Movement and Meditation
Students will explore the science behind the practice of yoga, including poses, meditation, anatomy & physiology. Will read peer-reviewed literature excerpts regarding yoga research. Physical practice, no prior experience necessary. Yoga supplies required.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
BL 2001 - Valuing the Great Lakes
The Great Lakes are used as the subject to examine environmental issues. A combination of reading, lecture, and discussion will be used to study the unique ecology, biology, and history of the Great Lakes.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

BL 2003 - Field Observation and Data Collection
Best practices for observing, collecting, and recording and analyzing ecological and evolutionary biology data in the lab and field.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Restrictions: Must be enrolled in one of the following Major(s): Ecology & Evolutionary Biology, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1580

BL 2010 - Anatomy & Physiology I
Comprehensive introductory course in vertebrate anatomy and physiology with emphasis on the human body. Interrelates structure with function in regard to maintaining homeostasis and normal functioning of the body. Covers the integument, skeletal system, muscles, the nervous system, and special senses.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

BL 2011 - Anatomy & Physiology I Lab
The laboratory to accompany BL2010. Examines embryology, muscle and skeletal anatomy, and neuroanatomy. Explores the physiology of the nervous system, including vision and reflexes and muscle physiology. A student-designed lab project is used to teach experimental design.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Pre-Requisite(s): BL 2010(C)

BL 2015 - Introduction to Neuroscience
Fundamental principles will be introduced including nervous system anatomy, current methods used in neuroscience and how the nervous system generates behavior and cognition. Neural function is studied at the levels of molecules, cells, circuits, and organisms.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1020 or BL 1040 or BL 2010 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 2020 - Anatomy & Physiology II
Continuation of BL2010. Covers the cardiovascular, respiratory, digestive, renal, and reproductive systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 2010

BL 2021 - Anatomy & Physiology II Lab
The laboratory to accompany BL2020. Examines the structure and function of the digestive, respiratory, cardiovascular, and renal systems. A student-designed lab project is used to teach experimental design.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Pre-Requisite(s): BL 2011 and BL 2020

BL 2100 - Principles of Biochemistry
Introductory overview to biochemistry. Topics include the biochemistry of amino acids, proteins, coenzymes, carbohydrates, nucleotides, nucleic acids, lipids, and water, as well as bioenergetics and photosynthesis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Major(s): Biological Sciences, Biochem & Molec Biology-Bio Sc, Bioinformatics
Pre-Requisite(s): BL 1020 or BL 1040 or BE 2400 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410) and CH 1112 or (CH 1150 and CH 1151)

BL 2160 - Botany
Covers structure, function, reproduction, and classification of plants and algae, relating these current ecological, agricultural, or other human issues.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Spring

BL 2170 - Zoology
Biology of animals from first organized multi-cell through Hominids; the origin and evolution of the metazoa phyla, their physiology, development, ecology, behavior, natural history, and systematics.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall

BL 2200 - Genetics
A study of classical and molecular genetics. Topics include one- and two-locus genetics, recombination, gene structure, regulation and function, quantitative and population genetics, and genetic engineering. Covers both prokaryotes and eukaryotes.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 1020 or BL 1040 or BE 2400 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 2210 - Genetics Laboratory
A laboratory to complement BL2200. Covers applications of techniques used in genetics, including Mendelian analysis, tetrad analysis, karyotyping, DNA and protein electrophoresis, DNA and plasmid purification, transformation and restriction mapping, and PCR amplification of DNA.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Pre-Requisite(s): BL 2200(C)
BL 2410 - Basic Medical Laboratory Techniques
Introduces a variety of fundamental diagnostic procedures performed in a typical clinical laboratory.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 2700 - Principles of Bioinformatics
This course discusses the core concepts in bioinformatics and how biology, math, and computer science combine to form the basis of bioinformatics. Students will be exposed to the applications of bioinformatics in analysis of DNA and protein sequences and be introduced to common methods for processing this data.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 2940 - Human Nutrition
Covers basic and applied chemistry and biology of human nutrition. Includes practical information on planning and adopting a healthy diet as well as maintaining acceptable weight. Emphasizes social, global, and environmental issues pertinent to use of the world food supply.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman

BL 3003 - Data Interpretation and Critical Analysis
This class will develop skills for interpreting and critically evaluating data and analyses of data to evaluate hypotheses in ecological and evolutionary biology. Students will practice peer review and analyzing published research articles.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Ecology & Evolutionary Biology, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2003

BL 3006 - Graduate Health Program Application Preparation
Course will assist students with the application process for graduate health professional programs (medical, dental, PA, etc.). Topics covered will include writing about experiences, developing a personal statement, asking for letters of recommendation, and conducting interviews.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

BL 3010 - General Entomology
A study of the form, function, and diversity of insects along with their relationship to humans as pests and disease vectors and their role in the natural world.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1010 or BL 1040 or (BL 1100 and BL 1110) or (BL 1400 and BL 1410)

BL 3012 - Essential Cell Biology
This course will provide an understanding of cell structure and function with emphasis on eukaryotic cells. Topics include macromolecules, membranes, organelles, cytoskeleton, division, differentiation, cell-cell interactions, intracellular trafficking, protein sorting, cell signaling, and motility.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 3020 - Biochemistry I
Structure, biochemical properties, and function of important biomolecules such as proteins and nucleic acids. Introduces enzyme biochemistry (structure, function, catalysis, kinetics, and inhibition).
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): (BL 1020 or BL 1040 or BE 2400) or (BL 1200 and BL 1210) or (BL 1400 and BL 1410) and (CH 2410 or CH 2420)

BL 3044 - Advanced Human Physiology
A course for students interested in health careers or human biology. This course will cover advanced topics in the human circulatory, digestive, endocrine, integumentary, lymphatic, muscular, nervous, renal, reproductive, respiratory, and skeletal systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2003

BL 3080 - Biological Concepts for Engineers
An introduction to biological principles centered on human and ecological concepts for engineers and scientists. Course topics include chemistry for biologists, cell structure and function, genetics and heredity, human anatomy and physiology, ecology and the environment, and plant biology and toxicology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following College(s): College of Engineering
BL 3115 - Neurobiology of Human Disease
The study of human neurological and psychiatric diseases. This course provides an integrated approach to study background information as well as the diagnosis, the treatment, and the biological mechanisms underlying the neurological and psychiatric disease. It provides greater breadth and depth of discussion about the disease and treatment.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2021-2022 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1020 or BL 1040 or BL 2010 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410) and (BL 2015 or PSY 3060)

BL 3190 - Evolution
A study of the patterns and processes of organic evolution. Topics include genetics of populations, mechanisms of deterministic and stochastic genetic change, history of life on earth, biogeography, molecular evolution, units of selection, sexual selection, speciation, and human evolution.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 1010 or BL 1040 or (BL 1100 and BL 1110) or (BL 1400 and BL 1410)

BL 3210 - General Microbiology
Introduction to the general principles and techniques involved in the study of microorganisms, including bacteria, fungi, and viruses. Topics include cell structure and function, growth, metabolism, biodiversity, and interaction. Not open to students with credit in BL3310.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 3220 - Medical Mycology and Virology
Study of clinically important fungi and viruses.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3210

BL 3230 - Medical Bacteriology
Study of pathology, identification, isolation and antimicrobial susceptibility testing of clinically important bacteria.
Credits: 4.0
Lec-Rec-Lab: (2-0-5)
Semesters Offered: Spring
Pre-Requisite(s): BL 3210

BL 3300 - Introduction to Genomics
Introduction to Genomics. Genome organization, mapping and characterization from humans and related organisms. Topics include hierarchical arrangement of genes, genome mapping, molecular markers of physical genome maps, genome sequencing, comparative genomics, analysis of important human genes and their products, and ethical and legal aspects of genomics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2200 or FW 3320

BL 3310 - Environmental Microbiology
General principles of microbiology, focusing on both the use and control of microorganisms. Topics include microbial structure, function, growth, metabolism, and diversity, as well as microbial involvement in water and waste treatment, waterborne diseases, and pollution control. Not open to students with credit in BL3210.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or BL 3080 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 3340 - Principles of Ecology
Study of both accepted and currently debated principles that describe ecological relationships at the organism, population, community, and ecosystem levels.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall
Pre-Requisite(s): BL 1010 or BL 1040 or (BL 1100 and BL 1110) or (BL 1400 and BL 1410)

BL 3611 - Principles and Practice of Phlebotomy
This course covers the collection, processing, and transportation of specimens for laboratory analysis. Emphasis will be placed on hands-on phlebotomy training using proper techniques and precautions.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2410
BL 3640 - General Immunology
Investigates the immune defense system that has evolved to protect vertebrates from invading pathogens and cancer. Covers general principals of innate and acquired immunity, immunodeficiency and autoimmune diseases, as well as transplantation immunology, and the role of apoptosis in lymphocyte maturation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Bioinformatics, Medical Laboratory Science, Pharmaceutical Chemistry, Biochem & Molec Biology-Bio Sc, Biomedical Engineering, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or BL 2020 or BE 2400 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 3780 - Medical Parasitology Laboratory
Stresses the visual identification of common human parasites.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1710 and BL 2410

BL 3782 - Writing Practicum in Biology
Students will develop and improve their skill level in searching for scientific literature, incorporating that into scientific writing, evaluating and incorporating the work of others, and develop critique skills for review of scientific source material and basic statistical methods.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1710 and BL 2410

BL 3820 - Biochemical Laboratory Techniques I
Laboratory techniques basic to biochemistry and molecular biology with emphasis on protein isolation, characterization and kinetics.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Spring
Pre-Requisite(s): BL 3020(C) or CH 4710(C)

BL 3970 - Current Health Issues
Introduction to health issues, such as: infectious diseases, obesity, mental health, healthcare disparities, health insurance, drug addiction, and vaccines. Students will analyze health issues from a diverse cultural, ethical, social, and global perspective.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

BL 3990 - Biological Sciences Teaching Experience
Development of teaching skills through assisting in the instruction of a section of biological sciences laboratory. Students gain experience in leadership, group work, organization skills, laboratory preparation, and laboratory instruction.
Credits: variable to 4.0; Repeatable to a Max of 4
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

BL 3999 - Biological Sciences Field Experience
In this course students will gain intensive field experience in Biological Sciences emphasizing immersion and observation in novel field settings. Students in this course will visit different ecosystems during day and weekend trips that explore aspects of ecology, evolution, community dynamics and human impacts on ecosystems.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required

BL 4000 - Research in Biology
A literature and laboratory research problem that culminates in a written report on the work performed.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

BL 4001 - Honors Research in Biology
A laboratory-based research problem that culminates in a written report and a seminar presentation on the work performed. Open only to biological sciences and clinical laboratory sciences majors accepted into the Honors in Biological Sciences program.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

BL 4020 - Biochemistry II
Dynamic aspects of living systems. Broad exposure to cellular metabolic pathways, intermediary metabolism and its regulation and bioenergetics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): BL 3020

BL 4030 - Molecular Biology
Molecular biology of gene structure, expression and regulation. Also topics covering various molecular techniques and applications of these techniques and biotechnology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410) or (BL 3020 or CH 4710)
BL 4034 - Community Ecology and Evolutionary Dynamics
This is an advanced course that looks at the study of ecology and evolutionary biology at the community level: how populations interact with the abiotic environment and each other to determine patterns of diversity, distribution, and abundance of plants and animals.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2011 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3400 and BL 3190

BL 4035 - Bioimaging
Current concepts in light and electron microscopy and scanning probe techniques. Theory and practice of fluorescence (including confocal and multi-photon), atomic force, scanning and transmission electron, and video microscopy as applied to biological specimens with emphasis on sample preparation. Half semester course.
Credits: 2.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2010-2011 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

BL 4036 - Ecology and Evolution of Interactions Between Plants, Herbivores, and Pollinators
Plants, herbivores, and pollinators have played major roles in influencing each others evolutionary diversification. We will examine the ecology and evolution of plant-herbivore-pollinator interactions in basic and applied contexts. A solid foundation of tools in ecology and evolution will be established and class will include lectures and interactive discussions from readings of primary literature. Students will design, conduct, and analyze independent research projects in the lab.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Summer - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3400 or BL 3190

BL 4038 - Epigenetics
An introduction to the fundamentals of epigenetic control that is not encoded by genomic DNA sequences of an organism. Topics include major regulatory mechanisms including DNA methylation, histone modification, and non-coding RNA (ncRNA) mediated gene regulation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3300 or BL 4030

BL 4042 - Scanning Electron Microscopy of Biological Specimens
Hands-on training in operation of the scanning electron microscope (SEM). Students prepare biological specimens of their choice for observation. Successful completion of course is prerequisite to becoming a certified SEM operator in the ACMAL. Half semester course.
Credits: 2.0
Lec-Rec-Lab: (0-2-6)
Semesters Offered: On Demand - Offered alternate years beginning with the 2010-2011 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Co-Requisite(s): BL 4035

BL 4044 - Human Pathophysiology
Course will cover abnormal function (physiology) and investigate the signs and symptoms of major diseases in humans. Extension of Anatomy & Physiology by working through the systems of the human body. Course will include a clinical focus and case-study approach.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2010 and BL 2020

BL 4052 - Fluorescence and Video Microscopy of Biological Specimens
Hands-on training in fluorescence microscopy and video microscopy. Students prepare biological specimens of their choice for observation. Half semester course.
Credits: 2.0
Lec-Rec-Lab: (0-2-6)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BL 4035

BL 4062 - Transmission Electron Microscopy of Biological Specimens
Hands-on training in operation of the transmission electron microscope (TEM). Students prepare biological specimens of their choice for observation. Successful completion of course is prerequisite to becoming a certified TEM operator in ACMAL. Half semester course.
Credits: 2.0
Lec-Rec-Lab: (0-2-6)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): BL 4035
BL 4070 - Environmental Toxicology
Introduction to the range of anthropogenic pollutants released into the environment. Concepts of bioaccumulation, biomagnification and environmental persistence, modes of toxicity and detoxification, transport and fate in aquatic and terrestrial ecosystems. Toxic equivalent factors and quotients, regulatory guidelines and practices.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or (BL 1200 and BL 1210) or BL 1040 or (BL 1400 and BL 1410) and CH 1150 and CH 1160

BL 4090 - Tropical Island Biology
A survey of island biology, including marine and terrestrial habitats. Topics include formation of carbonate islands, geological history of the Bahamas, island plant communities, intertidal, grass bed, mangrove and coral reef communities. Special course fees. Consult department before enrolling. Completion of BL1020 or BL1040 desirable but not necessary.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Restrictions: Permission of instructor required

BL 4100 - Special Topics in Biological Sciences
A study of recent developments in the biological sciences.
Credits: variable to 10.0; Repeatable to a Max of 10
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

BL 4120 - Environmental Remediation
Toxicology of major environmental pollutants, their dose-response relationships and fundamentals of environmental remediation. Topics include physical, chemical, and biological remediation methods and effect of environmental toxins on biological systems. Laboratory will involve the application of chemical and biological remediation techniques.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall - Offered alternate years beginning with the 2011-2012 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 4140 - Plant Physiology
Physiology and biochemistry of plants. Emphasizes photosynthesis, plant hormones, water and nutrient relations, and light-regulated development.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2005-2006 academic year
Pre-Requisite(s): BL 2160 and CH 2420

BL 4141 - Algae
The Lake Superior watershed has a rich, diverse, algal flora inhabiting numerous acid bogs, peatlands, ponds, lakes, fens, streams, rivers. This course emphasizes field collections and microscopic identification and includes discussions of algal culture techniques, invasives, blooms, limnology, and algal biotech.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Summer - Offered alternate years beginning with the 2021-2022 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): (BL 1010 or BL 1100 and BL 1110) and (BL 1020 or BL 1200 and BL 1210) or BL 1040 or (BL 1400 and BL 1410) or BL 3080

BL 4145 - Plant-Microbe Interactions
Interactions between plants and microorganisms in the environment. Topics include microbial virulence, signaling, gene expression, beneficial interactions and disease resistance in plants. Laboratory will focus on plant biochemical and microbiological methods as they relate to environmental problems.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall - Offered alternate years beginning with the 2012-2013 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2200

BL 4153 - Applied Genome Editing
This course offers hands-on training in genome editing design and implementation. Objectives will include knockout, tagging, and targeted mutation of genes in model organisms or cell lines. The history and ethics of genome editing will be discussed.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): BL 2200 or FW 3230

BL 4200 - Microbial Physiology
Structure and function of microorganisms, with emphasis on mechanisms for responding to changing environmental and nutritional conditions.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): BL 3210 or BL 3310

Undergraduate Course Descriptions Effective Fall 2020, Page 16 of 162
BL 4300 - Applied Genomics
This course is an overview of techniques involved in genomics including hands-on experience in next-generation sequencing (NGS) platforms, and NGS sequence analysis including de novo assembly, gene annotation, and analysis including comparative genomics, pathway mapping, and core and pan genome analysis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): BL 3300

BL 4370 - Advanced Cell Biology
Celebration of the commonalities of life as exhibited in the basic building block of organisms - the cell. Course topics include details of basic genetic mechanisms, cell structure and function, and an examination of cells in their social context.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): BL 2200 and CH 2420

BL 4380 - Cardiopulmonary Physiology
Using a problem-based learning approach, course examines the physiology of the human body. In-class case-study analyses provide in-depth learning about the cardiovascular and pulmonary systems and their relationship with other organ systems. Promotes development of problem-solving skills.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): BL 2020

BL 4410 - Developmental Biology
The course will cover developmental biology topics from gametogenesis over fertilization, embryonic development to postembryonic development, including aging. Developmental genetics and the evolution of development (evo-devo) are an important component of this course.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 2200 and (BL 3012(C) or BL 4370(C))

BL 4421 - Lake Superior Exploration
A field intensive course with significant time spent on a research vessel (R/V Agassiz or other) where students will learn the use of a variety of state-of-the-art techniques to characterize biological communities and measure important physical and biological processes.
Credits: 3.0
Lec-Rec-Lab: (4-0-6)
Semesters Offered: Summer - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

BL 4440 - Fish Biology
Fishes and their habitat, native and exotic fishes of the Great Lakes region, and ocean fishery resources will be examined. Basic topics in Ichthyology and fish ecology, evolution, genetics, reproduction strategies and identification of early life stages, fish community structure, food webs and dynamics. Laboratory exercises on sampling, identification and classification of fishes and basic fish anatomy and discussion of scientific papers relevant to the subject material.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

BL 4447 - Stream Ecology
Field course combining river and stream ecosystem and foodweb study with fishes in lake systems. Students will be exposed to research methods used in lakes for comprehensive abiotic and biotic understanding.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Summer - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1010 or (BL 1100 and BL 1110) or BL 1040 or (BL 1400 and BL 1410) or BL 3400

BL 4450 - Limnology
The study of biological, physical, and chemical processes of freshwater eco systems using a watershed perspective, with emphasis on local lakes.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

BL 4461 - Ecosystem Ecology
Study of processes in aquatic and terrestrial ecosystems, including energy flow, ecosystem production, and nutrient cycling. We will explore these processes through a historical overview of influential research programs and regional to global case studies.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2011-2012 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3400 and CH 1122 or (CH 1160 and CH 1161)
BL 4465 - Biological Oceanography
An overview of ocean environments and marine life. Topics include: trophic level interactions, nutrient cycling, ecology of plankton, invertebrates, fish, mammal and bird resources, and human influences on marine ecosystems. Will cover basic water chemistry and light in oceans.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1010 or (BL 1100 and BL 1110) or BL 1040 or (BL 1400 and BL 1410) or BL 3080

BL 4510 - Senior Capstone Experience
Reading, interpreting, and integrating information from the primary literature of biological sciences. Emphasizes oral and written presentation skills.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Biological Sciences, Biochem & Molec Biology Bio Sc, Bioinformatics; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): BL 4000(C) or BL 4001(C) or BL 4995(C)

BL 4530 - Senior Research Capstone Experience
Reading, interpreting, and integrating information from the primary literature and research project data. Emphasizes oral and written presentations as well as peer review.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Biological Sciences, Biochem & Molec Biology Bio Sc, Bioinformatics; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): BL 4000(C) or BL 4001(C) or BL 4995(C)

BL 4550 - Clinical Chemistry
A study of clinical biochemistry of the human body. Theory and practical applications used in routine analysis of body fluids. Includes the study of electrolyte balance, acid base balance, and the functions of major organs and systems.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Clinical Laboratory Science, Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2020 and BL 3640

BL 4610 - Medical Laboratory Science Medical Practicum I
Practical and didactic training in clinical chemistry, immunopathology, and medical microbiology under the direction of National Accrediting Agency for the Clinical Laboratory Sciences (NAACLS)-approved/accredited hospital internship program personnel.
Credits: 14.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science
Pre-Requisite(s): BL 4630

BL 4611 - Medical Laboratory Science Medical Practicum II
Practical and didactic training in hematology, urinalysis, and immunohematology under the direction of National Accrediting Agency for the Clinical Laboratory Sciences (NAACLS)-approved/accredited hospital internship program personnel.
Credits: 15.0
Lec-Rec-Lab: (15-0-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science
Pre-Requisite(s): BL 4610

BL 4612 - Medical Laboratory Science University Clinical Practicum
Practical and didactic training in Medical Laboratory Science for students who have completed the NAACLS accredited MLS 4+1 degree. Course is under direction of the MLS Practicum Coordinator and conducted in affiliated hospitals. Upon completion, students are eligible to sit for the ASCP Board Registry Exam.
Credits: 10.0
Lec-Rec-Lab: (0-0-10)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required

BL 4630 - Cytotechnology Practicum I
Practical and didactic training in recognition of normal cells and cellular changes, particularly malignant, in the female reproductive tract, respiratory tract, and gastrointestinal tract under the direction of Committee on Accreditation of Allied Health Education Programs (CAAHEP)-approved/accredited hospital internship program personnel. Acceptance by a CAAHEP-approved/accredited cytotechnology hospital internship program required.
Credits: 14.0
Lec-Rec-Lab: (14-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science
Pre-Requisite(s): BL 4630

BL 4631 - Cytotechnology Practicum II
Practical and didactic training in normal cell identification and recognition of cellular changes with emphasis on the diagnosis of cancer in the urinary, excretory, and neurological systems under the direction of Committee on Accreditation of Allied Health Education Programs (CAAHEP)-approved/accredited hospital internship program personnel.
Credits: 14.0
Lec-Rec-Lab: (14-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science
Pre-Requisite(s): BL 4630

BL 4640 - Clinical Immunology & Serology
Integrates basic and clinical immunological principles as well as outlines the diagnosis and evaluation of immune disorders and selected infectious diseases.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2410 and BL 3640
BL 4660 - Current Topics in Medical Laboratory Science
Recent developments in Clinical Laboratory Science.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

BL 4720 - Hematology and Hemostasis
Theory and laboratory applications. Emphasis will be placed on hematopoiesis, normal and disease states affecting blood cells and coagulation processes. The lab will focus on cell morphology and practical testing applications.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BL 4730(C)

BL 4730 - Immunohematology Techniques
Theory and practical applications. Emphasis will be placed on blood antigens and antibodies, compatibility testing techniques, blood component therapy and safety issues.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science, Biological Sciences; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BL 4720(C)

BL 4752 - Cancer Biology
Emphasis on characteristic genetic, molecular, and cellular changes leading to cancer. Topics will include the role of tumor viruses, oncogenes, tumor suppressors, immortalization, apoptosis, and angiogenesis in cancer initiation and/or progression. Consideration of current therapies and future directions for treatment.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 3012 or BL 4370 or BE 2400

BL 4800 - Molecular Diagnostics
This course provides the scientific background behind modern molecular techniques applied in the diagnosis of human diseases. Topics to be covered include nucleic acid structure and function as well as introduction to nucleic acid characterization techniques used in disease diagnosis and genetic disorders.
Credits: 5.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Spring
Pre-Requisite(s): BL 2200

BL 4840 - Molecular Biology Techniques
Laboratory techniques in molecular biology, including methods of recombinant DNA technology for identification, cloning, and characterization of genes.
Credits: 3.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2200 and BL 4030(C)

BL 4980 - Medical Laboratory Science Core Concept Integration and Application
SML Program Capstone Course. Review, and subsequently learn to integrate and apply, clinical core course material. Assignments include collaborative exercises involving development, peer review, and presentation of worksheets, case studies, and instrument evaluations, as well as other interactive learning activities.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Medical Laboratory Science; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3230(C) and BL 4550(C) and BL 4640 and BL 4720 and BL 4730

BL 4995 - Research in Biochemistry
A literature and laboratory research problem in biochemistry that culminates in a written report on the work performed.
Credits: variable to 6.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

BL 4999 - Biological Sciences Internship
Practical and didactic internship experience directly related to student's course of study in biochemistry and molecular biology, bioinformatics, biological sciences, or ecology. Students conduct work at an approved internship site in addition to academic assignments that encourage them to connect their professional and academic experience.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

Business

BUS 1100 - Introduction to Business
Introduction to planning, organizing, decision-making, leadership and control in a business. Business disciplines of accounting, finance, information systems, management, marketing, and operations are introduced, along with discussions of business ethics and social responsibility.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring

BUS 2100 - Business Statistics
Introduction to basic concepts and methods of probability and statistics, including the following topics: collection, description and presentation of data, probability, random variables, sampling, probability distributions, estimation and hypothesis testing, ANOVA, and selected non-parametric techniques.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): MA 1135 or MA 1160 or MA 1161

BUS 2200 - Business Law
Provides an understanding of the legal basis of contracts and their enforcement in the areas of general contracts, contracts of commercial sales and of agency, and commercial paper.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring

Undergraduate Course Descriptions Effective Fall 2020, Page 19 of 162
BUS 2300 - Quantitative Problem Solving
Stresses development of quantitative decision and analysis skills to solve problems with cases, exercises, simulations, and mathematical modeling. Topics include regression analysis, decision analysis, stochastic environments, data sources and errors, utility theory risk preference, linear programming, and simulation analysis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): BUS 2100 or MA 2710 or MA 2720 or MA 3710 or MA 3720

BUS 3900 - Business Internship
A practical approach to business problem solving. Requires a report on work activity upon completion of the internship.
Credits: variable to 4.0; Repeatable to a Max of 4
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following College(s): College of Business

BUS 4900 - Research Projects
Under the general guidance of a faculty member, students read, conduct research, and prepare reports and papers as required. The SBE's Curriculum Committee must approve the subject of the proposed project.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor and department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

BUS 4950 - Business Project
Students work individually or in a team on a project under the guidance of a faculty advisor. The student(s) analyze a problem, develop a project plan, summarize findings, and make recommendations.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

BUS 4990 - Special Topics in Business
Business topics of interest to students and faculty.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

BUS 4991 - Business Development Experience I
Provides students with hands-on entrepreneurial learning experience by placing them in close proximity of real-world entrepreneurs and innovators. Students ascertain commercial viabilities of intellectual property, senior design or enterprise projects, independent new ventures or early stage business incubators.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): BUS 1100 and BUS 2300 and ACC 2000 and ACC 2100 and BUS 2200 and MGT 2000 and FIN 3000 and OSM 3000 and MGT 3000 or MKT 3000

BUS 4992 - Business Development Experience II
Completion and presentation of the business plan and recommendations on the commercial viability of intellectual properties, senior design or enterprise projects, independent new ventures, or early stage incubators.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): BUS 4991

Civil & Environmental Engrg

CEE 1000 - Civil Engineering
An introduction to the civil engineering profession with emphasis on careers open to the civil engineering students. Topics include: scope, specialties, education, professional practice, life-long learning, contemporary issues, ethics and societal impacts related to civil engineering.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall

CEE 1001 - Sustainability and Civil Engineering Practice
Course will focus on characterizing the motivation for and principles of sustainable engineering and provide an introduction to tools used in sustainable design. Course topics follow a logical and linear progression which includes the societal context, scientific motivation, and application of sustainable practices in civil engineering.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Spring

CEE 1501 - Experiences in Environmental Engineering
Provides a series of activities that explore the field of environmental engineering. Through completion of the course, students will gain fundamental experiences with the skills, knowledge, and attitudes needed to solve the complex environmental problems needing solutions from today's environmental engineers.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall

CEE 3101 - Civil Engineering Materials
Covers properties and behavior of typical civil engineering materials, including wood, metals, aggregates, asphalt cement concrete, portland cement concrete, and composites. Laboratory exercises demonstrate selected engineering mechanics principles, including elastic, inelastic, and time-dependent material behavior. Additional topics include testing techniques, materials standards, report writing, and presentation of experimental data.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ENG 2120 or MEEM 2150 or CMG 2120
CEE 3202 - Structural Analysis
Introduction to structural concepts and techniques for analyzing trusses, determinate and indeterminate beams, and frame structures. Apply concepts from statics and mechanics of materials to determine internal forces and deflections of structural members and systems, including loads and load paths.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): (ENG 2120 or MEEM 2150) and (MA 2320(C) or MA 2321(C) or MA 2330(C))

CEE 3331 - Professional Practice
Professional expectations of civil and environmental engineers demonstrated through readings, discussion, and writing. Topics include the consequences of engineering, design issues, legal aspects, ethical considerations, government requirements, management, leadership, and contract issues.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

CEE 3332 - Fundamentals of Construction Engineering
Introduction to concepts required by professionals involved in the construction industry. Includes contracts, bidding, estimating, scheduling, cash flow, safety, labor issues, equipment ownership, and productivity.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

CEE 3401 - Transportation Engineering
Introduction to transportation in the United States, transportation mode characteristics and applications, highway geometrics and design standards, pavement design and management.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

CEE 3490 - Introduction to Rail Transportation
Introduction to topics related to rail transportation and industry. Overview of North American passenger and freight railroads in the past and today, system components (railroad track, rolling stock, and signals/communications), organizations, careers and safety, and technology and sustainability.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

CEE 3501 - Environmental Engineering Fundamentals
Basic principles and calculations for environmental engineering. Covers application of mass balance, energy balance, and physical/chemical/biological principles to water and wastewater treatment, surface water quality, air quality, solid waste management, and groundwater quality.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2160 and CH 1112 or (CH 1150 and CH 1151)

CEE 3502 - Environmental Monitoring and Measurement Analysis
Introduction to environmental data acquisition and interpretation, fundamentals of environmental monitoring, instrumentation, measurement techniques, and statistical analyses. Measurements are conducted in a variety of engineered and natural environments. Probability and statistical analyses are applied to the collected data.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Pre-Requisite(s): MA 2160 and CH 1112 or (CH 1150 and CH 1151)

CEE 3503 - Environmental Engineering
Application of fundamental chemical, biological, and physical principles of environmental engineering to design and operation of systems used for water and wastewater treatment, solid waste management, air pollution control, and analysis of quality of surface water, air, and groundwater.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2160 and CH 1112 or (CH 1150 and CH 1151)

CEE 3620 - Water Resources Engineering
Introduction to hydrologic engineering, including rainfall-runoff modeling and hydrologic frequency analysis. Analysis and design of hydraulic systems such as pipe networks and storm water management systems. Computational, field, and experimental laboratory sessions reinforce lectures and provide hands-on learning opportunities.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): ENG 3200 and (MA 3710(C) or CEE 3502(C) or CEE 3710(C))

CEE 3710 - Uncertainty Analysis in Engineering
Introduction to probability, statistics, and uncertainty analysis with examples from civil engineering (e.g. models of vehicle arrivals, structural reliability, flood distributions). Topics include: discrete probability theory, probability distributions, parameter estimation, confidence intervals, hypothesis tests, linear regression, and model selection.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2160
CEE 3810 - Soil Mechanics for Engineers
Develops the terminology and descriptions common to the field. Studies soil compressibility, fluid flow, response to mechanical compaction, and strength as well as methods of determining geostatic stresses and stress changes due to boundary loadings. An experimental laboratory experience reinforces the lecture material.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall, Spring
Pre-Requisite(s): GE 2000(C) and (MEEM 2150 or ENG 2120) and (ENG 3200 or GE 3850)

CEE 4020 - Computer Applications: Visualizing and Communicating Design Information
Problem-solving using industry standard software, such as Civil3D, is applied to civil and environmental engineering projects such as terrain modeling, earth work calculations, and road alignment. Concepts involving data management, data visualization, and risk analysis are introduced.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CEE 3332 or CEE 3401(C)

CEE 4101 - Bituminous Materials
Applications and properties of asphalt binder, aggregates for bituminous mixtures, and analysis and design of asphalt concrete mixtures. Includes asphalt cement production, rheology, chemistry, and grading, aggregate grading and blending, and mixture design and characterization. Also discusses asphalt mixture production, construction, and recycling.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): CEE 3101

CEE 4201 - Matrix Structural Analysis
Analysis of trusses and frames by the direct stiffness method. Use of a typical commercial computer code is stressed as a tool for complex structures. Introduces three-dimensional structures.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CEE 3202

CEE 4213 - Structural Concrete Design
Introduction to design of reinforced concrete structural components. Analyze and design reinforced concrete beams, columns, and footings. Understand material behavior, limit state criteria, and practical detailing considerations. Application of the ACI 318 to cast-in-place and precast systems.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3202

CEE 4223 - Steel Design I
Behavior and design of structural steel members using both ASD and LRDF approaches. Covers material behavior, external loads, and the design of tension, compression, and flexural members (rolled, built-up, and composite), and simple welded and bolted connections.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Summer
Pre-Requisite(s): CEE 3202

CEE 4233 - Structural Timber Design
Introduction to the use of wood as a structural engineering material. Includes design of beams, columns, nailed and bolted connection, glulam members, including tapered beams, tapered and curved beam, and design of wood shear walls and diaphragms.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3202 or CMG 3250

CEE 4244 - Loads for Civil Structures
The course focuses on the theory and building code requirements for civil structural loadings that are used in design. The loads and load combinations will include dead loads, occupancy live loads, snow loads, wind loads, and seismic loads.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3202

CEE 4333 - Estimating and Planning of Construction Projects
Examination of the principles and techniques of estimating construction costs leading to the development of an estimate and proposal submission. The relationship between the contract specification, drawings, and the estimate will be illustrated.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CEE 3332 or CMG 3265

CEE 4344 - Construction Scheduling
This course will introduce students to the basics of construction scheduling. Topics covered will include: Fundamentals of different scheduling methods such as Critical Path Method and linear scheduling, Resource allocation in schedules, and Schedule monitoring and control methods.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): CMG 3265 or CEE 3332
CEE 4401 - Pavement Design
Analysis, behavior, performance, and structural design of highway pavements. Introduces pavement types and performance concepts, highway traffic and subgrade characterization, materials employed in highway construction, and highway drainage. Presents common methods used for designing pavement structures as well as mechanistic-empirical approaches.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): CEE 3401 and CEE 3101

CEE 4402 - Traffic Engineering
Introduction to traffic engineering, traffic characteristics, data collection techniques, capacity analysis, traffic control devices, intersection control, traffic signal systems, parking, and street operations.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

CEE 4404 - Railroad Engineering
Rail transportation systems require infrastructure, vehicles, motive power and energy, and control systems to move goods and people. This multi-disciplinary course provides students with understanding of these system components and related engineering and technology enabling efficient operation of today's system.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

CEE 4406 - Airport Planning and Design
Introduction to the air transportation system, airport planning studies, demand forecasting, aircraft characteristics, runway requirements, airport layout and design. Also includes environmental impacts, airport capacity and operations, terminal and ground access planning and analysis.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring

CEE 4407 - Transportation Design
Introduction to computer aided geometric design of highways and railways. Covers design principles and use of standards for horizontal and vertical alignments and cross sections, including road intersections, railway turnouts and grade crossings. Students develop engineering drawings and related cost estimates for road/rail project.

Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CEE 3401 and SU 2000

CEE 4410 - Transportation Planning
An introduction to urban transportation planning, planning data collection, transportation planning models, and development and evaluation of transportation plans. Includes extensive use of transportation planning software to evaluate transportation plans in multimodal networks.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

CEE 4501 - Environmental Engineering Chemical Processes
Application of chemistry, conservation principles, and mathematics to the analysis of chemical processes occurring in natural and engineered environments. Topics include acid-base phenomena, the carbonate system, precipitation/dissolution, redox chemistry, diffusion, mass transfer, and applications to engineering design.

Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Pre-Requisite(s): (CEE 3501 or CEE 3503) and CEE 3502 and ENG 3200

CEE 4502 - Wastewater Treatment Principles and Design
Principles of physical, chemical, and biological processes employed in wastewater treatment. Design of selected individual units within wastewater treatment systems.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3501 or CEE 3503

CEE 4503 - Drinking Water Treatment Principles and Design
Provides an overview of the principles and design of municipal water treatment practices. Understand the physical and chemical processes employed in water treatment. Design individual unit processes with a view toward integration into complete treatment systems.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3501 or CEE 3503

CEE 4504 - Air Quality Engineering and Science
Overview of air quality regulation in the U.S. and world, including basic concepts of atmospheric chemistry and transport; fugitive, point, and area emissions; principles and tradeoffs of operation and design of air pollution control systems; and application of air quality models.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3501 or CEE 3503
CEE 4505 - Surface Water Quality Engineering
Develops the scientific basis for water quality management in lakes and rivers. Considers the origin, behavior, and fate of nutrients and toxic substances. Introduces engineered approaches for lake management, including mass balance modeling. Presents techniques for water quality restoration and the legal framework supporting pollution control.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3501 or CEE 3503

CEE 4506 - Sustainable Engineering
Study of sustainability, engineering and design including systems analysis, life cycle analysis, biogeochemical cycles, energy balances, energy conservation and development, models for sustainable engineering, environmental regulations as sustainability instruments, sustainability in the build environment, and industrial ecology and compliance.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3501 or CEE 3503

CEE 4507 - Water Distribution and Wastewater Collection
Application of basic principles in civil and environmental engineering to the analysis and design of water distribution systems, wastewater collection systems, and their appurtenances.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Spring
Pre-Requisite(s): (CEE 3501 or CEE 3503) and CEE 3620

CEE 4509 - Environmental Process & Simulation
Provides a rigorous hands-on introduction to process control, laboratory and pilot-plant experimentation focused on physical, chemical and biological treatment systems used in environmental engineering.
Credits: 2.0
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Spring
Pre-Requisite(s): (CEE 3501 or CEE 3503) and ENG 3200 and (CEE 4502 or CEE 4503(C))

CEE 4510 - Baccalaureate Thesis
Independent baccalaureate research project performed under the supervision of one or more faculty.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

CEE 4511 - Solid and Hazardous Waste Engineering
Characterization, treatment, separation, and disposal of solid and hazardous wastes. Science and engineering for the management of solid and hazardous waste problems. Technologies discussed include incineration, landfilling, vapor extraction, soil washing, and bioremediation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3501 or CEE 3503

CEE 4518 - Aquatic Biogeochemistry
Covers interactions among chemical, biological, and physical processes within aquatic ecosystems as well as role of aquatic ecosystems in global biogeochemistry. Modeling as an integrative tool is stressed.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CEE 4501(C) and CEE 4505(C)

CEE 4528 - Global Biogeochemistry
This course gives an overview of important biogeochemical processes occurring in land, air, and water. An emphasis is put on modeling as an integrating tool.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CEE 4501(C)

CEE 4610 - Water Resources System Modeling & Design
Solve complicated, open-ended real-world water resources problems in natural and built systems by developing and executing models using state of the practice technologies. Includes programming to manage large datasets and validation or calibration and optimization of models for design.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CEE 3620 or CEE 3650

CEE 4620 - River and Floodplain Hydraulics
Analysis of open channel systems, including natural channels, designed channels, flow transitions, non-uniform flow, and unsteady flow.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3620

CEE 4640 - Stormwater Management and Low Impact Development
Design techniques for stormwater collection, conveyance, infiltration, and detention storage systems are discussed, both traditional stormwater management systems and newer approaches based on the philosophy of low impact development (LID) that seek not to alter the natural ecology of a site.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Summer
Pre-Requisite(s): CEE 3620
CEE 4650 - Hydraulic Structures
Application of basic principles fluid mechanics in civil and environmental engineering to the analysis and design of hydraulic structures.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CEE 3620(C)

CEE 4665 - Stream Restoration
Basic mechanics of the transport of sediments in natural systems, including tractive forces and geomorphic functions.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3620

CEE 4760 - Optimization Methods in Civil and Environmental Engineering
Decision analysis and optimization techniques, including linear programming, nonlinear programming, and dynamic programming. Computer-based solutions of design problems in various civil and environmental engineering specialty areas are considered.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MA 2160 and (MA 2320 or MA 2321 or MA 2330)

CEE 4820 - Foundation Engineering
Applies the fundamentals learned in CE3810 to problems in geotechnical engineering. Learn the procedures used to design footings, piled foundations, retaining walls, marine structures, and slopes. Computational laboratory reinforces lectures; students have direct access to the instructor as the design is being developed.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3810

CEE 4830 - Geosynthetics Engineering
Geosynthetic materials are grouped by mechanical characteristics and engineering use. They are widely used in highway, landfill, and embankment design. Develop designs for filters, soil separators, reinforced earth, and impermeable membranes. Also learn when using a geotextile is appropriate.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): CEE 3810

CEE 4850 - Rock Engineering for Civil Engineers
This course focuses on the applied behavior of rock encountered primarily in civil engineering projects. Topics include rock classification, rock durability, rock mass strength classification, use of stereo nets, rock reinforcement, blasting, rock socket application and bearing capacity on rock.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CEE 3810(C)

CEE 4900 - Engineering Design Project I
An engineering design project related to civil and environmental engineering. Not available to students who have taken CE4905. Students must complete both CE4900 and CE4910 to fulfill senior design requirements. Must be senior project ready as defined by major department.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

CEE 4905 - Engineering Design Project
An engineering design project related to civil and environmental engineering. Not available to students who have taken CE4900 or CE4910. (Senior project ready as defined by major substitutes for prerequisites)
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

CEE 4910 - Engineering Design Project II
Continuation of CE4900. Not available to students who have taken CE4905. Students must complete both CE4900 and CE4910 to fulfill senior design requirements. Senior project ready as defined by major substitutes for prerequisites.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CE 4900 or CEE 4900

CEE 4915 - International Engineering Field Experience
An engineering design project that incorporates an international experience. Must be taken in conjunction with CE4916 in order to fulfill senior design requirements. Must be senior project ready as defined by major department.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Senior

CEE 4916 - International Senior Design Field Project
An engineering design project that incorporates an international experience. Must be taken in conjunction with CE4915 in order to fulfill senior design requirements. Senior project ready as defined by major substitutes for prerequisites.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CE 4915 or CEE 4915

CEE 4920 - Civil Engineering Independent Study
Approved research or design project in civil engineering, originating with an individual student or assigned by the instructor.
Credits: variable to 3.0; Repeatable to a Max of 3
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
CHEM 1000 - Introductory Chemistry
Introduces fundamental concepts of chemistry to students who are interested in how chemical processes shape the world. Covers fundamental chemical concepts and integrates applications of chemistry that are relevant to the global community. High school chemistry is not required.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

CHEM 1112 - University Chemistry - Studio Laboratory I
Introduces experimental and theoretical chemical concepts from a hands-on, inquiry-based perspective. Emphasis is placed on experimental methods, reactions and stoichiometry, states of matter, thermochemistry, periodicity and bonding, solutions, and kinetics.
Credits: 5.0
Lec-Rec-Lab: (3-1-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): MA 1031(C) or MA 1032(C)

CHEM 1122 - University Chemistry - Studio Laboratory II
Introduces more complex experimental and theoretical concepts from a hands-on, inquiry-based perspective. Emphasis is on experimental methods, kinetics, equilibria, thermodynamics, electrochemistry, and special topics which may include chemical analysis, organic synthesis, computational methods, and biochemistry.
Credits: 5.0
Lec-Rec-Lab: (3-1-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151)

CHEM 1130 - Professional Development for Chemists I: Orientation
Required for all entering chemistry majors. Intro to department, cover writing, technical software, library resources, reading and writing reports, academic integrity, career services, and other orientation topics. First course in a four-part professional development sequence.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics

CHEM 1150 - University Chemistry I
Introduces the foundations of chemistry, including electronic structure of atoms and molecules, intermolecular forces, states of matter, chemical reactions, organic chemistry, chemical equilibria, kinetics, and acid-base chemistry. Includes laboratory component that emphasizes lecture components.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): CH 1151
Pre-Requisite(s): MA 1031(C) or MA 1032(C) or MA 1120(C) or MA 1160(C) or MA 1161(C) or MA 1135(C) or ALEKS Math Placement >= 56 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 22 or SAT MATH SECTION SCORE-M16 >= 540

CHEM 1151 - University Chemistry Lab I
Laboratory to accompany CH1150.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): CH 1150
Pre-Requisite(s): MA 1031(C) or MA 1032(C) or MA 1120(C) or MA 1160(C) or MA 1161(C) or MA 1135(C) or ALEKS Math Placement >= 56 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 22 or SAT MATH SECTION SCORE-M16 >= 540

CHEM 1152 - University Chemistry - Studio Laboratory II
Introduces more complex experimental and theoretical concepts from a hands-on, inquiry-based perspective. Emphasis is on experimental methods, kinetics, equilibria, thermodynamics, electrochemistry, and special topics which may include chemical analysis, organic synthesis, computational methods, and biochemistry.
Credits: 5.0
Lec-Rec-Lab: (3-1-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151)
CH 1153 - University Chem Recitation I
Problem solving session to support University Chemistry I - CH1150.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CH 1150

CH 1160 - University Chemistry II
A continuation of CH 1150. Introduces more complex concepts in chemistry, including kinetics, chemical equilibria, acid-base equilibria, thermodynamics, electrochemistry, and chemical analysis. Additional topics may include chemistry of the metals and non-metals, biochemical systems, and nuclear chemistry. Includes laboratory component that emphasizes lecture concepts.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): CH 1161
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151)

CH 1161 - University Chemistry Laboratory II
Laboratory to accompany CH1160.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): CH 1160
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151)

CH 1163 - Problem Solving in University Chemistry II - CH1160
Problem solving session to support University Chemistry II - CH1160.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): CH 1160
Pre-Requisite(s): CH 1150 and CH 1151

CH 2130 - Professional Development for Chemists 2: Career Planning
Continuation from CH1130 and provides a more in-depth review of topics related to career planning, such as resume writing, interviewing, selecting research topics, research integrity, reading and writing reports, applying for scholarships and grants, and oral communication skills.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): CH 1130

CH 2212 - Quantitative Analysis
Measurements and calculations relevant to volumetric and gravimetric analysis as well as electrochemistry and separations. Error analysis and statistical treatment of data. In the laboratory, introduces classical and contemporary techniques that require high quality measurements.
Credits: 5.0
Lec-Rec-Lab: (3-0-6)
Semesters Offered: Spring
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

CH 2410 - Organic Chemistry I
A study of the chemistry of carbon compounds. Review of hybrid orbitals, covalent bonding, and resonance. Introduction to nomenclature, stereochemistry, mass spectrometry and infrared spectroscopy, functional group chemistry based on reaction mechanisms, and multi-step synthesis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

CH 2411 - Organic Chemistry Lab I
Laboratory to accompany CH2410.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Summer
Pre-Requisite(s): (CH 2410(C) or CH 2430(C)) and CH 1122 or (CH 1160 and CH 1161)

CH 2420 - Organic Chemistry II
Covers more functional group chemistry based on reaction mechanisms; more involved multi-step synthesis; introduction to nuclear magnetic resonance spectroscopy; introduction to carbohydrates, amino acids, proteins, nucleic acids; and topics of specialized interest.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CH 2410

CH 2421 - Organic Chemistry Lab II
Laboratory to accompany CH2420.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CH 2411 and (CH 2420(C) or CH 2440(C))

CH 2430 - Mechanistic Organic Chemistry
This course is an introduction to organic chemistry focusing on providing the understanding of chemical reactivity of various types of organic molecules through a mechanistic perspective. The emphasis is given to mastering substitution, elimination, and addition mechanisms and their relevance to various kinds of organic compounds.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Co-Requisite(s): CH 2411
Pre-Requisite(s): CH 1160 and CH 1161

Undergraduate Course Descriptions Effective Fall 2020, Page 27 of 162
CH 2440 - Synthetic Organic Chemistry
The course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, and methods used for the synthesis of complex organic compounds with examples of biological and pharmacological applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CH 2430

CH 2510 - Introduction to Computational Chemistry and Chemical Informatics
This course will provide an introduction to the concepts of computational chemistry and chemical informatics, and develop basic practical skills for working with computational chemistry software and databases.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): CH 1160

CH 2990 - Exploring Undergraduate Research in Chemistry
An elective course for students who want to pursue chemistry research early in their academic career or may be uncertain of their research interests. One credit translates to three hours of commitment per week. Projects may require an additional semester to complete.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1150(C) and CH 1151(C)

CH 3020 - Laboratory Teaching Internship
Requires teaching a section of undergraduate laboratory under professional supervision. Emphasizes communicating good laboratory practice and technique to beginning students as well as maintaining a safe working environment. Includes safety training and teaching orientation.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1150 and MA 2160 and PH 2200(C)

CH 3130 - Professional Development for Chemists 3: Communication
Continuation from CH2130 and provides a more in-depth review of topics related to refining written and oral communication skills, including advanced library resources, reading and writing reports, and seminar attendance.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): CH 2130

CH 3505 - Mathematics for Applications in Physical Chemistry
Emphasis on practical use of mathematical concepts necessary for Physical Chemistry. Topics include: vectors, single- and multivariable functions, integrals, power series, ordinary differential equations.
Credits: 1.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CH 1150 and MA 2160

CH 3510 - Physical Chemistry I - Thermodynamics, Equilibrium and Kinetics
Ideal and non-ideal gas laws, the kinetic theory of gases, equations of state, liquid-vapor equilibrium, the laws of thermodynamics, solid-liquid-vapor equilibria, the chemical potential, chemical equilibrium, electrochemistry, the phase rule, phase diagrams, and chemical kinetics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161) and MA 2160 and PH 2200(C)

CH 3511 - Physical Chemistry Lab I
Laboratory to supplement CH3510.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CH 3510(C)

CH 3520 - Physical Chemistry II - Molecular Structure
Continuation of CH3510. Covers solid-state chemistry, surface chemistry, atomic and molecular spectroscopy and structure, chemical applications of group theory, valence, the periodic table, elements of quantum mechanics, and statistical thermodynamics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161) and MA 3160 and PH 2200(C)

CH 3521 - Physical Chemistry Lab II
Laboratory to supplement CH3520.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): CH 3520(C)

CH 3540 - Biophysical Chemistry
Examines fundamental physical principles underlying complex biological systems in order to understand the interactions and behaviors found in biological, biochemical, and physical systems. Topics include macromolecules in aqueous environments, spectroscopy and structure determination, kinetics, membranes, and transport phenomena.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410) and CH 1122 or (CH 1160 and CH 1161) and MA 2160 and PH 2200
CH 3541 - Biophysical Chemistry Laboratory
Examines the physical methods employed in the study of biological systems, including structure determination, spectroscopy, microscopy, imaging, and modeling. The core objective is application of the fundamentals developed in the Biophysical Chemistry course to systems of biological relevance.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): CH 3540(C)

CH 4110 - Pharmaceutical Chemistry: Mechanism of Drug Action
Focuses on structural and mechanistic approaches to pharmaceuticals and drug action. General principles of absorption, distribution, action, metabolism and toxicity of drugs will be presented followed by action of drug classes such as antibiotics, cardiovascular, and anti-inflammatory drugs.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): CH 2410 or CH 2430

CH 4120 - Pharmaceutical Chemistry: Drug Design
Focuses on the important concepts in the design and synthesis of drugs. Rational basis for drug design including synthetic, computational and biochemical concepts will be discussed. Topics include structure-activity relationships, synthesis and reaction mechanism, and case studies of drugs.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): CH 2420 or CH 2440

CH 4130 - Professional Development for Chemists 4:
Senior Seminar
Continuation from CH3130 with emphasis on advanced topics of written and oral communication skills.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Biochem & Molec Biology-Chem, Pharmaceutical Chemistry, Chemistry, Cheminformatics
Pre-Requisite(s): CH 3130

CH 4140 - Introduction to Pharmaceutical Analysis
This course will present a systematic introduction to chemical analysis of pharmaceutical raw materials, finished pharmaceutical products, and of drugs in biological fluids, which are carried out in pharmaceutical laboratories worldwide.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): CH 2410 or CH 2430

CH 4210 - Instrumental Analysis
The lecture portion of CH4212; not open to undergraduate chemistry majors.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 2212 and CH 3510(C) and CH 3511(C)

CH 4212 - Instrumental Analysis
Chemical instrumentation applied to organic and inorganic analysis with emphasis on chromatography and spectroscopy.
Credits: 5.0
Lec-Rec-Lab: (3-0-6)
Semesters Offered: Fall
Pre-Requisite(s): CH 2212 and CH 3510(C) and CH 3511(C)

CH 4222 - Bioanalytical Chemistry
An overview of modern analytical and instrumental techniques with emphasis on approaches relevant to measurements in biochemistry. Theory and methods of chromatographic separation methods, biomolecule quantification and electrophoretic characterization. Error analysis and statistical treatment of data also covered.
Credits: 5.0
Lec-Rec-Lab: (3-0-6)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Major(s): Cheminformatics, Chemistry; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161) and CH 3510(C) and CH 3511(C)

CH 4240 - Advanced Mass Spectrometry
Advanced instrumentation and methods are the focus of this course. Design of various mass analyzers and their advantages and limitations will be reviewed. Advanced identification methods such as tandem mass spectrometric analysis and exact mass analysis will be discussed.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 4212 or CH 4222

CH 4241 - Advanced Mass Spectrometry Laboratory
Students will learn how to perform mass spectrometry (MS) experiments to identify and quantify molecules. The experiments will include the following method approaches: electrospray ionization (ESI), matrix associated laser desorption (MALDI) and tandem MA analysis (MS/MS).
Credits: 1.0
Lec-Rec-Lab: (0-0-1)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Co-Requisite(s): CH 4240
Pre-Requisite(s): CH 4212 or CH 4222
CH 4310 - Inorganic Chemistry I
Descriptive chemistry of the main group elements with some emphasis on the structure and theory of bonding with transition metal complexes. Examines bonding, physical and chemical properties, structure, and reactions of the chemical elements and their compounds.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 3520

CH 4311 - Inorganic Chemistry Laboratory
Laboratory preparations (selected inorganic and organometallic compounds) that illustrate appropriate experimental techniques for synthesis of molecules; measurement of chemical properties, structures, and phenomena; hands-on experience with modern instrumentation; computational data analysis (by means of single crystal X-ray Diffraction experiments).
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): CH 4310(C)

CH 4320 - Inorganic Chemistry II
Continuation of CH4310. Descriptive chemistry of the transition group elements. Transition metal compounds; aspects of bonding, spectra, and reactivity; complexes of p-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 4310

CH 4412 - Spectroscopy of Organic Chemistry
Emphasizes use of spectral data interpretation to determine structures of organic compounds. Discusses proton and carbon nuclear magnetic resonance (including two-dimensional techniques, COSY, HETCOR, etc.), mass spectrometry, infrared spectrophotometry.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): CH 2420 or CH 2440

CH 4430 - Intermediate Organic Chemistry
Develop the chemical intuition necessary for advanced work in organic chemistry. Emphasizes reaction mechanisms and why reactions occur. Topics include heteraromatic chemistry, curved-arrow formalism and multi-step reactions, molecular orbitals and symmetry-controlled reactions, Hammett equation and structure-activity relationships, substitution reactions and carbonyl reactions.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 2420 or CH 2440

CH 4515 - Atmospheric Chemistry
Study of the photochemical processes governing the composition of the troposphere and stratosphere, with application to air pollution and climate change. Covers radical chain reaction cycles, heterogeneous chemistry, atmospheric radiative transfer, and measurement techniques for atmospheric gases.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CH 3510 or CH 3520(C) or ENVE 4501 or ENVE 4504 or CEE 4501 or CEE 4504

CH 4516 - Aerosol and Cloud Chemistry
This course is focused on the chemistry of atmospheric aerosols and cloud processes. Students will learn about methods for chemical characterization, the chemical composition of aerosol and the chemical reactions pertinent to secondary aerosol and cloud composition.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): CH 3510 or CH 3520 or ENVE 4501 or ENVE 4504

CH 4535 - Physical Chemistry III - Molecular Driving Forces from Fundamentals to Applications
Advance course design to bridge concepts in thermodynamics, kinetics, and quantum chemistry through the application of statistical mechanics to understand the molecular driving forces acting in chemical/physical/material/biological systems at both microscopic, and macroscopic level.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): CH 3510 and CH 3520

CH 4560 - Computational Chemistry
Focuses on the theory and method of modern computational techniques applied to the study of molecular properties and reactivity through lecture and computer projects. Covers classical mechanical as well as quantum mechanical approaches.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2010-2011 academic year
Pre-Requisite(s): CH 3520

CH 4610 - Introduction to Polymer Science
Introductory study of the properties of polymers. Includes structure and characterization of polymers in the solid state, in solution, and as melts. Topics include viscoelasticity, rubbery elasticity, rheology and polymer processing. Applications discussed include coatings, adhesives, and composites.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

Undergraduate Course Descriptions Effective Fall 2020, Page 30 of 162
CH 4620 - Polymer Chemistry
Study of polymer chemistry dealing with the mechanisms of polymerization and copolymerization. Study of the chemistry of polymers, including polymer modification and degradation. Topics include methods for measuring and predicting the path of degradation and stabilization.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CH 2420 or CH 2440

CH 4631 - Polymer Science Laboratory
Students undertake experiments covering aspects of polymer characterization, processing, and recycling. Also included are experiments in applications such as coatings, adhesives, and composites.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2008-2009 academic year
Pre-Requisite(s): CH 4610(C) or CM 4610(C) or BE 4300(C) or MY 4600(C) or MSE 4110(C)

CH 4640 - Synthesis of Nanoparticles
This hands-on course teaches methods of preparing different types of nanoparticles, and controlling nanoparticle size, structure, and functionalization. Students will analyze selected papers from professional literature to see emerging trends in nanoparticle design and use.
Credits: 3.0
Lec-Rec-Lab: (0-1-4)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): (CH 2410 or CH 2430) and CH 2411

CH 4710 - Biomolecular Chemistry I
Examines chemical concepts underlying biomolecules and bioprocesses and interconnections between biology and chemistry. Bioorganic mechanisms and biophysical concepts in biochemistry are emphasized. Topics include biomolecules including proteins and nucleic acids and bioprocesses including catalysis and gene action.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 2420 or CH 2440

CH 4720 - Biomolecular Chemistry II
Focuses on structural and chemical logic of bioprocesses with emphasis on bioorganic mechanisms and the interconnections between biology and chemistry. Topics include metabolic pathways, membrane biophysics, ion-channels, cell communication, transcriptional control and molecular biology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 3020 or CH 4710

CH 4721 - Research Methods in Biomolecular Chemistry
Lab course will emphasize the research process in biomolecular chemistry by actively involving students in question formulation, experimental design, data gathering, critical analysis, team work, and communication in an inquiry-based format. Students will employ methods used in modern biochemistry/molecular biology in a series of open-ended experiments that will lead to a student-developed original research project.
Credits: 3.0
Lec-Rec-Lab: (0-0-7)
Semesters Offered: Spring
Pre-Requisite(s): (CH 4710 and CH 4222) or (CH 4212 and CH 4720(C))

CH 4730 - Confocal Laser Scanning Microscopy: Foundations, Applications, and Advances
Principles of fluorescence microscopy, confocal microscope design, practical aspects of confocal microscopy, live cell imaging, high speed imaging, fluorescent stains, quantitative fluorescence, immunofluorescence, fluorescent proteins, biosensors. Confocal applications in biology and health related sciences will be covered.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CH 4800 - Current Topics in Undergraduate Chemistry
Covers chemistry topics not included in regular courses. Topics may include designing organic syntheses, heterogeneous catalysis, homogeneous catalysis, solid-state chemistry, and heterocyclic chemistry.
Credits: variable to 3.0; Repeatable to a Max of 12
Semesters Offered: On Demand

CH 4810 - Design and Operation of a High School Chemistry Lab
Hands-on experience in the operation of a high school chemistry laboratory. Includes the design and preparation of experiments and demonstrations, setting up and maintaining a chemical storeroom, chemical waste disposal, and safety issues.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Major(s): Secondary Education
Pre-Requisite(s): CH 2420 and CH 2411 and CH 3020

CH 4990 - Undergraduate Research in Chemistry
An undergraduate research experience in which students select a literature and laboratory research problem and write a report on the work performed. The student typically signs up for 1 to 3 credits per semester; most problems require more than one semester to complete. Requires GPA of 2.50 or better.
Credits: variable to 6.0; Repeatable to a Max of 12
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required
Undergraduate research experience in Biochemistry where students work on independent research projects under the direction of biochemistry faculty performing research in areas of biophysics, biochemistry, and molecular biology. Instructor permission required.

Credits: variable to 6.0; Repeatable to a Max of 12
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

Chemical Engineering

CM 1000 - Introduction to Chemical Engineering
Introduces chemical engineering as a profession using the theme of industrial chemical production. Covered concepts include process flow diagrams, unit operations, green engineering, and career opportunities. Guest speakers from industry will provide their perspectives on working as a chemical engineer.

Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall

CM 2110 - Fund of Chem Engg 1
Application of chemical engineering fundamentals to the design and analysis of chemical processes. Mass balances, energy balances, and fundamentals concepts are applied. Introduces use of Process Flowsheet Simulation Software.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151)

CM 2120 - Fund of Chem Engg 2
Application of mass and energy balances to common chemical engineering operations. Mass balances, energy balances, and fundamental concepts are applied to flow in piping systems, pumps, compressors and stagewise separations (distillation, absorption/desorption, and extraction). Advanced use of Process Flowsheet Simulation software.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CM 2110

CM 2200 - Intro Minerals and Materials
Fundamentals of minerals processing, raw materials production, and extractive metallurgy, including primary metals production.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

CM 3110 - Transport/Unit Operations 1
Develop an understanding of the processes of momentum transfer (fluid mechanics) and heat transfer. Presents the basic equations of microscopic momentum and heat transfer, along with macroscopic transport equations that can be used in engineering analysis.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CM 2120 and (MA 3520 or MA 3521 or MA 3530 or MA 3560) and MA 3160 and PH 2100

CM 3120 - Transport/Unit Operations 2
Mass transfer fundamentals applied to unit operations. Topics include Fick's Law, continuity equation with reaction and mass transfer coefficients. Transient heat transfer and numerical solution are covered. Applications include absorption, distillation, extraction, adsorption, and membrane separations.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CM 3110 and CM 2120 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

CM 3215 - Transport Laboratory
This course will be an introduction to basic laboratory methods and instrumentation used in the measurement of fluid flow, heat transfer, and mass transfer. Topics to be covered include methods of statistical data analysis, experimental design, principles of measurement and instrumentation, and technical communication.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CM 2120 and CM 3110(C) and (MA 3520 or MA 3521 or MA 3530 or MA 3560) and UN 1015

CM 3230 - Thermodynamics for Chemical Engineers
First and second law applied to closed and open systems. Topics include energy conversion, power cycles, entropy and enthalpy calculations on engineering systems; property estimation for non-ideal vapors, liquids, and other substances, non-ideal multicomponent equilibria, chemical reaction equilibria.

Credits: 4.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CH 3510 and MA 3160 and (MA 3520(C) or MA 3521(C) or MA 3530(C) or MA 3560(C))

CM 3310 - Process Control
Covers methods of analyzing the transient behavior of chemical processing systems. Develops methods of analyzing systems and system components along with the special mathematical techniques needed. These concepts are then applied to illustrate mathematical modeling of large-scale chemical processing systems.

Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): (MA 3520 or MA 3521 or MA 3530 or MA 3560) and PH 2200 and CM 2110 and CM 2120

CM 3450 - Computer-Aided Problem Solving in Chemical Engineering
The use of modern software packages in chemical engineering. Packages include spreadsheet, symbolic manipulator, chemical process calculator, statistical and modeling software. Course develops knowledge and skills in using computer tools that will complement chemical engineering courses and practice.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall - Offered alternate years beginning with the 2008-2009 academic year
Pre-Requisite(s): CM 2110(C) and MA 2160

Undergraduate Course Descriptions Effective Fall 2020, Page 32 of 162
CM 3510 - Chemical Reaction Engineering
A study of chemical reaction engineering including design and analysis of chemical reactors, the fundamentals of chemical kinetics, and analysis of reaction rate data.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CM 2110 and CM 3110 and CM 3230(C) and (MA 3520 or MA 3521 or MA 3530 or MA 3560) and CH 2410

CM 3825 - Sampling, Statistics, and Instrumentation
Solids sampling theory, practice, and instrumentation for process streams. Statistics/probability as they apply to representative samples from bulk lots. Minimization of errors, proper design of sample collection and size reduction apparatus, and statistical design and analysis will be covered.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year

CM 3830 - Mineral Processing and Extraction Laboratory
Laboratory course covering the major mineral processing and extractive metallurgy operations, such as crushing, grinding, sampling, particulate separation processes, dewatering, and hydrometallurgical processing.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CM 2200(C) or CM 2110(C)

CM 3835 - Chemical Plant Operations Lab
Provides a rigorous introduction to experiments focused in the unit operations of fluid mechanics, heat transfer, mass transfer, and chemical reaction engineering.
Credits: 3.0
Lec-Rec-Lab: (0-1-6)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Level(s): Graduate

CM 3979 - Alternative Energy Technologies and Processes
This course covers a wide range of alternative energy technologies with an emphasis on chemical and biochemical processing. Technologies covered may include biofuels, solar power, fuel cells, etc.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151) and (MA 1160 or MA 1161)

CM 4000 - Chemical Engineering Research
An undergraduate research experience on chemical engineering topics. Students work directly with faculty members on a research project. A report (written, poster, or oral) may be required.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CM 4110 - Unit Operations Laboratory
Provides a rigorous introduction to experiments focused in the unit operations of fluid mechanics, heat transfer, mass transfer, and chemical reaction engineering.
Credits: 3.0
Lec-Rec-Lab: (0-1-6)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Level(s): Graduate; Must be enrolled in one of the following Major(s): Chemical Engineering
Pre-Requisite(s): CM 3120 and CM 3215 and CM 3230 and CM 3510 and CM 4310(C)

CM 4200 - Undergraduate Research in Mineral Processing Engineering
An undergraduate research experience on mineral processing engineering topics. Students work directly with faculty members on a research project. A report (written, poster, or oral) may be required.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CM 4040 - Undergraduate Research in Biological Engineering
An undergraduate research experience on biological engineering topics, excluding biofuels. Students work directly with faculty members on a research project. A report (written, poster, or oral) may be required.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CM 4060 - Undergraduate Research in Polymer Engineering
An undergraduate research experience on polymer engineering topics. Students work directly with faculty members on a research project. A report (written, poster, or oral) may be required.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CM 4080 - Undergraduate Research in BioFuels Engineering
An undergraduate research experience on bio-fuels engineering topics. Students work directly with faculty members on a research project. A report (written, poster, or oral) may be required.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Level(s): Graduate

CM 4120 - Chemical Plant Operations Lab
A capstone laboratory course focused on chemical manufacturing processes using the department's pilot plants. Safety, process control, teamwork, and communication skills are stressed.
Credits: 3.0
Lec-Rec-Lab: (0-1-6)
Semesters Offered: Spring, Summer
Restrictions: May not be enrolled in one of the following Level(s): Graduate; Must be enrolled in one of the following Major(s): Chemical Engineering
Pre-Requisite(s): CM 3215 and CM 3310 and CM 4110
CM 4125 - Bioprocess Engineering Laboratory
An integrated biological process laboratory experience, including fermentation with downstream bioseparation, for the production of a purified product of potential commercial interest. Features process measurement-analysis-improvement, metabolic pathway analysis, quality assurance, and safety.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2005-2006 academic year
Pre-Requisite(s): CM 4710(C) or BL 3210 or BL 3310

CM 4310 - Chemical Process Safety/Env
A study of the technical fundamentals of chemical process safety and designing for the environment. Includes toxicology, industrial hygiene, source models, fires and explosions, relief systems, hazard identification, risk assessment, environmental fate and transport, hazardous waste generation, pollution prevention, and regulatory requirements.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): CM 3120 and CM 3230

CM 4505 - Particle Technology
Fundamentals of particle processing, characterization, and separation. Topics include fine particle synthesis, mineral processing, automobile recycling, contaminated soils, recyclable materials such as batteries and tires, and sludges. Covers zeta potential, particulate surface chemistry, flocculation, and dispersion.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year

CM 4510 - Interfacial Engineering
Examines the physics and chemistry of interfaces, and the relevance of these principles in mineral processing, petroleum, water treatment, and other engineering applications. May include liquid surfaces, electric double layer, surface forces, contact angle phenomena, surfactants, adsorption, surface energy, emulsions.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): CH 3510

CM 4610 - Introduction to Polymer Science
Introductory study of the properties of polymers. Includes structure and characterization of polymers in the solid state, in solution, and as melts. Topics include viscoelasticity, rubbery elasticity, rheology and polymer processing. Applications discussed include coatings, adhesives, and composites.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

CM 4620 - Polymer Chemistry
Study of polymer chemistry dealing with the mechanisms of polymerization and copolymerization. Study of the chemistry of polymers, including polymer modification and degradation. Topics include methods of measuring and predicting the path of degradation and stabilization.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CH 2420

CM 4631 - Polymer Science Laboratory
Students undertake experiments covering aspects of polymer characterization, processing, and recycling. Also included are experiments in applications such as coatings, adhesives, and composites.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2008-2009 academic year
Pre-Requisite(s): CM 4610(C) or CH 4610(C) or CM 4650(C) or MY 4600(C) or MY 4600(C) or MSE 4110(C)

CM 4650 - Polymer Rheology
A systematic development of the principles and applications of the science of rheology. Reviews vector and tensor mathematics and Newtonian fluid dynamics. Develops the physical and mathematical nature of stress and deformations in materials. Covers the use of theory and application of rheological equations of state.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): (CM 3110 or MEEM 3210 or ENG 3200 or MY 3110 or MEE 3110 or CEE 3600 or BE 3550) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

CM 4655 - Polymer Rheology Laboratory
Basic techniques for acquisition of shear rheological data in torsional shear (cone-and-plate or parallel-plate) and capillary shear will be taught. Also covered will be approximate methods for obtaining elongational viscosity.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CM 4610(C) or CH 4610(C) or CM 4650(C) or BE 4300(C) or MY 4600(C) or MY 4600(C) or MSE 4110(C)

CM 4710 - Biochemical Processes
Introduction to fundamental and applied industrial biochemical processing. Topics may include basic cell and genetic design, enzymes, metabolism, bioreactor analysis and design, bioseparations and industrial applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2100 or CH 2410 or CM 2120 or BL 3020
CM 4740 - Hydrometallurgy/Pyrometallurgy
Extraction and refining of metals and industrial chemicals from natural and recycled materials. Includes solution-chemistry processes (hydrometallurgy) and thermochemical processes (pyrometallurgy).
Credits: 4.0
Lec-Rec-Lab: (3-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

CM 4780 - Biomanufacturing and Biosafety
This course will give students additional tools to perform as an engineer in a biomanufacturing facility. Focus is on mammalian cell culture derived products. Federal laws and compliance of biosafety in manufacturing facilities. Process design software will be introduced.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BL 2100 or CH 4710 or CM 4040 or CM 4080 or CM 4710 or (CM 3110(C) and BL 1040) or (CM 3110(C) and BL 1020)

CM 4855 - CM Process Analysis & Design I
Capstone technical and economic evaluations of processes and unit operations. Application of cost estimation, energy efficiency, and economic evaluation techniques. Teams analyze an existing facility, identify improvement opportunities, demonstrate the economic consequences, and recommend a course of action.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Chemical Engineering
Pre-Requisite(s): CM 3120 and CM 3215 and CM 3230 and CM 3510 and CH 2410

CM 4860 - CM Process Analysis & Design 2
Process and project design principles applied to realistic problems, including project evaluation and management. Problems include safety, environmental, and operability constraints. Emphasizes the profit motive in industry and the role of the chemical engineer.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Chemical Engineering
Pre-Requisite(s): CM 4855

CM 4861 - CM Design Laboratory 2
Individual/team projects to optimize designs for new ventures with realistic constraints. Requires process synthesis, market research, economic evaluation, and risk analysis techniques. Develops skills in problem solving, critical thinking, and communication. May include the AIChE National Student Design problem.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Chemical Engineering
Pre-Requisite(s): CM 4860(C)

CM 4900 - Interdisciplinary Design 1
Focuses on an interdisciplinary chemical engineering design project. (Senior project ready as defined by major substitutes for prerequisites)
Credits: variable to 3.0
Semesters Offered: Fall
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

CM 4910 - Interdisciplinary Design 2
Focuses on an interdisciplinary chemical engineering design project. (Senior project ready as defined by major substitutes for prerequisites)
Credits: variable to 3.0
Semesters Offered: Spring
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

CM 4990 - Special Topics in CM
Covers chemical engineering topics not included in regular courses, which may include biochemical engineering, design of biochemical reactions, composite materials, and numerical analysis of transport processes.
Credits: variable to 3.0; Repeatable to a Max of 12
Semesters Offered: On Demand
Restrictions: Permission of instructor required

Construction Management

CMG 1000 - Introduction to Construction Management
Introduction to the construction management profession, and current issues and trends in residential and commercial construction industries. Focuses on how the construction industry works, along with enhancing verbal, CAD, and print reading skills.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Freshman, Sophomore
CMG 1140 - Basic Construction Materials
Covers properties and behavior of basic construction materials, including wood, metals, aggregates, asphalt, concrete, and composites. Laboratory exercises include field testing techniques, materials standards, report writing, and presentation of data.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring

CMG 1200 - Introduction to Building Information Modeling
An introduction to Building Information Modeling (BIM) with an emphasis on the Autodesk Revit software.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring

CMG 2110 - Building Utility Systems
Overview of the mechanical, electrical, and plumbing components of building systems. HVAC systems and controls, water supply and drainage, electrical power distribution and lighting, fire detection, alarm, and communications. Includes construction drawing interpretation and design projects.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall
Pre-Requisite(s): PH 1240(C)

CMG 2120 - Statics and Strengths of Materials for Construction
Composition and resolution of forces and force systems, principles of equilibrium applied to various bodies, simple structures, friction, centroids, and moments of inertia. Mechanical behavior of materials, including calculation of stresses, strains, and deformations due to axial, torsional, and flexural loading.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Pre-Requisite(s): PH 1120 or PH 1140

CMG 2140 - Building Materials & Methods
Materials, structural systems, building codes, and management procedures appropriate for residential and commercial construction. Includes construction drawing interpretation and graphic design project.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Pre-Requisite(s): CMG 1140

CMG 2265 - Construction Quantity Survey
An introduction to the interpretation of construction drawings to perform quantity take-offs. Emphasis is on the civil and architectural components of building construction, with some discussion of other elements.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CMG 1000

CMG 3200 - Site Planning and Development
An examination of land development issues including: site analysis, environmental concerns, contouring, earthwork and grading, soils, route alignments, storm water management, sewer systems, zoning, and land planning. Incorporates CAD applications in the lab.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 2000

CMG 3250 - Structural Analysis and Design
Elastic theory analysis and design of steel structural components, including tension, compression, truss frames, flexural beams, and connections. Includes an introduction to reinforced concrete structures and timber. All work is according to current applicable code manuals. Design projects include computer applications.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): CMG 2120 or ENG 2120 or MEEM 2150

CMG 3265 - Construction Cost Estimating
Advanced study of construction cost estimating topics. Includes conceptual estimating, unit price development, subcontract work, budgets, negotiated contracts, and related items. Extensive use of spreadsheets and estimating.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): CMG 2265

CMG 4000 - Design-Build Project Delivery
Professional practice, financial, legal, and ethical considerations in construction management are illustrated and discussed in the context of the design-build delivery system.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CMG 3200(C)

CMG 4100 - Construction Equipment Management
Study of basic principles used in the construction industry for selecting and managing construction equipment. Focuses on understanding the time value of money, estimating equipment ownership and operating costs, selecting the proper equipment for specific tasks, and estimating equipment production.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): (CMG 3265 or CEE 3332) and EC 3400
CMG 4120 - Construction Planning and Scheduling
This course will introduce students to the basics of construction scheduling. Topics covered will include: Fundamentals of different scheduling methods such as Critical Path Method and linear scheduling. Resource allocation in schedules, and Schedule monitoring and control methods.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): CMG 3265 or CEE 3332

CMG 4200 - Construction Contracts
Legal aspects of construction to include a study of construction documents, the project manual, report requirements, agreements, change orders, and other administrative functions in building construction.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): BUS 2200 or CEE 3332

CMG 4210 - Construction Project Management
Provides students with an understanding of the principles required to deliver a construction project on time, within budget, and with acceptable quality. Topics include construction law, contracts, delivery systems, jobsite layout and control, submittals, record keeping, subcontracting and purchasing, quality management, change orders, claims, and dispute resolution.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): CMG 4200 or CEE 3332

CMG 4300 - Construction Finance and Accounting
Focuses on the principles of accounting and financial management needed to make construction projects and companies financially successful. Includes profitability, projecting costs, cash flow and cash requirements, and equipment costs.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): ACC 2000 or EC 3400

CMG 4400 - Construction Safety Management
Provides an awareness and understanding of workplace safety practices. Emphasis on the construction industry, including the OSHA construction regulations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

CMG 4800 - Sustainable Construction
An introduction to the philosophy and practice of sustainable building construction with emphasis on underlying socio-environmental philosophies, sustainable directed building technologies and materials, and case studies of contemporary green buildings to culminate in a simple sustainable design project.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

CMG 4900 - Construction Project Simulation
Capstone course. Integrates all aspects of the construction management process. Students will explore the responsibilities of the construction manager and consider project management issues through semester-long simulated construction projects (commercial and design-build). Includes oral and written report components.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Construction Management; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CMG 3200 and CMG 3250 and CMG 4120(C) and CMG 4210 and HU 3120

CMG 4996 - Special Topics in Construction Management
Selected additional topics of interest in Construction Management based on student and faculty demand and interest. May be a tutorial, seminar, workshop, project, or class study.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Construction Management; Must be enrolled in one of the following Class(es): Senior

CMG 4997 - Independent Study in Construction Management
Independent study of an approved topic under the guidance of a Construction Management faculty member. May be either an academic, design or research problem/project.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Construction Management; Must be enrolled in one of the following Class(es): Senior

CMG 4998 - Undergraduate Research in Construction Management
An undergraduate research experience in Construction Management. Under the guidance of a Construction Management faculty member, students work on a selected/approved research problem or work directly with faculty on active research projects/grants. May require more than one semester to complete.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Construction Management; Must be enrolled in one of the following Class(es): Senior
Computer Science

CS 1000 - Explorations in Computing
An introduction to the study of computing: fundamental concepts and skills; opportunities at Michigan Tech; career opportunities; social and ethical issues.
Credits: 1.0
Lec: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Software Engineering, Computer Science, Computer Systems Science, Computer Engineering, Electrical Engineering; Must be enrolled in one of the following Class(es): Freshman

CS 1040 - Assembly Language Programming
Programming in assembly language. Includes integer floating point, and instruction encoding in binary. Transition course for only those students affected by credit change in CS1141/3421.
Credits: 1.0
Lec: (1-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 1122 or CS 1131

CS 1090 - Special Topics in Computer Science
Special topics in computer science offered on occasion based on student and faculty demand and interest.
Credits: variable to 3.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

CS 1111 - Introduction to Programming in C/C++
Introductory course in C/++ programming. Topics include top-down analysis of problems, structured programming, control structures, functions, arrays, pointers, and file I/O. Basic concepts of object-oriented programming (classes, objects, function overloading) will also be introduced.
Credits: 3.0
Lec: (0-2-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Industrial Technology, Computer Network & System Admin, Electrical Engineering, Audio Production & Technology; Must be enrolled in one of the following Class(es): Freshman, Sophomore

CS 1121 - Introduction to Programming I
Starting point of the computer science programs. A high-level, object-oriented programming language is introduced as a problem-solving tool. Topics include design, coding, documentation, debugging, and testing of programs. Programming assignments are given in both a closed lab setting and as homework.
Credits: 3.0
Lec: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 1031(C) or MA 1032(C) or MA 1120(C)

CS 1122 - Introduction to Programming II
Continuation of CS 1121. Topics include data abstraction, class hierarchies and polymorphism, list, stack, queue and tree data structures, complexity-based algorithm and data structure choices, and recursion. Homework programming assignments are given.
Credits: 3.0
Lec: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 1121

CS 1131 - Accelerated Introduction to Programming
An alternative starting point of the computer science programs for students with some programming experience, combining material from CS1121 and CS1122, offered at an accelerated pace. Homework programming assignments are given.
Credits: 5.0
Lec: (0-4-2)
Semesters Offered: Fall
Restrictions: Permission of department required
Pre-Requisite(s): MA 1031 or MA 1032 or MA 1120 or MA 1160(C) or MA 1161(C)

CS 1142 - Programming at the Hardware Software Interface
Programming in assembly language and C for students with prior experience in Java. Topics include binary number encodings, instruction set architecture, assembly language programming, and instruction encodings. C programming topics include program structure, preprocessor, arrays, structures, pointers, input/output, dynamic memory management, and linked data structures.
Credits: 3.0
Lec: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 1122 or CS 1131

CS 2090 - Special Topics in Computer Science
Special topics in computer science offered on occasion based on student and faculty demand and interest.
Credits: variable to 3.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

CS 2311 - Discrete Structures
Presents fundamental concepts in discrete structures that are used in computer science. Topics include sets, trees, graphs, functions, relations, recurrences, proof techniques, logic, combinatorics, and probability.
Credits: 3.0
Lec: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (CS 1121 or CS 1131) and (MA 1135 or MA 1160 or MA 1161 or MA 2160)

CS 2321 - Data Structures
Presents fundamental concepts in data structures. Topics include abstract data types (priority queues, dictionaries and graphs) and their implementations, algorithm analysis, sorting, text processing, and object oriented design. A significant programming project is assigned.
Credits: 3.0
Lec: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 1122 or CS 1131
CS 3000 - Ethical and Social Aspects of Computing
An examination of social and ethical issues associated with computing. Topics include: ethical theories and decision making, intellectual property, freedom of expression, privacy, security, and professional responsibility.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): CS 3141

CS 3090 - Special Topics in Computer Science
Special topics in computer science offered on occasion based on student and faculty demand and interest.
Credits: variable to 3.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

CS 3141 - Team Software Project
This course introduces software design techniques (e.g., Design-By-Contracts), uses the UML for requirements and design specification, and requires implementation, unit testing and documentation in the context of a significant team project. Other topics: teamwork, user interfaces, social and professional responsibility.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): (CS 2311 or MA 3210) and CS 2321

CS 3311 - Formal Models of Computation
Introduction to the theory of formal languages and computation. Topics include regular languages and finite automata, context-free languages and push-down automata, Turing-acceptable languages, Turing machines and the halting problem. Proof techniques and applications, such as parsing, are also treated.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 2311 or MA 3210 and CS 2321

CS 3331 - Concurrent Computing
Concepts and techniques in concurrent computing. Topics include: processes and threads, mutual exclusion, semaphores, monitors and condition synchronization, deadlock, safety and liveness, message passing, and concurrent architectures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 1142 or (CS 1141 and CS 1040) or (CS 2311 or MA 3210) and CS 2321

CS 3411 - Systems Programming
Development of robust programs that provide efficient services to system software developers. Topics include: file I/O, process creation and management, linking and libraries, interprocess communication, performance measurement, and socket programming.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CS 3421

CS 3421 - Computer Organization
Introduction to the logical structure of computers, including the fundamentals of logic design, information storage and manipulation, control, and input/output. Topics include a review of current hardware technology, combinational and sequential logic, arithmetic, datapaths, hard-wired control, interrupts, caches, virtual memory, and an introduction to pipelining.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (CS 1141 and CS 1040) or CS 1142

CS 3425 - Introduction to Database Systems
This course provides an introduction to database systems including database design, query, and programming. Topics include goals of database management; data definition; data models; data normalization; data retrieval and manipulation with relational algebra and SQL; data security and integrity; database and Web programming; and languages for representing semi-structured data.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (CS 2311 or MA 3210) and CS 2321

CS 3712 - Software Quality Assurance
Practices for ensuring quality through the software process. Topics include: requirements elicitation, analysis and documentation, testing, and quality assurance management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): CS 3141

CS 4090 - Special Topics in Computer Science
Special topics in computer science offered on occasion based on student and faculty demand and interest.
Credits: variable to 4.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

CS 4099 - Directed Study in Computer Science
Students study one or more special topics in computer science under the direction of one or more faculty members.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

CS 4121 - Programming Languages
A discussion of the concepts underlying programming languages. Topics include programming paradigms; language properties (including syntax, semantics, run-time behavior, and implementation issues); data, procedure, functional, and control abstraction; functional programming; and logic programming.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CS 2321 and CS 3421 and CS 3311

Undergraduate Course Descriptions Effective Fall 2020, Page 39 of 162
CS 4130 - Compiler Design and Optimization
Design, theory, and programming language translators and the theory and implementation of optimizers. Topics include: intermediate representations, advanced code generation, control- and data-flow analysis, advanced compiler optimization, dynamic compilation, global register allocation and instruction scheduling.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Level(s): Graduate
Pre-Requisite(s): CS 4121

CS 4321 - Introduction to Algorithms
Fundamental topics in algorithm design, analysis, and implementation. Analysis fundamentals include asymptotic notation, analysis of control structures, solving recurrences, and amortized analysis. Design and implementation topics include sorting, searching, and graph algorithms. Design paradigms include greedy algorithms, divide-and-conquer algorithms, and dynamic programming.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): (CS 2311 or MA 3210) and CS 2321

CS 4411 - Operating Systems
Principles of the design and implementation of operating systems. Topics include: process management, process scheduling, memory management, I/O, file systems. Includes a significant implementation component.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CS 3311 and CS 3421

CS 4425 - Database Management System Design
This course covers the design issues concerning the implementation of database management systems, including distributed databases. The topics include data storage, index implementation, query processing and optimization, security, concurrency control, transaction processing, and recovery.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): CS 3425

CS 4431 - Computer Architecture
Advanced course in architecture of high-performance computer systems. Topics include instruction-set design, simulation of processor architectures, multiple functional units, pipelining, dynamically scheduled pipelines, speculative execution, multi-core and multi-processor systems, advanced I/O subsystems and analytic models of architectural features of processors.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CS 3421

CS 4461 - Computer Networks
Computer network architectures and protocols; design and implementation of datalink, network, and transport layer functions. Introduction to the Internet protocol suite (TCP, UDP, IP), domain name service and protocols, file sharing protocols, wireless networks, and network security.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CS 3411

CS 4471 - Computer Security
This covers fundamentals of computer security. Topics include practical cryptography, access control, security design principles, physical protections, malicious logic, program security, intrusion detection, administration, legal and ethical issues.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Level(s): Graduate
Pre-Requisite(s): CS 3411 or CS 4411

CS 4496 - GPU and Multicore Programming
Introduction to Graphics Processing Units (GPU) and multi-core systems, their architectural features and programming models, stream programming and compute unified driver architecture (CUDA), caching architectures, linear and non-linear programming, scientific computing on GPUs, sorting and search, stream mining, cryptography, and fixed and floating point operations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Level(s): Graduate
Pre-Requisite(s): CS 3411 and CS 3421

CS 4611 - Computer Graphics
Introduction to interactive computer graphics. Topics include 3D viewing, 3D transformation, interactive techniques, animation, modeling, lighting, texturing, vertex programs, fragment programs, and graphics algorithms. Requires substantial programming homework.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): (CS 1141 or CS 1142) and CS 2321 and MA 2330

CS 4710 - Model-Driven Software Development
Focuses on the use of formal models throughout the software development life cycle. Topics include formal specification of requirements, behavioral modeling, automated analysis, architectural styles and design specification.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): CS 3311 and CS 3141(C)
CS 4711 - Software Processes and Management
Focusses on the software development process and related management issues. Topics include software process models, the Capability Maturity Model, process tools, use of standards, software maintenance, configuration management, project planning and tracking, team management, and measurement and estimation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): CS 3141

CS 4723 - Network Security
Learn fundamental of cryptography and its application to network security. Understand network security threats, security services, and countermeasures. Acquire background knowledge on well known network security protocols. Address open research issues in network security.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EE 4272 or CS 4461 or SAT 4812

CS 4740 - Development of Trusted Software
This course exposes students to the concepts of secure software development. Students will learn how to develop high-quality software that is resistant against cyber-attacks, by minimizing the number of vulnerabilities that can be exploited by an attacker. Topics include access control, race conditions, buffer overflows, and code injection.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CS 4471

CS 4750 - Teaching Methods in Computer Science
Provides teaching methods, models, and experiences for teaching computer science in secondary schools. Topics discussed include teaching methods, learning, security and maintenance of equipment, professional journals, ethics, legal issues, diversity, and problem solving. Requires admission to the Teacher Education Program.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): ED 4700

CS 4760 - User Interface Design and Implementation
Principles of user interfaces (UI) design and implementation. Topics include: UI theory, design principles, evaluation, and tools. Requires completion of a group project implementing and evaluating a UI.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): CS 3141

CS 4791 - Senior Software Engineering Project I
A capstone project course. Using software engineering principles and techniques, students work as part of a team responsible for developing a quality software project.
Credits: 3.0
Lec-Rec-Lab: (0-1-4)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required
Pre-Requisite(s): CS 3712 or CS 4760

CS 4792 - Senior Software Engineering Project II
A continuation of the capstone project experience, intended for Software Engineering majors.
Credits: 3.0
Lec-Rec-Lab: (0-1-4)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required
Pre-Requisite(s): CS 4791

CS 4811 - Artificial Intelligence
Fundamental ideas and techniques that are used in the construction of problem solvers that use Artificial Intelligence technology. Topics include knowledge representation and reasoning, problem solving, heuristics, search heuristics, inference mechanisms, and machine learning.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CS 2311 and CS 2321 and (CS 3411 or CS 3421 or CS 3425 or CS 3331)

CS 4821 - Data Mining
Data mining focuses on extracting knowledge from large data sources. The course covers data mining concepts, methodology (measurement, evaluation, visualization), algorithms (classification/regression, clustering, association rules) and applications (web mining, recommender systems, bioinformatics).
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): (CS 3425 or MIS 3100) and (MA 2330 or MA 2320 or MA 2321) and (MA 2710 or MA 2720 or MA 3710)

Economics

EC 2001 - Principles of Economics
An introduction to economics. The microeconomics portion covers consumer choice, the firm, value and price theory, and distribution theory. The macroeconomics portion covers national income analysis, fiscal policy, money and monetary policy, the commercial banking system, and the Federal Reserve System.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 1020 or MA 1031 or MA 1032 or MA 1120 or MA 1135(C) or MA 1160(C) or MA 1161(C)
EC 3002 - Microeconomic Theory
The study of consumer and producer choices, market demand and supply, and market structures.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): EC 2001 and (MA 1135 or MA 1160 or MA 1161) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 3003 - Macroeconomic Theory
Analysis of the determinants of the level of output, employment, prices, and economic growth with an emphasis on fiscal policy and monetary policy.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EC 2001 and (MA 1135 or MA 1160 or MA 1161) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 3100 - International Economics
Introduction to international economics, including balance of payments, accounting, foreign exchange markets, international trade theory, barriers to trade, trade and development, regional economic integration, and current U.S. international economic issues.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 3300 - Industrial Organization
Economic analysis of market power and industry structure. Topics include the goals of public policy toward business, antitrust policy, economic regulation, public enterprise, and social regulation of health, safety, and the environment.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 3400 - Economic Decision Analysis
Studies economic decision-making for actions occurring over time. Covers decision tools for comparing alternatives, public project evaluation, risk and uncertainty, mutually exclusive decisions, multiple objective decisions, interest rate calculations, cash flow analysis, depreciation and taxes, cost of capital, capital budgeting.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Major(s): Finance, Operations and Systems Mgmt, Management Information Systems, Marketing, Accounting, Management; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4000 - Senior Seminar in Economics
A senior capstone seminar in which students discuss and conduct research under the guidance of several faculty members.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Economics; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

EC 4050 - Game Theory/Strategic Behavior
The study of strategic situations involving the interactions of individuals. Modeling techniques are applied to game situations faced in business, entertainment, politics, and the daily routine of life.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4100 - Mathematical Economics
Application of the principal mathematical techniques used in economic theory and modeling. Topics include optimization, marginal analysis, comparative statics, and other applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): (EC 3002 or EC 3003) and (MA 1160 or MA 1161 or MA 1135)

EC 4200 - Econometrics
Introduces techniques and procedures to estimate and test economic and financial relationships developed in business, economics, social and physical sciences.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (EC 2001 or EC 3002 or EC 3003) and (BUS 2100 or MA 2710 or MA 2720 or MA 3710) and (MA 1135 or MA 1160 or MA 1161)

EC 4400 - Banking and Financial Institutions
Analysis of asset and liability management of financial institutions and the role of financial institutions in the U.S. and international economy.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (EC 3003 or FIN 3000) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4500 - Public Sector Economics
Economic analysis of how democratic governments generate revenue (primarily taxation) and make expenditure decisions and how such decisions impact the welfare of individuals. Topics include market failures, voting processes, income redistribution programs, efficiency and incidence of taxation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

Undergraduate Course Descriptions Effective Fall 2020, Page 42 of 162
EC 4620 - Energy Economics
Introduction to the institutional, technical, and economic issues of the production and use of energy resources, including petroleum, natural gas, coal, nuclear, electric utilities, and alternative energy. Coursework applies economic analysis to supply, distribution, and use of energy resources, including environmental and social consequences.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4630 - Mineral Industry Economics
Studies the role of minerals and metals in society and the economics of their use. Applies economic principles to examine the supply, demand, markets, and foreign trade for important minerals and metals. Examines the effect of government policies on the minerals industries. Requires a technical report.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4640 - Natural Resource Economics
Studies the economics of nonrenewable resources (energy and minerals) and renewable resources (water, fisheries, forests and species). Discusses the economics of land use change, macroeconomic topics such as economic growth, sustainability and green accounting.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (EC 2001 or EC 3002 or FW 4080) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4650 - Environmental Economics
Considers the efficient and equitable use of environmental resources, including air, water, land, wilderness and parks, wildlife and other ecological systems. Measures the benefits and costs of decreasing pollution, cleaner environment, and protecting scarce ecological resources. Addresses market failures and the economic valuation of environmental amenities.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): (EC 2001 or EC 3002) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4710 - Labor/Human Resource Economics
Economic analysis of labor markets and human resources. Topics include the supply and demand for labor, wage determination, human capital theory, returns to education and training, causes of wage differentials, and economic effects of discrimination.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): EC 2001 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

EC 4900 - Research
Under the general guidance of a faculty member, students read, conduct research, and prepare reports and papers as required.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Pre-Requisite(s): EC 2001

EC 4990 - Special Topics in Economics
Economic topics of interest to students and faculty.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Pre-Requisite(s): EC 2001

Education

ED 0510 - Graduate Teaching Assistant Training
Half semester course for training graduate teaching assistants (GTAs). Covers course preparation, educational testing and evaluation, instructional strategies (discussions, lecturing, collaborative learning, cases/simulations, etc.), using instructional technologies, motivating students, and institutional resources.
Credits: 1.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Level(s): Graduate

ED 2011 - Introduction to Education
An introduction to the field of education as a complex social, economic and political institution and career. Students will gain an understanding of their roles in shaping discussion of significant issues such as equality of opportunity, diversity and multiculturalism within the context of an ever-changing profession.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring

ED 3011 - Dimensions of American Education
An exploration of historical, philosophical, ethical and legal dimensions of American education. Students will begin to consider their roles as educational leaders and advocates for social justice for all students in American schools.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ED 2001

ED 3510 - Communicating Science I
Students design hands-on presentations for K-8 students and their parents at family science nights conducted at area schools and other events in a 4-county area (off campus 4:30-9:00PM). The course highlights presentation skills, teaching techniques, learning styles, and classroom management.
Credits: 3.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
ED 3511 - Communicating Science II
Students will make presentations in local K-8 classrooms and/or at evening family science nights conducted at area schools. Classroom lectures will highlight the rationale for interacting with schools and communities as a professional, presentation skills, effective teaching techniques, learning styles, classroom management techniques, and model hands-on learning techniques.

Credits: 1.0
Lec-Rec-Lab: (0-0-1)
Semesters Offered: On Demand

ED 4510 - Special Topics in Education
Students identify and develop an in-depth examination of current topics in education for further research and study. Working in consultation and agreement with select faculty, students engage in active inquiry on leading educational issues.

Credits: variable to 6.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of department required

ED 4910 - Directed Teaching
Knowledge of human growth and learning theories, methods and materials, and individual differences applied to classroom settings conducted under the supervision of an experienced middle or secondary school teacher. Requires admission to teacher education program.

Credits: 12.0
Lec-Rec-Lab: (0-0-36)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): ED 4300 and ED 4700 and (ED 4720 or HU 4140 or SS 4020(C) or MA 4905)

EE 2111 - Electric Circuits I
This course will cover basic electrical concepts, resistive circuits, nodal and loop analysis techniques, superposition, Thévenin and Norton equivalents, maximum power transfer, capacitance and inductance, AC steady-state analysis.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 2160

EE 2112 - Electric Circuits II and Lab
This course will cover second order transient circuits, magnetically coupled networks, AC steady-state analysis, polyphase circuits, variable frequency network performance, and two port networks.

Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EE 2111 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

EE 2174 - Digital Logic and Lab
Introduces analysis, design, and application of digital logic. Includes Boolean algebra, binary numbers, logic gates, combinational and sequential logic, storage elements and hardware-description-language based synthesis.

Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EET 2241 or EE 2241 or CS 1121 or CS 1131 or CS 1111

EE 2180 - Introduction to Robotics and Lab
Introduces the following topics: robotic actuators, inverse and forward kinematics, control methods, applied statistics, environment mapping, and path finding. Topics will be further explored during hands on and practical lab experiments.

Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MA 1135 or MA 1160 or MA 1161

EE 2190 - Introduction to Photonics
Topics include basic geometrical and wave optics, fiber optics, lasers, detectors, and optical communication systems.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 3521 and PH 2200(C)

EE 2230 - Printed Circuit Seminar Series
Seminars and lectures relating to the design, layout, fabrication, and assembly of printed circuits will be presented by instructor as well as industry experts.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Permission of instructor required
Co-Requisite(s): EE 2231
Pre-Requisite(s): CH 1150 and CH 1151

EE 2231 - Printed Circuit Fabrication
Printed circuit board fabrication techniques are presented and explored utilizing wet-chemical process techniques. Single and multi-layer boards using internal layers for power and ground planes as well as plated feed-trough via structures, solder masks and silk screens will be discussed. While hands on fabrication will be the main focus, students will be introduced to software design packages specific to circuit layout and design. Final testing and evaluation of the fabricated boards will be performed.

Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Permission of instructor required
Co-Requisite(s): EE 2230

EE 3010 - Circuits and Instrumentation
Designed for nonmajors. Covers the principles of electrical and electronic measurements, including dc, ac, semiconductor devices, amplifiers, and filtering.

Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Major(s): Electrical Engineering, Computer Engineering

Undergraduate Course Descriptions Effective Fall 2020, Page 44 of 162
EE 3120 - Electric Energy Systems
An overview of the generation and utilization of electrical energy. Covers three-phase circuits, transformers, photovoltaics, batteries, electromechanical energy conversion, and an overview of electric power systems, including economic issues.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EE 2110 or EE 3010 or (EE 2111 and EE 2112(C))

EE 3131 - Electronics
Covers the fundamentals of electronic devices and circuits; operational amplifiers, bipolar junction transistors, diodes, and MOSFETs.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EE 2112 or EE 3010

EE 3140 - Electromagnetics
Covers basic principles of engineering electromagnetics with an emphasis on Maxwell's equations.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): PH 2200 and MA 3160 and (EE 2110 or EE 2112)

EE 3160 - Signals and Systems
Introduces the mathematical analysis of signals, systems, and control. Topics include differential equations, Fourier series, Fourier transforms, LaPlace transforms, frequency response, Bode plots, state models, and an introduction to control systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): (EE 2110 or EE 2112) and (MA 2320 or MA 2321 or MA 2330) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

EE 3171 - Microcontroller Applications
Introduces the concepts of microcontroller-based systems. Describes basic characteristics of microcontrollers, then goes into significant detail in the applications of a specific microcontroller. Topics include C and assembly language programming, instruction set interface, ASICS, and polled, interrupt, and DMA input/output.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Major(s): Computer Engineering
Pre-Requisite(s): (EE 2241 or CS 1121 or CS 1111) and (EE 2174 or EE 2173)

EE 3173 - Hardware/Software System Integration
Covers the integration of hardware and software into a complete working system. Includes design and construction of I/O devices for microprocessor or microcontroller-based systems, communication and bus protocols, programming in assembler language and in "C", system integration and testing. Also covers the use of FPGAs and HDL design tools.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Computer Engineering
Pre-Requisite(s): (EE 2304 or EE 2174) and (EE 3130 or EE 3131) and (CS 1111 or CS 1142 or CS 2141) and CS 3421 and (MA 3710 or EE 3180)

EE 3180 - Introduction to Probability and Random Signal Analysis
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): EE 3160

EE 3190 - Optical Sensing and Imaging
Optical sensing techniques, including imaging and non-imaging systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MA 3520 or MA 3521 or MA 3530 or MA 3560

EE 3261 - Control Systems
Mathematical formulation of control problems (both transfer function and state-variable descriptions); analysis of feedback control systems (stability, transient performance, steady-state error, sensitivity, etc.); analog and digital simulation; and experiments with physical systems.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): EE 3160

EE 3280 - Robot Operating Systems
An introduction to the robotics middleware enabling robot platforms used in autonomous vehicles and advanced manufacturing. Students will learn the basics of distributed robotics software architecture, hardware considerations and associated simulation tools.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): EE 2180 and SAT 2711
EE 3290 - Photonic Material, Devices, and Applications
Light wave propagation in optical crystals and fibers, detection, and the creation of light in semiconductors.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Electrical Engineering, Physics, Applied Physics, Physics (BA), Biomedical Engineering, Materials Science and Engrg; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): EE 3140 or EE 3090 or PH 2400 or EE 2190

EE 3373 - Introduction to Programmable Controllers
The design of discreet sequential controls using programmable logic controllers (PLCs). Relay logic is used to introduce ladder logic and ladder logic is used to program the PLC. Introduces a structured approach to sequential control design. Data acquisition is introduced using BridgeVIEW software.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Electrical Engineering, Computer Engineering
Pre-Requisite(s): EE 2110 or EE 2112 or EE 3010

EE 3901 - Design Fundamentals
The design process; includes team design activities and studies project management, ethics, and professionalism.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): EE 3131(C) and UN 1015

EE 4000 - Undergraduate Research
An undergraduate research experience during the senior year in electrical or computer engineering. Students work on an active research project/grant with a faculty member. A report will be published in the department and archived.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Junior, Senior

EE 4173 - Computer System Engineering and Performance
Covers the principles and practices of modern computer architecture. Emphasizes quantitative performance evaluation of: memory hierarchies, from cache through virtual memory; pipelined processors with advanced hazard management; and combined processor/memory systems. Introduces RAID, superscalars, parallel processing, cache coherence, performance simulation software.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Computer Engineering
Pre-Requisite(s): CS 3421 and EE 3173

EE 4219 - Introduction to Electric Machinery and Drives
Provides a thorough understanding of how electric machines can be used to drive loads with control of speed, torque and position. Topics include basic electro-mechanics, rotating machinery, dc machines, ac machines, power electronics and load modeling. Applications include industrial systems, hybrid/electric vehicles and electric power systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): (EE 2110 or EE 2112 or EE 3010) and EE 3120

EE 4220 - Introduction to Electric Machinery and Drives Laboratory
Provides a hands on understanding of how electric machines can be used to drive loads with control of speed, torque, and position. Topics include basic electro-mechanics, rotating machines, dc machines, ac machines, power electronics, and load modeling.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Pre-Requisite(s): EE 4219(C)

EE 4221 - Power System Analysis 1
Covers power transmission line parameters and applications, symmetrical components, transformer and load representations, systems faults and protection, and the per unit system.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EE 3120 and (EE 2112 or EE 2110)

EE 4222 - Power System Analysis 2
Topics covered include symmetrical components; symmetrical faults; unbalanced faults; generating the bus impedance matrix and using it in fault studies; power system protection; power system operation; power system stability.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): EE 4221

EE 4226 - Power Engineering Laboratory
A laboratory based course highlighting single phase and three phase power concepts, including: power factor, single and three phase transformer configurations, non-ideal transformers, synchronous machines, renewable energy, power flow and fault simulations, relay settings and relay testing and calibration.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring, Summer
Restrictions: Permission of instructor required
Pre-Requisite(s): EE 4221 and EE 4222(C)

EE 4227 - Power Electronics
Fundamentals of circuits for electrical energy processing. Covers switching converter principles for dc-dc, ac-dc, and dc-ac power conversion. Other topics include harmonics, pulse-width modulation, feedback control, magnetic components and power semiconductors.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): EE 3120 and (EE 3130(C) or EE 3131)
EE 4228 - Power Electronics Lab
Fundamentals of design, construction and control of circuits for electrical energy processing. Covers switching converter principles for dc-dc, ac-dc, and dc-ac power conversion. Other topics include harmonics, pulse-width modulation, feedback control, magnetic components and power semiconductors.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Pre-Requisite(s): EE 4227(C)

EE 4231 - Physical Electronics
Device physics and physical models of the most basic solid-state device structures. Major topics include the terminal characteristics and their physical origin, device design, and device applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EE 3130 or EE 3131

EE 4232 - Electronic Applications
Study of electronic circuits under small- and large-signal conditions. Typical topics include analysis and design of power and RF amplifiers, feedback circuits, oscillators, timing circuits, and wave-shaping circuits.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): EE 3130 or EE 3131

EE 4235 - Sensing and Processing in Robotic Applications
Sensing and signal processing for robotics applications in manufacturing and autonomous navigation. Heavy emphasis on developing, testing, and evaluating algorithms. MATLAB programming required.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): EE 2180 and ENG 1101

EE 4240 - Introduction to MEMS
Fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication.
Credits: 4.0
Lec-Rec-Lab: (3-1-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

EE 4250 - Modern Communication Systems
Introduces the mathematical theory of communication science. Topics include baseband and digital signaling, bandpass signaling, AM and FM systems, bandpass digital systems, and case studies of communication systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): EE 3160 and EE 3131 and EE 3180

EE 4252 - Digital Signal Processing and its Applications
Digital signal processing techniques with emphasis on applications. Includes sampling, the Z-transform, digital filters and discrete Fourier transforms. Emphasizes techniques for design and analysis of digital filters. Special topics may include the FFT, windowing techniques, quantization effects, physical limitations, image processing basics, image enhancement, image restoration and image coding.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Co-Requisite(s): EE 4259
Pre-Requisite(s): EE 3160

EE 4253 - Real Time Signal Processing
Practical implementation of digital signal processing concepts as developed in EE4252. Emphasis on applications of DSP to communications, filter design, speech processing, and radar. Laboratory provides practical experience in the design and implementation of DSP solutions.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): EE 4252

EE 4259 - Digital Signal Processing and its Applications Lab
Digital signal processing techniques with emphasis on applications. Includes sampling, the Z-transform, digital filters and discrete Fourier transforms. Emphasizes techniques for design and analysis of digital filters. Special topics may include the FFT, windowing techniques, quantization effects, physical limitations, image processing basics, image enhancement, image restoration and image coding.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Co-Requisite(s): EE 4252
Pre-Requisite(s): EE 3160 or EE 2160

EE 4262 - Digital and Non-linear Control
Introduction to state space analysis and design (state feedback, observers, and observer feedback); digital control system design and analysis (Z-transforms, difference equations, the discrete-time state model, and digital implementation of controllers); introduction to nonlinear systems (equilibrium states, linearization, phase plane analysis, and describing function analysis); and experiments with physical systems.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): EE 3261

EE 4271 - VLSI Design
Design of VLSI circuits using CAD tools. Analysis of physical factors affecting performance.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Summer
Pre-Requisite(s): EE 3131 and EE 2174
EE 4272 - Computer Networks
Computer network architectures and protocols; design and implementation of datalink, network, and transport layer functions. Introduction to the Internet protocol suite (TCP, UDP, IP), domain name service and protocols, file sharing protocols, wireless networks, and network security.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following College(s): Freshman, Sophomore
Pre-Requisite(s): CS 3411

EE 4290 - Optical Communication
Fundamentals of fiber optics communications, including sources, transmission media, detectors, signal processing, and networking.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following College(s): Electrical Engineering
Pre-Requisite(s): EE 3291

EE 4295 - Electrical Engineering
Pre-Requisite(s): EE 4290

EE 4296 - Experimental Studies in Hybrid Electric Vehicles
Hands-on course examines hybrid electric vehicles from an energy perspective. Topics include powertrain architecture, vehicle testing, fuel consumption, aerodynamics and rolling resistance, engines, batteries, electric machines and power electronics. Course culminates with study of system interactions with emphasis on idle reduction and regenerative braking.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

EE 4297 - Control Systems Design
Survey of feedback control systems. Computer controlled mechatronic systems. Introduction to state space techniques for design and analysis of feedback control systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following College(s): Electrical Engineering
Pre-Requisite(s): EE 3295

EE 4299 - Power Electronics
Power electronics is the heart of electric vehicle control. Power electronics for traction motors and auxiliary systems will be covered.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following College(s): College of Engineering
Pre-Requisite(s): EE 4295

EE 4373 - Advanced Programmable Controllers
Using Allen Bradley Contr Logix and SLC500 programmable controllers, course covers structured programming, Sequential Function Charts, networking, proportional integral differential control, data acquisition and interfacing. The labs will require students to write and troubleshoot complex PLC programs.
Credits: 4.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Electrical Engineering, Computer Engineering; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): EE 3373

EE 4375 - Autonomous Vehicle Design
Design of autonomous systems focusing on safety. Covers localization, sensor fusion, and motion planning. Emphasizes autonomy capability level, functional safety, and hazard analysis. Students will use autonomous vehicle data sets to develop sensing, perception, and path-planning strategies on simulated autonomous vehicles.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Spring
Pre-Requisite(s): (EE 3261 or MEEM 3750) and EE 3280

EE 4411 - Engineering Electromagnetics
A mathematically rigorous study of dynamic electromagnetic fields, beginning with Maxwell's equations. Topics include scalar and vector potentials, waves, and radiation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): EE 3140

EE 4490 - Laser Systems and Applications
Survey of laser types and analysis of common physical and engineering principles, including energy states, inversion, gain, and broadening mechanism from a quantum mechanical perspective. Laser applications and laser properties are explored in the laboratory portion.
Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): EE 3140

EE 4723 - Network Security
Learn fundamental of cryptography and its application to network security. Understand network security threats, security services, and countermeasures. Acquire background knowledge on well known network security protocols. Address open research issues in network security.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): EE 4272 or CS 4461 or SAT 4812
EE 4737 - Embedded System Interfacing
Covers the use of low-power microcontrollers and hardware-dependent C for embedded sensing and control systems. Emphasizes direct interfacing with analog and digital sensors and actuators of several different modalities, to implement end-to-end embedded systems for applications including robotics and wireless sensor nets.
Credits: 4.0
Lec-Rec-Lab: (3-0-1)
Semesters Offered: Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): (CS 1111 or CS 1141 or EE 2241) and (EE 3171 or EE 3173)

EE 4777 - Distributed Additive Manufacturing Using Open-Source 3-D Printing
This course provides an overview of open-source hardware in theory and practice for an introduction to distributed additive manufacturing using open-source 3-D printing. Each student will build a customized RepRap and will learn all hardware and software for maintaining it.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; Must be enrolled in one of the following Class(es): Junior, Senior

EE 4800 - Special Topics in Electrical Engineering
Covers specific topics in electrical engineering.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor and department required

EE 4805 - Electrical Engineering Project
A project in electrical engineering. An individual student or a group of students complete a mutually-agreed upon project in consultation with a faculty member.
Credits: variable to 3.0; Repeatable to a Max of 6; Graded Pass/Fail Only
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor and department required

EE 4870 - Special Topics in Computer Engineering
Covers special topics in computer engineering.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor and department required

EE 4901 - EE Design Project 1
The first semester of a program of study in which a group of students work on an engineering design project in consultation with a faculty member. (Senior project ready as defined by major substitutes for prerequisites)
Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): (EE 3131 or (EE 3130 and EE 3305)) and (EE 3901 or EE 4900) and (EE 3170(C) or EE 3171(C) or EE 3173(C))

EE 4910 - EE Design Project 2
The second semester of a program of study in which a group of students work on an engineering design project in consultation with a faculty member. (Senior project ready as defined by major substitutes for prerequisites)
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Spring
Pre-Requisite(s): EE 4901

Electrical Engrrg Technology

EET 1120 - Circuits I
Defines resistance, voltage, current, energy, and power, followed by DC network analysis and network theorems. Includes the analysis of transients in capacitive and inductive networks. Lab exercises use electronic test equipment to analyze circuits constructed from schematics.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Surveying Engineering, Mechanical Engineering Tech, Theatre & Entertain Tech (BS), Computer Network & System Admn
Pre-Requisite(s): MA 1031(C) or MA 1032(C) or MA 1120(C) or MA 1160(C) or MA 1161(C) or MA 1135(C)

EET 1411 - Basic Electronics
Introduction to basic electrical principles and devices including DC and AC circuits, diodes, transistors, operational amplifier ICs, power supply regulation, and elements of communication systems.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Surveying Engineering, Mechanical Engineering Tech, Theatre & Entertain Tech (BS), Computer Network & System Admn
Pre-Requisite(s): MA 1031 or MA 1032 or MA 1120 or MA 1160(C) or MA 1161(C) or MA 1135(C)

EET 2120 - Circuits II
Defines and applies sinusoidal steady-state AC concepts such as impedance, complex power, resonance, and frequency response. Applies basic network analysis tools to AC single phase and balanced three-phase networks, bridge circuits, and filters. AC circuit principles are reinforced by coordinated lab exercises.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): EET 1120 and (MA 1160(C) or MA 1161(C) or MA 1135(C))

EET 2141 - Digital Electronics and Microprocessor Fundamentals
A study of the fundamental components used in digital logic circuits and microcomputer architecture and programming. Topics include: number systems and codes, Boolean algebra, combinational logic circuits, flip-flops, arithmetic circuits, counters and registers, decoders, multiplexers, memory organization, microcomputer addressing modes, stacks and subroutines.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): EET 1120 or EET 1411
EET 2142 - Digital Design and Modeling Using VHDL
Emphasizes the language concepts of digital systems design using VHDL with emphasis on good design practices and writing verification testbenches. Students will gain valuable hands-on experience writing efficient hardware design code and performing simulations using ModelSim.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): EET 2141

EET 2150 - Applied Mathematics for Engineering Technology
Mathematical theory, mathematical modeling, numerical methods, and algorithms with applications drawn from engineering technology, including electrical, mechanical, mechatronic, and manufacturing engineering technology. Topics covered include complex arithmetic, phasors and complex exponentials, linear algebra, elementary differential equations, and probability and statistics. MATLAB programming is introduced to solve problems encountered in engineering technology with emphasis on modeling of electrical and mechanical systems.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MA 1160 and PH 1140 and PH 1141 and EET 1120 and MA 2160(C)

EET 2220 - Electronic Devices & Circuits
Introduction to solid-state electronic devices and their application. Studies diodes, transistors and operational amplifier ICs. Transistor biasing, temperature stabilization and gain calculations of single and multistage amplifiers. Studies power amplifiers, frequency response, heat sinking and power supply design.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Spring
Pre-Requisite(s): EET 2120

EET 2233 - Electrical Machinery
Fundamental steady-state analysis of DC, AC polyphase and AC single-phase electrical machines as well as transformers.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall, Summer
Pre-Requisite(s): EET 2141 or EET 2120(C)

EET 2241 - C++ and Matlab Programming
Introduction to C++ programming and MATLAB for use in solving problems encountered in engineering technology. C++ topics include the basics of syntax and program structure. Focuses on the basic capabilities of MATLAB and its programming environment.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Electrical Eng Tech
Pre-Requisite(s): MA 2160(C)

EET 2411 - Digital Electronics
Introduction to the fundamentals of the digital electronics that make up microprocessors. Topics include number systems and codes, Boolean algebra, combinational and sequential logic circuits, arithmetic circuits, and digital memory.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admn
Pre-Requisite(s): EET 1411 and (MA 1031(C) or MA 1032(C) or MA 1120(C) or MA 1160(C) or MA 1161(C) or MA 1135(C))

EET 2413 - Data Communications
Introduction to the fundamentals of basic data communication methods. Topics include data transmission, signal encoding techniques, digital data communication techniques, transmission media, and frequency domain analysis.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Electrical Eng Tech, Computer Network & System Admn
Pre-Requisite(s): EET 1411 or EET 1120

EET 3131 - Instrumentation
An investigation of transducers and where they are used. Topics include signal conditioning, sensitivity, linearity, hysteresis, process measurements, and position, motion and force measurements. Exposure to graphical data acquisition tools such as LabVIEW is incorporated.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Pre-Requisite(s): EET 2120 or PH 2230 or EE 2110 or EE 3010

EET 3141 - Computer Architecture and Design
Computer system components, instruction set design, hardwired control units, arithmetic algorithms/circuits, floating-point operations, introduction to memory and I/O interfaces.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Pre-Requisite(s): EET 2241 and EET 2142(C)

EET 3225 - Special Electronic Devices
An advanced course in the study of linear integrated circuits. Includes op amps, comparators, wave form generators, timers and regulators. Emphasizes practical applications, including the interface of time-continuous measures to the discrete digital world.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Pre-Requisite(s): EET 2220
EET 3281 - Electrical Project Development and Troubleshooting
Covers soldering, component layout, printed circuit board artwork, troubleshooting, electrical and environmental factors in design as well as an overview of the practical methods used by industry to process projects. The student designs and fabricates a circuit board and assembles a project.
Credits: 3.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Spring
Pre-Requisite(s): EET 2220

EET 3367 - Communication Systems
Basic course in communication systems. Topics include noise designation and calculation, bandwidth, frequency domain analysis, oscillators, AM/FM analysis, AM/FM transmission and reception, superheterodyne principle, and SSB.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Electrical Eng Tech
Pre-Requisite(s): EET 1411 or (EET 2120 and EET 2141) or EET 2411 or PH 2230 or EE 2110 or EE 3010 or EE 2112

EET 3390 - Power Systems
A study of the transmission of electrical power from generators to loads, system components and system performance. Covers basics of power systems and their analysis, the per-unit concept, faults on power circuit interrupting, system instrumentation, and automatic protection system.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): EET 2233

EET 4144 - Real-Time Robotics Systems
Covers the components of a robot system, safety, concepts of a work-cell system, geometry, path control, automation sensors, programming techniques, hardware, and software.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: On Demand
Pre-Requisite(s): EET 1411 or EET 2220 or PH 2230 or EE 2110 or EE 3010

EET 4147 - Industrial Robotic Vision Systems and Advanced Teach Pendant Programming
Procedures for setting up, teaching, testing, and modifying robot vision systems widely used in industrial automation. Introduces advanced Teach Pendant Programming to develop complex scenarios for integrating robots into industrial cells. Final project must demonstrate proficiency in setting up and programming an advanced robotic vision scenario.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): EET 4144

EET 4253 - LabVIEW Programming for Data Acquisition
An introduction to graphical programming using LabVIEW. Data acquisition and control programs will be written. Transducer utilization and signal conditioning are studied, including handling of noise. DAQ interfaces will be designed, built, and implemented.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Pre-Requisite(s): EET 1411 or EET 2220 or EE 2112 or EE 3010 or PH 2230

EET 4311 - Advanced Circuits and Controls
Topics include: Fourier and Laplace transforms, signal comparison techniques and transfer functions. Control techniques addressed will include feedback, cascade, feedforward, multivariable and model based methods.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Pre-Requisite(s): EET 3131 or EET 4253

EET 4367 - Wireless Communications
Topics include: television systems, wave propagation, antennas, digital communications, wireless communications systems and standards, wireless communications channels, multiple access schemes, modern wireless technologies, wireless channel impairments and techniques to minimize them.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): EET 3367 and MA 2160

Undergraduate Course Descriptions Effective Fall 2020, Page 51 of 162
EET 4373 - Advanced Programmable Controllers
Using Allen Bradley Contr Logix and SLC500 programmable controllers, course covers structured programming, Sequential Function Charts, networking, proportional integral differential control, data acquisition and interfacing. The labs will require students to write and troubleshoot complex PLC programs.

Credits: 4.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): EET 3373

EET 4380 - Alternative Energy Applications
An overview of world energy resources and energy consumption trends. Fundamental principles, applications, and viability of alternative energy sources such as wind, solar, and tidal will also be presented.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): EET 2233

EET 4460 - Senior Project I
Capstone course phase I, requiring the application of knowledge gained in lower division courses. Projects are normally team oriented, require weekly progress reports, and culminate with a final report and oral presentation.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): EET 3281

EET 4480 - Senior Project II
A capstone course requiring the application of knowledge gained in lower division courses. Projects are normally team oriented, require weekly progress reports, and culminate with a final report and oral presentation.

Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): EET 4460

EET 4996 - Special Topics in Electrical Engineering Technology
Selected additional topics of interest in Electrical Engineering Technology based on student and faculty demand and interest. May be a tutorial, seminar, workshop, project, or class study.

Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Electrical Eng Tech; Must be enrolled in one of the following Class(es): Senior

EET 4997 - Independent Study in Electrical Engineering Technology
Independent study of an approved topic under the guidance of an Electrical Engineering Technology faculty member. May be either an academic, design, or research problem/project.

Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Electrical Eng Tech; Must be enrolled in one of the following Class(es): Senior

EET 4998 - Undergraduate Research in Electrical Engineering Technology
An undergraduate research experience in Electrical Engineering Technology. Under the guidance of an Electrical Engineering Technology faculty member, students work on a selected/approved research problem or work directly with faculty on active research projects/grants. May require more than one semester to complete.

Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Electrical Eng Tech; Must be enrolled in one of the following Class(es): Senior

EET 4999 - Professional Practice in Electrical Engineering Technology
Addresses engineering professional ethics, legal issues, professional development, and corporate culture as they relate to engineering technology graduates and our global society.

Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Electrical Eng Tech; Must be enrolled in one of the following Class(es): Senior

Engineering Fundamentals

ENG 1001 - Engineering Problem Solving
Introduction to the engineering problem solving method and to modern tools used to solve problems.

Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall
Pre-Requisite(s): (MA 1031(C) or MA 1032(C)) and (Spatial Visualization Score >= 19 or ENG 1002(C))

ENG 1002 - Introduction to 3-D Spatial Visualization
Intended for first-year engineering students with a demonstrated need for the development of 3-D spatial visualization skills. Topics include isometric sketching, orthographic projection, object transformations, 3-D coordinate systems, patterns folding to 3-D objects, and cross sections of solids.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required
ENG 1003 - Introduction to Computer Aided Drafting
Fundamentals of creating engineering drawings with modern CAD software. Topics include basic geometric construction, drawing modification, dimensioning, and working with layers. Designed for students with no CAD experience.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): ENG 1002 or ENG 1100 or ENG 1101

ENG 1100 - Engineering Analysis
An introduction to the engineering profession. Focuses on engineering analysis, computational skills, and communication skills.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): ENG 1001 and (MA 1160(C) or MA 1161(C)) and (Spatial Visualization Score >= 19 or ENG 1002(C))

ENG 1101 - Engineering Analysis and Problem Solving
An introduction to the engineering profession and to its various disciplines. Focuses on developing problem-solving skills, computational skills, and communication skills. Through active, collaborative work, students work on teams to apply the engineering problem-solving method to "real-world" problems.
Credits: 3.0
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (MA 1160(C) or MA 1161(C) or MA 2160(C) or MA 3160(C)) and (Spatial Visualization Score >= 19 or ENG 1002(C))

ENG 1102 - Engineering Modeling and Design
Continuation of ENG 1101. Introduction to the engineering design process with an emphasis on graphics and documentation. Focuses on engineering problem solving in the context of the design process.
Credits: 3.0
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (MA 1160 or MA 1161 or MA 2160(C) or MA 3160(C)) and (ENG 1101 or (ENG 1001 and ENG 1100)) and (Spatial Visualization Score >= 19 or ENG 1002)

ENG 1505 - Introduction to Systems Engineering
Students utilize a software tool to establish the utility of systems modeling through relevant examples.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): ENG 1001 or ENG 1101 or CS 1121 or CS 1131 or MIS 2100

ENG 1900 - Special Topics in Engineering
Engineering topics of interest to students and faculty that are not normally covered in the existing courses.
Credits: variable to 5.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

ENG 2060 - Facilitating Group Learning
Development of facilitation skills in group environments. Topics include peer-learning strategies, developing inclusive classrooms, and facilitation techniques.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ENG 1102(C) or CH 1160

ENG 2120 - Statics-Strength of Materials
The composition and resolution of forces and force systems, principles of equilibrium applied to various bodies, simple structures, friction, and 2nd moments of area. Intro to the mechanical behavior of materials, including calculation of stresses, strains, and deformations due to axial, torsional, and flexural loading. Uses MATLAB.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Major(s): Mechanical Engineering, Civil Engineering
Pre-Requisite(s): MA 2160 and PH 2100 and ENG 1102

ENG 2505 - Introduction to Low Fidelity Systems Modeling
Students utilize a software tool to model a range of natural and human-made systems to gain understanding and ability to apply a systems modeling approach for analysis of systems of increasing complexity.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Pre-Requisite(s): ENG 1505(C) and MA 2160 and (ENG 1102 or CS 1121 or CS 1131 or MIS 2100)

ENG 2990 - Special Topics in Engineering
Engineering topics of interest to students and faculty that are not normally covered in the existing courses.
Credits: variable to 5.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

ENG 3060 - Developing Mentoring Skills
Provides an overview of mentoring from the mentee and mentor perspective in an active learning environment. Topics include various mentoring techniques, providing effective feedback, and observational strategies.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

ENG 3200 - Thermodynamics/Fluid Mechanics
Provides engineering students with a unified understanding of the fundamental conservation laws and property accounting applied to thermodynamic and fluid dynamic systems. Topics will include but are not limited to: ideal gas behavior; heat, work, and energy; 1st and 2nd laws of thermodynamics; heat pumps; cycles; hydrostatics; Bernoulli; pipe flow and loss; and lift and drag. Uses MATLAB.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151) and PH 2100 and ENG 1102 and MA 2160
ENG 3505 - Low Fidelity Systems Modeling
A laboratory course to put into modeling practice the concepts, methodologies, and systems modeling to generate design alternatives.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Pre-Requisite(s): ENG 1505 and ENG 2505

ENG 3830 - Engineering Professional Practice
Students will integrate and solidify topics of professional communications, ethics, problem solving, and fundamental competencies of engineering. Students will enhance their understanding of consequences of engineering, design issues, legal aspects, ethical considerations, management, and leadership, through readings, research, and discussions.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: On Demand
Restrictions: Permission of department required
Pre-Requisite(s): ENG 1101 or (ENG 1001 and ENG 1100) and ENG 1102 and ENG 2120 or (MEEM 2110 and MEEM 2150) and ENG 3200 or (MEEM 2201 and MEEM 3201) and EE 3010 and (CEE 3101 or CS 1121 or GE 2300 or MSE 2100)

ENG 3990 - Special Topics in Engineering
Engineering topics of interest to students and faculty that are not normally covered in the existing courses.
Credits: variable to 5.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

ENG 4060 - Leadership in Group Environments
Develops collaborative leadership skills through active hands-on learning. Topics include collaborative software, communication, and group management strategies.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

ENG 4070 - LEAP Leadership Practicum
Experience designed for the practical application of leadership knowledge, skills, and behaviors in the LEAP environment. The practicum experience will be designed and implemented by the student, with mentorship/guidance from the associated faculty.
Credits: 3.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): ENG 2060

ENG 4300 - Project Management
The various stages in a project life cycle will be covered and include initiation, planning, execution, and closeout. Basic tools such as the Project Charter, Network Diagrams, Gantt, and budgeting will be covered. Basics of MS Project are included.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BUS 2100 or CEE 3710 or MA 2720 or MA 3710 or EE 3180 or BE 2110 or MA 2710

ENG 4505 - Systems Analysis, Modeling, and Design
This course will focus on a cross-disciplinary subset of systems drawn from engineering, business, and natural science. Students will concentrate on modeling methodology appropriate for moderate to large systems environments and a collaborative project where they apply what they have learned.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Pre-Requisite(s): ENG 3505

ENG 4510 - Sustainable Futures I
Covers introductory and intermediate concepts of Sustainable Development. Explores methods/tools for assessing sustainability (economic, environmental, societal impacts) of current and emerging industrial technologies. Explores relationships between government policies and markets for introducing sustainable technologies into national economies and corporations.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

ENG 4900 - Multidisciplinary Senior Design Project I
Introduction to engineering design, including modeling, simulation, economic decision making, and reliability. Integration of design principles in the solution of open-ended engineering projects. Projects are defined and planned with faculty and industrial guidance. Emphasizes economics and environmental constraints. Students must be Senior Project ready as defined by major.
Credits: variable to 4.0
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

ENG 4905 - Senior Engineering Design Project
Students work in teams on one-semester open-ended capstone design projects developing and implementing original and creative solutions to real engineering problems. Students must be Senior Project ready as defined by major. May take ENG4905, ENG4900, or ENG4910.
Credits: variable to 4.0
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): ENG 2120 or (MEEM 2110 and MEEM 2150) and ENG 3200 or (MEEM 2201 and MEEM 3201) and (EE 3010 or EE 2112) and (CEE 3101 or CS 1121 or ENG 2505 or GE 2300 or MSE 2100) and (ENG 3830(C) or ENG 4505(C))

ENG 4910 - Multidisciplinary Senior Design Project II
Continuation of ENG4900. Introduction to engineering design, including modeling, simulation, economic decision making, and reliability. Integration of design principles in the solution of open-ended engineering problems. Projects are defined and planned with faculty and industrial guidance. Emphasizes economics and environmental constraints. (Senior project ready as defined by major substitutes for prerequisites)
Credits: variable to 4.0
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): ENG 4900

Undergraduate Course Descriptions Effective Fall 2020, Page 54 of 162
ENG 4990 - Special Topics in Engineering
Engineering topics of interest to students and faculty that are not normally covered in the existing courses.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

Enterprise

ENT 1960 - Enterprise Orientation-Spring
An orientation for students to their specific enterprise. Covers enterprise specific topics but should also include organizational structure; past, present and future projects and their results.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

ENT 2950 - Enterprise Project Work I
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Second-year students are responsible for achieving some prescribed objectives, as defined by their Enterprise team.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

ENT 2960 - Enterprise Project Work II
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Second-year students are responsible for achieving some prescribed objectives, as defined by their Enterprise team.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

ENT 2961 - Teaming in the Enterprise
Develops group problem-solving skills. Stresses interpersonal skills and skill assessment, communication, group process and teamwork, and action planning. Uses active, hands-on learning.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

ENT 2962 - Communication Contexts
An introduction to the demands of technical and professional communication in workplace settings, through analyzing project design team experiences.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1025

ENT 3950 - Enterprise Project Work III
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Third-year students will practice designing approaches to solve problems and develop procedures to achieve specified project objectives.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following
Class(es): Junior, Senior

ENT 3953 - Ignite: Ideate, Innovate, Create!
Whether starting a business or working for an established company, creativity and innovation are keys to success. Course will explore creativity tools and techniques such as design thinking and human centered design to help generate ideas that provide value to society.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

ENT 3954 - Enterprise Market Principles
Examines the fundamental principles of marketing in the six stages of product life cycle (opportunity identification, product development, introduction, growth, maturity, and decline).
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following
Class(es): Sophomore, Junior, Senior

ENT 3956 - Industrial Health and Safety
Instruction of health and safety in engineering practice. Integrates the study of health and safety regulations, risks, and potential for improvement. Also covers the tremendous financial, ethical, and public relations implications of disregarding this critical aspect of engineering.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following
Class(es): Sophomore, Junior, Senior

ENT 3958 - Ethics in Engineering Design and Implementation
The focus of this course is on ethical considerations in the engineering design and implementation process. Basic ethical analysis tools will be explored through various exercises. Students will analyze and present life engineering ethics case studies.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following
Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): ENG 1101 or (ENG 1001 and ENG 1100)

ENT 3959 - Fundamentals of Six Sigma I
This course introduces tools used for process improvement focusing on the DMAIC approach used widely in industry today.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following
Class(es): Sophomore, Junior, Senior
ENT 3960 - Enterprise Project Work IV
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Third-year students practice designing approaches to solve problems and develop procedures to achieve specified project objectives.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

ENT 3961 - Building and Leading Teams
This 1-credit module focuses on exploring research findings about leadership, the practice of leadership, and providing skill assessment and development opportunities. Topics include leadership traits, behaviors, theories, and leadership of change. Combines a variety of teaching methods, including self-assessment, cases, discussion, experiential exercises, role-playing, videotaping.

Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

ENT 3963 - Deliver: Explore, Develop, Execute!
if you have an idea that you believe addresses a need and could lead to commercialization, this course will help you to explore the path from idea to market through customer development, value assessment, business model planning, and execution.

Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior, Junior

ENT 3964 - Fundamentals of Project Management
Project definition, developing a work breakdown structure, responsibility assignment and milestone development. Covers techniques for project scheduling and practical application of Gantt and PERT/CPM charts; resource management and application of critical chain method; project budgeting and cost estimation; project monitoring, control, evaluation, and termination; and project teams, their structure, and interactions.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

ENT 3966 - Design for Manufacturing
This course supplements courses that address "design for function." Products "designed for manufacturing" are lower cost, higher quality, and have a shorter time to market. The course describes how the capabilities and limitations of common manufacturing processes translate into qualitative design guidelines. Topics include design for casting, forging, sheet metal forming, machining, plastics and assembly.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): ENG 1102

ENT 3967 - Design for Six Sigma
This course emphasizes the design for Six Sigma (DFSS) tools and methods used widely in industry to optimize new products and services.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

ENT 3970 - Enterprise Special Topics
For the development of new, junior-level instructional modules in support of the enterprise.

Credits: 1.0: May be repeated
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

ENT 3971 - Seven Habits of Highly Effective People
Focuses on personal and professional effectiveness through greater productivity, increased influence in key relationships, stronger team unity and complete life balance. This course will explore these areas through interactive exercises, case studies, videos, and sharing of experiences.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior

ENT 3979 - Alternative Energy Technologies and Processes
This course covers a wide range of alternative energy technologies with an emphasis on chemical and biochemical processing. Technologies covered may include biofuels, solar power, fuel cells, etc.

Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Pre-Requisite(s): CH 1112 or (CH 1150 and CH 1151) and (MA 1160 or MA 1161)

ENT 3980 - Pre-Capstone Enterprise Project Work
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. This course is to be taken by third-year or fourth-year enterprise students who have completed the junior-level project work, but are not approved as capstone-ready by their department.

Credits: 1.0; Repeatable to a Max of 2
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): ENT 3950 and ENT 3960

ENT 3982 - Continuous Improvement Using Lean Principles
Fields from engineering through the social sciences are adopting continuous improvement using Lean principles to make their organizations successful. The evolution of these principles and the associated processes, methods, and tools are described and applied.

Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
ENT 3983 - The Culture of Continuous Improvement
A continuous improvement culture is based on humility and respect for people. Problem solving in this environment is highly participative, focuses on the issue not the person, and seeks to empower the employees closest to the work being performed.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring

ENT 3984 - Lean Six Sigma Principles
Proven Lean Six Sigma problem-solving methods and statistical tools contribute to the success of any organization. Course covers Lean Six Sigma methodology, tools, and planning for a Green Belt certification project.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Senior, Senior

ENT 3985 - Lean Six Sigma Certification Project
Execution
Execute a previously defined project using Lean Six Sigma problem-solving methods and statistical tools. Establish baselines; identify and validate root causes; identify, test, and implement a solution; and propose a method to sustain the gains.
Credits: 3.0
Lec-Rec-Lab: (0-1-4)
Semesters Offered: Spring
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): ENT 3984

ENT 4900 - Senior Enterprise Project Work V Non-Capstone
Interdisciplinary teams work as part of an enterprise to address real-world projects or problems of significance to industry, government and communities. Fourth-year students gain experience in defining project objectives and planning strategies to achieve these objectives, and leading teams to accomplish project goals. This course is for students who are not participating in Enterprise to fulfill their capstone requirements.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following College(s): College of Engineering; Must be enrolled in one of the following Class(es): Senior

ENT 4910 - Senior Enterprise Project Work VI Non-Capstone
Interdisciplinary teams work as part of an enterprise to address real-world projects or problems of significance to industry, government and communities. Fourth-year students gain experience in defining project objectives and planning strategies to achieve these objectives, and leading teams to accomplish project goals. This course is for students who are not participating in Enterprise to fulfill their capstone requirements.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following College(s): College of Engineering; Must be enrolled in one of the following Class(es): Senior

ENT 4950 - Enterprise Project Work V Capstone
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Fourth-year students gain experience in defining project objectives, planning strategies to achieve these objectives, and leading technical teams to accomplish project goals. Must be Senior Project ready as defined by major.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Engineering, Civil Engineering, Chemical Engineering, Computer Engineering, Electrical Engineering, Environmental Engineering, Geological Engineering, Mechanical Engineering, Materials Science and Engnr, Software Engineering, Construction Management, Computer Network & System Admin, Electrical Eng Tech, Mechanical Engineering Tech, Surveying Engineering, Biomedical Engineering; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): (BE 3350 and BE 3700 and BE 3800 and BE 4900) or (CEE 3620 or CEE 3810) or CM 4855(C) or (CS 3712 or CS 4711 or CS 4760) or (ENT 3960 and EE 3131 and EE 3901 and EE 3171(C) or EE 3173(C)) or (GE 3860 and GE 3880) or (ENT 3950 and ENT 3960 and (MA 3710 or MA 2710 or MA 2720 or MA 3715) and MEEM 3750(C) and MEEM 3201(C) and MEEM 3911(C) or (MY 3110 or MSE 3110 and MY 3200 or MSE 3120 and MY 3210 or MSE 3130 and MY 3300 or MSE 3140 and MY 4940 or MSE 3190) or (HU 3120 and CMG 3250 and CMG 4120(C) and CMG 4210 and CMG 3200) or (HU 3120 and EET 3281 and EET 4253(C)) or SAT 3812(C) or SU 4100(C) or ENG 2120 or (MEEM 2110 and MEEM 2150) and ENG 3200 or (MEEM 2201 and MEEM 3201) and (EE 3101 or EE 2505 or GE 2300 or MEE 2100) and (ENG 3830(C) or ENG 4505(C)) or (MET 2400 and MET 3500(C) and MET 3451(C))

ENT 4960 - Enterprise Project Work VI Capstone
Interdisciplinary teams work as part of an enterprise to address real-world design projects or problems. Fourth-year students gain experience in defining project objectives, planning strategies to achieve these objectives, and leading technical teams to accomplish project goals.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): ENT 4950 and (BE 4900 or (CEE 3620 or CEE 3810) or CM 4855 or (CS 3712 or CS 4711 or CS 4760) or (ENT 3960 and EE 3131 and EE 3901 or EE 3171(C) or EE 3173(C)) or (GE 3860 and GE 3880) or (ENT 3950 and ENT 3960 and (MA 3710 or MA 2710 or MA 2720 or MA 3715) and MEEM 3750(C) and MEEM 3201(C) and MEEM 3911) or (MY 3110 or MSE 3110 and MY 3200 or MSE 3120 and MY 3210 or MSE 3130 and MY 3300 or MSE 3140 and MY 4940 or MSE 3190) or (HU 3120 and CMG 3250 and CMG 4120(C) and CMG 4210 and CMG 3200) or (HU 3120 and EET 3281 and EET 4253(C)) or SAT 3812(C) or SU 4100(C) or ENG 2120 or (MEEM 2110 and MEEM 2150) and ENG 3200 or (MEEM 2201 and MEEM 3201) and (EE 3101 or EE 2505 or GE 2300 or MEE 2100) and (ENG 3830(C) or ENG 4505(C)) or (MET 2400 and MET 3500(C) and MET 3451(C))

ENT 4961 - Enterprise Project Work VII
Course intended for students who have completed all project courses in Enterprise and who wish to continue with the program through graduation.
Credits: 1.0; Repeatable to a Max of 2
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): ENT 3950 and ENT 3960 and (ENT 4950 and ENT 4960) or (ENT 4900 and ENT 4910)

Undergraduate Course Descriptions Effective Fall 2020, Page 57 of 162
ENT 4970 - Enterprise Special Topics
For the development of new, senior-level instructional modules in support of the enterprise.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Class(es): Senior

English as a Second Language

ESL 0491 - Transitional Writing
For students of English as a second language, not for native speakers of English. Students work collaboratively on writing tasks of various genres through multiple drafts; emphasizes argument construction/deconstruction, source integration, sentence variety and cohesion.
Credits: 3.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): English as a Second Language

ESL 0492 - Transitional Listening and Speaking
For students of English as a second language, not for native speakers of English. Emphasis is on developing oral fluency, academic listening strategies, research skills, skills needed for group work and academic presentation skills with a focus on academic research projects.
Credits: 3.0; May be repeated
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): English as a Second Language

ESL 0493 - Transitional Reading and Vocabulary
For students in English as a second language, not for native speakers of English. This course emphasizes the continued acquisition of higher level reading skills needed for university courses, expansion of receptive and productive academic vocabulary, comprehension of authentic American university texts as well as other authentic reading materials of varying lengths.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): English as a Second Language

ESL 0590 - Academic Support Spec Topics
For students of English as a second language, not for native speakers of English. Study a specific area of ESL in greater depth than in other courses. Examples: graduate/research writing, business English, academic presentations. Contact Director of ESL Programs.
Credits: variable to 4.0; May be repeated
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Major(s): English as a Second Language; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

Visual and Performing Arts

FA 1601 - Introduction to Audio Production
An introduction to hands-on creative and technical work in sound. Work covers script analysis, story telling approaches, dialog direction and editing, sound effect and ambience design, music integration and DAW based mixing.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FA 1602 - Introduction to Music Mixing
A hands-on introduction to mixing music with emphasis on the support of musical principles and style. Students develop a technical understanding and practice the manipulation of volume, frequency, dynamics, pitch, and time to support the focus, rhythm, melody, and mood of a wide variety of musical styles.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring

FA 1701 - Backstage Technology
Overview of the basic techniques, theories, and terminology of technical theatre. Focus on practical application of stagecraft and rigging for a theatrical production, safety in technical theatre, physical theatre structures, production processes, and theatre organization.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring

FA 1702 - Lighting and Sound Technology
Overview of the basics of theatrical lighting, stage electrics, audio systems, and techniques for theatrical production. Focus on practical application of static and automated lighting for a theatrical production, including instrumentation and control. Introduction to live sound reinforcement, recording, and complex playback.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FA 1703 - Costume Technology
Introduction to basics of costume shop technology, costume construction/sewing. Focus on costume shop procedures, practical use of tools, machines, and techniques through individual projects and costumeing for mainstage productions. Overview of hand sewing and pattern fitting/alteration.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FA 2050 - Drawing I
Exploration and practice of fundamental principles of drawing. Develops skills in representational drawing, perspective, and composition. Develops creative and modern drawing techniques using a wide range of subject matter. Multi-media presentations and discussions illustrate classic principles while encouraging development of individual expression.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Summer
FA 2110 - Outdoor Sculpture
An introductory sculpture class focused on making works of art outdoors. Classes meet on the Michigan Tech trails or other outdoor locations. Students develop their own works of art and their own creative language. Includes conversations, local field trips, studio work, lectures, and readings.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Summer - Offered alternate years beginning with the 2019-2020 academic year

FA 2123 - World Music
This course introduces the student to the diversity of traditional music from around the globe. Students will explore the universal importance of music, its place within a global community, and effects of technology on the cross pollination of musical styles.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year

FA 2150 - Creative Drawing Processes
Students redefine "drawing" and challenge preconceptions of what it means to be "creative" through a range of exercises using materials such as paint, pencils, photos, video, and collage. Practice close observation to see the world in new ways.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Summer

FA 2160 - Creative Practices
Students will mindfully cultivate their creativity while making art connected to specific interests. Hands-on practice with basic photo, drawing, painting, and/or collage compliments theories of how artists/designers find inspiration. Prior drawing experience recommended.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: On Demand

FA 2190 - Art and Nature
Explore "nature" through art using materials ranging from what you find outdoors to digital media. Visits to natural sites provide inspiration and practice with creative fundamentals. Explore mindfulness, brainstorming, project development, and collaboration.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall

FA 2222 - Film Music
This course surveys the development of film music. Students will learn how music functions to support the aesthetic/narrative elements of the story. Students will learn skills to identify how music manipulates the listener and how composers shape that manipulation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2020-2021 academic year

FA 2300 - Art + Design Studio
Introduction to art and design. Explores design principles and creative problem solving using multiple materials. Students also examine design's ability to shape interpret information. Hands-on studio work, lectures, and discussions. Emphasizes creativity, inventiveness, and experimentation.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following Class(es): Senior

FA 2305 - Ceramics I
Introduces hand building ceramic techniques, including coil, slab, pinch and wheel throwing. The goal is to allow students to be individually creative through experimenting with the possibilities in three-dimensional form. Historical, contemporary, functional and sculpture processes will be explored.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Summer

FA 2315 - Beginning Wheel Throwing
Learning to use the potters wheel as an expressive tool is the goal of this course. In the context of traditional techniques for creating vessel forms students will also be challenged to explore their individual expressive and creative abilities.
Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Summer

FA 2330 - Art Appreciation
Introduces students to analytical tools to critically observe the visual world. By studying arts media, artists and designers, creative and technical processes, principles of design, as well as major works of art, students will express their own ideas about the visual experience in written form.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

FA 2361 - Scenic Art & Scenic Illustration
Students will learn small-format drawing, painting, and illustration techniques for theatre and architectural design, as well as large-scale scenic painting techniques for painting of murals, faux finishes, theatre, and opera. Lectures, discussions, and hands-on studio practice.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): FA 1701(C)

FA 2400 - Huskies Pep Band
The Huskies Pep Band provides enthusiastic support for a number of athletic programs at MTU and participates in important events in the community. The HPB is one of the most visible programs in the University. We are known as one of the country's most spirited college pep bands anywhere. May be used once as a general education co-curricular course.
Credits: 1.0; May be repeated; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring
FA 2402 - Campus Concert Band
The Concert Band provides the opportunity for students to pursue an interest in instrumental performance through the medium of a concert wind band. Repertoire of the ensemble includes music of the highest calibre with moderate technical demands. Open to students with prior experience in a band or orchestra. May be used once as a general education co-curricular course.
Credits: 1.0; May be repeated; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring

FA 2430 - Research and Development Jazz Band
The Research and Development Jazz Band is for instrumentalists wishing to learn the fundamentals of jazz improvisation and the nuances of the jazz idiom. Repertoire includes swing, jazz, Latin, ballads, fusion, and other contemporary jazz styles. Public performances are given on campus and in the surrounding area. Audition required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring

FA 2500 - Music Theory I
A study in composition, tonality, and functional harmony in Western tonal music. Course will cover ear training, part-writing, harmony, analysis and music composition with notation software.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): FA 2501

FA 2501 - Basic Musicianship: Skill Acquisition in Music Reading, Sight-Singing, and Ear-Training
This course covers music fundamentals including music reading, rhythm reading, scales, key signatures, intervals and chords. Students will acquire skills in sight singing and ear-training. Provides an introduction to melodic and rhythm solfege.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FA 2520 - Music Appreciation
Overview of key composers, works, styles, and aesthetics in classical music, from Middle Ages plainchant to John Cage’s experimental works in the 1940s-60s. Students will find compelling connections between music of the past and today’s pop music.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

FA 2570 - Music Lessons for Brass, Woodwind, String, Percussion, Harp, Piano, Voice, Guitar
Professional private music instruction on brass, woodwind, string, percussion, piano, organ, guitar, voice, and harp.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-1)
Semesters Offered: Fall, Spring, Summer

FA 2580 - Group Voice
The fundamentals of speech and singing including information about the vocal instrument, the vocal process, vocal technique, and how to learn and perform simple solo songs.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

FA 2600 - Beginning Acting
Teaches basic techniques of acting to include script and character analysis, internal and external approaches to performance, and basic use of voice and body.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FA 2640 - Stage Makeup
A practical guide to the theory and practice of makeup for the stage. Students will study basic techniques including corrective, aging, character makeup, and special effects.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring

FA 2650 - Audition Techniques
Students learn to prepare for the many types of auditions encountered in the professional world of performance through simulated audition situations, from the theatrical cattle-call to the screen test in film. Additionally, professional interviewing techniques are taught and practiced through simulation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): FA 2600

FA 2660 - Acting Practicum
Performance in a stage production or electronic media project. The project must be approved by the instructor either through audition or written contract of planned project.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

FA 2661 - Backstage Practicum
Open to students selected for the crew of a mainstage theatre production sponsored by the Department of Visual and Performing Arts. Positions on stage crews are open to all MTU students. Work assignments will be made by the technical director of the Department of Visual and Performing Arts.
Credits: variable to 3.0; May be repeated
Semesters Offered: Fall, Spring

FA 2662 - Sound Practicum
Students get hands-on experience in live and recorded sound as well as in system maintenance and design. This work is done in a simulated internship experience. Students are expected to take this course multiple times and work towards leadership positions.
Credits: variable to 3.0; May be repeated
Semesters Offered: Fall, Spring
Pre-Requisite(s): FA 1702 and (FA 1601 or FA 1602)
FA 2663 - Career Development
Provides students the opportunity to attend professional events which contribute to the development of their careers. Students will experience seminars, workshops, performance opportunities, competitions, and may perform services and interact with professionals at such events as KCACTF, AES, USITT, and URTA.
Credits: 1.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-0-1)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Media Perf., Audio Production & Technology

FA 2664 - Dramaturgy Practicum
Practical experience in theatre productions researching and analyzing scripts and relevant topics to enrich the theatrical experience for both producer and audience.
Credits: 1.0; Repeatable to a Max of 3
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

FA 2701 - Drafting for the Entertainment Industry
Basics of hand drafting conventions and standards used in the entertainment industry. Focus on design and technical techniques for views such as: ground plans, elevations, sections, detail drawings, orthographic projections, scale perspective drawings. Introduces industry-specific CAD programs.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring

FA 2705 - Stage Properties - Designing and Crafting
A focus on the design, research, production, and management of stage properties including: script, analysis, period and style, appropriateness, set dressing. Development and utilization of effective tools, materials, and techniques for structure, details, and finishing.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): FA 1701(C)

FA 2706 - Intermediate Backstage Technology
Focus on construction and the variable applications of stagecraft, rigging, and production processes with attention to safety and typical structures for the entertainment industry.
Credits: 3.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Spring - Offered alternate years beginning with the 2021-2022 academic year
Pre-Requisite(s): FA 1701

FA 2710 - Movement for Performers
Develops physical flexibility and strength, beginning with discovery of the body's physical center. The student will learn to create characters by focusing on posture, movement in space, and kinesics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2009-2010 academic year

FA 2720 - Sound in Art and Science
Sound design of movies is critical to their success because of sounds incredible power over the way we feel. From the music and sound effects in movies, to Zen gardens, to Harley exhaust we explore the ways sound provides a foundational emotional engagement to our experience of the world around us.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Summer

FA 2730 - Costume Crafts
Research and exploration of the theatrical techniques used to create costume crafts and personal props. Practical projects will challenge students to develop skills in millinery, leatherwork, painting and dyeing, fabric manipulation, mask making, jewelry, and safe use of materials.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year

FA 2820 - Theatre Appreciation
Students engage theatre as a phenomenon precipitating experiences affirming life and sparking insight. Exploration of creativity comes through exercises and play writing; critical thinking is practiced in script analysis. Aesthetics, and production roles are applied in staging a short play.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring

FA 2830 - Voice and Articulation
An applied study of the use of voice. Students work to develop stronger, more vibrant and articulate professional speech. Accent reduction is covered extensively. Additionally, techniques for media are introduced.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2010-2011 academic year

FA 3000 - Visual & Performing Arts Tour
Students participating in fine arts performance tours taking place outside of regular academic terms are eligible to receive credit based on the time span of the tour and the nature of the itinerary. Requires active membership in the touring group or permission of director.
Credits: variable to 3.0; May be repeated; Graded Pass/Fail Only
Semesters Offered: On Demand
Restrictions: Permission of instructor required

FA 3112 - Music Composition I
This course is a study in the art of acoustic instrumental, vocal and MIDI composition. Students will study music of contemporary composers and create compositions for performance.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): FA 2500 and FA 3530(C)
FA 3122 - Music Composition II
This course is a continuation of Music Composition I. Students expand their skills to include composition for media including, film, television, and digital arts. Students will apply their skills to create fully realized live performances of their compositions.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): FA 2500 and FA 3530 and FA 3112

FA 3133 - Contemporary Music: The Search for New Sounds
Contemporary Music will explore music from the late nineteenth century through today. The focus of the class will be modern composers' search for new sounds using electronic instruments, popular music, non-western music, and new performance techniques.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requisite(s): (FA 2500 and FA 3560) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3150 - Drawing II
Observational and imaginative drawing including the human figure. Non-representational drawing. Contemporary drawing systems, concepts, and processes. Emphasizes proportion, structural framework, visual measurement, movement, and relationships. Students work in a variety of drawing media.

Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): FA 2050 or FA 2150 or FA 2300 or FA 2305 or FA 2330 or FA 2160

FA 3180 - Color and Creativity: Exploring the Power of Color through Paint, Composition, and Design
Course emphasizes use of water-based paint to study color theory and explore the expressive potential of color. Exercises in creative thinking and being, including work with basic photo and collage, underpin experimentation with design and composition of color in visual images.

Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Pre-Requisite(s): FA 2190 or FA 2150 or FA 2050 or FA 2110 or FA 2361 or FA 2300 or FA 2305 or FA 2315

FA 3305 - Creative Ceramics
Addresses ceramic theory, history, and science, and aims to develop the content and quality of students' work in clay. Students will learn new ways of creating forms through use of the wheel, molds, and study of clay and glaze technologies.

Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring, Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3330 - Art History - Prehistory to Renaissance
Surveys world art and architecture from the Paleolithic (30,000BC) to the Renaissance (1500AD). Focusing on city building, cave painting, glass, ceramics, frescoes, and metal casting, students will interpret the visual arts as historical evidence and expressions of cultural beliefs.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3333 - Contemporary Sculpture Studio
Introduction to contemporary sculpture using a range of materials and approaches. Emphasizes development of student's creative language. Hands-on studio work, lectures, discussions. Class takes place in Rozsa gallery; includes student exhibit at end of semester.

Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): (FA 2050 or FA 2110 or FA 2150 or FA 2190 or FA 2300 or FA 2305 or FA 2315 or FA 2361) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3335 - Traditional Sculpture Studio
Introduction to traditional ways of making sculpture around the world. Students develop studio skills while studying creative traditions from varied cultures. Hands-on studio work, lectures, discussions. Class takes place in Rozsa gallery; includes student exhibit at end of semester.

Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring
Pre-Requisite(s): (FA 2050 or FA 2110 or FA 2150 or FA 2190 or FA 2300 or FA 2305 or FA 2315 or FA 2361) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3340 - Art History - Renaissance to Today
Surveys Western art from the Renaissance (1500AD) to today. Focusing on painting, sculpture, architecture, and photography. We will study art in relation to its national, international, social, cultural, and historical contexts.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3360 - Ceramic Sculpture
Explores the material properties and expressive potential of clay. Learning a variety of sculptured techniques, students will demonstrate the ability to incorporate the elements and principles of art (line, space, form, harmony) to create aesthetic artwork.

Credits: 3.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: On Demand
Pre-Requisite(s): FA 2050 or FA 2110 or FA 2150 or FA 2190 or FA 2300 or FA 2305 or FA 2315 or FA 2361
FA 3400 - Keweenaw Symphony Orchestra
The KSO is a college-community orchestra comprising Tech students, Tech faculty, and community musicians. The ensemble performs the great orchestra, opera, and ballet masterworks. The orchestra presents four-five yearly concerts, including periodic concert tours. Auditions required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring

FA 3401 - Wind Symphony
The Wind Symphony is a concert wind ensemble of variable size and instrumentation for students with a serious interest in musical performance at a high level. Features a comprehensive approach to the literature to be performed, including study of composers and historical background. Audition required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring

FA 3430 - Jazz Lab Band
A select ensemble of approximately twenty instrumentalists studying jazz improvisation and performing literature for the jazz ensemble. Repertoire includes swing, jazz-rock, ballads, fusion, and experimental compositions. Activities include performances at festivals, concerts, and dances, and a spring-break tour. Course work includes topics in jazz history, music theory, and improvisation. Audition required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

FA 3501 - Conducting and Interpretation
Fluency in reading, analyzing, and interpreting orchestral, band, and choral music scores; principles and techniques of conducting a music ensemble; live conducting experiences with music ensembles; in-depth analysis of live and recorded classical, jazz, and rock music; fundamentals of musicianship.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): FA 2500 or FA 2501

FA 3510 - Concert Choir
A select ensemble made up of student and community singers studying and performing traditional choral literature ranging from chant to avant-garde compositions. Activities include campus and community performances and occasional international tours. Audition required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring

FA 3530 - Music Theory II
A study in composition and functional harmony in Western tonal music. Will include chromatic harmony, contemporary compositional technique, popular styles, ear-training, part-writing, analysis and music composition with notation software.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): FA 2500

FA 3550 - History of Jazz
Covers the musical, historical, and sociological elements of America's only original musical art form, jazz. Focuses on the major stylistic eras from 1900 to the present in addition to the major artists and their contributions. Emphasizes developing interactive, aural, and critical skills.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2009-2010 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3560 - Music History
Developments in western classical music from the 1770s to 1970s in Europe and America. Includes a brief examination of Baroque music. Concentrates on music, style, aesthetics, culture, and biographies of major composers from the Classical, Romantic, and Twentieth-Century periods.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3565 - Masterworks in Western Music Literature
Examination of selected works from the canon of Western Music in context of relevant historical events. Students will explore the relation of text and music, ritual and music, rhetorical tropes in music as well as expressions of musical form.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requisite(s): FA 2500(C) or FA 2501(C)

FA 3575 - Electronic Music: History and Practice
Introduction to the history of, and practices of making, electronic music. This course presents a survey of the most significant artists in the history of electronic music. Provides hands-on training and projects in electronic music production.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 1601 and FA 1602

FA 3580 - Chamber Choir
Participation in the Chamber Choir provides opportunities for students to explore and perform music written for small choir. Repertoire from varied styles and time periods (from antiquity to the present) will be prepared and presented in formal and informal performance settings. Audition required.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring
FA 3600 - Advanced Acting

Students explore acting through analytical and theoretical study of script and characters. Understanding of characters in the context of a play or film will prepare students to apply advanced acting techniques such as Meisner and Stanislavski.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year

Restrictions: May not be enrolled in one of the following Class(es): Freshman

Pre-Requisite(s): FA 2600 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3620 - Acting for Television and Film

Advanced applications of fundamental acting technique and presentation skills with the added dynamic of the camera. Students will explore scene work for television and film, as well as commercial performance techniques for advertising in digital media.

Credits: 3.0

Lec-Rec-Lab: (3-0-0)

Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year

FA 3625 - History of Rock

This course acquaints students with the musical, historical, cultural, and sociological elements of Rock music. It covers the major stylistic eras from the 1920s to the 1990s, and the major artists and their contributions. Emphasis is placed on students developing critical listening skills.

Credits: 3.0

Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall, Summer

Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3630 - The Beatles and the Beach Boys: An Analysis of Their Music, Their Evolution, Their Rivalry

Analysis of biography, formative vs. mature style, musical structure, and historical impact of the Beatles and the Beach Boys.

Credits: 3.0

Lec-Rec-Lab: (3-0-0)

Semesters Offered: Summer

Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3640 - Puppet Construction and Manipulation

Exploration and analysis of design principles for puppetry, introduction to construction and manipulation methods in shadow puppets, foam-based puppets, and rod puppets.

Credits: 3.0

Lec-Rec-Lab: (0-0-3)

Semesters Offered: On Demand

Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3650 - Stage Management

Procedures and skills for effective stage management of theatrical productions, including coordination of performers and technicians during rehearsal and performance periods. Instruction in stage manager's notation used for blocking, scene shifts, and cues for lighting, sound, special effects, and performers.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year

Restrictions: May not be enrolled in one of the following Class(es): Freshman

FA 3660 - Advanced Acting Practicum for Film/Video/Stage

Practical experience of the production processes of theatre and media. Students will research, rehearse, and perform a role in an approved theatre or media project.

Credits: 1.0; Repeatable to a Max of 2

Lec-Rec-Lab: (0-1-0)

Semesters Offered: Fall, Spring

Restrictions: Permission of instructor required

Pre-Requisite(s): FA 2660

FA 3661 - Design & Management Practicum

Open to students who take significant responsibility for a Visual and Performing Arts production, such as stage manager, assistant designer, or assistant director.

Credits: 2.0; May be repeated

Lec-Rec-Lab: (0-2-0)

Semesters Offered: Fall, Spring

Pre-Requisite(s): FA 2661

FA 3662 - Advanced Sound Practicum

Open to students who take significant responsibility for sound on a major production, such as sound designer, recording engineer, live sound engineer.

Credits: variable to 3.0; May be repeated

Semesters Offered: Fall, Spring, Summer

Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702 and FA 2662 and FA 3730

FA 3663 - Professional Presentation

Provides students the opportunity to present at professional events which contribute to the development of their careers. Students will prepare and present design, technical, or performance projects, papers, and/or posters to be viewed and critiqued by professionals at such events as KCACTF, AES, USITT, and URTA.

Credits: 1.0; Repeatable to a Max of 4

Lec-Rec-Lab: (0-0-1)

Semesters Offered: Fall, Spring

Pre-Requisite(s): FA 3700(C) or FA 3730(C) or FA 3750(C) or FA 3760(C) or FA 3650(C) or FA 2640(C)
FA 3666 - Professional Audition
The objective of this course is to provide experience for performers to engage in auditioning for professional media and theatre companies. Students will research the expectations for unique acting opportunities and develop a plan for auditioning. Students will present their work at a professional audition.
Credits: 1.0; Repeatable to a Max of 2
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Elec. Media Perf.; May not be enrolled in one of the following Class(es): Freshman

FA 3680 - Period Acting Styles
Provides knowledge and experience in playing the manners, movement, and language in plays of the most frequently performed periods.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): FA 2600 or FA 2820

FA 3700 - Scenic Design
Fundamentals of designing theatrical scenery through various explorations and projects. Focus on professional design development and presentation techniques: theatrical drafting conventions, renderings, scale models. Also, designer/director relationships, script analysis, research design concepts/history/styles. Students are introduced to a mainstage theatre design.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2000-2001 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 1701 or FA 2820

FA 3701 - Advanced Backstage Technology
Techniques, theories, and terminology of technical theatre. Focus on application of advanced stagecraft through safety, woodworking, metalworking, budgeting, project management, and shop management.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2011-2012 academic year
Pre-Requisite(s): FA 2701 and FA 2706

FA 3703 - Advanced Costume Construction
Building on basic sewing skills and costume technology, students will explore fabrics and more advanced construction techniques: patterning methods such as flat patterning, draping, gridding, pattern alterations for fit and using slopers, construction of historical costumes such as corsets.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): FA 1703

FA 3710 - Vocal Approaches for Theatre and Electronic Media
Students will learn vocal approaches to specific types of speaking situations, including radio commercials, instructional videos, announcements, cartoons, and theatrical productions. Students will practice vocal projection for a large theatre/auditorium, as well as microphone technique for electronic media.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2008-2009 academic year

FA 3730 - Sound Design
Introduction to designing sound through design projects. Focuses on fundamental technical understanding, practical design presentation techniques, specific drafting conventions, exploration of sound equipment, designer/director/artist relationships, script analysis and design concepts, and design history.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702

FA 3731 - Live Sound Design Intensive
Students design, install, program, run, and record a major live production. Sound will be an essential part of the story telling experience requiring a close relationship with the actors and extensive integration with other design elements.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Sound Design, Theatre & Entertain Tech (BS), Theatre & Electr. Media Perf., Audio Production & Technology; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702 and FA 2662 and FA 3730

FA 3732 - Audio Creative Lab
A creative lab for students interested in the aural arts. Students will be challenged to create sound designs and compositions in response to various aesthetic, dramatic, and philosophical goals for radio, multimedia, and live performance.
Credits: 1.0; Repeatable to a Max of 4
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702 and FA 3730
FA 3736 - Sound Systems Design and Engineering
Fundamentals of sound systems design & engineering for a variety of entertainment industry scenarios, including: speaker coverage, system tuning, DSP programming, technical documentation, design phases, revision control, interaction with clients, interaction with design teams in other disciplines, and budget estimation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Entertain Tech (BS), Sound Design, Audio Production & Technology; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702

FA 3740 - Recording
Learning in the art of the recording engineer. Students develop an understanding of pop and classical recording approaches, skills to decide which approach is appropriate for a given task, and the technical knowledge necessary to implement the chosen approach.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Sound Design, Theatre & Entertain Tech (BS), Theatre & Electr. Media Perf., Audio Production & Technology
Co-Requisite(s): FA 3741
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702

FA 3741 - Recording Lab
Hands-on learning in the art of the recording engineer. Students develop an understanding of pop and classical recording approaches, skills to decide which approach is appropriate for a given task, and the technical knowledge necessary to implement the chosen approach.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Entertain Tech (BS), Sound Design, Audio Production & Technology
Co-Requisite(s): FA 3740
Pre-Requisite(s): FA 1601 and FA 1602 and FA 1702

FA 3750 - Lighting Design
Fundamentals of designing theatrical lighting through various explorations and projects. Focus on professional design development and presentation techniques: theatrical drafting conventions, light sketches, plots. Also, designer/director relationships, script analysis, research, design concepts/history. Students are introduced to a mainstage theatre design.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2005-2006 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 1702 or FA 2820

FA 3760 - Costume Design
Fundamentals of designing theatrical costumes through various explorations and projects. Focus on professional design development and presentation techniques: costume renderings, patterning, color/fabric analysis. Also, designer/director relationships, script/character analyses, research, design concepts. Students are introduced to a mainstage theatre design.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2003-2004 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3780 - Directing for Theatre
A comprehensive, in-depth study of mounting a theatre production with an emphasis on directing. Through script analysis, students study the necessary production elements, how they interrelate, and directing techniques to create a unified production from the director's vision.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Permission of instructor required
Pre-Requisite(s): FA 2800

FA 3810 - Theatre History I
Study of the Cultural History of Theatre from is likely beginnings through the English Restoration, including traditions of both eastern and western theatre.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3821 - Theatre History II
Study of the Cultural History of Theatre from the end of the English Restoration through the contemporary era.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3830 - The Broadway Musical
A multimedia examination of important works of American musical theatre, how these works have mirrored or shaped our culture, and how New York City has shaped or been shaped by this vibrant art form.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
FA 3860 - Costume History
A study of costume fashion, emphasis on the western world, from antiquity through the 20th Century. Including: basic characteristics of each period, environmental & cultural influences, specific costume terminology. Comparative analysis of historic costume choices found in film & theatre.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2012-2013 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 3880 - Readings in Dramatic Literature
An examination of dramatic literature with an emphasis on theatre production. Students will examine a selection of plays each semester. Students can repeat the course up to four times; each semester examines different plays.
Credits: 1.0; Repeatable to a Max of 4
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Sound Design, Theatre & Entertain Tech (BS), Theatre & Electr. Media Perf., Audio Production & Technology; May not be enrolled in one of the following Class(es): Freshman

FA 3975 - Portfolio Development
Techniques for building a professional design and technical portfolio for the theatre and entertainment industry. The final result of the course will be a portfolio of all work to date.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FA 4150 - Advanced Creative Drawing and Painting Studio
Explore varying mixes of contemporary and traditional drawing and painting practices. Develop your own language and direction based upon personal interests. Experiment with varied materials. Prepare to unlock your creativity and expand your definitions of "drawing" and "painting". Course emphases change each semester.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 2050 or FA 2150 or FA 2160 or FA 2320 or FA 3150 or FA 3180

FA 4200 - Advanced Creative Mixed Media Studio
Advanced work in mixed media such as watercolor, collage, drawing, and/or simple tech. Compositional theory as well as advanced applications of personal expression in mixed media may be included. Emphasis on independence in approach to materials, techniques, and concepts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

FA 4300 - Advanced Sculpture Studio
An advanced studio course. Students create works of art inside the student gallery/classroom in the Rozsa, and study traditional & contemporary sculpture. Projects, lectures, readings, and discussions. Focus is on development of the student's personal arts language.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: Permission of instructor required
Pre-Requisite(s): FA 2110 or FA 2190 or FA 2305 or FA 3305 or FA 3333 or FA 3335 or FA 3360

FA 4305 - Advanced Ceramics
Students will work on developing technical skills, aesthetic sensibilities (including use of historic and contemporary references in ceramics and other arts, criticism, expression of personal concepts in works). Students will build on basic information from prior hand-building, throwing, vessel, and ceramic sculpture coursework.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 2190 or FA 2305 or FA 2315 or FA 3305 or FA 3333 or FA 3335 or FA 3360

FA 4350 - Studio Research Assistant
Work with art faculty in professional gallery, field, or public art design studio settings on professional level projects in an assistant capacity. Project nature will vary with each semester.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 2160 or FA 2190 or FA 3150 or FA 3305 or FA 3333 or FA 3335 or FA 3360

FA 4400 - Chamber Music Seminar
For students interested in the study and performance of instrumental chamber music. Small ensembles meet once each week for coaching, presentations, and discussion on literature and techniques of rehearsal and performance.
Credits: 1.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

FA 4420 - Music Performance: Jazz
Jazz combos (e.g., Jaztec, Salsa Norte) are select small groups of musicians studying jazz improvisation and performing literature for the small jazz ensemble. Focuses on developing individual improvisational techniques, personal style, and unique original arrangements. Repertoire includes swing, jazz-rock, ballads, fusion, and experimental techniques. Activities can include performances and tours.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required
FA 4620 - Musical Theatre Performance
Provides specialized experience in performance styles of the musical theatre through scene-study and process from sheet music to the stage.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FA 4650 - Production Management for the Entertainment Industry
Focus on techniques to coordinate production and artistic operations for the theatre and entertainment industries and venues. Emphasis on effective event management processes including: safety, budgeting, scheduling, personnel, rehearsals, performance, communication, facilities.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

FA 4690 - Voice Acting Lessons
Private intensive in voice acting focusing on one specific genre (i.e. audio book narration, radio/television commercials, animated videos, technical narration, IVR messaging, etc.). Course covers basic skills for chosen genre and includes private coaching with the instructor as well as an industry professional.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Elec. Media Perf.; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FA 2830 and FA 3710(C)

FA 4701 - Stage Mechanics and Rigging
Practical application and theory of stage mechanics and rigging. Emphasis will be placed on theatrical systems such as line-sets, turntables, and scenery lifts. Course will also explore automation through pneumatics, hydraulics, and motor control.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2010-2011 academic year
Pre-Requisite(s): FA 1701

FA 4740 - Transducer Theory
In depth study of Microphone and Loudspeaker design as it applies to usage in recording and live sound reinforcement with an emphasis on interaction with the acoustical environment.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Entertain Tech (BS), Sound Design, Audio Production & Technology
Co-Requisite(s): FA 4741
Pre-Requisite(s): FA 1702 and FA 2662 and FA 3730 and PH 1090

FA 4741 - Transducer Theory Lab
Laboratory to practice the application of loudspeaker and microphone principles. Designed to be taken concurrently with FA4740 Transducer Theory.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Theatre & Entertain Tech (BS), Sound Design, Audio Production & Technology
Co-Requisite(s): FA 4740

FA 4800 - Jazz Improvisation
Explores the elements of jazz improvisation while developing creative ideas and technical facility in the individual musician. Emphasis will be placed on learning the idiomatic use of the major scale and associated modes, the jazz melodic minor scale, the blues scale, pentatonic scales, and the 8-tone dominant scale. Development of stylistic conformity by exploring the styles of swing, bebop, cool, blues, Latin and rock/funk. Emphasis on the II-V-I progression in major and minor keys and symmetric harmony.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2001-2002 academic year
Pre-Requisite(s): FA 3530

FA 4820 - Jazz Arranging
Explores elements of jazz arranging and composition while developing creative ideas in the individual musician. Emphasis on learning to arrange for jazz combo and traditional big band. Includes developing the shape concept of triad use, 4-part and 5-part chord voicing, construction of an arrangement, and competence with FINALE notational software.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2003-2004 academic year
Pre-Requisite(s): FA 2500 and FA 3530

FA 4900 - Independent Study in Visual and Performing Arts
Independent research directed by Visual and Performing Arts faculty. Projects focus on one or more of the visual and performing genres; theatre, music, visual art. Requires a written proposal setting out goals, plans for final project, and the resources required to complete the project.
Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

FA 4950 - Special Topics in Visual & Performing Arts
Tutorial, seminar, or class study of a topic of special interest and importance in visual and performing arts.
Credits: variable to 3.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

FA 4960 - Special Topics Workshop
Special workshop projects in the visual and performing arts.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required
FA 4970 - Visual and Performing Arts Final Project
Capstone course extending the student's knowledge and skill in a chosen fine arts discipline through independent research or other focused creative activity. A detailed proposal of the student's final project must be approved in writing by a Visual and Performing Arts faculty advisor before the student enrolls in FA4970.
Credits: variable to 3.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

Finance

FIN 2400 - Financial Literacy
Developing fluency with consumer financial decisions. Topics include goal setting, budgeting, financial disclosures, interest rate mathematics, funding major purchases, credit and loan matters, savings and investment opportunities, taxation, retirement plans and insurance protection, with an emphasis on evaluating financial alternatives.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

FIN 3000 - Principles of Finance
Introduction to the principles of finance. Topics include financial mathematics, the capital investment decision, financial assets valuation, and the risk-return relationship
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): ACC 2000 and (MA 1020 or MA 1030 or MA 1031 or MA 1032 or MA 1120 or MA 1160 or MA 1161 or MA 2160 or ALEKS Math Placement >= 61 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or ACT Mathematics >= 22 or SAT MATH SECTION SCORE-M16 >= 540)

FIN 4000 - Investment Analysis
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): EC 3400 or FIN 3000 and (MA 2710 or MA 2720 or MA 3710)

FIN 4100 - Advanced Financial Management
Advanced topics in managerial finance: Advanced capital budgeting, project analysis, capital acquisition, capital structure and dividend policy, and other topics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): EC 3400 or FIN 3000

FIN 4200 - Derivatives and Financial Engineering
Covers the pricing and use of options, financial futures, swaps, and other derivative securities.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): EC 3400 or FIN 3000 and (MA 2710 or MA 2720 or MA 3710)

FIN 4300 - Personal Financial Planning
Overview of personal financial issues and services and instruments offered by economic and financial institutions. Topics include the personal financial environment, personal investments and asset management, tax planning, the development of an adequate but cost-effective insurance program, and retirement planning.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BA 3400 or EC 3400 or FIN 3000

FIN 4400 - Equity Analysis
Detailed analysis of equity valuation, including applications and processes, estimation of valuation assumptions, absolute valuation models (dividend discounting, free cash flow and residual income) and relative valuation models (market-based), with a focus on practice-based techniques.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): FIN 3000 or EC 3400

FIN 4500 - Risk Management and FinTech
Understand risk and tools for analyzing risk in business. Includes topics such as capital management, bankruptcy, insurance and hedging strategies as well as cutting edge innovations in financial technology such as artificial intelligence, cryptocurrency, and decentralized financial systems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): FIN 3000 or EC 3400

FIN 4600 - Financial Technology Foundations
Financial technology applies information technology to the financial services industry. Students will learn about the technological foundations of financial technology, including an in-depth understanding of distributed ledger technology, messaging, transaction systems, application programming interfaces (API), structured financial data, unstructured data, big data, and machine learning.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): EC 3400 or FIN 3000

FIN 4700 - Global Finance
Studies international financial systems and markets. Covers the principle of comparative advantage, balance of payments, exchange rate systems, theories of international finance, identification of international risk exposures, the management and treatment of risk, and special topics of international finance.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): BA 3400 or EC 3400 or FIN 3000
FIN 4801 - Applied Portfolio Management I
Covers issues in the management and administration of investments in an institutional setting. Students form a new investment firm and manage a real portfolio of financial assets.
Credits: variable to 3.0
Semesters Offered: Summer
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

FIN 4802 - Applied Portfolio Management II
Covers issues in the management and administration of investments in an institutional setting. Students form a new investment firm and manage a real portfolio of financial assets.
Credits: variable to 3.0
Semesters Offered: Fall
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

FIN 4803 - Applied Portfolio Management III
Covers issues in the management and administration of investments in an institutional setting. Students form a new investment firm and manage a real portfolio of financial assets.
Credits: variable to 3.0
Semesters Offered: Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

FIN 4990 - Special Topics in Finance
Examines current issues in Finance and other topics of interest to faculty and students in greater depth.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Pre-Requisite(s): EC 3400 or FIN 3000

Forest Resources & Env Science

FW 1035 - Wood Anatomy and Properties
An introduction to the anatomical and physical nature of woody materials and how these characteristics are related to its applications as a sustainable raw material.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Spring

FW 1050 - The Natural Resource Professional
Seminar introduces students to the various careers within forestry, conservation, ecology, and wildlife that represent specialties within natural resources. Students explore natural resource issues around the world, and practice effective written and communication skills.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring

FW 1570 - First-Year Experience in Ecology
Study of a broad array of ecology disciplines, techniques, and ecological problems.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): App Ecol & Environ Sci; Must be enrolled in one of the following Class(es): Freshman, Sophomore

FW 2010 - Vegetation of North America
Identification of trees and shrubs. Study of seed dispersal, dormancy, and community ecology, with an emphasis on trees. Systematic study of the major forested vegetation types of North America.
Credits: 4.0
Lec-Rec-Lab: (2-0-4)
Semesters Offered: Fall

FW 2030 - Conservation of Nature
This course explores the history and evolution of conservation in thought and practice, with an emphasis on the writings and legacy of conservation pioneers such as Aldo Leopold.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman

FW 2051 - Field Techniques
Equipment and techniques used in forestry, wildlife, ecology, and recreation management. Topics include field safety, land measurement and navigation, establishment of sample locations, measurement of attributes of individuals and groups of trees, vegetation and other organisms.
Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall

FW 2060 - Fundamentals of Environmental Sustainability
The four scientific principles of sustainability (reliance on solar energy, biodiversity, nutrient cycling, population control) are the foundation of the course. The course applies basic principles of physics, chemistry, and biology and a systems approach to provide students with a fundamental understanding of how the environment functions and strategies for sustaining natural resources.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): (MA 1030 and MA 1031) or MA 1032 or MA 1120 or MA 1135 or MA 1160 or MA 1161 and (CH 1150 and CH 1151)

FW 2995 - Current Issues in Natural Resources
Covers timely issues in natural resources research, planning, or management as specified by section title.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: On Demand

FW 3010 - Practice of Silviculture
Methods of controlling the establishment, growth, composition, health and quality of forests and woodlands to meet the diverse needs and values of landowners and society on a sustainable basis. Course held at Ford Center, Alberta, MI.
Credits: 4.0
Lec-Rec-Lab: (2-1-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Forestry, Wildlife Ecology & Mgmt, App Ecol & Environ Sci
Pre-Requisite(s): FW 2010 and FW 2051
FW 3012 - Survey of Silviculture
An introduction to the practice of silviculture including ecological principles which form the basis for forest management. The course emphasizes proper use of silviculture terminology and includes field examples of management practices. Course held at Ford Center, Alberta, MI.
Credits: 2.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry
Pre-Requisite(s): FW 2010 and FW 2051

FW 3020 - Forest Ecology
Environmental factors and plant and animal characteristics which control composition, structure, and function of forest ecosystems. Emphasis on how ecosystems change across space and time and knowledge needed to sustainably manage forest ecosystems for social, economic, and ecological benefits.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): FW 2010(C) and FW 2051(C)

FW 3075 - Introduction to Biotechnology
The course covers basic concepts and practical applications in biotechnology. Topics include the use of biotechnology in agriculture, healthcare, and environmental remediation. Advances in gene containment, regulatory, societal and environmental issues associated with commercialization of biotechnological products will be discussed.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

FW 3090 - Mechanics of Solid Wood and Wood Composites
An overview of the mechanical properties of wood that are related to engineering and structural applications of lumber, timber, and wood composite panels.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following College(s): College of For Res & Env Sci, College of Engineering; May not be enrolled in one of the following Class(es): Freshman

FW 3097 - Forest Biomaterials
Examines the nature and use of forest biomaterials and their role in the larger economy. Local and global advantages and challenges for using forest biomaterials will be addressed within the context of sustainability, covering topics such as economics, material and product engineering, policy, life cycle analysis, and supply chain management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

FW 3098 - Adding Value to Forest Biomaterials
Examines how forest biomaterials are converted from raw forms into intermediary or final products that can support a sustainable future. Manufacturing sites in the upper Midwest are visited during the week prior to the start of fall semester. Lecture topics include the forest bioeconomy, emerging and export markets, and industry challenges.
Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): FW 1035

FW 3110 - Natural Resource Policy
Covers concepts related to social systems and natural resources. Offers a survey of natural resource policies and organizations. State and federal levels of policymaking, policy processes, and policy implementation and evaluation as related to natural resource management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer

FW 3111 - Wild Foods: Northern Forests
This class engages students online and in the field in learning practical skills utilizing vegetation of the northern forest for food, medicines, and utilitarian purposes. The course provides a basic overview of cultural and historical importance of the interactions between people and plants.
Credits: 2.0
Lec-Rec-Lab: (1-0-1)
Semesters Offered: Summer - Offered alternate years beginning with the 2020-2021 academic year

FW 3112 - Human Dimensions of Wildlife Conservation
Integration of competing stakeholder objectives affects wildlife conservation and management outcomes. Federal law including the Endangered Species Act (ESA), domestic and international treaties, and Traditional Ecological Knowledge (TEK) are introduced.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FW 1050

FW 3113 - Alberta: Place, People, History
Examines the natural, industrial, and cultural history that shaped the world we see today in Alberta, Michigan. It will explore the influences and intersection of Ford Motor Company, natural resources management, and indigenous people in an effort to understand how to create sustainable human and natural systems. Course held at Ford Center campus.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
FW 3116 - Ethnobotany

The development and variety of plant use across cultures, the transition to commercialization of plants, how current uses are tied to traditional uses, and methods of ethnobotanical research.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FW 3150 - Timber Harvesting

Methods and techniques used in lake states timber harvesting systems. Introduces best management practices, aesthetic and ecological impacts, logging cost analysis, timber appraisal, and timber sale preparation and administration. Course held at Ford Center, Alberta, MI.

Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry
Pre-Requisite(s): FW 2051

FW 3170 - Land Measurements and GPS

Introduces field measurements and computations involved in determining direction, distance, and area. Covers the hand compass, pacing, and use of GPS, including differential correction. Integration of GPS data with GIS is emphasized. Course held at Ford Center, Alberta, MI.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry
Co-Requisite(s): FW 3190
Pre-Requisite(s): FW 3540

FW 3180 - Geomorphology, Landscapes and Ecosystems

Provides basic understanding of the geologic and glacial processes that shaped the landscape of the Upper Midwest influencing the distribution and productivity of modern-day plant communities. Topics include geology of Michigan, glacial geomorphology, soil development, landscape and community ecology, and forestry. Course held at Ford Center, Alberta, MI.

Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Wildlife Ecology & Cons, App Ecol & Environ Sci, Natural Resources Management; May not be enrolled in one of the following Class(es): Freshman

FW 3190 - Multi-resource Assessment

Develops basic proficiency in the application of multiple-resource measurement techniques. Gain familiarity with the application of individual tree and landscape measurements as well as estimation of growth, sampling techniques, computational procedures, and mapping procedures commonly used in forest and land management. Course held at Ford Center, Alberta, MI.

Credits: 3.0
Lec-Rec-Lab: (0-1-4)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry
Pre-Requisite(s): FW 2051 and FW 3020 and FW 3200 and (MA 2710 or MA 2720 or MA 3710)

FW 3200 - Biometrics and Data Analysis

Sampling design, implementation and analysis for inventory and monitoring of attributes of stands, forests and landscapes. Includes computing skills for data entry, storage and analysis and application of statistical techniques to answer questions about ecological data.

Credits: 4.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): FW 2051 and (MA 2710 or MA 2720 or MA 3710)

FW 3313 - Sustainability Science

Foundational scientific concepts (dynamic systems and catastrophe theory) as applied to socioecological systems. Use of indicators and indices to track progress towards sustainability goals. Review of local, national, and global sustainability policies to avoid catastrophes and guide sustainable development.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FW 3320 - Fundamentals of Forest Genetics and Genomics

This course will teach fundamental and applied genetic principles that are essential for management of forest and other ecosystems to maintain their long-term health and sustainability. The class will cover the following topics: structure and function of ecosystems to maintain their long-term health and sustainability.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FW 3330 - Soil Science

Introduction to the chemical, physical, and biological properties of soil.

Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall
Pre-Requisite(s): CH 1112(C) or (CH 1150(C) and CH 1151(C))
FW 3376 - Forest & Environmental Resource Management (The FERM) I
Application of forest and environmental management practices by teams of students with the assistance of faculty, staff and local and regional partners.
Credits: 2.0; May be repeated
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): FW 2010 and FW 2051

FW 3377 - Forest & Environmental Resource Management (The FERM) II
Application of forest and environmental management practices by teams of students with the assistance of faculty, staff, and local and regional partners.
Credits: 3.0; May be repeated
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): FW 2010 and FW 2051

FW 3410 - Conservation Biology
Introduction to biological, social, political, and economic facets of conservation biology. Emphasizes evaluation of how best to maintain and restore biodiversity through management of populations and ecosystems. Topics include mass extinctions, global change, loss and degradation of habitat, and over exploitation of biological resources.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

FW 3510 - Outdoor Recreation and Tourism
Covers background on Americans and leisure; overview of primary providers of recreation in the US; management of outdoor recreation, measuring and valuing outdoor recreation and tourism; recreation and tourism in the Great Lakes region. Requires participation in field trips/workshops.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring

FW 3540 - An Introduction to Geographic Information Systems for Natural Resource Management
The fundamentals of GIS and its application to natural resource management. Spatial data, its uses and limitations are evaluated. Students work extensively with the ARCGIS software package.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Spring
Pre-Requisite(s): MA 2710(C) or MA 2720(C) or MA 3710(C) or BL 1040 or BL 1020 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

FW 3600 - Wildlife Habitat
Understand the ecological basis for management of forest wildlife and how forest management influences wildlife populations. Laboratory introduces techniques in wildlife research and management, especially methods of habitat analysis. Course held at Ford Center, Alberta, MI.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry; May not be enrolled in one of the following Class(es): Freshman

FW 3601 - Wildlife Research Techniques
Techniques used by managers and researchers when working with wildlife. Scientific method, scientific writing, and principles of study design are introduced.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): FW 2051(C)

FW 3610 - Ornithology
An ecological and evolutionary approach to the study of birds. Topics include behavioral, anatomical, and physiological adaptations to flight, life history, mating systems, migration, communication and conservation. Laboratory emphasizes identification and experimental use of birds as model organisms.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Spring
Pre-Requisite(s): FW 2010 and FW 2051

FW 3620 - Field Ornithology
An introduction to field techniques and identification. Weekend trip to Whitefish Point Bird Observatory during spring migration and field note taking.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Summer

FW 3640 - Aquatic Ecosystems
Students will be introduced to aspects of lake and stream ecosystems. Field trips will focus on sampling abiotic and biotic characteristics of aquatic ecosystems especially in regard to land use and management and conservation. Course held at Ford Center, Alberta, MI.
Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Natural Resources Management; May not be enrolled in one of the following Class(es): Freshman

FW 3760 - Human Dimensions of Natural Resources
Uses sociological concepts to cover facets of human relationships to natural resources, including human values, beliefs, and attitudes regarding the environment; rural resource-dependent communities; natural resource professions and expert knowledge; and the history of American perspectives on the environment.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FW 3765 - Maple Syrup Management and Culture
Overviews cultural and historical importance of syrup production. Topics include methods of collecting and processing sap, syrup, sugar, and business marketing of maple products. Course includes one or two day field experience.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
FW 3800 - Insect Ecology
Insects are widespread and diverse components of terrestrial and aquatic ecosystems. This course will consider aspects of insect ecology, including biodiversity and conservation of insects, the effects of biotic and abiotic factors on insect populations, and the trophic diversity of insects. Course held at Ford Center, Alberta, MI.
Credits: 3.0
Lec-Rec-Lab: (1-1-0)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Cons, Wildlife Ecology & Mgmt, App Ecol & Environ Sci

FW 3840 - Forest Health
Drawing on examples from the Great Lakes region, and other parts of North America, this course will consider which type of insects and pathogens attack our trees and forests, how they interact with each other, and what tools we can use to effectively reduce their negative impacts of forest pests. Course held at Ford Center, Alberta, MI.
Credits: 3.0
Lec-Rec-Lab: (1-1-3)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, Wildlife Ecology & Cons, App Ecol & Environ Sci, Forestry
Pre-Requisite(s): FW 3020

FW 3850 - Animal Behavior
Examines how animal behavior is shaped by developmental and evolutionary processes. Explores the effects of inheritance, environment, and intra-and inter-species interactions on animal behavior.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1040 or (BL 1400 and BL 1410) or BL 1010 or (BL 1100 and BL 1110) and (BL 1020 or BL 1200 and BL 1210)

FW 4000 - Professional Experience Program
Students create oral/written reports and reflection based on paid or volunteered work or field experience in natural resources.
Credits: 1.0; Repeatable to a Max of 4
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required

FW 4010 - Public Health and the Environment
Explores how the environment impacts the health of individuals and entire populations. Topics will include exposure to environmental hazards and natural disasters, access to green and blue space and the built environment.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FW 4070 - Ge-izhi-mawanji’iidangidzahnidanang gidakiiwinnaan (the way we meet to talk about our earth)
This course invites Ojibwa community guests to share cultural, ecological, and governance knowledge with students who will develop a better understanding of our shared environment, career and higher education opportunities, and will be better prepared for engaging with and as natural resource and environmental science professionals.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring

FW 4080 - Forest Economics & Finance
Financial analysis and economic theory applied to forestry project analysis and selection, focusing on prices. Covers risk, capital markets, taxation, auctions, and non-market valuation.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

FW 4082 - Gene Expression Data Analysis
This course is designed for students majoring in molecular biology, computer science, data science and related majors to develop fundamental but essential skills for manipulating, preprocessing, and analyzing high throughput gene expression data for pattern extraction and knowledge discovery.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): FW 4099 or CS 1121 or CS 1122 or CS 1131 or CS 1141 or CS 2321

FW 4099 - Programming Skills for Bioinformatics
Students will learn computer programming skills in Perl for processing genomic sequences and gene expression data and become familiar with various bioinformatics resources.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): CS 1121

FW 4110 - Tree Seedling Production and Greenhouse Management
Demonstrates greenhouse culture of trees from seed or vegetative cuttings. Topics include production of containerized seedlings; vegetative propagation via budding, grafting, and rooting of cuttings; and genetic manipulation. Students have hands-on roles in the routine greenhouse culture, such as media preparation, pest management, and fertilization.
Credits: variable to 4.0
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
FW 4111 - Indigenous Natural Resource Management
In this course, students gain knowledge in indigenous history, culture, and policy to enhance understanding of the rights and privileges associated with treaties, government-to-government relationship, and diversity of people, practices and values. Students engage in multidisciplinary scholarship with relevance for today's shared management regime.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

FW 4120 - Tree Physiology
A study of tree structure, growth, development and function, and how these are related to the environment. We will focus on the cycling of water, carbon, and nutrients within the context of global change.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

FW 4128 - Conservation Genetics
This course will explore molecular methods as they apply to conservation, management, ecology, and evolution of wildlife. We will emphasize laboratory techniques and the application of genetic theory.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1040 or BL 1020 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

FW 4140 - Stand & Forest Modeling
Use of models that simulate tree, stand, and forest development. Emphasis on critical evaluation of model designs, outputs, uses in silvicultural decision-making, and forest to landscape management and planning.
Credits: 2.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): FW 3010 or FW 3012 and FW 3540(C)

FW 4150 - Forest and Natural Resource Management
Focuses on forest and natural resources management planning and decision making. Emphasizes structured problem solving frameworks and decision support tools/models. Three field trips to meet with natural resources professionals and discuss site-specific management issues and approaches.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): FW 3010 or FW 3012

FW 4151 - Advanced Timber Harvesting
Quantitative methods for evaluation of harvesting systems, equipment, and transportation. Emphasizes detailed logging cost analysis, machine rates, depreciation, productivity, and optimization. Includes use of software, GIS and systems of equations.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Forestry
Pre-Requisite(s): FW 3150

FW 4170 - Consulting Forestry
For students who are considering consulting forestry as a career. Covers issues specific to working with private landowners, stewardship plan writing, choosing a business entity, marketing, taxes, income/expenses, insurance, timber sale administration, and resolving landowner disputes.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring, Summer

FW 4180 - Ethics of Conservation and Sustainability
Discusses relationship between ecological science and environmental ethics as it relates to natural resource management, conversation and sustainability.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore

FW 4220 - Wetlands
Study of the physical, chemical, and biological characteristics of wetlands. Describes functions and values of individual wetland types. Presents management of wetlands and laws governing wetlands. Labs concentrate on field techniques used to assess specific plant, animal, soil, and hydrological characteristics of wetlands.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman

FW 4240 - Mammalogy
Study of mammals, emphasizing their evolution, taxonomic relationships, structural and physiological adaptations and life histories through discussion, laboratory and field work, emphasizes the identification conservation and management of mammals, especially species found in western Great Lakes.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 1020 or BL 1040 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)
FW 4250 - The Wolves and Moose of Isle Royale
Wolves and moose have been studied for 50 years on Isle Royale, a wilderness island in Lake Superior. The instructor leads this research and uses the research to explain predation, population dynamics, conservation genetics, and other ecological principles.
Credits: 2.0
Lec-Rec-Lab: (1-1-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

FW 4260 - Population Ecology
Covers the principles of population ecology. Topics include measures of populations, population dynamics, and models used to describe the theories related to population dynamics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

FW 4300 - Wildland Fire
Overview of wildland fire based on an understanding of fire history, fuel properties, fire weather, fire behavior, ecological effects and management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): FW 3020 and (FW 3010 or FW 3012)

FW 4370 - Forest and Landscape Hydrology
The course will use a process-based approach to present the physical hydrology, geomorphology and water quality of forested watersheds. Course focuses on the interaction between watershed processes and forest management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FW 4371 - Snow Hydrology
This course will cover snow formation in the atmosphere, snow accumulation and distribution, snow metamorphism, avalanche dynamics, snowmelt and runoff, remote sensing of snow properties, and the impact of forests and under-snow biogeochemical processes.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): MA 2710 or MA 2720

FW 4380 - Landscape Ecology and Planning
Basic principles of landscape ecology, including pattern, process, and scale. Students will learn how to use quantitative tools to study landscape-scale patterns and processes, and how to apply these principles and tools to conservation, resource management, and planning issues.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FW 4400 - Urban Forestry
Urban forestry is the science and art of managing natural resources in communities. It focuses on maximizing the wide range of economic, environmental, and social benefits associated with trees and urban greenspaces while minimizing maintenance costs and reducing tree-related risks.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

FW 4401 - Urban Forestry Lab
The urban forestry field lab is a two-day tour held in Chicago for students to interact with and learn from professionals in the green industry, arboriculture, and urban forestry. It coincides with the Midwest Urban Tree Care Forum in mid-April.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Pre-Requisite(s): FW 4400(C)

FW 4540 - Remote Sensing of the Environment
Remote sensing principles and concepts. Topics include camera and digital sensor arrays, types of imagery, digital data structures, spectral reflectance curves, applications, and introductory digital image processing.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

FW 4545 - Map Design with GIS
Principles of making maps, from traditional to advanced visualization techniques, that convey information which is useful in decision making at many levels. Focus will be on creating maps using GIS software and digital data. A working knowledge of ArcMap is required.
Credits: 2.0
Lec-Rec-Lab: (1-0-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): FW 3540 or FW 5550
FW 4610 - Wildlife Ecology
Covers the ecological basis for management of wildlife, including biological and sociological factors that influence management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 3400(C) or FW 3020(C)

FW 4620 - Herpetology
The biology of amphibians and reptiles, including evolution, zoogeography, ecology, behavior and physiology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): BL 1040 or BL 1020 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

FW 4710 - Environmental Biogeochemistry
Impacts of decisions regarding landuse, land management, and energy and mineral exploration on natural resources (i.e., air, water, land, and biodiversity) are discussed using the framework of the biogeochemical cycles of the elements.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1150

FW 4800 - Communication for Natural Resource Professionals
This class completes the development of oral and written communication skills for students as they prepare to graduate and gain employment in the field of natural resources.
Credits: 2.0
Lec-Rec-Lab: (1-1-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): FW 3190

FW 4811 - Integrated Resource Assessment Data Collection
Students will collect field data needed for writing their Integrated Resource Assessment management plans. Field skills and ability to summarize and display data will be assessed. Students will develop appropriate sampling designs, collect needed field data with acceptable error limits, and summarize the data.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Wildlife Ecology & Mgmt, Natural Resources Management, App Ecol & Environ Sci, Forestry
Pre-Requisite(s): FW 3190

FW 4830 - Integrated Natural Resource Assessment
Course provides a capstone experience by integrating techniques from many of the forestry, applied ecology, wildlife ecology, and natural resources management core courses. Culminates in the development of management plans for various natural resource alternatives.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Spring
Pre-Requisite(s): FW 4811

FW 4840 - Senior Research Thesis
An independent study or research project on an approved topic in Forestry, Applied Ecology and Environmental Sciences, Wildlife Ecology, or Natural Resource Management, under the guidance of a faculty member. Available only to students in their graduating year.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): FW 3190

GE 1100 - Geological Engineering and Sciences Orientation
Introduction to geosciences as a profession, including discussions of career opportunities and geoscience programs. Earth materials and the earth's processes are also introduced. Includes frequent field trips. Intended for freshman or sophomore students in geological engineering, geology, applied geophysics, hydrology, geotechnics, earth science teaching, or any other geoscience program.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): General Sciences and Arts, Geology, General Engineering, Applied Geophysics, Geological Engineering; May not be enrolled in one of the following Class(es): Junior, Senior

GE 1200 - Introduction to Data Science for Earth Resource Applications
Computational tools used in mining and geological engineering are introduced in earth resource contexts. Approaches for setting up, testing, and applying tools to solve practical problems are demonstrated and practiced.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Pre-Requisite(s): MA 1160(C) or MA 1161(C)

GE 2000 - Understanding the Earth
Introduction to materials and processes that shape the earth we live on. Lecture and laboratories acquaint students with minerals, rocks, earth resources, weathering, geologic time, landslides, groundwater, streams, shorelines, deserts, glaciers, geologic structures, earthquakes, plate tectonics, and the dynamics of the earth's crust, mantle, and core.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Spring, Summer

Undergraduate Course Descriptions Effective Fall 2020, Page 77 of 162
GE 2010 - Introduction to Geographic Information Systems
This course covers basics in geospatial science from theoretical concepts, data, models, analytical techniques, to practical usage, and applications. Topics will include: fundamental concepts of cartography and mapping systems, characteristics and structure of GIS data, database construction, introduction to GIS data sources, principles and methods in spatial analysis, spatial interpolation, mapping of spatial and applications of GIS. Course will have lab using industry standard software tools.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): MA 1160 or MA 1161

GE 2020 - Introduction to Mining Engineering and Mining Methods
Learn how various mining components, from prospecting to financing to reclamation, fit together. Includes advantages and drawbacks of different mining methods and their selection. Introduces ethics and professional development. Use of basic computer and mine design software.

Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2005-2006 academic year

GE 2100 - Environmental Geology
Introduction and study of current environmental issues related to the earth sciences. Covers major topics such as volcanism, earthquakes, shoreline erosion, and pollution of groundwater as multi-week modules with associated labs, lectures, and field projects.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

GE 2300 - Mineral Science
Introduction to the study of minerals including chemical composition, crystal structure, physical properties, identification, and controls on and environments of formation. Laboratory focuses on hand specimen identification of minerals and includes introduction to X-ray diffraction and SEM mineral analysis techniques.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): CH 1000 or CH 1112 or (CH 1150 and CH 1151)

GE 2310 - Introduction to Petrology
Identification, physical properties, chemical composition, occurrence, and origin of the important types of igneous, sedimentary, and metamorphic rocks. Laboratory includes hand specimen description and identification of rocks.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Pre-Requisite(s): GE 2300

GE 2320 - Mining Methods and Systems
This course presents a study of the surface and underground mining methods practiced in coal, metal, and aggregate mine operations, classification of mining methods, support design and equipment selection, general mine planning requirements, mine development sequence, cycle of operations, and method application.

Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring
Pre-Requisite(s): GE 2020

GE 2640 - Atmospheric Observations and Meteorology
Introduction to fundamentals of atmospheric science and meteorology through direct observations of the atmosphere.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2002-2003 academic year

GE 3040 - Fundamentals of Applied and Environmental Geophysics
An introduction to geophysical used in applied and environmental geophysics concentrating on the fundamentals of data reduction and interpretation. This course is not only pertinent for the practicing geoscientist but also for environmental engineers, civil engineers, and others interested in learning how physics can be used to investigate Earth's substance.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 2200

GE 3050 - Structural Geology
Rock structures and regional settings resulting from the application of deforming forces, including the geometry, origin, and mechanics of folds, foliations, lineations, faults ad joints, and structures in orogenic belts.

Credits: 4.0
Lec-Rec-Lab: (3-0-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): GE 2000

GE 3100 - Depositional Systems
Introduction to sedimentary processes and their products. Investigates the physical processes controlling sedimentation along with principles of correlation and interpretation of strata. Focuses on interpreting sedimentary rocks as a record of climate, sea-level and tectonic change.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): GE 2000 and GE 2310

GE 3200 - Geochemistry
Introduction to elements of modern geochemistry including aqueous solutions, isotopes, age dating, etc. Emphasizes concepts and quantitative methods. Teaches principles of thermodynamics and phase equilibria from an introductory perspective as they pertain to geologic systems.

Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): CH 1150 and CH 1151

Undergraduate Course Descriptions Effective Fall 2020, Page 78 of 162
GE 3250 - Computational Geosciences
Introduction to quantitative analysis and display of geologic data using R/Matlab, covering basic R/Matlab syntax and programming, and analysis of one-dimensional (e.g. time series) and two-dimensional datasets (i.e. spatial data). Techniques are applied to geological datasets.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): MA 1160 or MA 1161

GE 3320 - Earth History
This course covers the history of the Earth from 4.5 billion years to the present. Plate tectonics is the organizing theme with emphasis on recognizing and evaluating the evidence for the major reorganizations of the Earth's crust.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): GE 2000 or GE 2100

GE 3400 - Drilling and Blasting
Rock penetration and fragmentation methods to include boring, cutting, drilling, and blasting techniques. Design of surface and underground blasting rounds. Formulation of design criteria to minimize the adverse effects of blasting. Field demonstration in the design, monitoring, and evaluation of blasts.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2006-2007 academic year
Pre-Requisite(s): GE 2020 and PH 2100

GE 3410 - Mine Safety Engineering and Health
Principles of health and safety in mine practice, hazard recognition, and preventive and corrective actions.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring

GE 3850 - Geohydrology
Geologic and hydrologic factors controlling the occurrence, movement, and development of subsurface water. Quantitative methods for analyzing groundwater systems are introduced.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring

GE 3870 - Resource & Reserve Estimation
This course covers the classification of resource and reserve; resource estimation algorithms; linear, nonlinear, and indicator kriging; stochastic simulation; variogram modeling; block-variance relationship; recoverable reserve; and introduction to resource estimation software.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): GE 2020 and MA 3710

GE 3880 - Mine Planning and Design
Course provides the basics of mine planning, feasibility study, block modeling, economic analysis, cost estimation and price forecasting, mining method selection algorithms. Introduction and hands-on experience with mine planning and design software including Surpac, Vulcan, and Whittle.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): GE 2320 and GE 3400 and GE 3870

GE 3890 - Engineering Geology and Rock Mechanics
Course will cover collection, analysis, and interpretation of geological data and information required for the safe development of civil works. Course will include laboratory experiments to determine the physical and mechanical properties of rocks, including hardness, tensile, and compressive strength.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Fall
Pre-Requisite(s): (GE 2000 or GE 2100) and (GE 3050 or ENG 2120 or MEEM 2150)

GE 3900 - Field Geophysics
Introduction to field geophysical techniques including basic land surveying. Emphasizes the recording, reduction, presentation, and interpretation of gravity, magnetic, electrical, seismic, and electromagnetic data as well as the proper use, care, and calibration of equipment used to collect the data. Requires report writing. Students must provide their own transportation.
Credits: 5.0
Lec-Rec-Lab: (0-0-15)
Semesters Offered: Summer
Restrictions: Permission of department required
Pre-Requisite(s): GE 3040

GE 3910 - Field Geology with Engineering Applications
Introduction to methods and problems of field geology, interpretation of field relationships, and engineering site investigation. Field areas are located in northern Michigan. Requires geological and/or engineering report and memo writing.
Credits: 5.0
Lec-Rec-Lab: (0-0-15)
Semesters Offered: Summer
Restrictions: Permission of department required
Pre-Requisite(s): GE 2000 and GE 2310 and GE 3050

GE 3915 - Introduction to Field Geology
An introduction to geologic field mapping and site investigations. Requires geological and/or engineering report and memo writing.
Credits: 3.0
Lec-Rec-Lab: (0-0-9)
Semesters Offered: Summer
Restrictions: May not be enrolled in one of the following Major(s): Geological Engineering, Applied Geophysics
Pre-Requisite(s): GE 2000 and GE 2310 and GE 3050

GE 4000 - Earth Science Teaching Experience
Development of earth science teaching skills through assisting in instruction in a geology course laboratory. Students gain experience in organizing, preparing, and presenting earth science topics and answering questions.
Credits: variable to 3.0; Repeatable to a Max of 3
Semesters Offered: On Demand
GE 4130 - Petroleum Geology
Basic elements of petroleum geology, including the composition of crudes, exploration, subsurface techniques, petroleum migration, seals, traps, and types of gas and oil plays. Students will study geologic factors that control the genesis of major gas and oil fields, such as the Persian Gulf, California, and US Gulf Coast.

Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Spring
Pre-Requisite(s): GE 2000 and GE 2300 and GE 2310

GE 4140 - Mining Systems and The Environment
Develops the scientific basis for environmental management in ecosystems impacted by mining activities. Considers the origin, behavior, and fate of pollutants generated during the life of a mine. Introduces engineered approaches for mitigation, remediation, and reclamation of environmental impacts.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1150

GE 4150 - Natural Hazards
This course focuses on current mitigation agencies and warning systems, case studies of successes and failures in hazard mitigation, and technical tools for hazard study and mitigation such as satellite remote sensing and GIS.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): GE 2000 or GE 2100

GE 4180 - Volcanology
Volcanoes and how they work. Volcanic eruption styles and products, their recognition, and significance. Volcanic hazards, volcano monitoring and impacts of volcanism on the environment, climate and society. Applies chemistry, physics, and fluid mechanics in a volcanological context.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): GE 2000 and (MA 1160 or MA 1161)

GE 4190 - Magma Reservoir Dynamics
Introduction to topics in advanced igneous petrology emphasizing processes that occur in magma reservoirs. Includes the application and integration of geochemistry, petrology, and geochronology to investigate magma dynamics and their influence on frequency, style, and magnitude of eruptions.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): GE 2300 and GE 2310

GE 4200 - Surface Geophysics
Application of near surface geophysical methods to environmental and geological investigations through field work and case studies. An emphasis will be placed on ground penetrating radar, but will include other methods such as electrical resistivity, induced polarization, magnetics, and horizontal loop electromagnetics.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): GE 3040 and GE 3900

GE 4250 - Fundamentals of Remote Sensing
This course focuses on the basic physics behind above-surface remote sensing and remote sensing systems. Topics covered include: properties of the atmosphere, absorption and scattering of electromagnetic radiation, instrument design, data acquisition and processing, validation, and basic applications.

Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): PH 2200 and MA 2160

GE 4290 - Fundamentals of Remote Sensing
Course deals with an introduction to mine ventilation, properties of air, gases, and dust, mine fans and its applications, flow distribution in mine network, computer analysis of ventilation network, mine health and safety overview, health and safety culture and practice.

Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): GE 2020 and GE 2320 and ENG 3200

GE 4360 - Materials Handling
Surface and underground materials handling methods. Selection and performance analysis of materials handling equipment. Computer applications.

Credits: 4.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): PH 2100

GE 4500 - Plate Tectonics and Global Geophysics
Plate tectonics and the internal structure of the earth using information from seismology, geomagnetism, gravity, and heat flow.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3160 and PH 2200 and GE 2000

GE 4504 - Air Quality Engineering and Science
Overview of air quality regulation in the U.S. and world, including basic concepts of atmospheric chemistry and transport; fútitive, point, and air emissions; principles and tradeoffs of operation and design of air pollution control systems; and application of air quality models.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): CEE 3501 or CEE 3503

Undergraduate Course Descriptions Effective Fall 2020, Page 80 of 162
GE 4530 - Planetary Geology & Geophysics
Geological, geophysical, and geochemical processes in the Solar System are examined. Topics include the formation and evolution of the Solar System, planetary surface processes and water distribution, impact structures, composition, structure, and dynamics of planetary interiors, geophysical exploration of planets.
Credits: 3.0
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): GE 2000 and PH 2200 and MA 2160

GE 4540 - Advanced Geoinformatics
Course covers topics on GIS analysis methods, including network analysis, cost distance analysis, site selection and optimization, interpolation, multi-layer raster data analysis and more. Basic concepts and techniques associated with the analysis of spatial relationships and patterns are introduced using application examples in geophysical ecological, environmental, epidemiological, and transportation research.
Credits: 3.0
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): GE 2010

GE 4560 - Earthquake Seismology
Course covers fundamentals of the physics of earthquakes and seismic energy propagation, and seismic methods to determine Earth structure. Emphasis is placed on natural source techniques, with extension to exploration applications. Weekly labs apply techniques.
Credits: 3.0
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): GE 3050 and PH 2100 and MA 3160

GE 4600 - Reflection Seismology
Principles of reflection seismic techniques, including theoretical background and application, and hands-on computer projects. Included are acquisition, data processing, and 2D/3D data interpretation. Students conduct projects using actual commercial-quality seismic data.
Credits: 3.0
Semesters Offered: Spring
Pre-Requisite(s): GE 3040

GE 4610 - Formation Evaluation and Petroleum Engineering
Principles and practice of formation evaluation, primarily through analysis of well logs and the principles and practice of petroleum engineering. Emphasizes reservoir engineering and simulation. Students conduct projects using actual field data.
Credits: 3.0
Semesters Offered: Fall, Spring

GE 4680 - Operation Research for Mining Engineers
This course introduces the statistical analysis of mining data, statistical decision making of mining projects, random number generation, Monte Carlo methods, simulation methods, linear and integer programming, queuing theory, stochastic-process, PERT and CPM, applications of operations research (OR) in mining and mineral industry.
Credits: 3.0
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): GE 2020 or GE 2320

GE 4735 - Igneous Petrology
An examination of the origin of a variety of igneous rocks from different tectonic environments using geochemistry, mineralogy, and rock textures.
Credits: 3.0
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requisite(s): GE 2300 and GE 2310

GE 4800 - Groundwater Engineering
Application of geohydrology principles to design water-well supplies, site investigations, and subsurface remediation systems.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): GE 3850

GE 4860 - Computer Methods for Slope Stability and Geomechanics
Computer methods for the design problems encountered in geomechanics. Applications to be selected from slope stability, earth retention systems, and seepage. Students will be introduced to limit equilibrium and finite element analysis through theory and computational labs.
Credits: 3.0
Semesters Offered: Spring
Pre-Requisite(s): GE 3860 or CE 3810 or CEE 3810

GE 4900 - Capstone I
Capston engineering design course focusing on a realistic, complex, open-ended engineering problem. Project includes technical design, economic analysis, environmental impacts, and regulations. Report writing required. (Senior project ready as defined by major substitutes for prerequisites).
Credits: 3.0
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore, Junior
GE 4910 - Capstone II
Capstone engineering design course focusing on a realistic, complex, open-ended engineering problem. Project includes technical design, economic analysis, environmental impacts, and regulations. Report writing required. (Senior project ready as defined by major substitutes for prerequisites).
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): GE 4900

GE 4930 - Special Topics in Geological Engineering
Study and discussion of geological engineering topics.
Credits: variable to 5.0; Repeatable to a Max of 10
Semesters Offered: On Demand
Restrictions: Permission of instructor required

GE 4931 - Special Topics in Geology
Study and discussion of geology topics.
Credits: variable to 5.0; Repeatable to a Max of 10
Semesters Offered: On Demand
Restrictions: Permission of instructor required

GE 4932 - Special Topics in Geophysics
Study and discussion of geophysics topics.
Credits: variable to 5.0; Repeatable to a Max of 10
Semesters Offered: On Demand
Restrictions: Permission of instructor required

GE 4933 - Special Topics in Geophysics
Study and discussion of geophysics topics.
Credits: variable to 5.0; Repeatable to a Max of 10
Semesters Offered: On Demand
Restrictions: Permission of instructor required

GE 4934 - Special Topics in Mining Engineering
Study and discussion of topics in mining engineering not included in regular undergraduate courses.
Credits: variable to 5.0; Repeatable to a Max of 10
Semesters Offered: On Demand

GE 4935 - Independent Geology Research Project
Approved literature, laboratory, and/or field geology research problem originated by the student or assigned by the instructor. A final report is required.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

GE 4936 - Independent Geophysics Research Project
Approved literature, laboratory, and/or field geophysics research problem originated by the student or assigned by the instructor. A final report is required.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

GE 4937 - Independent Geophysics Research Project
Approved literature, laboratory, and/or field geophysics research problem originated by the student or assigned by the instructor. A final report is required.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

GE 4938 - Independent Geophysics Research Project
Approved literature, laboratory, and/or field geophysics research problem originated by the student or assigned by the instructor. A final report is required.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

GE 4939 - Independent Geophysics Research Project
Approved literature, laboratory, and/or field geophysics research problem originated by the student or assigned by the instructor. A final report is required.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

GE 4970 - Special Topics in Global Environment Change
Course will focus on emerging topics on global environment change including changes in atmospheric composition and air quality, air pollution meteorology, extreme meteorological events, and ocean chemistry. Anthropogenic contributions to these changes will be presented and analyzed. Students will work on projects based on historical records from multiple datasets to evaluate and appreciate the long-term changes in the global environment and better understand the perturbations due to human activities.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Fall, Spring

Pavlis Honors

HON 1150 - Creating Your Path
This course will guide students in the application of life design methods to create a path toward achievement of personal education, career & life goals. By applying a combination of activities, discussion, & reflection to principals of design thinking, problem solving, creativity, & communication, students will develop a framework for life success.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required; Must be enrolled in one of the following Class(es): Freshman, Sophomore

HON 2150 - Pavlis Seminar I
The first of three seminars designed for the Pavlis Honors Pathway Program. In this course we introduce the theory and concepts related to overarching theories of motivation, critical reflection, global literacy, and leadership in an active and reflective learning environment. Students learn and apply design thinking concepts to the development of their Honors Pathway Program elements with a particular focus on immersion experiences.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

HON 2200 - Leadership, Culture, and Technology
This course provides students with an understanding of the nature and process of leadership, and an opportunity to assess personal leadership skills/potential and develop a personal model of leadership. Leadership in other cultures and use of appropriate technology will also be explored.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

HON 2500 - Entering Research I
This seminar course is designed to introduce students new to research to best practices and skills related to undertaking research or scholarship at the university level. Topics include developing a mentoring relationship, engaging scholarly literature, research documentation, research integrity communicating proposals and findings.
Credits: 1.0
Lec-Rec-Lab: (0-0-1)
Semesters Offered: On Demand
HON 2990 - Interdisciplinary Special Topics in Honors
Study of interdisciplinary special topics as specified by section title.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

HON 3060 - International Leadership Practicum
Students traveling internationally in the Pavlis program will plan and direct a project abroad and spend time abroad participating in a variety of leadership and cultural awareness experiences.
Credits: variable to 9.0
Semesters Offered: Summer
Pre-Requisite(s): HON 3410 and SS 3961

HON 3150 - Pavlis Seminar II
The second of three seminars Pavlis Honors College Pathway seminars. This course focuses on "Telling Your Story" in different settings and the honors abilities of "Communicate Emotionally" and "Balance Confidence and Humility". Students apply design thinking to develop their honors projects.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): HON 2150 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HON 3300 - Innovation through Human Centered Design
This course introduces students to the processes and tools associated with Human Centered Design (HCD). HCD is a key process used in identifying needs/opportunities and innovative solutions.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

HON 3410 - Culture, Language, & Project Development
Course is designed to help students gain culture and language awareness for their int'l travel to project sites in Ghana, India, Tanzania, Peru, or Senegal. Students will gain insight working with and learning from different cultures to see the world and their leadership in new ways and will refine/finalize projects they will implement in country.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HON 3990 - Interdisciplinary Special Topics in Honors
Study of interdisciplinary special topics as specified by section title.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

Undergraduate Course Descriptions Effective Fall 2020, Page 83 of 162
HON 4250 - Experiential Learning in Cross-Cultural Immersions
This course allows students to engage in cross-cultural and community service learning experiences. Participants will reflect on connections and puzzles between personal experience and scholarly writing on social change, culture, and social problems.
Credits: 3.0
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore

HON 4300 - Introduction to the Fundamentals of Social Innovation and Social Entrepreneurship
In this introductory course, students will be exposed to the key concepts and practices around social innovation and entrepreneurship. They will learn about different approaches to social entrepreneurship and strengths and weaknesses of various models and strategies. All students will participate in the Social Innovation Challenge Competition at semester end.
Credits: 3.0
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore

HON 4990 - Interdisciplinary Special Topics in Honors
Study of interdisciplinary special topics as specified by section title.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required

Humanities

HU 2130 - Introduction to Rhetoric
Focuses on historical origins, cultural adaptations, and contemporary relevance of rhetorical traditions.
Credits: 3.0
Semesters Offered: Fall, Spring

HU 2201 - Level I-A Chinese Language and Culture
Introduction to basic Chinese grammar, vocabulary, and idioms, designed to help students acquire the basics of oral and written Chinese. Includes study of contemporary Chinese culture.
Credits: 3.0
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Senior

HU 2202 - Level I-B Chinese Language and Culture
Further study of Chinese grammar, vocabulary, and idioms with emphasis on conversation and communicative strategies. Includes continued study of Chinese culture.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): HU 2201 or Language Placement Chinese >= 100

HU 2210 - Level I-A German Language and Culture
Introduction to the basics of the German language, acquainting students with the essentials of oral and written German and introducing cultures and societies of contemporary German-speaking Europe.
Credits: 3.0
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Senior

HU 2241 - Level I-A Less Commonly Taught Languages
Introduction to basic grammar, vocabulary, and idioms, designed to help students acquire the basics of oral and written communication. Includes study of cultures in which the language is spoken.
Credits: variable to 3.0
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following
Class(es): Senior

HU 2242 - Level I-B Less Commonly Taught Languages
Further study of grammar, vocabulary, and idioms with emphasis on conversation and communicative strategies. Includes continued study of cultures in which the language is spoken.
Credits: variable to 3.0
Semesters Offered: On Demand
Pre-Requisite(s): HU 2241

HU 2271 - Level I-A French Language and Culture
Introduction to basic French grammar, vocabulary, and idioms designed to help students acquire the basics of oral and written French. Includes study of contemporary French-speaking cultures.
Credits: 3.0
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Senior

HU 2272 - Level I-B French Language and Culture
Further study of French grammar, vocabulary, and idioms with continued practice of conversation and basic readings in French. Continued study of contemporary French speaking cultures.
Credits: 3.0
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 2271 or Language Placement French >= 131

HU 2273 - Transitional Level I French Language and Culture
Intensive study of basic French grammar, vocabulary, and culture. Designed to prepare students with minimum essentials of oral and written French for intermediate and advanced level work. Students completing this course may apply for placement credits.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): Language Placement French >= 211
HU 2282 - Level I-B German Language and Culture
Further study of the basics of the German language acquainting students with the essentials of oral and written German, with emphasis on conversational skills. Includes continued discussion of cultures and societies of contemporary German-speaking Europe.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 2281 or Language Placement German >= 150

HU 2291 - Level I-A Spanish Language and Culture
Introduction to basic Spanish grammar, vocabulary, and idioms, designed to help students acquire the basics of oral and written Spanish. Includes study of contemporary Spanish-speaking cultures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Senior

HU 2292 - Level I-B Spanish Language and Culture
Further study of basic Spanish grammar, vocabulary, and idioms with continued practice of conversation and basic readings in Spanish. Continued study of selected Hispanic cultures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 2291 or Language Placement Spanish >= 131

HU 2293 - Transitional Level I Spanish Language and Culture
Intensive review of basic Spanish grammar, vocabulary, and culture. Designed to prepare students with minimum essentials of oral and written Spanish for intermediate and advanced level work. Students completing this course may apply for placement credit.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 2291 or Language Placement Spanish >= 201

HU 2324 - Introduction to Film
Focuses on critical engagement with cinematic form and its relationship to cultural, historical, and/or theoretical contexts.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Summer

HU 2500 - Ways of Reading
This course introduces students to reading strategies, critical vocabularies, and critical writing practices. Individual sections will center on a unifying question or problem, emphasizing attentive reading, critical thinking, and qualitative interpretation of literary texts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

HU 2501 - American Experience in Literature
A survey of major works in American Literature from origins to the present. Focuses on historical trends in the development of literature and culture in the Americas with particular emphasis on the United States.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer - Offered alternate years beginning with the 2017-2018 academic year

HU 2503 - Introduction to Literature
Survey of transnational or transatlantic literary traditions, highlighting select historical periods such as Romanticism, and/or movements, such as the Harlem Renaissance.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2000-2001 academic year

HU 2505 - Science, Technology, and Humanities
A survey using literary texts, narrative history, documentary evidence, film, music, and cross-cultural references to contextualize the emergence of scientific, technological, and humanistic developments in the modern era.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2016-2017 academic year

HU 2510 - Intro to Creative Writing
An introduction to creative writing with readings in contemporary and emerging literatures. Genres covered may include fiction, nonfiction, poetry, and screenplay. This course stresses individual production through process-oriented writing exercises, small group workshops, individual conferences, and creative theory.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

HU 2538 - British Experience in Literature
A survey of selected works of British literature from its origins to the present. Focuses on historical trends in the development of the English language and the cultures of Great Britain.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2016-2017 academic year

HU 2548 - Young Adult Literature
Reading, reflecting on, and responding to age-appropriate adolescent literature. Works include authors from different races, cultures, historical periods, and genders. Discussion may be supplemented with films. Appropriate for students who plan to be parents, community volunteers, and teachers.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
HU 2600 - Introduction to the Field of Scientific and Technical Communication
An introduction to the history, theory, and practice of scientific and technical communication as preparation for future study.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Scientific & Tech Comm (BS), Scientific & Tech Comm (BA)

HU 2632 - Fundamentals of Digital Photography
Explores the history, aesthetics, theory, and practice of photography in the digital environment. Students learn in-depth digital camera and imaging production techniques. Students provide their own digital camera, preferably a digital SLR.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: On Demand

HU 2633 - Fundamentals of Digital Imaging
Explores the history, aesthetic, theory, and practice of digital imaging. Students learn to find, make, and analyze images.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Fall

HU 2642 - Introduction to Digital Media
Basic principles, practices and implications of digital media communication and production. Provides foundation in tools, techniques and processes through hands-on production, readings, discussion and analysis of contemporary issues related to digital media.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

HU 2645 - Graphic and Information Design
A computer-intensive introduction to the principles for creating clear, effective graphic communication. Students critique the work of other designers in terms of the work’s audience and intended effect, and they construct and critique their own design projects as well.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

HU 2700 - Introduction to Philosophy
A study of thought representing various traditions such as classical and contemporary philosophy, Eastern and Western religion, and issues in recent science. Some basic concepts of logic are also examined. Emphasizes moral philosophy, including ethical relativism, utilitarianism, and Kantian ethics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

HU 2701 - Logic and Critical Thinking
Introduction to everyday reasoning and formal logic. Important goal is to develop skills of argument identification, analysis, and evaluation. Students learn how to symbolize ordinary language statements and arguments and to determine their validity or invalidity using proof and truth-table methods.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

HU 2702 - Ethical Theory and Moral Problems
An introduction to the major concepts and theories of normative ethics and metaethics and an examination of a variety of issues in applied ethics including poverty and economic justice, lying and truth-telling, euthanasia, sexual conduct, and issues in communication ethics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

HU 2810 - Research and Writing in Communication
Prepare students to evaluate, design, and conduct research in communication. Develops research-related writing strategies and proficiency.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

HU 2820 - Communication and Culture
Introduction to the ways that communication creates and maintains culture. Considers a variety of perspectives on the significance of communication. Explores the importance of communication for understanding culture
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

HU 2830 - Public Speaking & Multimedia
Introduces the fundamentals of public speaking and multimedia applications. Emphasis on speaking/listening competencies in face-to-face and digital environments using online and digital tools.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer

HU 2840 - Interpersonal Communication
Examines practices and issues of relational communication and encourages critical awareness of common assumptions. Topics include verbal and nonverbal cues, conflict models, friendship, intimacy, and the interpersonal significance of race, gender, class, and disability.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall

HU 2910 - Language and Mind
Linguistic study of structural and cognitive aspects of language. Examines language design: how sounds, words, sentences, and conversation create meaning; the relationship of language, brain, mind, and thought; the ability of humans, animals, and machines to acquire language.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
HU 2920 - Language and Society
Examines how societies use and organize themselves with respect to language. Considers attitudes towards language standardization and dialectal variations within the US based on geography, class, ethnicity, gender, age, etc., and speakers' choices of how they present themselves linguistically.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring

HU 3015 - Advanced Composition
Advanced instruction in composing substantive arguments based on primary and secondary research. Multidisciplinary inquiry-based projects ask students to write for both academic and lay audiences in print and digital forms. Specific research methods, writing technologies, and topics vary by section.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requirement(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3130 - Technical and Professional Communication
A study of written and oral communication in technical and scientific environments; emphasizes audience, writing processes, genres of scientific and technical discourse, visual communication, collaboration, professional responsibility, clear and correct expression. Students write and revise several documents and give oral report(s). Computer Intensive.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requirement(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3120 - Technical and Professional Communication
A study of written and oral communication in technical and scientific environments; emphasizes audience, writing processes, genres of scientific and technical discourse, visual communication, collaboration, professional responsibility, clear and correct expression. Students write and revise several documents and give oral report(s). Computer Intensive.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following
Class(es): Freshman, Sophomore
Pre-Requirement(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3150 - Topics in Literacy Studies
A study of how and why different groups of people use reading and writing differently in varying situations and in varying textual media. Topics may include the various ways texts function and reading is used; the authority of written texts; access to reading and writing and to various textual media.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requirement(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3151 - The Rhetoric of Everyday Texts
The examination and production of everyday texts such as social media, image-texts, web pages, signs, museum exhibits, architecture, and fashion in terms of their theoretical, historical, cultural, and technological contexts. Students should expect to produce "everyday texts" of their own as well as write about texts examined in the course.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requirement(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3201 - Level II-A Chinese Language and Culture
Review and continued study of listening, speaking, reading, and writing in Chinese. Students learn how to communicate in Chinese societies. Includes study of various aspects of the Chinese culture.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requirement(s): HU 2202 or Language Placement Chinese >= 201

HU 3202 - Level II-B Chinese Language and Culture
Further study of Chinese language. Includes study of vocabulary, idioms, and sentences structure to improve conversational, reading, and writing abilities. Includes discussion of various aspects of Chinese culture.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requirement(s): HU 3201 or Language Placement Chinese >= 301

HU 3204 - Level III Topics in Chinese Literature and Culture
Study of various genres of Chinese literature and of various aspects of Chinese society, emphasizing, historical and cultural backgrounds. Conducted primarily in Chinese.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requirement(s): HU 3202 or Language Placement Chinese >= 401

HU 3241 - Level II A Less Commonly Taught Language and Culture
Review and continued study of listening, speaking, reading, and writing in less commonly taught language. Students learn how to communicate in target culture. Includes study of various aspects of the culture in which the language is used.
Credits: variable to 3.0
Semesters Offered: On Demand
Pre-Requirement(s): HU 2242

HU 3242 - Level II B Less Commonly Taught Language and Culture
Further study of less commonly taught language. Includes study of vocabulary, idioms, and sentence structure to improve conversational reading and writing abilities and discussions of various aspects of culture in which the language is used.
Credits: variable to 3.0
Semesters Offered: On Demand
Pre-Requirement(s): HU 3241

Undergraduate Course Descriptions Effective Fall 2020, Page 87 of 162
HU 3253 - World Literatures & Cultures
Comparative approach to world literatures and cultures. May include literary works, critical essays, films, music, and other representations of world culture.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3261 - Topics in Communicating Across Cultures
Examines communication practices and styles across selected cultures and multicultural groups, drawing on an interdisciplinary range of research fields. May address social issues, language and cultural differences, gender, race, ethnicity, class, disabilities, age, religion, family and national identity.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3262 - Topics in Francophone Cultures
An introduction to Francophone cultures (in English) in a comparative perspective. Includes a survey of French history and its influence on Francophone societies. Includes study of film and other media and a critical examination of cross-cultural differences between French, Francophone, and U.S. cultures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3263 - Topics in German-Speaking Cultures
An introduction to German-speaking culture (in English) in a comparative perspective. Includes a survey of Central-European history and its influence on modern-day German-speaking societies through movies, media, and recent technologies, and a critical examination of cross-cultural differences between German and North-American cultures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3264 - Topics in Spanish-Speaking Cultures
An introduction to Spanish-speaking cultures (in English) in comparative historical perspectives. Includes a survey and a critical cross-cultural examination of Latin-American cultures and Spanish-speaking societies (European, Caribbean, and North, Central and South American) through literature, music, film, art, and other media.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following
Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3265 - Topics in East Asian Cultures
Introduction to the contemporary and traditional cultures of China, Korea, and Japan taught through readings, films, lectures, and discussions. Taught in English.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand

HU 3269 - International Language Study in Spanish, German, or French
International study in Spanish, German, or French. Taught in the target language. Used for study abroad only.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand

HU 3271 - Level II-A French Language and Culture
Review and continued study of grammar, vocabulary, speaking, listening, reading, and writing in French. Includes written compositions and oral presentations. Cultural focus on several Francophone regions of the world.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 2272 or HU 2273 or Language Placement French >= 331

HU 3272 - Level II-B French Language and Culture
Continued study of grammar, vocabulary, speaking, listening, reading, and writing in French. Includes written compositions, oral presentations, and reading of brief literary texts. Cultural focus on several Francophone regions of the world.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 3271 or Language Placement French >= 421

HU 3273 - Level II-C French Composition and Conversation
Extensive work in the active, creative use of written and oral French. Includes development of communicative strategies, written compositions, and oral presentations in the context of contemporary French-speaking cultures. May include study of film and other media.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): HU 3272 or Language Placement French >= 501
HU 3274 - Level III Topics in French Literature and Culture
Topics in French literature and its historical and cultural contexts. May include selections from Francophone literature. Conducted in French.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requirement(s): HU 3272 or HU 3273 or Language Placement French >= 501 or CEEB French Language >= 3 or CEEB French Literature >= 3

HU 3275 - Level III French for Special Purposes
Study of business, technical, and/or scientific discourses in the context of French language and Francophone cultures.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requirement(s): HU 3272 or HU 3273 or Language Placement French >= 501 or CEEB French Language >= 3 or CEEB French Literature >= 3

HU 3280 - Level I-C German Language and Culture
Concluding study of the basics of the German language acquainting students with the essentials of oral and written German, with emphasis on conversational skills. Includes continued discussion of cultures and societies of contemporary German-speaking Europe.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 2282 or Language Placement German >= 221

HU 3281 - Level II-A German Language and Culture
Review of the basics of the German language. Includes study of vocabulary, idioms, and sentence structure to improve conversational and reading abilities, and discussion of various aspects of contemporary German culture.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 3280 or Language Placement German >= 241

HU 3282 - Level II-B German Language and Culture
Review of the basics of the German language. Includes study of vocabulary, idioms, and sentence structure to improve conversational and reading abilities, discussion of various aspects of contemporary German culture, readings of literary texts, screenings of German films, and writing of compositions in German.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 3281 or Language Placement German >= 331

HU 3283 - Level II German for Special Purposes
Review of the basics of the German language. Extensive work on the creative use of written and oral German with emphasis on short themes in German.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 3282 or Language Placement German >= 421

HU 3284 - Level III in German Literature and Culture
Study of German literature and cultures. Topics may include postwar German literature, Germany since WWII, or emphasis on a major contemporary writer. Readings, discussion and writing in German.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requirement(s): HU 3283 or Language Placement German >= 521 or CEEB German Language >= 3

HU 3285 - Level III German: Film and Media
Study of German film, news and media. Topics may include feature films, documentaries, and other audio-visual and digital texts. Readings, discussion, and writing in German.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requirement(s): HU 3283 or Language Placement German >= 521 or CEEB German Language >= 3

HU 3291 - Level II Spanish Language and Culture
Review and continued study of grammar, vocabulary, speaking, listening, reading, and writing in Spanish. Includes written compositions and oral presentations. Cultural focus on several Spanish-speaking regions. Students completing this course may apply for placement credit.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 3292 or HU 3293 or Language Placement Spanish >= 321

HU 3292 - Level II-B Spanish Language and Culture
Continued study of grammar, vocabulary, speaking, listening, reading, and writing in Spanish. Includes written compositions, oral presentations, and readings of short literary and documentary texts. Strong cultural focus on several Spanish-speaking regions. Students completing this course may apply for placement credit.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requirement(s): HU 2232 or HU 3291 or Language Placement Spanish >= 401

Undergraduate Course Descriptions Effective Fall 2020, Page 89 of 162
HU 3293 - Level IIC Spanish Composition and Conversation
Advanced grammar, composition, and conversation practice. Readings may include texts from literary, social, economic, scientific, engineering, or business discourses in the context of Hispanic cultures. Students completing this course may apply for placement credit.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 3292 or Language Placement Spanish >= 480

HU 3294 - Topics in Hispanic Literatures and Cultures
Study of selected works of literature, culture, and civilization from selected regions of the Spanish-speaking world. May incorporate study of literary genres and historical periods as related to Spain and/or Latin American cultures. Students completing this course may apply for placement credits.
Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): HU 3293 or Language Placement Spanish >= 631 or CEEB Spanish Language >= 3 or CEEB Spanish Literature >= 3

HU 3295 - Level III Advanced Spanish for Literacies
Spanish for Special Purposes is designed for students who anticipate careers in which they will need to interact with Hispanic communities in the U.S. or abroad and who wish to continue study of Spanish language and culture for specific professional purposes. Topics include Spanish for engineering and other sciences, healthcare, business, and legal professions.
Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): HU 3293 or Language Placement Spanish >= 631 or CEEB Spanish Language >= 3 or CEEB Spanish Literature >= 3

HU 3296 - Survey of Hispanic Literatures and Cultures
Overview of Iberian and/or Latin American literatures and cultures from colonial through contemporary periods, including the arts and popular movements, from a multidisciplinary perspective. Course is repeatable up to six credits.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): HU 3293 or Language Placement Spanish >= 631 or CEEB Spanish Language >= 3 or CEEB Spanish Literature >= 3

HU 3326 - Topics in World Cinema
This course focuses on mainstream and/or independent films in their historical and sociocultural contexts from selected regions such as Latin America, Africa, the Middle East, Asia, and Europe.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): HU 2324 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3327 - Film Style and Genre
Focus on film style and genre with an emphasis on study of directors, movements, and aesthetics and their technological, theoretical, and socio-cultural contexts. Includes small lab projects.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring
Pre-Requisite(s): HU 2324 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3400 - Topics in Diversity Studies
This course provides students with a better understanding of underrepresented populations within the United States by examining the culture and experience of African American; American Indian; Asian American; Latina/Latino American; Gay, Lesbian, Bisexual, and Transsexual; or Post-Colonial peoples.
Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3401 - Gender and Culture
Interrelations of gender and culture, including comparative analysis of constructions of gender. May examine different societies and/or different historical periods.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3410 - Introduction to Diversity Studies in the United States
This course provides students with a better understanding of underrepresented populations within the United States by examining the social, cultural, and personal consequences of gender, race, ethnicity, class, sexual orientation, (dis)ability, and other significant identities.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3502 - Mythology
Survey of the major mythological systems of the world with particular attention to those areas of commonality among various civilizations. Films may provide contextual background.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer - Offered alternate years beginning with the 2001-2002 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
HU 3504 - Studies in the Novel
Examination of the novel in world literature with special attention to the historical, cultural, and personal contexts within which the author is writing. Film versions may be examined.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3505 - Studies in Literary Forms
This course examines one or more literary forms, genres, and modes such as tragedy, satire, romance, science fiction, fantasy, comedy, epics, novels, short stories, poetry, and/or creative nonfiction.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3506 - Major Authors
An intensive study of the life and works of one or more significant literary figures. This course will also focus on the social and historical contexts that shaped the author's reputation and standing in the literary, theatrical, or cinematic canon.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3507 - Cultural Traditions in Literature
An advanced study of a specific transnational or trans-Atlantic historical period or aesthetic movement that illustrates the development of literary and/or cinematic traditions. Courses will include relevant theory and criticism.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3508 - Literature and the Environment
In this course students examine the interdisciplinary relationship between literature and environmental and ecological studies. Topics to be explored include eco-criticism, eco-feminism, environmental (in) justice, indigeneity, sustainability, and animal studies.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3509 - Environmental (In)justice, Indigeneity, Sustainability, and Animal Studies
Literature and environmental (in)justice, indigeneity, sustainability, and animal studies.

HU 3510 - Shakespeare
In-depth study of a limited number of Shakespearean plays with special attention to dramatic structure, character development, theme presentation, and theatre history. Includes extensive study of Renaissance influences, possibly film versions of selected plays, and examination of current critical theories.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3511 - Workshop in Creative Nonfiction
Advanced workshop in creative nonfiction writing; workshop format. Readings will include short memoirs, personal essays, lyric essays, and other sub-genres of contemporary creative nonfiction. Emphasis on individual production through process-oriented writing exercises, small group workshops, individual conferences, and revision/development.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 2510 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3512 - Workshop in Poetry
Advanced workshop in poetry writing; workshop format. Students will study contemporary and emerging works in order to enrich and stimulate their own poetic practice. Emphasis on individual production through process-oriented writing exercises, small group workshops, individual conferences, and revision/development.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 2510 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3513 - Workshop in Fiction
Advanced workshop in fiction writing; workshop format. Readings will include 'canonical', contemporary, and emerging examples of short-form fiction. Emphasis on individual production through process-oriented writing exercises, small group workshops, individual conferences, and revision/development.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 2510 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3516 - Workshop in Fiction
Advanced workshop in fiction writing; workshop format. Readings will include 'canonical', contemporary, and emerging examples of short-form fiction. Emphasis on individual production through process-oriented writing exercises, small group workshops, individual conferences, and revision/development.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 2510 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3517 - Literary Theory and Criticism
A consideration of a variety of theoretical and critical approaches and methods of literary research in the study of British and American literature.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2004-2005 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
HU 3518 - Workshop in Science Fiction Writing
This course focuses on the craft of writing science fiction. Reading stories from classic to contemporary sci-fi and examining key features of the genre. Writing assignments will include reading responses, short creative exercises, peer review, and a research-driven work of fiction.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3519 - Workshop in Nature Writing
This course focuses on the craft of environmental and nature writing. In conjuction with creative writing exercise and peer review, students will analyze a variety of exemplary texts within the genre, culminating in the production of a research-driven manuscript in either poetry, fiction, or nonfiction.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3545 - Literature Across Borders
Study of literary genres, themes, and movements, with emphasis on comparing and contrasting perspectives reflected in literatures from Western and non-Western cultures. Topics may focus on historical, social, aesthetic, and cultural factors as they influence these literatures. Films may be used.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2004-2005 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3547 - Science Fiction
Close study of significant works in science fiction and fantasy. Examines genre features and usage and attends to a writer's style and methods. Regularly focuses on historical fiction and fantasy using film to help establish literary context.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3557 - Literature and Science
Focuses on depictions of science in literature and literary features of scientific texts from a range of historical periods, genres, and nationalities. May include the influence of scientific methods on literature and vice versa (for instance, narrative medicine).
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3600 - Professional Development in the Humanities
Addresses conventions and expectations for professional development through projects such as portfolio development and research into contemporary professional and work place issues. Explores career and graduate school opportunities.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Communication, Culture & Media, Scientific & Tech Comm (BS), English, Liberal Arts, Scientific & Tech Comm (BA), Humanities, Comm and Culture Studies; May not be enrolled in one of the following Class(es): Freshman

HU 3605 - Grammar and Usage in Society
Description and analysis of current standards of grammar and usage in the U.S. Students acquire an understanding of the structures of American English as well as an understanding of the social forces underlying standardization and the processes of language change.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

HU 3606 - Editing
Examination of the responsibilities of an editor and grounding in basic editorial skills. Topics include situations of editing, levels of editing, readability, correctness, style, relations with authors, and social and political implications of editing.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

HU 3621 - Introduction to Journalism
Introduction to the history and practice of journalism. Includes critical analysis of journalistic coverage, journalistic style and editing, and ethical issues in journalism.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3630 - Publications and Information Management
Principles of information selection, editing, layout, and graphics essential to the scheduling, budgeting, and production of various print and digital publications.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): HU 2642 and HU 2633 or HU 2645
HU 3693 - Science Writing
Introduces writing, research, and editing that contribute to a public understanding of science. Possible topics: health, environment, medicine, public policy.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3694 - Grant Writing
Introduces fundamentals of grant proposal writing and research. Possible topics: writing for nonprofits, grant writing in various disciplines, researching funding resources.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3695 - Digital Writing and Rhetoric
Social, ethical, and historical implications of digital writing and rhetoric, investigating digital contexts, with special attention to analyzing and producing digital content.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): HU 2642 or HU 2130 or HU 3120

HU 3700 - Philosophy of Science
Examination of problems involved in scientific methodology such as theory structure, concept formation, scientific explanation, hypothetico-deductive model, role of experimentation, function of paradigms and analogies, distinction between science and pseudoscience, extent to which science is value-free or value-laden, social responsibility of scientists, and aims of science.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3701 - Philosophy of Technology
A study of philosophical analyses of technology. Topics may include: the essence and nature of technology, technology and human existence; the notion that we live in a technological age; and ethical issues surrounding the use, abuse, and ubiquity of technology.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3702 - Philosophy of Religion
An examination of some philosophical questions in diverse religious traditions including the existence of God, the problem of evil, and the nature of religious experience.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3710 - Engineering Ethics
A study of ethical questions confronting individual engineers and the engineering profession. Among the issues to be explored are the meaning of professionalism, the social responsibilities of engineers, engineer-employer and engineer-client relationships, whistle-blowing, conflicts of interest, and competitive bidding.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3711 - Biomedical Ethics
A study of several important ethical and philosophical issues that arise in medical practice and in biomedical science. Issues may include euthanasia, abortion, the physician-patient relationship, experimentation involving human subjects, and allocation of scarce biomedical resources. General ethical theories and concepts are used to shed light on those issues.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3800 - Media and Society
Examines contemporary forms of mediated communication. Emphasis on understanding media economics and impacts of media on attitudes, values, behavior, and identity. Topics may include propaganda, advertising, political communication, journalism, media violence, social media, surveillance, and media policy.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3802 - Media and Globalization
Examines the development of modern international communication systems, the rise of transnational media industries and technologies, and debates about their global impacts.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
HU 3810 - Technology and Culture
Considers interrelationships between technology and culture. Includes understanding the context within which technologies are developed and used, and how assumptions about technology shape knowledge, practice, and creative action. Issues such as progress, determinism, ethics, gender, race, class, globalization, and "humanness".
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3825 - Environmental Communication
Critical and cultural approach to key issues, concepts, and controversies in the field of environmental communication. May include topics such as environmental journalism, rhetoric of sustainability, risk communication, politics of climate representation, advocacy, consumerism, eco-tourism, greening, public policy, environmental justice.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3830 - Creativity, Culture, and Change
Examines the sources of creativity and the ways that it has been used to change cultural values, feelings, beliefs, and practices. A project-based course that cultivates and applies creative action toward cultural change.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3832 - Advanced Digital Presentation
Students will use digital delivery modes to design and deliver presentations for a variety of social and professional purposes. Students will explore the ethical, social, and political implications of digital delivery for civic life and public discourse.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3840 - Organizational Communication
An approach to understanding organizations in their socio-historical contexts from a variety of theoretical perspectives in communication. Explores meanings, roles, relations, interactions, and structures from a communication perspective.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3850 - Cultural Studies
Examines the way that culture communicates values, feelings, beliefs; structures differential relations of power and possibility; creates difference and hierarchy. Considers the struggles over meaning that open up possibilities for diversity and change.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3852 - Surveillance, Media, and Film
Considers surveillance practices and the surveillance imaginary through films that take surveillance as their principal feature. Covers perspectives such as those of the watchers and the watched; kinds and purposes of surveillance; and the relationship between filmic surveillance and our sense and practices of freedom versus control.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3860 - Popular Culture
Introduces fundamentals of cultural theory and media criticism. Considers historical, social, political, and economic contexts of popular culture from a media studies perspective.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3871 - New Media Theory
Examines relationships among changing communication technologies and communication theories. Emphasizes issues involving emerging technologies and emerging theory.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3872 - Color, Visuality, and Culture
Engages with color as an aesthetic, theoretical, historical, cultural, and political concept. Explores what color is made of, how color shapes meaning, and how color functions in various expressive and interpretative contexts including politics, science, and industry.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
HU 3882 - Media Industries
Examines economic, political, and cultural aspects of media industries (cinema, broadcasting, music, gaming, telecommunications, and advertising) from historical and contemporary contexts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3890 - Documentary
Considers technical, theoretical, aesthetic and ethical dimensions of documentary media through analysis and production.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3910 - Language and Globalization
Considers the historical rise of the English language and other dominant languages, and present effects on minority and endangered languages within the US and abroad; World Englishes and dialectal variation; and the interaction of forces of globalization/standardization with localization/identity.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 3940 - Language and Identity
Examines how individuals create and perform their social identities through and in response to language, considering social variables such as race, ethnicity, class, gender, sexuality, disability, geography, power, ideology, etc. Explores how these variables may intersect, clash, and be resolved.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2010-2011 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 4050 - Special Topics
Tutorial, seminar, workshop, or class study of special interest and importance in the humanities. Students should register by section number for the appropriate instructor and topic.
Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

HU 4060 - Humanities Workshop
Special workshop projects in the humanities such as tutorials, editing, Shakespeare Faire drama workshop, writer’s workshop, or study-abroad tours. Approved credit varies by degree program.
Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

HU 4101 - Multiliteracies Center Practicum
Reflective practicum in which theories of learning, literacy, and cultural differences are applied in the Multiliteracies Center setting under the supervision of a writing center professional.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required
Pre-Requisite(s): UN 1015

HU 4271 - Modern Language Seminar I-French
Language and power. Critical study of the representation of politics, economics, and social institutions in literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in French and English translations. Course offered third year beginning 2009-2010.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): HU 3274 or HU 3275

HU 4272 - Modern Language Seminar II-French
Individual and society. Critical study of the relationship between the individual and social institutions in literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in French and in English translation. Course offered third year beginning 2010-2011.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2001-2002 academic year
Pre-Requisite(s): HU 3274 or HU 3275

HU 4273 - Modern Language Seminar III-French
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): (HU 3274 or HU 3275) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 4281 - Modern Language Seminar I-German
Language and power. Critical study of the representation of politics, economies, and social institutions in literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in German and in English translation. Course offered every third year beginning 2008-2009.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 3284 or HU 3285
HU 4282 - Modern Language Seminar II-German
Individual and society. Critical study of the relationship between the individual and social institutions in literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in German and in English translation. Course offered every third year beginning 2009-2010.
Credits: 3.0
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 3284 or HU 3285

HU 4283 - Modern Language Seminar III-German
Technology in literature and film. Critical study of the relationship between modern technology and literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in German and in English translation. Course offered every third year beginning 2010-2011.
Credits: 3.0
Semesters Offered: Fall, Spring
Pre-Requisite(s): HU 3284 or HU 3285

HU 4291 - Level IV Modern Language Seminar I-Spanish
Language and power. Critical study of the representation of politics, economies, and social institutions in literature, film, and authentic texts in French, German, and Hispanic language communities. Students read texts in Spanish and English translation.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): HU 3294 or HU 3295 or HU 3296

HU 4292 - Level IV Modern Language Seminar II-Spanish
Individual and society. Critical study of the relationship between the individual and social institutions in literature, film, and authentic documents from French, German and Hispanic speaking communities. Students read texts in Spanish and in English translation.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): HU 3294 or HU 3295 or HU 3296

HU 4293 - Level IV Modern Language Seminar III-Spanish
Technology in literature and film. Critical study of the relationship between modern technology and literature, film, and authentic documents from French, German, and Hispanic language communities. Students read texts in Spanish and in English translation.
Credits: 3.0
Semesters Offered: On Demand
Pre-Requisite(s): HU 3294 or HU 3295 or HU 3296

HU 4327 - Multimedia Storytelling
Production-intensive focus on how media producers use audio, video, and digital platforms to tell a story, realize a creative vision, and engage an audience.
HU 4628 - Usability Evaluation and User Experience Design
Theories and practices of usability evaluation and user experience design relevant to technical communication contexts. Individual and team projects with emphasis on the development of instructions and procedures.

Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring
Pre-Requisite(s): HU 3120 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 4634 - Advanced Practicum in Scientific and Technical Communication
Provides technical communication majors with opportunities to design and produce various communication products expected in their working careers, such as sets of procedures, proposals, progress reports, sets of directions, and style sheets. The course will also require students to complete, with advice from the instructor, one major client-involved project such as a brochure, newsletter, web site, technical training module, etc.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s):
Scientific & Tech Comm (BS), Scientific & Tech Comm (BA)
Pre-Requisite(s): HU 3120 and HU 2600

HU 4642 - Advanced Topics in Media
Critical and/or applied topics in advanced media, theory and development. Topics may include game design, mobile media, color, photography, film, or graphic design.

Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-2-3)
Semesters Offered: On Demand
Restrictions: Permission of instructor required

HU 4690 - Special Topics in Technical and Professional Communication
In-depth examination of selected topics in scientific and technical communication, or on professional and workplace writing in selected genres such as reports, proposals, or whitepapers.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

HU 4700 - Topics in Philosophy
The topics will ordinarily be in-depth examinations of a particular philosopher or philosophical problem, tradition, or historical period. Examples include the philosophy of Kant, the existence of God, American pragmatism, death and dying, and ancient Greek philosophy.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015

HU 4701 - Political Philosophy
Issues in political philosophy, such as the moral foundations of political systems, the proper relation between the individual and the state, and the justification of social institutions. Philosophers studied may include Plato, Aristotle, Machiavelli, Hobbes, Locke, Marx, de Tocqueville, Mill, Dewey, and Rawls.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 4710 - Sports Medicine and Ethics
Examines ethical issues in sports medicine. Topics include the ethical responsibilities and conflicts of interest for team physicians, research on athletes, sport-related concussions, and doping. Philosophical ethical foundations, and professional ethical codes for sports medicine will be studied.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

HU 4711 - Biomedical Research Ethics
Examination of bioethical issues in biomedical research. Topics include research on human subjects, on vulnerable populations, and animals, principles of ethical research, and societal expectations for researchers.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): HU 3711

HU 4725 - Existentialism and Phenomenology
Introduction to the philosophical traditions of existentialism and phenomenology. Topics might include: the nature of human existence and of freedom; the importance of world, self, anxiety, death, and authenticity; and the foundations of knowledge, experience and meaning.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

HU 4890 - Topics in Communication
In-depth examination of selected issues or problems in the study of communication, such as gender and communication, the environment and communication, sound and communication, violence and communication.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
Kinesiology & Integrative Phys

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Lec-Rec-Lab:</th>
<th>Semesters Offered</th>
<th>Restrictions</th>
<th>Pre-Requisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIP 1000</td>
<td>Introduction to Exercise Science</td>
<td>Introduction to the fields and career opportunities in the exercise sciences.</td>
<td>1.0</td>
<td>(1-0-0)</td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 1010</td>
<td>Introduction to Sports and Fitness Management</td>
<td>Introduction to the fields and career opportunities in sports and fitness management.</td>
<td>1.0</td>
<td>(1-0-0)</td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 1500</td>
<td>Foundations of Kinesiology</td>
<td>Introduces academic subdisciplines of kinesiology - anatomy, motor behavior, biomechanics, physiology, exercise and the environment, sport nutrition and the mind and brain in exercise. Provides the conceptual framework within which the scientific bases for movement during exercise, sport performance, and other forms of physical activity are studied.</td>
<td>3.0</td>
<td>(3-0-0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 1900</td>
<td>Student Athlete 101</td>
<td>Read, discuss, and practice study skills, cognitive strategies, goal development, and address contemporary issues problematic in today's college environment.</td>
<td>1.0</td>
<td>(1-0-0)</td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2000</td>
<td>Professionalism in Kinesiology</td>
<td>This course will assist students in gaining skills for entering into career-focused roles with professional competency, learning to apply these skills through shadowing experiences, and preparing to transition from a college student to a professional in kinesiology.</td>
<td>2.0</td>
<td>(1-1-0)</td>
<td>Fall</td>
<td>Must be enrolled in one of the following Major(s): Sports and Fitness Management, Exercise Science</td>
<td></td>
</tr>
<tr>
<td>KIP 2100</td>
<td>Introduction to Athletic Training</td>
<td>Covers first aid, adult CPR, child CPR, and other sport training issues. Students receive appropriate certification cards.</td>
<td>3.0</td>
<td>(2-0-1)</td>
<td>Fall, Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2200</td>
<td>Health Promotion</td>
<td>This course emphasizes methods in planning, designing, implementing, and improving health/wellness promotion programs. Client motivation, behavior change, and physical activity for special populations will be addressed.</td>
<td>2.0</td>
<td>(2-0-0)</td>
<td>Fall - Offered alternate years beginning with the 2018-2019 academic year</td>
<td>KIP 1500</td>
<td></td>
</tr>
<tr>
<td>KIP 2300</td>
<td>Sports and Fitness Leadership</td>
<td>Course is designed to help students succeed in leadership principles, effective communication, team work, and introspection. Students will lead, teach, and collaborate with their peers through different assignments and active participation in class.</td>
<td>2.0</td>
<td>(2-0-0)</td>
<td>Fall - Offered alternate years beginning with the 2019-2020 academic year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2400</td>
<td>Principles of Sports Officiating</td>
<td>Theory and practice of officiating various sports common in the community and school setting.</td>
<td>2.0</td>
<td>(1-0-2)</td>
<td>Fall - Offered alternate years beginning with the 2018-2019 academic year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2470</td>
<td>Lifeguard First Aid</td>
<td>Lecture, demonstration, and practice of first aid knowledge and skills. Adult, child, and infant CPR skills will be covered as well as AED.</td>
<td>1.0</td>
<td>(0-0-1)</td>
<td>Fall, Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2500</td>
<td>Athletic Training Practicum</td>
<td>An experiential learning course in which students assist certified athletic trainers in preventive and post-injury care of collegiate athletes. Topics include professionalism, acute injury prevention techniques, and post-injury management and care.</td>
<td>1.0</td>
<td>(0-0-1)</td>
<td>Fall, Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIP 2600</td>
<td>Introduction to Public Health</td>
<td>An overview of public health including the history of public health and major issues facing the U.S. and global populations. Topics include societal conditions that lead to health disparities, role of government, and the basic sciences supporting public health.</td>
<td>3.0</td>
<td>(3-0-0)</td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Course Descriptions Effective Fall 2020, Page 98 of 162
KIP 2610 - Outdoor Emergency Care Training (Ski Patrol)
Second of two-course sequence required for Alpine and Nordic Ski Patrol candidates. Ninety hours of instruction includes three weekends. Requires payment of dues to become member of National Ski Patrol. Certification in National Ski Patrol Outdoor Emergency Care is available upon completion.
Credits: 2.0
Semesters Offered: Fall
Restrictions: Permission of instructor required
Pre-Requisite(s): PE 2028

KIP 2800 - Special Topics in Kinesiology
Examination of current topics in the field of kinesiology. Literature and research topics are addressed.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s):
Sports and Fitness Management, Exercise Science

KIP 3000 - Sports Psychology
Overview of psychological principles and their applications to individuals and groups in sport, exercise and/or therapy. For the laboratory portion, students observe and analyze behaviors in a setting of their choice.
Credits: 3.0
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): PSY 2000

KIP 3100 - Exercise Assessment and Prescription
Theory and practical aspects of exercise testing and prescription; topics include testing of strength, endurance, cardiovascular endurance, flexibility, body composition, muscle power, and balance with special considerations for arthritis, osteoporosis, dyslipidemia, immunology, and metabolic syndrome.
Credits: 3.0
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): BL 2020 and BL 2021

KIP 3200 - Personal Training
A pragmatic course of both theory and application in setting up a personal training program for individuals. Includes assessment techniques, planning, safety and legal issues. Leads toward final preparation to earn certification as a personal trainer.
Credits: 2.0
Semesters Offered: Spring
Pre-Requisite(s): BL 2020 and BL 2021 and KIP 3100

KIP 3300 - Foundations of Coaching
Practical and relevant information appropriate for beginning and experienced interscholastic coaches.
Credits: 3.0
Semesters Offered: Fall, Summer

KIP 3310 - Coaching Methods and Principles
Designed to provide students with basic information about coaching. Planning and organizing practice and competition, selecting appropriate drills, teaching and analyzing fundamental skills, evaluating performance, understanding basic strategies.
Credits: 2.0
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year

KIP 3400 - Sports Administration
Students will learn skills and competencies of sports management including ethics, marketing, law, finance, information, collegiate, olympic, professional, youth, campus recreation programs, parks, career opportunities, foundations, and future directions.
Credits: 3.0
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

KIP 3410 - Facilities & Events Management
Students will learn about managing sports facilities including risk management, administration of personnel, organization, and administrative efficiency.
Credits: 3.0
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

KIP 3500 - Sports Medicine Practicum
This course allows students to experience current topics in sports medicine along with learning up-to-date orthopedic injury assessment, treatment, and rehabilitation.
Credits: 1.0
Semesters Offered: Fall, Spring
Pre-Requisite(s): KIP 2500

KIP 3600 - Motor Development
Designed for upper level undergraduates or graduates, this course will focus on the changes in motor behavior across a life span, and examine the study and practice of fundamental patterns within the context of development theory.
Credits: 3.0
Semesters Offered: Spring
Pre-Requisite(s): KIP 1500 and BL 2020

KIP 3700 - Lifetime Fitness
To gain a thorough understanding in all areas of personal fitness through functional anatomy, exercise physiology, health and physical fitness, screening and evaluation, nutrition, weight management, exercise prescription and programming considerations, training instruction, and consideration for special populations.
Credits: 3.0
Semesters Offered: Summer
KIP 4000 - Sports Nutrition Seminar
Human nutrition as it specifically applies to athletes. Specific needs for proteins, carbohydrates, fats, electrolytes and micronutrients. Use of ergogenic aids is covered. Students will research, write and present orally their findings on nutrition topics.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2940

KIP 4100 - Exercise Physiology
Focuses on the functional changes brought by acute and chronic exercise sessions. Topics include muscle structure and function, bioenergetics, cardiovascular and respiratory adaptations, exercise training for sport, sport nutrition, ergogenic aids, and other health and fitness topics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Co-Requisite(s): KIP 4110
Pre-Requisite(s): BL 2020 and BL 2021

KIP 4110 - Exercise Physiology Laboratory
Hands-on experience in making physiological measurements as related to exercise. Cardiovascular and respiratory changes during exercise will be monitored. A virtual lab is used to simulate changes in physiological measurements that cannot be performed on live subjects. A student designed laboratory project is required.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Co-Requisite(s): KIP 4100

KIP 4120 - Molecular Exercise Physiology
Introduces cellular and molecular mechanisms by which exercise causes adaption. Topics include how gene variations affect human performance, signal transduction pathways involved in regulation of metabolism, and mechanism of exercise in prevention and treatment of chronic diseases.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BL 2100 and KIP 4100

KIP 4200 - Biomechanics of Human Movement
An in-depth view of the biomechanical properties of the musculoskeletal system. The course provides detailed analyses of the kinetics of human movement, material properties of the component tissues, and dynamic processes of adaptation to stress and strain of the system.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Co-Requisite(s): KIP 4210
Pre-Requisite(s): BL 2020 and KIP 1500 and PH 1110 and PH 1111

KIP 4210 - Biomechanics of Human Movement Laboratory
Hands-on experience, including data collection, analysis, and interpretation using various equipment in biomechanics. equipment in biomechanics.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall
Co-Requisite(s): KIP 4200
Pre-Requisite(s): BL 2020 and KIP 1500 and PH 1110 and PH 1111

KIP 4250 - Ergonomics
Introduction to ergonomics and work measurement with an emphasis on people in built and occupational environments. Discussion of methods for ergonomic assessment, evolution, and work measurement, with major topics including productivity and performance, manual materials handling, work-related musculoskeletal disorders, safety, training, legal issues, and adapting environments for special populations.
Credits: 3.0
Lec-Rec-Lab: (2-0-1)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

KIP 4300 - Motor Learning and Control
This course will provide the current theories and concepts involved in the processes of motor skill acquisition and performance from a behavioral perspective.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): KIP 1500 and BL 2020

KIP 4400 - Strength and Conditioning
Theory and practice in development and administration of comprehensive strength and conditioning programs for both the athlete and individual of any level. Includes knowledge, safety concerns and skill techniques necessary for teaching and administering at any strength and conditioning facility.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Fall
Pre-Requisite(s): BL 2020 and BL 2021

KIP 4450 - Athletic Training Capstone
Experiential learning that engages students with mentorship and assisting certified athletic trainers through a complete season with one team. This course allows students to engage with injuries from onset through complete rehabilitation and return to play.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): KIP 3500
KIP 4600 - Sports and Fitness Promotions
Development and implementation of marketing plans for sports and fitness businesses. Topics include marketing of sporting events and fitness programs, use of traditional media for promotion, web-based advertising (new media), and business branding.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): MKT 3000

KIP 4610 - Legal Issues in Sports and Fitness Management
Review of legal issues that apply to sport and fitness organizations such as liability, risk management, facility concerns, and labor laws. Basic components of the U.S. legal system and guidelines, and rules of the National Collegiate Athletic Association will be covered.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

Pre-Requisite(s): MKT 3000

KIP 4620 - Sports Media
This course examines the impact sports and the media have on each other and the sports consumer. Students will gain a greater understanding of the operation of sports media and communications at all levels of sports (amateur, collegiate, professional) and the role of sports media in American society.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

Pre-Requisite(s): MKT 3000

KIP 4630 - Financial Aspects of Sports
The course is designed to provide the student with an understanding of the basic concepts that underlie financial management, and an ability to apply these concepts to the analysis of financial issues within the sport industry.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

Pre-Requisite(s): ACC 2000

KIP 4690 - Coaching Practicum
Students seeking coaching endorsement assist with a sport of their choice. Subject to approval of endorsement advisor, students may assist a head coach in season during student teaching; assist MTU head coach in season; assist head coach in season at public/private school or summer camp.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required
Pre-Requisite(s): KIP 3000 and KIP 3300

KIP 4700 - EKG Interpretation
Course is designed for students who are going to pursue future career related to cardiac rehabilitation, physical therapy and students in the Pre-Med program. Students will learn cardiac electrophysiology, the pathophysiology, the diagnosis, and treatment of cardiac arrhythmias, and related cardiovascular diseases. Class will build bridge between basic sciences and human health.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

Pre-Requisite(s): BL 2020 and BL 2021

KIP 4710 - Sports Medicine and Ethics
Examines ethical issues in sports medicine. Topics might include the ethical responsibilities and conflicts of interest for team physicians, research on athletes, sport-related concussions, and doping. Philosophical ethical foundations, and professional ethical codes for sports medicine will be studied.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

KIP 4720 - Exercise Pharmacology
Course will bridge between basic sciences and human health. The course focuses on understanding the fundamental concept of exercise pharmacology and pharmacological treatment of diseases of various systems including cardiovascular, respiratory, endocrine, neuronal, hormonal, and renal systems.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring
Pre-Requisite(s): BL 2020 and BL 2021

KIP 4730 - Physical Therapy Seminar
Seminar for students who are interested in physical therapy profession. Course will include self-directed learning and group work. Topics may include evidence based medicine, literature review writing and evaluation, healthcare reimbursement, clinical decision making, health screenings, and other current topics.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

Pre-Requisite(s): BL 2020 and BL 2021

KIP 4740 - Epidemiology
An introduction to the principles and methods of epidemiology to understand the distribution and determinants of health in a population. Topics include basic epidemiological statistics, study design, and sources/impact of bias and error.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

Undergraduate Course Descriptions Effective Fall 2020, Page 101 of 162
KIP 4800 - Special Topics in Kinesiology
Examination of current topics in the field of exercise science. Literature and research topics are addressed.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Sports and Fitness Management, Exercise Science; May not be enrolled in one of the following Class(es): Freshman, Sophomore

KIP 4900 - Internship in Exercise Science
Practical and didactic training in Exercise Science in an approved internship site. Provides experience in a variety of exercise science or medical settings. Internships must be approved by the department internship coordinator and work 42 hours for each credit earned.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Exercise Science; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): KIP 2000

KIP 4910 - Internship in Sports and Fitness Management
Empirical experiences in an approved internship site. Provides practical experience in one or more work settings, assisting the upper level student in making an appropriate career choice. Internships must be approved by the department internship coordinator and work 42 hours for each credit earned.
Credits: variable to 12.0; Repeatable to a Max of 12
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Sports and Fitness Management; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): KIP 2000

KIP 4950 - Research in Kinesiology
A literature and laboratory research experience in kinesiology that culminates in a written report or oral presentation of the work performed.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required

Mathematical Sciences

MA 1020 - Quantitative Literacy
Stresses the role of contemporary mathematical thinking and the connection between mathematics and our daily lives. Topics include the mathematics of the Census, planning and scheduling, coding theory, game theory, symmetry and patterns, logic and modeling, and political flavor topics.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Anthropology, Communication, Culture & Media, Comm and Culture Studies, Theatre & Electr. Media Perf., English, Theatre & Entertain Tech (BS), Theatre & Entertain Tech (BA), Liberal Arts, Psychology, Sports and Fitness Management, History, Social Sciences, Liberal Arts with History Opt, Sustainability Sci and Society, Scientific & Tech Comm (BA), Scientific & Tech Comm (BS), Humanities
Pre-Requisite(s): ALEKS Math Placement >= 00 or ACT Mathematics >= 10 or SAT MATH SECTION SCORE-16 >= 260

MA 1030 - College Algebra I
This course is the first of a two semester sequence. It examines the behavior of linear, polynomial, and rational functions. In addition, algebraic methods commonly needed in calculus are reviewed.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): ALEKS Math Placement >= 46 or ACT Mathematics >= 15 or SAT MATH SECTION SCORE-16 >= 400

MA 1031 - College Algebra II with Trigonometry
This course is the second of a two semester sequence. It examines the behavior of exponential, logarithmic, and trigonometric functions. Also, algebraic and trigonometric methods commonly needed in calculus are reviewed. MA1030 and MA1031 together are equivalent to MA1032.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MA 1030

MA 1032 - Precalculus
This course examines the behavior of linear, polynomial, rational, exponential, logarithmic and trigonometric functions.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): ALEKS Math Placement >= 61 or ACT Mathematics >= 22 or SAT MATH SECTION SCORE-16 >= 540
MA 1120 - Single-Variable Calculus with Integrated Precalculus I
Introduction to single-variable calculus with precalculus review. Topics include behavior of elementary functions, limits, continuity, differentiation, and applications. Integrates symbolic tools, graphical concepts, data, and numerical calculations.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): ACT Mathematics >= 22 or SAT MATH SECTION SCORE-M16 >= 540 or ALEKS Math Placement >= 61

MA 1121 - Single-Variable Calculus with Integrated Precalculus II
Introduction to single-variable calculus with precalculus review. Topics include further applications of derivatives, definite and indefinite integrals, the fundamental theorem of calculus, basic integration techniques, and applications. Integrates symbolic tools, graphical concepts, data and numerical calculations.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring
Pre-Requisite(s): MA 1120

MA 1135 - Calculus for Life Sciences
Topics include analytic geometry, limits, continuity of functions, transcendental functions, derivatives, integrals, and applications of the derivative in the fields of economics, biological sciences, and social sciences. Extensive use of graphing calculator. Credit applicable only to those curricula specifying this course.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following College(s): College of Engineering
Pre-Requisite(s): MA 1032 or MA 1031 or MA 1120 or ALEKS Math Placement >= 76 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 26 or SAT MATH SECTION SCORE-M16 >= 610

MA 1160 - Calculus with Technology I
An introduction to single-variable calculus, which includes a computer laboratory. Topics include trigonometric, exponential, and logarithmic functions, differentiation and its uses, and basic integration. Integrates symbolic tools, graphical concepts, data and numerical calculations.
Credits: 4.0
Lec-Rec-Lab: (0-3-1)
Semesters Offered: Fall
Pre-Requisite(s): MA 1032 or MA 1031 or MA 1120 or ALEKS Math Placement >= 86 or CEEB Calculus AB >= 3 or CEEB Calculus BC >= 3 or CEEB Calculus AB Subscore >= 3 or ACT Mathematics >= 29 or SAT MATH SECTION SCORE-M16 >= 680

MA 1161 - Calculus Plus w/ Technology I
An introduction to single-variable calculus, which includes a computer laboratory. Topics include trigonometric, exponential, logarithmic functions, differentiation and its uses, and basic integration. Integrates symbolic tools, data and numerics, and graphical concepts and is similar to MA1160, going at a different pace.
Credits: 5.0
Lec-Rec-Lab: (0-4-1)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 1032 or MA 1031 or MA 1120 or ALEKS Math Placement >= 76 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 26 or SAT MATH SECTION SCORE-M16 >= 610

MA 1600 - Introduction to Scientific Simulation
Introduction to simulation, a powerful computational tool for many scientific problems. Case studies and projects will be drawn from various fields. Prior programming experience is not required; all necessary computational skills will be developed in the course.
Credits: 3.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Pre-Requisite(s): MA 1160 or MA 1161 or MA 1121

MA 1910 - Exploring Symmetry Groups
Mathematical discovery and invention in group theory: transformations, finite figures, strip patterns, wall patterns, finite groups, and Cayley diagrams. Develops the ability to find and describe patterns, to generalize from observations, to formulate conjectures, and to support conjectures with analysis and, when possible, formal proof.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year

MA 1920 - Exploring Knots and Surfaces
Mathematical discovery and invention in topological graph theory: networks, graphs, graph coloring, surfaces and graphs, and knots. Develops the ability to find and describe patterns, to generalize from observations, to formulate conjectures, and to support conjectures with analysis and, when possible, formal proof.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year

MA 1930 - Exploring Number Theory
Mathematical discovery and invention in number theory: number puzzles, Chinese Remainder Theorem, codes, primitive roots, and quadratic reciprocity. Develops the ability to find and describe patterns, to generalize from observations, to formulate conjectures, and to support conjectures with analysis and, when possible, formal proof.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year
MA 1940 - Exploring Non-Euclidean Geometry
Mathematical discovery and invention in Non-Euclidean geometry: definitions of straight and angle, transformations, congruence, parallel transport, projections, and finite geometries. Develops the ability to find and describe patterns, to generalize from observations, to formulate conjectures, and to support conjectures with analysis and, when possible, formal proof.
Credits: 3.0
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year

MA 1990 - Elementary Mathematics Topics
Students study a particular area in mathematics, ordinarily not covered in existing courses. Intended for first-year students.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MA 2160 - Calculus with Technology II
Continued study of calculus, which includes a computer laboratory. Topics include integration and its uses, function approximation, vectors, and elementary modeling with differential equations.
Credits: 4.0
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 2170 - Introduction to Statistical Analysis
Introduction to statistical reasoning and methods. Topics include uses and abuses of statistics, graphical and descriptive methods, correlation and regression, probability and statistical inference. The course will include a written project and an introduction to statistical software.
Credits: 3.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Statistics, Mathematics
Pre-Requisite(s): MA 1160 or MA 1161 or MA 1135 or MA 1121

MA 2600 - Scientific Computing
Use of mathematical modeling and computer simulation to solve scientific problems. Includes introduction to elementary numerical methods (numerical integration, solution of linear systems, solution of nonlinear equations, optimization) and to computer programming. Requires programming project(s).
Credits: 3.0
Semesters Offered: Fall
Pre-Requisite(s): MA 2160 and (MA 2320 or MA 2321 or MA 2330)

MA 2710 - Introduction to Statistical Analysis
Introduction to statistical reasoning and methods. Topics include uses and abuses of statistics, graphical and descriptive methods, correlation and regression, probability and statistical inference. The course will include a written project and an introduction to statistical software.
Credits: 3.0
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Statistics, Mathematics
Pre-Requisite(s): MA 1160 or MA 1161 or MA 1135 or MA 1121

MA 2720 - Statistical Methods
Introduction to the design and analysis of statistical studies. Topics include methods of data collection, descriptive and graphical methods, probability, statistical inference on means, regression and correlation, and ANOVA.
Credits: 4.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mathematics
Pre-Requisite(s): MA 1020 or MA 1030 or MA 1120 or MA 1032 or MA 1031 or ALEKS Math Placement >= 61 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 22 or SAT MATH SECTION SCORE-M16 >= 540

MA 2990 - Elementary Topics in Mathematics
Students study a particular area in mathematics ordinarily not covered in existing courses. Intended for first- or second-year students.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MA 3160 - Multivariable Calculus with Technology
Introduction to calculus in two and three dimensions, which includes a computer laboratory. Topics include functions of several variables, partial derivatives, the gradient, multiple integrals; introduction to vector-valued functions and vector calculus, divergence, curl, and the integration theorems of Green, Stokes, and Gauss.
Credits: 4.0
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 2600 or CEEB Calculus BC >= 3

Undergraduate Course Descriptions Effective Fall 2020, Page 104 of 162
MA 3202 - Introduction to Coding Theory
Transmission via noisy channels, hamming distance, linear codes, the ISBN-code, encoding and decoding, finite fields, Reed-Solomon codes, deep space communication, the compact disk code, sphere packing bound, hamming codes, hamming decoding.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 3203 - Introduction to Cryptography
Topics include private-key cryptography, shift substitution, permutation and stream ciphers, cryptanalysis, perfect secrecy, public-key cryptography, and the RSA cryptosystem.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 3210 - Introduction to Combinatorics
Topics include set theory, mathematical induction, integers, functions and relations, counting methods, recurrence relations, generating functions, permutations, combinations, principle of inclusion and exclusion, graphs (including planar graphs). Further possible topics are graph coloring, trees and cut-sets, combinatorial designs, Boolean algebra.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 3310 - Introduction to Abstract Algebra
Introduction to proofs in algebra. Topics include elementary number theory (induction, binomial theorem, fundamental theorem of arithmetic, Euclidean algorithm, congruences, Fermat's theorem), group theory (subgroups, cyclic groups, generators, Lagrange's theorem, normal groups, homomorphisms, quotients), ring theory (domains, fields, polynomials, homomorphisms).
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 3450 - Introduction to Real Analysis
Why calculus works: a careful study of the logical basis of calculus, with an emphasis on how to read and write proofs. Topics include set theory, real numbers, infinite sequences, continuity, derivatives and integrals for functions of one variable, sequences of functions, infinite series.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2160

MA 3520 - Elementary Differential Equations
First order equations, linear equations, and systems of equations.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Major(s): Mathematics, Computer Science
Pre-Requisite(s): MA 2160 and (MA 2320 or MA 2321 or MA 2330)

MA 3521 - Elementary Differential Equations
Offered second half of semester, to be taken concurrently with MA2321. Topics include first order equations, linear equations and systems of equations.
Credits: 2.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Major(s): Mathematics, Computer Science
Co-Requisite(s): MA 2321
Pre-Requisite(s): MA 2160

MA 3530 - Introduction to Differential Equations
First order equations, linear equations, systems of equations, and Laplace transforms. May include elementary separation of variables for partial differential equations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MA 2160 and (MA 2320 or MA 2321 or MA 2330)

MA 3560 - Mathematical Modeling with Differential Equations
Creating differential equation models for physical problems such as population dynamics, kinetics, mass-spring systems. Topics include nondimensionalization, numerical methods, phase-plane analysis, first-order systems, linearization, and stability. Includes modeling case studies, using a computer algebra system, and a modeling project.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2160 and (MA 2320 or MA 2321 or MA 2330)

MA 3710 - Engineering Statistics
Introduction to the design, conduct, and analysis of statistical studies aimed at solving engineering problems. Topics include methods of data collection, descriptive and graphical methods, probability and probability models, statistical inference, control charts, linear regression, design of experiments.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 2160

MA 3715 - Biostatistics
Introduction to the design and analysis of statistical studies in the health and life sciences. Topics include study design, descriptive and graphical methods, probability, inference on means, categorical data analysis, and linear regression.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 1135 or MA 1160 or MA 1161 or MA 1121

MA 3720 - Probability
Introduction to probabilistic methods. Topics include probability laws, counting rules, discrete and continuous random variables, expectation, joint distributions, and limit theorems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): MA 1160 or MA 1161 or MA 1121
MA 3740 - Statistical Programming and Analysis
Project-based course enabling students to identify statistical methods and analysis using R and SAS. Topics include exploratory data analysis, classical statistical tests, sample size and power considerations, correlation, regression, and design experiments using advanced programming techniques.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MA 2710 or MA 2720 or MA 3710 or MA 3715

MA 3750 - Introduction to SAS Programming
This course is a workshop focused on solving problems for SAS certified base/certified programmers for SAS credentials.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2710 or MA 2720 or MA 3710 or MA 3715

MA 3810 - Introduction to Actuarial Mathematics
Nominal and effective rates of interest, present value, discount, annuities certain, sinking funds, bonds, yield rates, and amortization schedules. Financial calculator skills for professional exams. Immunization, swaps, interest rate policy. May include other topics on the FM exam.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3160(C)

MA 3811 - Actuarial Exam Workshop
Topics from the Society of Actuaries professional examinations, primarily financial mathematics and probability. Review, preparation, and practice using SOA exams and other materials.
Credits: 1.0; Repeatable to a Max of 4; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MA 3160

MA 3824 - College Geometry with Technology
Review of Euclidean geometry. Introduction to geometric constructions, conjecturing of theorems, methods of proof, 3-D geometry, finite geometries, and non-Euclidean geometries. Integrates computer software (e.g. Geometer's Sketchpad) throughout the course.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MA 2160 or MA 2330

MA 3990 - Math Sciences Teach Experience
Development of teaching skills through assisting in the instruction of a section of an entry-level undergraduate mathematics course. Students gain experience in leadership, group work, organization skills, cooperative exercise preparation, and class instruction.
Credits: variable to 4.0; Repeatable to a Max of 4; Graded Pass/Fail Only
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MA 3999 - Intermediate Topics in Mathematics
Students study a particular area in mathematics, not ordinarily covered in existing courses. Intended for third-year students.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MA 4208 - Optimization and Graph Algorithms
An introduction to linear and integer programming and related graph problems. Topics include simplex algorithm, duality, branch-and-bound and branch-and-cut, shortest paths, spanning trees, matchings, network flow, graph coloring, and perfect graphs.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2120

MA 4209 - Combinatorics and Graph Theory
An introductory course in combinatorics and graph theory. Topics include designs, enumeration, extremal set theory, finite geometry, graph coloring, inclusion-exclusion, network algorithms, permutations, and trees.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3210

MA 4310 - Abstract Algebra
Detailed study of abstract algebra: elementary number theory (congruences, quadratic residues, arithmetic functions), group theory (monoids, permutation groups, homomorphisms, quotients, Lagrange's theorem, finite abelian groups, Sylow's theorems), ring theory (domains, prime and maximal ideals, quotients, PID's), splitting fields, finite fields.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 3310

MA 4330 - Linear Algebra
A study of fundamental ideas in linear algebra and its applications. Includes review of basic operations, block computations; eigensystems of normal matrices; canonical forms and factorizations; singular value decompositions, pseudo inverses, least-square applications; matrix exponentials and linear systems of ODEs; quadratic forms, extremal properties, and bilinear forms.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330 and MA 3160

MA 4410 - Complex Variables
A study of complex numbers, functions of a complex variable, analytic functions, elementary functions, integrals, Taylor and Laurent series, residues and poles, and conformal mapping.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 3160
MA 4450 - Real Analysis
Real analysis on Euclidean n-space. Topics include real and vector valued functions, metric and normed linear spaces; an introduction to Lebesgue measure and convergence theorems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (MA 2320 or MA 2321 or MA 2330) and MA 3160 and MA 3450

MA 4515 - Introduction to Partial Differential Equations
An introduction to solution techniques for linear partial differential equations. Topics include: separation of variables, eigenvalue and boundary value problems, spectral methods, fourier series, and Green’s functions. Studies applications in heat and mass transfer (diffusion eqn.), and mechanical vibrations (wave and beam eqns.).
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): (MA 3520 or MA 3521 or MA 3530 or MA 3560) and MA 3160

MA 4525 - Applied Vector and Tensor Mathematics
Introduction to vector and tensor mathematics with applications. Topics include vectors; vector differential calculus, space curves; dyadic products and matrices; gradients, divergence, curl, Laplacians; Stokes’ integral theorem, Gauss theorem, conservation laws; curvilinear coordinates; tensors, material derivatives; applications of potential theory in electricity and magnetism, heat transfer, solid and fluid mechanics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3160 and (MA 2710 or MA 2720 or MA 3710 or MA 3715)

MA 4535 - Nonlinear Dynamics and Chaos
Ordinary differential equations and dynamical systems via a modern geometric approach, including physical and engineering applications. May include chaotic phenomena and fractals.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (MA 3520 or MA 3521 or MA 3530 or MA 3560) and MA 3160

MA 4610 - Numerical Linear Algebra
Derivation and analysis of algorithms for problems in linear algebra. Covers floating point arithmetic, condition numbers, error analysis; solution of linear systems (direct and iterative methods), eigenvalue problems, least squares, singular value decomposition. Includes a review of elementary linear algebra and the use of appropriate software.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2320 or MA 2321 or MA 2330

MA 4620 - Numerical Methods for PDEs
Derivation, analysis, and implementation of numerical methods for partial differential equations; applications to fluid mechanics, elasticity, heat conduction, acoustics, or electromagnetism.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (MA 3520 or MA 3521 or MA 3530 or MA 3560) and MA 3160

MA 4700 - Probability and Statistical Inference I
Introduction to probabilistic methods. Topics include probability laws, counting rules, discrete and continuous random variables, moment generating functions, expectation, joint distributions, and the Central Unit Theorem.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required
Pre-Requisite(s): MA 3160 and (MA 2710 or MA 2720 or MA 3710 or MA 3715)

MA 4705 - Probability and Statistical Inference II
Topics include sampling distributions, theory of point and interval estimation, properties of estimators, and theory of hypothesis testing.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Permission of department required
Pre-Requisite(s): MA 4700

MA 4710 - Regression Analysis
Covers simple, multiple, and polynomial regression; estimation, testing, and prediction; weighted least squares, matrix approach, dummy variables, multicollinearity, model diagnostics and variable selection. A statistical computing package is an integral part of the course.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2710 or MA 2720 or MA 3710 or MA 3715 or MA 5701

MA 4720 - Design and Analysis of Experiments
Covers construction and analysis of completely randomized, randomized block, incomplete block, Latin squares, factorial, fractional factorial, nested and split-plot designs. Also examines fixed, random and mixed effects models and multiple comparisons and contrasts. The SAS statistical package is an integral part of the course.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 2710 or MA 2720 or MA 3710 or MA 3715 or MA 5701
MA 4730 - Nonparametric Statistics
Introduces nonparametric techniques that require less restrictive assumptions on the data. Topics include statistical inference concerning location and dispersion parameters as well as the general distributions. Goodness-of-fit tests for count and ordinal data are also discussed.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): MA 2710 or MA 2720 or MA 3710 or MA 3715

MA 4760 - Mathematical Statistics I
Covers joint probability distributions, functions of random variables, sampling and limiting distributions, introduction to parameter estimation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3720 or EE 3180

MA 4770 - Mathematical Statistics II
Continuation of MA4760. Theory of point and interval estimation; properties of estimators, theory of hypothesis testing, analysis of variance, analysis of categorical data and other topics as time allows
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MA 4760

MA 4780 - Time Series Analysis and Forecasting
Statistical modeling and inference for analyzing experimental data that have been observed at different points in time. Topics include models for stationary and nonstationary time series, model specification, parametric estimation, and time regression models.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): (MA 2710 or MA 2720 or MA 3710 or MA 3715) and (MA 3720 or EE 3180)

MA 4790 - Predictive Modeling
Application, construction, and evaluation of statistical models used for prediction and classification. Topics include data visualization and exploratory methods, the normal theory regression model, logistic and Poisson regression, linear and quadratic discriminant analysis, and classification with logit models.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3740 or MA 4710 or MA 4720 or MA 4780

MA 4810 - Financial Markets and Actuarial Math
Derivative Securities, hedging, arbitrage, binomial and Black-Scholes pricing models. Long-term insurance coverages, life insurance and annuities. May include other topics on professional SOA exams.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): MA 3720 and MA 3810

MA 4820 - Loss Distributions and Actuarial Math
Loss distribution used for modeling insurance claims. Frequency, severity, coverage modifications, risk measures, models, credibility, short term insurance coverages. May include other topics on the C exam.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): MA 3720

MA 4900 - Mathematical Sciences Project
Independent study in an area of mathematical sciences under the guidance of a faculty member.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MA 4908 - Theory of Numbers with Technology
Mathematical induction, Euclid's algorithm, prime and composite integers, algebra of congruences, Chinese remainder theorem, quadratic reciprocity law, number theoretic functions, first degree Diophantine equations, Pythagorean triples, Fermat and Mersenne numbers, factoring algorithms, tests for primality and various applications. Projects use Mathematica and EXCEL software packages.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): MA 3210 or MA 3310 or MA 3924

MA 4945 - History of Mathematics
Survey of the development of mathematics from ancient times to today. How cultural, mathematical, and technological developments have influenced one another throughout history. Course provides all necessary historical background.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2710 or EE 3180

MA 4990 - Topics in Mathematics
Students study in greater depth a particular area of mathematics not studied in existing courses.
Credits: variable to 4.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

MEEM 2110 - Statics
Force systems in two and three dimensions. Includes composition and resolution of forces and force systems, principles of equilibrium applied to various bodies, simple structures, friction, centroids, and moments of inertia. Vector algebra used where appropriate. Prerequisite of MA2160 with a grade of C or better is required.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following College(s): College of For Res & Env Sci, College of Engineering
Pre-Requisite(s): MA 2160

Undergraduate Course Descriptions Effective Fall 2020, Page 108 of 162
MEEM 2150 - Mechanics of Materials
Introduction to mechanical behavior of materials, including stress/strain at a point, principle stresses and strains, stress-strain relationships, determination of stresses and deformations in situations involving axial loading, torsional loading of circular cross sections, and flexural loading of straight members. Also covers stresses due to combined loading and buckling of columns.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following College(s): College of For Res & Env Sci, College of Engineering
Pre-Requisite(s): MEEM 2110

MEEM 2201 - Introductory Thermodynamics
This course introduces concepts of energy, energy conversion, mechanisms of heat and work transfer in processes and in cycles. It also covers the first and the second laws of thermodynamics.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following College(s): College of Engineering
Pre-Requisite(s): MA 2160 and CH 1150 and CH 1151

MEEM 2700 - Dynamics
First course in the principles of dynamics, covering the motion of a particle, the kinematics and kinetics of plane motion of rigid bodies, the principles of work and energy, impulse and momentum. Uses vector methods.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): PH 2100 and (MEEM 2110 or ENG 2120) and MA 3160(C)

MEEM 2901 - Mechanical Engineering Practice I
Students develop laboratory and computer skills, Topics include product dissection, data acquisition, materials testing, 2D finite element modeling, 1D modeling and simulation.

Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 2110(C) and ENG 1102 and UN 1015

MEEM 2911 - Mechanical Engineering Practice II
Students further develop testing and simulation skills as they validate dynamic mechanical and thermal/flow systems. Course emphasizes application of energy conservation principles to physical engineering systems as well as analysis and communication of data.

Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 2901 and MEEM 2201(C) and MEEM 2110

MEEM 3201 - Introductory Fluid Mechanics & Heat Transfer
Course emphasizes internal flow and modes of heat transfer: control volume analysis of mass, momentum and energy, pipe and duct flow, dimensional analysis, steady and unsteady heat conduction, internal convection and application of boundary conditions, and simple heat exchanger design.

Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 2201 and MEEM 2911 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

MEEM 3400 - Mechanical System Design and Analysis
In this course, students learn mechanical synthesis and analysis methods. They use case studies to develop relationships between design and performance. They apply synthesis methods to the design of a new product.

Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 2150 and MEEM 2700

MEEM 3600 - Introduction to Manufacturing
This course introduces manufacturing processes, including deformation, subtractive, additive, and molding processes. Students learn how things are made in both low and high production environments. It includes design for manufacturing considerations.

Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following College(s): College of Engineering
Pre-Requisite(s): MEEM 2150 and (MY 2100 or MSE 2100)

MEEM 3750 - Dynamic Systems
This course deals with the modeling, analysis and control of mixed physics systems. It covers differential equation generation for mechanical, thermal, and electrical systems, their simulation, and methods for analyzing their performance operating in both open and closed loop.

Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechatronics, Mechanical Engineering
Pre-Requisite(s): MEEM 2700 and MEEM 2911 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)
MEEM 3901 - Mechanical Engineering Practice III - Model Based Design
Students apply the engineering design process by combining engineering science with simulation tools to guide design decisions. They use energy-based models to determine design direction and design-based simulation to select and optimize components and subsystems to meet design requirements.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 2911(C) and MEEM 2150 and MEEM 2700

MEEM 3911 - Mechanical Engineering Practice IV
Students create simulations and validation procedures to verify that components and assembled system meet desired requirements. Experimental methods, simulation, data processing, comparing experimental and analytical results, and engineering communication methods are emphasized.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): MEEM 3901 and EE 3010 and MEEM 3400(C) and MEEM 3600(C)

MEEM 3999 - Mechanical Engineering Undergraduate Research Project
An undergraduate research experience during the junior year in mechanical engineering. Students work directly with faculty on active research projects/grants. A report will be submitted and graded.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Mechanical Eng-Eng Mechanics, Mechanical Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Senior

MEEM 4150 - Intermediate Mechanics of Materials
Basic concepts of three-dimensional stress and strain. Inelastic behavior of axial members, circular shafts and symmetric beams. Deflections of indeterminate beams. Unsymmetrical bending, shear flow and shear center for open sections. Energy methods for structures made up of one-dimensional elements. Introduction to theories of failures.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MEEM 2150

MEEM 4170 - Failure of Materials in Mechanics
Identifies the modes of mechanical failure that are essential to prediction and prevention of mechanical failure. Discusses theories of failure in detail. Treats the topic of fatigue failure extensively and brittle fracture, impact and buckling failures at some length.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 3501 or MEEM 3400

MEEM 4180 - Engineering Biomechanics
Engineering mechanics applied to the human body in health and disease or injury, which includes mechanics of human biological materials and engineering design in musculoskeletal system. Also studies on mechanics of posture (occupational biomechanics) and locomotion (sports biomechanics) using mathematical models of the human body.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 2150 and MEEM 2700

MEEM 4200 - Principles of Energy Conversion
Introduces fundamentals of energy conversion and storage. Topics include fossil and nuclear fuels, thermodynamic power cycles, solar energy, photovoltaics, and energy storage.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MEEM 4201(C) or MEEM 3230(C) or CM 3230 or ENG 3200 or MY 3100 or MSE 3100

MEEM 4201 - Applied Thermodynamics
A study of the principles of thermodynamics, including fundamental concepts and introduction of the analytical treatments of the first and second laws. Topics include exergy, ideal and real gas mixtures, gas and vapor power cycles, psychrometry, combustion, and chemical equilibrium.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering, Mechanical Eng-Eng Mechanics, Engineering Mechanics
Pre-Requisite(s): MEEM 3201(C)

MEEM 4202 - Intermediate Fluid Mechanics and Heat Transfer
Intermediate fluid mechanics and heat transfer topics are covered. These include necessary considerations of: differential analysis of fluid flows based on Navier-Stokes equations, lift and drag, convective heat transfer in external flows, radiation, and simple considerations of condensation and boiling.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering, Mechanical Eng-Eng Mechanics, Engineering Mechanics
Pre-Requisite(s): MEEM 3201

MEEM 4210 - Computational Fluids Engineering
This course introduces students to computational methods used to solve fluid mechanics and thermal transport problems. Computer-based tools are used to solve engineering problems involving fluid mechanics and thermal transport.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MEEM 3201(C)

Undergraduate Course Descriptions Effective Fall 2020, Page 110 of 162
MEEM 4220 - Internal Combustion Engines I
This course teaches the operational principles of spark-ignition and compression-ignition internal combustion engines through the application of thermodynamics, fluid dynamics, and heat transfer. Course studies engine performance, efficiency, and emissions using cycle-based analysis, combustion thermochemistry, and compressible fluid flow.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MEEM 4201(C)

MEEM 4230 - Compressible Flow/Gas Dynamics
Fundamentals of one-dimensional gas dynamics, including flow in nozzles and diffusers, normal shocks, frictional flows, and flows with heat transfer or energy release; introduction to oblique shocks.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MEEM 3201

MEEM 4235 - Wind Energy
This course introduces students to the underlying principles of wind energy conversions, with an emphasis on engineering aspects of wind turbine design and construction, and the evaluation of wind resources.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MEEM 3201

MEEM 4240 - Combustion & Air Pollution
Introduces sources of emissions from combustion, applies thermo-chemical principles to model the formation of pollutants, and identifies impacts of air pollutants on the environment and human health. Addresses pollution regulation and societal impacts including emissions, climate change, and air quality.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): MEEM 2200 or MEEM 2201

MEEM 4250 - Heating/Ventilation/Air Cond
Elements of heat transfer for buildings. Thermodynamic properties of moist air, human comfort and the environment, solar energy fundamentals and applications, water vapor transmission in building structures, heating and cooling load calculations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2004-2005 academic year
Pre-Requisite(s): MEEM 3201

MEEM 4260 - Fuel Cell Technology
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MEEM 3400 and (MA 2320 or MA 2321 or MA 2330) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

MEEM 4295 - Introduction to Propulsion Systems for Hybrid Electric Vehicles
Hybrid electric vehicle analysis will be developed and applied to examine the operation, integration, and design of powertrain components. Model based simulation and design is applied to determine vehicle performance measures in comparison to vehicle technical specifications. Power flows, losses, energy usage, and drive quality are examined over drive-cycles via application of these tools.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following College(s): College of Engineering, College of Computing; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MEEM 2200 or ENG 3200 or MEEM 2201

MEEM 4296 - Experimental Studies in Hybrid Electric Vehicles
Hands-on course examines hybrid electric vehicles from an energy perspective. Topics include powertrain architecture, vehicle testing, fuel consumption, aerodynamics and rolling resistance, engines, batteries, electric machines and power electronics. Course culminates with study of system interactions with emphasis on idle reduction and regenerative braking.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

MEEM 4404 - Mechanism Synthesis/Dynamic Modeling
Students apply kinematic synthesis techniques in design and analysis of mechanical systems. They develop synthesis software to link to dynamic analysis packages such as ADAMS, IDEAS, Unigraphics, etc. They investigate influences of process variation on system output and learn methods to minimize the variation influences.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 3502(C) or MEEM 3400

MEEM 4405 - Intro to the Finite Element Method
Introduces the use of the finite element method in stress analysis and heat transfer. Emphasizes the modeling assumptions associated with different elements and uses the computer to solve many different types of stress analysis problems, including thermal stress analysis and introductory nonlinear analysis.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MEEM 3400 and (MA 2320 or MA 2321 or MA 2330) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)
MEEM 4430 - Advanced Computer Aided Design and Manufacturing Methods
Students apply advanced solid modeling techniques to construct solid models of mechanical systems, document the design using GD&T conventions as per ASME standards, simulate the motion of the system, and learn the computer aided manufacturing and additive manufacturing techniques.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering, Mechanical Eng-Eng Mechanics, Engineering Mechanics; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): ENG 1102 and MEEM 3600

MEEM 4450 - Vehicle Dynamics
This course will develop the models and techniques needed to predict the performance of a road vehicle during drive off, braking, ride, and steering maneuvers. Topics to be covered include: acceleration and braking performance, power train architecture, vehicle handling, suspension modeling, tire models, and steering control. Matlab, Adams Car, and Amesim, will be used as computational tools.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MEEM 3400 or EE 3261

MEEM 4610 - Advanced Machining Processes
Covers mechanics of 2-D and 3-D cutting and their extension to commonly used conventional processes such as turning, boring, milling, and drilling. Topics include force modeling, surface generation, heat transfer, tool life and dynamics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 2500 or MEEM 3600

MEEM 4615 - Metal Forming Processes
Covers analytical and experimental study of metal forming processes, such as forging, extrusion, rolling, bending, stretch forming, and deep drawing as well as progressive die design for sheet metal stamping and design of dies for bulk forming.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MEEM 2500 and MEEM 2150

MEEM 4625 - Precision Manuf and Metrology
Course presents theory and practice involved in manufacturing and measuring of precision components. Topics include precision machining processes, precision machine/mechanism design, and dimensional metrology. Also discusses current manufacturing challenges in the bearings, optics, and microelectronics industries.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): (MEEM 3700(C) and MEEM 3502(C)) or MEEM 3600(C)

MEEM 4630 - Human Factors
The usability of products and systems can be improved by considering human capabilities during their design. This course explores both the psychological and physical characteristics of human beings. It then presents how to apply human factors principles to the design process.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

MEEM 4635 - Design with Plastics
Covers various complexities in design of plastic parts and design of molds for manufacturing of plastic parts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): (MY 2100 or MSE 2100) and MEEM 2150 and (MEEM 3201(C) or CM 3110)

MEEM 4640 - Micromanufacturing Processes
Introduces the processes and equipment for fabricating microsystems and the methods for measuring component size and system performance. Fabrication processes include microscale milling, drilling, diamond machining, and lithography. Measurement methods include interferometry and scanning electron microscopy.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MEEM 3400(C)

MEEM 4650 - Quality Engineering
Introduction to the concepts and methods of quality and productivity improvement. Topics include principles of Shewhart, Deming, Taguchi; meaning of quality; control charts for variables, individuals, and attributes; process capability analysis; variation of assemblies; and computer-based workshops.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MEEM 3600(C) and (MA 3710 or MA 3720 or MA 2710 or MA 2720)

MEEM 4655 - Production Planning
Covers fundamental production planning topics as capacity management, facility layout, process design and analysis, forecasting, inventory management, MRP, scheduling, and theory of constraints. Introduces basic lean concepts, lean production, and value stream mapping.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): MEEM 3600(C)
MEEM 4675 - Design of Material Handling Systems
Material handling deals with the handling operations and stock of material inside a warehouse. Emphasis is given to design, static and dynamic analysis and component sizing of lifts, cranes, continuous handling equipment (conveyors) and forklifts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following College(s): College of Engineering, College of Business; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): MEEM 2150

MEEM 4685 - Env Resp Design & Manuf
Examines the impact of engineering and design/manufacturing, decisions on the environment. Topics include sustainability; energy and material flows; risk assessment; life cycles, manufacturing process waste streams, and product design issues, including disassembly and post-use product handling and techniques for pollution prevention.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2001-2002 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

MEEM 4695 - Additive Manufacturing
Background, principles, process chain, software aspects, post-processing, open-source tools, applications, and future directions of AM technologies are discussed.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MEEM 3600

MEEM 4701 - Analytical and Experimental Modal Analysis
Combined experimental and analytical approach to mechanical vibration issues; characterization of the dynamic behavior of a structure in terms of its modal parameters; digital data acquisition and signal processing; experimental modal analysis procedures; parameter estimation for obtaining modal parameters; model validation and correlation with analytical models; structural dynamics modification.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): MEEM 3750

MEEM 4702 - Shock and Vibration
Theory and experimental techniques in vibration control, Shock, structural health monitoring, condition based maintenance, dynamic measurements, test methods, and planning.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering, Mechanical Eng-Eng Mechanics, Engineering Mechanics
Pre-Requisite(s): (MEEM 3911 and MEEM 3750) or MEEM 4775

MEEM 4704 - Acoustics and Noise Control
Analysis and solution of practical environmental noise problems. Fundamental concepts of sound generation and propagation, the unwanted effects of noise, assessment of sound quality, and source-path-receiver concepts in noise control. Lecture, measurement laboratory, and team project directed at solving a real noise problem under a client's sponsorship.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): MA 3160 and MEEM 2700

MEEM 4705 - Robotics and Mechatronics
Cross-discipline system integration of sensors, actuators, and microprocessors to achieve high-level design requirements, including robotic systems. A variety of sensor and actuation types are introduced, from both a practical and a mathematical perspective. Embedded microprocessor applications are developed using the C programming language.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MEEM 3750

MEEM 4707 - Autonomous Systems
The main concepts of autonomous systems will be introduced including motion control, navigation, and intelligent path planning and perception. This is a hands-on project based course. Students will have the opportunity to work with mobile robotics platforms.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering, Mechanical Eng-Eng Mechanics, Engineering Mechanics
Pre-Requisite(s): MEEM 3750 or MEEM 4700 or MEEM 4775(C)

MEEM 4720 - Space Mechanics
This course presents the vector-based solution of the two-body problem and the solution for Kepler's equations. The course will also cover basic orbit determination techniques, impulsive orbit transfer maneuvers, interplanetary trajectories, ground tracks, and rendezvous problems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MEEM 2700

MEEM 4730 - Dynamic System Simulation
Methods for simulating dynamic systems described by ordinary differential equations using numerical integration are developed. Quantifying simulation errors for both batch and real-time, control system applications is covered along with numerical optimization strategies for model validation. MATLAB and Simulink are used to illustrate key concepts.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 3750
MEEM 4775 - Analysis & Design of Feedback Control Systems
This course covers topics of control systems design. Course includes a review for modeling of dynamical systems, stability, and root locus design. Also covers control systems design in the frequency domain, fundamentals of digital control and nonlinear systems.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering Senior Research Thesis
Pre-Requisite(s): MEEM 3750

MEEM 4810 - Introduction to Aerospace Engineering
Introductory course on topics relevant to aerospace engineering and science. Topics include history, properties of the atmosphere, the solar system, atmospheric and space vehicles, mission design, and vehicle design and performance.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (MEEM 2150 or ENG 2120) and (MEEM 3201 or ENG 3200)

MEEM 4820 - Introduction to Aerospace Propulsion
Principles of jet propulsion, cycle analysis and component analysis (non-rotating components, compressors, turbines). Principles of rocket propulsion, chemical rockets, propellants, turbomachinery, electrical propulsion. Review of thermodynamics for fluid flow, one-dimensional gas dynamics, and boundary layer theory included.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MEEM 4230(C)

MEEM 4850 - Naval Systems and Platforms
Concepts of semi- and fully-autonomous naval and marine sensors and sensing platforms demonstrated through classroom learning and hands-on experiences. Laboratories will focus on operating sensors and sensor packages, in oceanographic and other applications.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Pre-Requisite(s): MEEM 3201 or ENG 3200 or MY 3110 or MSE 3110

MEEM 4901 - Senior Capstone Design I
Students work in teams on “open-ended” engineering capstone design projects - most with industrial sponsors - developing original and creative solutions to real engineering problems.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): (MEEM 3000(C) and MEEM 3502 and MEEM 3900) or (MEEM 3201(C) and MEEM 3750(C) and MEEM 3911 and MA 3710(C))

MEEM 4911 - Senior Capstone Design II
Design projects started in MEEM4901 are completed and evaluated using computer-aided engineering methods, physical models, and/or prototypes as appropriate.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering
Pre-Requisite(s): (MEEM 4901 and MEEM 3000(C) and MEEM 3502(C) and MEEM 3900) or (MEEM 3201 and MEEM 3750 and MEEM 4901)

MEEM 4990 - Special Topics in Mech Engg
Problems in mechanical engineering, engineering mechanics, manufacturing, or industrial engineering that are not covered in regular courses.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Class(es): Freshman, Sophomore

MEEM 4999 - Mechanical Engineering Senior Research Thesis
An undergraduate research experience during the senior year in mechanical engineering. Students begin work on an active research project/grant with faculty or continue work from the previous year. A thesis will be published in the department and archived.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; Must be enrolled in one of the following Major(s): Mechanical Eng-Eng Mechanics, Mechanical Engineering; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

Mechanical Engrng Technology

MET 2110 - Applied Statics
Statics includes a study of forces, analysis of simple structures, equilibrium, moment of inertia, and friction.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (PH 1110 or PH 1140 or PH 2100) and (MA 1160(C) or MA 1161(C))

MET 2130 - Dynamics
Particle and rigid plane body kinematics and kinetics covers inertia force, work-energy-power and impulse-momentum methods. Emphasizes development of student skills in problem definition and problem solving.
Credits: 4.0
Lec-Rec-Lab: (0-4-0)
Semesters Offered: Spring
Pre-Requisite(s): (MET 2120 or ENG 2120 or MET 2110 or MEEM 2110) and MA 2160
MET 2150 - Applied Strength of Materials
Strength of materials considers stress and strain under axial, torsional, and bending loads. Laboratory exercises include materials testing and problem solving.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): MET 2110 or MEEM 2110

MET 2153 - Machine Tool Fundamentals and Applications
A study of basic machining processes: including setup and operation of lathes, milling machines, drill presses, grinders and saws. Students are exposed to fundamental machining processes, nomenclature and machine operation with an overall focus on safety and quality control.
Credits: 2.0
Lec-Rec-Lab: (0-1-3)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering Tech
Pre-Requisite(s): MET 1020 or ENG 1100 or ENG 1101 or ENG 1102

MET 2400 - Practical Applications in Parametric Modeling
Intermediate course intended to expand the student's knowledge of computer modeling techniques, introducing advanced assemblies and GD&T concepts. Investigates advanced concepts available to the designer.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Mechanical Engineering Tech
Pre-Requisite(s): MET 1020 or ENG 1100 or ENG 1101 or ENG 1102

MET 3130 - Statics and Dynamics
This class includes from statics, the study of forces, analysis of simple structures, equilibrium, moment of inertia, and friction. From dynamics, it covers rigid plane body kinematics and kinetics, inertia force, work-energy- power, and impulse-momentum methods.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): (MA 1160 or MA 1161) and (PH 1110 or PH 1140 or PH 2100)

MET 3242 - Machine Design I
An introduction to mechanical design for technology students. The coursework applies principles of statics, dynamics and mechanics of materials to the design of simple mechanical components and systems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 2160 and (MET 2130 or MEEM 2700)

MET 3243 - Machine Design II
This course extends the study of mechanical design begun in MET3242, Machine Design I and looks at more complex components and systems. Design projects are given special emphasis.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MET 3242

MET 3500 - Manufacturing Processes
Focuses on practical aspects of design and manufacturing. Covers fundamentals of manufacturing processes and includes a weekly lab to provide hands-on experience with manufacturing issues that influence component design.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): (MET 1020 or ENG 1100 or ENG 1101 or ENG 1102) and (MET 1540 or MY 2100 or MSE 2100) and MET 2153

MET 3700 - Applied Thermodynamics
Engineering thermodynamics principles including work, heat and temperature, pure substances, closed and open systems, first and second laws of thermodynamics, and power and refrigeration cycles.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MET 3250 or MET 3400

MET 4210 - Applied Quality Techniques
Basic knowledge required to improve processes in the workplace. Includes the design of simple experiments, statistical process control, lean methodologies, and corrective and preventative action.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): MA 2720(C) or MA 3710(C)

MET 3400 - Applied Fluid Mechanics
This course provides an introduction to the principles of fluid mechanics and their application to natural and engineering problems. Students are expected to have a good understanding of statics and dynamics. Development of engineering problem-solving skills will be emphasized.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MET 2130 or MEEM 2700

MET 3451 - Machine Design III
This course extends the study of mechanical design begun in MET3242, Machine Design I and looks at more complex components and systems. Design projects are given special emphasis.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MET 3242

MET 3550 - Manufacturing Processes
Focuses on practical aspects of design and manufacturing. Covers fundamentals of manufacturing processes and includes a weekly lab to provide hands-on experience with manufacturing issues that influence component design.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): (MET 1020 or ENG 1100 or ENG 1101 or ENG 1102) and (MET 1540 or MY 2100 or MSE 2100) and MET 2153

MET 3750 - Applied Thermodynamics
Engineering thermodynamics principles including work, heat and temperature, pure substances, closed and open systems, first and second laws of thermodynamics, and power and refrigeration cycles.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MET 3250 or MET 3400

MET 4210 - Applied Quality Techniques
Basic knowledge required to improve processes in the workplace. Includes the design of simple experiments, statistical process control, lean methodologies, and corrective and preventative action.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): MA 2720(C) or MA 3710(C)
MET 4300 - Applied Heat Transfer
Heat transfer principles including conduction, convection and radiation heat transfer mechanisms. Practical applications include thermal insulation, heat sink and heat exchanger design.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MET 3600 or (MET 3700 and MET 4360(C)) or MEEM 2200 or MEEM 2201

MET 4350 - Principles and Application of Heating, Ventilating, and Air Conditioning Systems
This course is designed to provide an introduction to heating, ventilating, and air conditioning systems that combines design principles with real-world applications. Students will conduct heating and cooling load calculations, learn psychrometrics, and have the opportunity to work on a realistic design project.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring
Pre-Requisite(s): MET 4300

MET 4355 - Industrial Systems Simulation
Creating simulation models of various industrial systems in order to analyze and experiment with characteristics of real life systems for the purpose of engineering process improvement and production design.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

MET 4360 - Thermal-Fluids Laboratory
This course provides hands-on experience with selected thermal-fluid laboratory experiments. Site/plant visits will be included for exposure to some of the practical aspects of the thermal-fluids area.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MET 3400 and MET 3700 and MET 4300(C) and (MA 2710 or MA 2720 or MA 3710)

MET 4377 - Applied Fluid Power
An introduction to fluid power components and systems. The course includes component selection, circuit design, electrical interfaces, and system troubleshooting and maintenance. A laboratory exposes students to system hardware and circuit simulation techniques for mobile and industrial applications.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

MET 4378 - Advanced Hydraulics: Electro-hydraulic Components & Systems
This course covers electro-hydraulic components including solenoid operated valves, proportional valves, and servo valves. Also covered are hydraulic systems including open-loop and closed-loop.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MET 4377

MET 4390 - Internal Combustion Engines
An introduction to the basic principles and applications of internal combustion engines. The course covers design, development and testing of engine components and systems. A laboratory exposes students to current industry methods.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Pre-Requisite(s): MET 3600 or MET 4300 or (MET 3700 and MET 4360(C))

MET 4460 - Product Design and Development
A treatment of design and development issues such as design for manufacturing, prototyping, industrial design, and customer needs. Presents integrated methodologies that examine marketing, manufacturing, and cross-functional teams. Includes concurrent engineering and projects utilizing CAD systems.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MET 2400 and MET 3451(C) and MET 3500(C)

MET 4510 - Lean Manufacturing and Production Planning
This course provides fundamental knowledge of continuous improvement methodologies as practiced in today's competitive manufacturing and business environments. It covers the basic concepts and key techniques involved in a lean implementation through hands-on activities, reading assignments, case studies, and discussions.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): MET 2153 and MET 2400

Undergraduate Course Descriptions Effective Fall 2020, Page 116 of 162
MET 4575 - Senior Project I
Research and beginning design projects using computer-aided engineering methods, physical models, and/or prototypes. Evaluation and design optimization methods for efficient and cost-effective designs.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MET 4460

MET 4575 - Senior Project II
Completion and evaluation of design projects using computer-aided engineering methods, physical models, and/or prototypes. Evaluation and design optimization methods for efficient and cost-effective designs.
Credits: 2.0
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MET 4575

MET 4585 - Facilities Layout and Safety Design
Examines the optimization concepts and safety topics necessary to design a low risk, high efficiency manufacturing facility layout. The focus will be on quantitative tools, flow analysis techniques, hazard recognition and resource selection.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MET 2400 and MET 3242(C)

MET 4600 - CAE and FEA Methods
Comprehensive use of both computer derived solutions and experimental validation of analytical and finite element solutions using methods such as strain gage testing.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MET 2400 and MET 3242(C)

MET 4670 - Senior Project
Completion and evaluation of design projects using computer-aided engineering methods, physical models, and/or prototypes. Evaluation and design optimization methods for efficient and cost-effective designs. Oral/written report and comprehensive exam.
Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MET 4460

MET 4670 - Senior Project
Completion and evaluation of design projects using computer-aided engineering methods, physical models, and/or prototypes. Evaluation and design optimization methods for efficient and cost-effective designs.
Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MET 4460

MET 4780 - Advanced Manufacturing
An introduction to advanced manufacturing processes, both traditional and nontraditional. Study of both theory and practice will be tied to laboratory experiments utilizing a spectrum of unique materials and methods.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): MEEM 2500 or MET 3500

MET 4800 - Dynamics and Kinematics of Robotics Platforms
This course covers the dynamics and kinematics of rigid bodies as the foundation for analyzing the motion of robots. Robotic kinematics is reviewed by analyzing the motion of the robot. The dynamics is reviewed by analyzing the relation between the joint actuator torques and resulting motion.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): MET 2130 or MET 3130

MET 4801 - Controls of Dynamic Systems
This course covers the modeling, analysis, and control of dynamic systems. It used the controlling equations for the control of mechanical and electrical systems.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Pre-Requisite(s): MET 4800 or MET 5800

MET 4802 - Vibrations of Mechanical Systems
This course deals with the modeling and analysis of mixed physical systems. Introduction to modeling and oscillatory response analysis for discrete and continuous mechanical and structural systems. Time and frequency domain analysis of linear system vibrations. Vibration of multi-degree-of- freedom systems. Free vibration eigenvalue problems.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MET 2130

MET 4996 - Special Topics in Mechanical Engineering Technology
Selected additional topics of interest in Mechanical Engineering Technology based on student and faculty demand and interest. May be a tutorial, seminar, workshop, project, or class study.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Mechanical Engineering Tech; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MET 4575

MET 4997 - Independent Study in Mechanical Engineering Technology
Independent study of an approved topic under the guidance of a Mechanical Engineering Technology faculty member. May be either an academic, design, or research problem/project.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Mechanical Engineering Tech; Must be enrolled in one of the following Class(es): Senior
Undergraduate Course Descriptions Effective Fall 2020, Page 117 of 162
MET 4998 - Undergraduate Research in Mechanical Engineering Technology

An undergraduate research experience in Mechanical Engineering Technology. Under the guidance of a Mechanical Engineering Technology faculty member, students work on a selected/approved research problem or work directly with faculty on active research projects/grants. May require more than one semester to complete.

Credits: variable to 6.0; Repeatable to a Max of 6

Semesters Offered: On Demand

Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Mechanical Engineering Tech; Must be enrolled in one of the following Class(es): Senior

MET 4999 - Professional Practice Seminar

Course designed to review and evaluate the program objectives linked with industrial partners and accreditation body. Focus given to preparing the student to take the certification exam.

Credits: 1.0; Graded Pass/Fail Only

Lec-Rec-Lab: (0-0-3)

Semesters Offered: Fall, Spring

Restrictions: Must be enrolled in one of the following Class(es): Senior

Management

MGT 2000 - Team Dynamics and Decision Making

Develops individual and group problem-solving skills using active, hands-on learning. Emphasizes problem identification and problem solution under conditions of ambiguity and uncertainty. Stresses creativity, interpersonal skills and skill assessment, communication, group process and teamwork, and action planning.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall, Spring

Restrictions: May not be enrolled in one of the following Class(es): Freshman

MGT 3000 - Organizational Behavior

Covers concepts of human relations and organizational behavior through the study of people's behavior at work. Develop understanding, attitudes, and skills leading to increased personal effectiveness.

Credits: 3.0

Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall, Spring

Restrictions: May not be enrolled in one of the following Class(es): Freshman

MGT 3100 - Leadership Development

Assesses students' current knowledge, abilities and values relevant to leadership and guides students in developing and implementing plans for new leadership abilities.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall

Restrictions: May not be enrolled in one of the following Class(es): Freshman

MGT 3650 - Intellectual Property Management

Covers principles of intellectual property laws, addressing managerial and policy issues in copyright, trademark, trade secret, and patents. Readings and discussions also cover how these property and legal systems impact the balance between property exclusivity, technological innovation and public access.

Credits: 3.0

Lec-Rec-Lab: (3-0-0)

Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year

Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

MGT 3800 - Entrepreneurship

Covers management issues associated with establishing a successful new enterprise as a small businesses or part of an existing firm. Emphasizes learning through creation of a business plan as well as case studies that develop an understanding of opportunity recognition, entrepreneurial teams, reward systems, financing alternatives, family ventures, ethical and legal contractual considerations, and resource needs.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall

Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

MGT 4000 - Strategic Management

A capstone course focusing on managing from a strategic perspective for gaining advantages in competitive and dynamic environments, emphasizing understanding of industry, business models, growth strategies, and managing business portfolios. Integrates knowledge from finance, marketing, and organizational behavior.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall, Spring

Restrictions: Must be enrolled in one of the following College(s): College of Business; Must be enrolled in one of the following Class(es): Senior

Pre-Requisite(s): MIS 2000 and FIN 3000 and OSM 3000 and MGT 3000 and MKT 3000 and BUS 2300

MGT 4100 - International Management

Addresses the complexities and challenges faced by companies operating in an increasingly globalized world. Focuses on political, legal, ethical, cultural, economic issues, and on the entry, growth and knowledge management strategies of developed and developing country firms.

Credits: 3.0

Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall

Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

Pre-Requisite(s): (MGT 3000 or BA 5700) and EC 3100(C)
MGT 4200 - Entrepreneurial Management
Draws upon the fundamental concepts of entrepreneurship covered in MGT3800 (Entrepreneurship) and enhances the understanding of these concepts from a strategic and entrepreneurial management point of view.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MGT 3800

MGT 4500 - Managing Change in Organizations
Studies organizational theory with an emphasis on managing change in organizations. Examines forces for change in the external environment, methods for managing change (design and implementation), the impact of change on people, and leaders as agents of change. Case studies and student projects prepare the student to manage change in organizations.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MGT 3000 or BA 5700

MGT 4600 - Management of Technology and Innovation
Introduces disruptive innovation concepts and provides occasions for their application to timely and relevant cases. Provides an understanding of technology management and innovation processes as they occur inside and outside of organizations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MGT 3000 or BA 5700

MGT 4700 - Human Resource Management
Examines methods that organizations use to meet organizational goals through influencing worker attitudes, behaviors, and performance. Topics include recruitment, selection, training, performance appraisal, and compensation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MGT 3000

MGT 4990 - Special Topics in Management
Examines additional management topics and issues in greater depth. A single offering of this course will concentrate on one or two topics which vary.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required
Pre-Requisite(s): MGT 3000

MIS 2000 - IS/IT Management
Focuses on the theory and application of the information-systems discipline within an organizational context, and identifies the roles of management, users, and information systems professionals. Covers the use of information systems and implications for decision support to improve business processes, and addresses the ethical, legal, and social issues of IT.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BUS 1100 or CS 1121 or CS 1131 or ENG 1101 or (ENG 1001 and ENG 1100) or SAT 1200

MIS 2100 - Introduction to Business Programming
Develops business problem solving skills through the application of a commonly used high-level business programming language. Topics include the nature of the business programming environment, fundamentals of the language (e.g., programming constructs, data management, manipulation of simple data structures), structured programming concepts, desirable programming practices and design, debugging and testing techniques.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

MIS 2200 - Web Programming
Covers technologies, tools, and environments related to the development of web-enabled business solutions. Topics include the development environment for web-based solutions, key development technologies, desirable development practices, and design, programming, debugging and testing methods.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): MIS 2100 or CS 1121 or CS 1131

MIS 3000 - Business Process Analysis
Studies business decision management discipline using business rules, process models (e.g. flowcharts, unified modeling language, swim lanes), and information systems to improve efficiency and effectiveness. Emphasis on industry standards and business process management used to increase productivity.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): MIS 2000

Management Information Systems
MIS 3100 - Business Database Management
Emphasizes database principles that are constant across different database software products through concrete examples using a relational database management system. Provides a well-rounded business perspective about developing, utilizing, and managing organizational databases.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): MIS 2000(C)

MIS 3200 - Systems Analysis and Design
Provides an understanding of the IS development and modification process and the evaluation choices of a system development methodology. Emphasizes effective communication with users and team members and others associated with the development and maintenance of the information system. Stresses analysis and logical design of departmental-level information system.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MIS 2000(C)

MIS 3500 - User-Centered Design
Studies user-centered design in development of effective interface solutions for business needs. Content may include input/output devices, user modeling, help and documentation, social issues, and usability evaluation. Emphasis on how interface design addresses human capabilities and capacities.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): MIS 2000

MIS 4000 - Emerging Technologies
Focuses on understanding IT for competitive advantage and as an agent of transformation. Topics include managing IT infrastructure and architecture, facilitating information distribution throughout the enterprise, conducting case analyses to develop a framework for innovative Enterprise Systems to be used for sustainable competitive advantage and other emerging trends and technologies.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MIS 3100 and MIS 3200

MIS 4100 - Information Systems Projects
MIS capstone course. Previous completion of required MIS coursework expected. Applies IS practices and artifacts as solutions to business problems using project teams and faculty project manager supervision. Emphasizes the latter portion of the systems development life cycle project management within an IS context.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): MIS 2100 and MIS 3100 and MIS 3200

MIS 4200 - Management of Cyber Security
Review of information systems security concepts and industry best practices. Subject matter is organized to provide students a foundation to sit for the Certified Systems Security Professional (CISSP) exam after completion.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): MIS 2000 or CS 1111 or CS 1121 or CS 1131

MIS 4400 - Business Intelligence and Analytics
Focuses on generation and interpretation of business analytics relative to organizational decision making. Includes core skills necessary for constructing data retrieval queries in a relational database environment.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): MIS 2000 and (MIS 3100 or CS 3425)

MIS 4500 - Systems Design for Innovation and Entrepreneurship
This course is designed to support students who desire to design an IT software solution to commercialize. The course provides support for student entrepreneurs and innovators during various stages of the systems development life cycle, such as planning, requirements gathering, design and implementation.
Credits: 1.0; Repeatable to a Max of 6
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required
Pre-Requisite(s): MIS 2000(C) or CS 1111(C) or CS 1121(C) or CS 1131(C) or SAT 1200(C)

MIS 4990 - Special Topics in Management Information Systems
Examines current IS/IT topics and issues in greater depth from a managerial perspective. A single offering of this course will concentrate on one or two topics, which will vary.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Pre-Requisite(s): MIS 2000

Marketing

MKT 3000 - Principles of Marketing
Emphasizes decisions made in developing both strategic and tactical marketing plans. Uses computer simulations, experiential learning assignments, and marketing plan development to demonstrate principles of market segmentation, product development, pricing, distribution planning, and promotion.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer

MKT 3200 - Consumer Behavior & Culture
Introduces students to models, theories, practices, and sociocultural issues pertinent to consumers' decision making and lifestyle choices. Discussions will be based on a variety of disciplines: psychology, sociology, economics, and anthropology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): MKT 3000

Undergraduate Course Descriptions Effective Fall 2020, Page 120 of 162
MKT 3400 - Integrated Marketing Communications
Discusses how a variety of marketing communication methods, such as advertising, public relations, sales promotion, point-of-purchase, and direct marketing are developed, implemented, and evaluated in an integrative manner.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): BA 3800 or MKT 3000

MKT 3600 - Marketing Data Analytics
Focuses on data-driven consumer insights for marketing decision-making. Topics include scientific research methodology, survey research, social media data-analysis, multivariate data analysis, information visualization, and report writing and presentations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): (MA 2710 or MA 2720 or MA 3710 or BUS 2100) and MKT 3000

MKT 4100 - Sales and Sales Technology
Focuses on sales force management and experience. Topics include the buying-selling process, sales data analysis, cutting-edge sales technologies, sales simulation and forecasting, negotiation, and sales strategies and tactics.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): MKT 3000

MKT 4200 - B2B Marketing in a Digital Age
Emphasis is on B2B (Business to Business) marketing strategy. Topics include business marketing programs, buying center management, product offering using 3D printer, B2B case study, market trend analysis, and inter-firm relationship strategies.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): MKT 3000

MKT 4300 - Global Marketing
Discusses the critical elements of international marketing strategy: socio-politico-economic environment, global consumer culture, entry strategy, and global marketing mix. Utilizes cases and examples in order for students to better understand the globalized marketplace.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MKT 3000

MKT 4500 - Digital Media Marketing
Introduces fundamentals of social media and e-commerce. Discussion also include search engine optimization, user-generated content, mobile applications, content strategies, social media campaigns, new media strategies, and future trends in digital marketing.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Pre-Requisite(s): MKT 3000

MKT 4700 - Marketing Strategy
Marketing capstone course. Discusses various aspects of creative and value-enhancing marketing strategies. Topics include branding, innovation, marketing research, marketing communication, services, consumer culture, corporate social responsibility, digital media marketing, and globalization.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MKT 3200 and MKT 3600 and MKT 4300(C)

MKT 4990 - Special Topics in Marketing
Examines current issues in marketing. Topics are selected based on the interest to faculty and students
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required
Pre-Requisite(s): MKT 3000

Materials Sci. & Engineering

MSE 2100 - Introduction to Materials Science and Engineering
Introduction to the structure, processing, properties, and performance of engineering materials, including metals, polymers, glasses, ceramics, and composites. Presents case studies covering selection of materials, component design, and analysis of component failures.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): CH 1112 or CH 1122 or (CH 1150 and CH 1151) or (CH 1160 and CH 1161)

MSE 2110 - Introduction to Materials Science and Engineering II
Course is designed to address core competencies in the materials discipline. Materials processing methods are used as a vehicle to master concepts such as crystallography, imperfections, phase diagrams, microstructure, and development of mathematical skills and introduction to computational tools.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800 and (ENG 1100 or ENG 1101)

MSE 2910 - Materials Project Work
Students will participate on student teams working on industry-sponsored projects related to materials.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Lecture-Recitation-Lab</th>
<th>Semesters Offered</th>
<th>Pre-Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 3100</td>
<td>Materials Processing I</td>
<td>Classical chemical thermodynamics as applied to single and multicomponent materials systems. Topics include heat and mass balance, enthalpy, entropy, free energy, chemical reactions and equilibria, mass action, solution thermodynamics, phase diagram, stability/Pourbaix diagrams and electrochemistry.</td>
<td>4.0</td>
<td>(4-0-0)</td>
<td>Fall</td>
<td>MY 2100 or MSE 2100 or BE 2800 and MA 2160</td>
</tr>
<tr>
<td>MSE 3110</td>
<td>Materials Processing II</td>
<td>A continuation of Materials Processing I, which introduces the fundamental theories and equations governing transport phenomena. Topics include fluid flow, heat flow, diffusion, and chemical kinetics. Discusses the relationships between these subjects and the thermodynamic concepts covered in Materials Processing I.</td>
<td>4.0</td>
<td>(4-0-0)</td>
<td>Spring</td>
<td>MY 2110 or MSE 2110 and (MY 3100 or MSE 3100) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)</td>
</tr>
<tr>
<td>MSE 3120</td>
<td>Materials Characterization I</td>
<td>Fundamentals of microstructural and chemical characterization of materials. Examines the physical principles controlling the various basic characterization techniques. Topics include crystallography, optics, optical and electron microscopy, and diffraction. Laboratory focuses on proper operational principles of characterization equipment, which includes optical and other microscopy methods and various diffraction techniques.</td>
<td>4.0</td>
<td>(2-1-3)</td>
<td>Spring</td>
<td>MY 2110 or MSE 2110</td>
</tr>
<tr>
<td>MSE 3131</td>
<td>Materials Characterization II</td>
<td>Fundamental concepts underlying the instrumental analysis of the chemical, structural, and surface characterization of bulk materials. Discussion of the capabilities, application, and limitations of the elemental, chemical, and phase determinations combined with appropriate statistical reporting of the results.</td>
<td>3.0</td>
<td>(3-0-0)</td>
<td>Fall</td>
<td>MY 2110 or MSE 2100</td>
</tr>
<tr>
<td>MSE 3132</td>
<td>Materials Characterization Laboratory II</td>
<td>Application and practice of the fundamental concepts underlying the instrumental analysis of the chemical, structural, and surface characterization of bulk materials. Demonstration of the techniques used to obtain the elemental, chemical, and phase description of a materials combined with appropriate statistical reporting of the results.</td>
<td>1.0</td>
<td>(0-0-3)</td>
<td>Fall</td>
<td>MSE 3131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSE 2100 or BE 2800</td>
</tr>
<tr>
<td>MSE 3140</td>
<td>Design of Microstructure</td>
<td>Relates thermodynamic and kinetic principles to phase transformations and microstructural evolution. Topics include nucleation, solidification, precipitation, recrystallization, grain growth, and sintering. Applications of these concepts (e.g., heat treatment of steel, casting, powder processing, etc.) are presented to provide a bridge between phase transformation theory and industrial/laboratory practice.</td>
<td>3.0</td>
<td>(3-0-0)</td>
<td>Spring</td>
<td>MY 2110 or MSE 2110 and (MY 3100 or MSE 3100) and (MY 3200(C) or MSE 3120(C))</td>
</tr>
<tr>
<td>MSE 3150</td>
<td>Introduction to Semiconductor Materials & Devices</td>
<td>An introduction to materials science and engineering of semiconductors. Topics include: semiconductor material electronic, thermal, and optical properties; how these properties are modified, how elementary devices made from these materials operate, and how devices function in electrical circuits depends on material selection and processing.</td>
<td>3.0</td>
<td>(0-2-3)</td>
<td>Fall</td>
<td>PH 2200 and MA 2160</td>
</tr>
<tr>
<td>MSE 3190</td>
<td>Material Design</td>
<td>Integration of contemporary engineering design-modeling methodology with foundational structure-property-processing paradigm for materials design. Statistical analysis of laboratory measurements, formulating and testing of hypotheses, thermodynamic and kinetic modeling for material and process optimization, design of experiments.</td>
<td>3.0</td>
<td>(0-2-3)</td>
<td>Spring</td>
<td>MY 3100 or MSE 3100 and (MY 3110(C) or MSE 3110(C)) and (MY 32010(C) or MSE 3120(C)) and (MY 3210(C) or MSE 3130(C)) and (MY 3300(C) or MSE 3140(C)) and ENG 1102</td>
</tr>
<tr>
<td>MSE 3910</td>
<td>Materials Project Work</td>
<td>Students participate on student teams working on industry-sponsored projects related to materials.</td>
<td>1.0</td>
<td>(0-0-3)</td>
<td>Fall</td>
<td>MY 2110 or MSE 2100 and (MEEM 2150 or ENG 2120)</td>
</tr>
<tr>
<td>MSE 4100</td>
<td>Mechanical Behavior of Materials</td>
<td>An introduction to the deformation and fracture behavior of materials. Topics include multiaxial stress and strain, elastic and plastic deformation, hardening mechanisms, viscoelasticity, fracture, fatigue, creep, and microstructure/property relationships.</td>
<td>3.0</td>
<td>(3-0-0)</td>
<td>Fall, Summer</td>
<td>MY 2110 or MSE 2100 and (MEEM 2150 or ENG 2120)</td>
</tr>
</tbody>
</table>
MSE 4110 - Introduction to Polymer Engineering
Introductory study of polymeric materials and polymer engineering. Basics in polymer science including molecular characteristics, synthesis, structure and properties of polymers, with strong emphasis on thermodynamics of polymers. Various processing techniques and mechanical/structural applications of polymers.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (MY 2100 or MSE 2100 or BE 2800) and CH 1160

MSE 4120 - Material and Process Selection in Design
The principles of materials selection for engineering design. Topics include selection based on strength, stiffness, thermal properties, high temperature behavior, corrosion resistance, formability, joinability, manufacturability, recyclability, etc. Considers ethics and economics. Presents numerous case studies and examples.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800

MSE 4130 - Materials Science & Engineering Senior Design Project I
Conducted in teams of students working with industrial partners. Open to all engineering majors interested in interdisciplinary senior design projects. Non-MSE majors must be senior project ready as defined by their major program and obtain permission of the MSE department.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): (MY 3110 or MSE 3110) and (MY 3200 or MSE 3120) and (MY 3210 or MSE 3130) and (MY 3300 or MSE 3140) and (MY 4940 or MSE 3190)

MSE 4131 - Capstone Professional Skills I
This course will include practical application of contemporary engineering design methodology within the structure-processing-properties paradigm for material design project management, experimental design, written and oral communication.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Materials Science and Engrg
Co-Requisite(s): ENT 4950
Pre-Requisite(s): MSE 3190 or MY 4940

MSE 4140 - Materials Science & Engineering Senior Design Project II
Senior design project conducted in teams of students working with an industrial partner. Open to all engineering majors interested in interdisciplinary senior design projects. Senior project ready as defined by major substitutes for prerequisites.
Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): MY 4920 or MSE 4130

MSE 4141 - Capstone Professional Skills 2
This course includes practical application of contemporary engineering design methodology within the structure-processing-properties paradigm for material design, project management, experimental design, written and oral communication.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Materials Science and Engrg
Co-Requisite(s): ENT 4960
Pre-Requisite(s): MSE 4131

MSE 4240 - Introduction to MEMS
Fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication.
Credits: 4.0
Lec-Rec-Lab: (3-1-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): PH 2200 or EE 2190 or EE 3140

MSE 4292 - Light and Photonic Materials
Material properties controlling light wave propagation in optical crystals and optical wave guides. Photonic crystals and photonic devices based on electrical, magnetic, and strain effects.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Physics, Applied Physics, Electrical Engineering, Materials Science and Engrg; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): PH 2200 or EE 2190 or EE 3140

MSE 4310 - Principles of Metal Casting
Principles of metal casting, including melting practice, casting design, mold design, heat transfer and solidification, fluid flow and gating design. Introduction to computer simulation techniques for mold filling, solidification, and development of residual stress. Structure-property relations in cast metals. Recycling and environmental issues of the cast metals industry.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800

MSE 4320 - Corrosion and Environmental Effects
Mechanisms of corrosion processes, electrochemical and oxidation kinetics, and fundamentals of corrosion engineering.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800
MSE 4325 - Fundamentals of Corrosion
Basic mechanisms of electrochemical processes and corrosion.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): CH 1150 and CH 1151

MSE 4330 - Advanced Physical Metallurgy
Advanced physical metallurgy principles are utilized to rationalize the structure-process-properties-performance relationships of the engineering alloys. Alloy systems covered include steels, cast irons, aluminum, magnesium, titanium and nickel alloys. Internationally accepted alloy designations, heat treatment standards, and characterization protocols are also presented.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800

MSE 4410 - Science of Ceramic Materials
The structure, defect chemistry, and properties of crystalline and amorphous ceramics. Utilization of these materials in a variety of applications such as electrolytes in fuel cells and as bioceramics are examined.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): MY 3300 or MSE 3140

MSE 4430 - Composite Materials
Mechanistic aspects of property development in metal, ceramic, and polymeric composites. The role of composite architecture, processing, and microstructure on properties.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800

MSE 4510 - Contact Mechanics and Nanoindentation
The application of elastic and plastic contact mechanics in relation to nanoindentation with emphasis on the application of instrumentation, models and experimental techniques used to examine the small-scale mechanical behavior of metals, ceramics, polymers, composites, biomaterials, hydrogels, and structured devices.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): (MY 2100 or MSE 2100 or BE 2800) and (MA 3521 or MA 3520 or MA 3530) and MEEM 2150

MSE 4520 - Materials Forensics
Probes fundamental physical principles important to various characterization techniques used to understand crystal structure, microstructure, and substructure in materials. Application of x-ray, electrons, and light to unravel the structural mystery of materials and apply techniques to material failure analysis.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): MY 2100 or MSE 2100 or BE 2800

MSE 4530 - Scanning Electron Microscopy and X-ray Microanalysis
Topics include electron beam and image formation, beam-specimen interactions, and x-ray microanalysis. Course content is relevant to students of the physical sciences, engineering, and related disciplines. Includes a laboratory experience that provides hands-on practical training sufficient to enable independent use of the SEM.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

MSE 4540 - Computational Materials Science: Theory, Modeling, Simulation, and Practice
Theories of materials science from first principles to constitutive laws. Materials modeling and computer simulation at multiple length and time scales. Laboratory practice of various computational methods.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

MSE 4740 - Hydrometallurgy/Pyrometallurgy
Extraction and refining of metals and industrial chemicals from natural and recycled materials. Includes solution-chemistry processes (hydrometallurgy) and thermochemical processes (pyrometallurgy).
Credits: 4.0
Lec-Rec-Lab: (3-1-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): CH 1122 or (CH 1160 and CH 1161)

MSE 4760 - Environmental Engineering for Materials Processing Industries
Assessment and analysis of environmental impacts from materials processing industries. Regulations, permits, and industrial practices for monitoring and solving air, water, and solid environmental issues. Pollution prevention. Life cycle analysis. Material flow analysis.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
MSE 4777 - Distributed Additive Manufacturing Using Open-Source 3-D Printing
This course provides an overview of open-source hardware in theory and practice for an introduction to distributed additive manufacturing using open-source 3-D printing. Each student will build a customized RepRap and will learn all hardware and software for maintaining it.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: Must be enrolled in one of the following College(s): College of Engineering; Must be enrolled in one of the following Class(es): Junior, Senior

MSE 4970 - Special Topics - Materials
Special topics in materials science and engineering.
Credits: variable to 4.0; May be repeated
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

MSE 4990 - Undergraduate Research
Undergraduate research in materials science and engineering. Independent research conducted under the guidance of a faculty member.
Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

Operations & Supply Chain Mgmt

OSM 3000 - Operations and Supply Chain Management
Fundamental principles of operations and supply chain management; includes strategic importance and relevant interrelated concepts and tools in product/process design, work systems, forecasting, inventory and materials management, just-in-time, scheduling, and capacity management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): (MA 1135 or MA 1160 or MA 1161) and (MA 2710 or MA 2720 or MA 3710 or MA 3720 or EET 2010 or BUS 2100 or CEE 3710)

OSM 3150 - Introduction to Supply Chain Management
An introduction to supply chain management to gain a perspective on integration and coordination issues. Topics include strategy, network design, facility design, sourcing, logistics, forecasting, inventory, relationship management, and global and sustainable supply chain management.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): OSM 3000(C)

OSM 3600 - Procurement and Supply Management
Addresses processes that facilitate the management of value-added transactions and relationships between supplier and customer organizations. The course examines the management of the business purchasing function, including supplier selection and development, cost management, performance measures, buyer-supplier relationships, and negotiation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

OSM 4300 - Project Management
The various stages in a project life cycle will be covered and include initiation, planning, execution, and closeout. Basic tools such as the Project Charter, Network Diagrams Gantt, and budgeting will be covered. Basics of MS Project are included.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): BUS 2100 or CEE 3710 or MA 3710 or MA 2720 or MA 3710 or EE 3180 or BE 2110 or MA 2710

OSM 4350 - Advanced Project Management
A project-oriented business development class focused on real-life and advanced applications of project management techniques. Students participate in a competition, prepare for the PMI CAPM exam, and may sit for the exam to obtain certification.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): OSM 3200 or ENG 4300 or OSM 4300

OSM 4650 - Six Sigma Fundamentals
Course is framed in context of six sigma methodology. Topics include principles of Shewhart, Deming, Taguchi; meaning of quality; control charts for variables, individuals, and attributes; process capability analysis; variation of assemblies; and computer-based workshops.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): OSM 3200 or ENG 4300 or OSM 4300

OSM 4700 - Logistics and Transportation Management
Focuses on the transportation and distribution services that support demand fulfillment from the receipt of customer orders to order fulfillment. Topics include customer service, order fulfillment, inventory, transportation costs and modes, facility design and operation, carrier selection, and negotiation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): (MA 2710 or MA 2720 or MA 3710 or MA 3720 or BUS 2100 or CE 3710 or CEE 3710)

Undergraduate Course Descriptions Effective Fall 2020, Page 125 of 162
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Semesters Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSM 4990</td>
<td>Special Topics in Supply Chain Management</td>
<td>Examines additional supply chain and/or operations management topics and issues in greater depth. A single offering of this course will concentrate on one or two topics, which vary.</td>
<td>3.0</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-3-0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore Pre-Requisite(s): OSM 3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0101</td>
<td>Flag Football</td>
<td>Fundamental skills and rules will be learned for co-recreational play of flag football.</td>
<td>0.5</td>
<td>Fall, Summer</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0103</td>
<td>Bait and Fly Casting</td>
<td>Bait and fly casting skills. Each student must have a valid current year Michigan fishing license. Trout stamp is optional. Equipment is available if needed. Requires some additional hours outside of class.</td>
<td>0.5</td>
<td>Fall, Summer</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0104</td>
<td>Ultimate Frisbee</td>
<td>Fundamental skills, rules, and play of ultimate frisbee. The class is physically strenuous. Frisbees are provided.</td>
<td>0.5</td>
<td>Fall, Summer</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0105</td>
<td>Beginning Bowling I</td>
<td>Fundamental skills, rules, and scoring of bowling.</td>
<td>0.5</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0106</td>
<td>Beginning Golf</td>
<td>Rules, terminology, and etiquette of golf and the individual skills of grip, stance, and swing. Equipment is supplied.</td>
<td>0.5</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0107</td>
<td>Floor Hockey</td>
<td>Individual skills, team techniques, rules and strategies of floor hockey. Hockey gloves or winter gloves are highly recommended. Sticks and goalie equipment are provided.</td>
<td>0.5</td>
<td>Fall, Summer</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 0108</td>
<td>Broomball</td>
<td>Students will learn the rules, strategy, and safety needed to compete in broomball. Offensive and defensive zone coverages and individual skills are stressed. Team play with officials.</td>
<td>0.5</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>Lec-Rec-Lab</td>
<td>(0-0-2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Course Descriptions Effective Fall 2020, Page 126 of 162
PE 0120 - Beginning Alpine Skiing (Downhill)
Beginning skills of alpine skiing techniques taught, evaluated, and recommendations made for improvement. Students with skills above beginner level cannot take this class. Students must provide their own transportation to Mont Ripley. It is recommended that students provide their own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0121 - Beginning Snowboarding
Beginning skills of snowboarding techniques taught, evaluated, and recommendations made for improvement. Students must be a beginner or have never snowboarded to this class. Students with skills above beginner level cannot take this class. Students must provide their own transportation to Mont Ripley. It is recommended that students provide own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0122 - Softball
Fundamentals of throwing, fielding, and hitting a softball. Bats, balls, and bases are provided. Each student should bring a glove.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0123 - Telemark Skiing
The beginning skills of Telemark skiing techniques will be taught, evaluated and recommendations made for improvement. Students must provide own transportation and Telemark ski equipment. A limited amount of rentals are available.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0125 - Sand Volleyball
Sand volleyball rules, basic fundamentals and team play. Passing, setting, attacking, serving, blocking, round robin, 2 vs. 2, and 4 vs. 4 tournaments, 6 vs. 6 system and drills to improve one's overall play.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0126 - Beginning Volleyball
Fundamental skills, rules interpretation, strategy, and conduct of tournament play.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0130 - Water Aerobics
Improvement of fitness and body measurement through water exercise.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 0132 - Beginning Soccer
Fundamental skills, techniques, terminology, and rules of soccer.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0135 - Beginning Cross Country Skiing
Develop the skills for touring/recreational cross-country skiing. Own equipment is recommended; rental equipment available.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0137 - Table Tennis
Fundamental skills of table tennis will be taught.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0138 - Beginning Racquetball/Squash
Fundamentals, rules, and basic strategies of racquetball/squash. Gives students opportunity to play singles, cutthroat, and doubles. Racquets, balls, and eyewear provided. Recommend use of personal racquet.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0139 - Beginning Badminton
Fundamental skills, rules, and scoring of badminton.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0140 - Beginning Tennis
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0142 - Introduction to Brazilian Jiu Jitsu
This course introduces students to the fundamentals of Brazilian Jiu Jitsu. This is a martial art, combat sport and self defense system that focuses on grappling and ground fighting.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0145 - Beginning Rifle
Using precision air rifles, beginners develop an awareness of firearms safety and marksmanship.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0146 - Beginning Billiards
Introduction to the etiquette, rules, and recreational value of pocket billiards.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
PE 0148 - Beginning Skating
Fundamental skills of ice skating, including proper stroking forward and backward, edges, crossovers, stops, and other basic skills. Requires own skates and helmets.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0150 - Outdoor Lifetime Activities
This class will introduce students to a variety of recreational activities often used in a social/leisure setting (i.e. ladder golf, disc golf, croquet, etc.).
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Summer

PE 0151 - Indoor Lifetime Activities
This class will introduce students to a variety of recreational activities often used in a social/leisure setting (i.e., shuffleboard, billiards, table tennis, etc.).
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0152 - Social Dance I
Fundamentals of social dance, providing the basic skills, concepts of movement, style, and fundamental step patterns. Emphasis on the development of fundamental dance skills and practice in utilizing dance techniques.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0153 - Aerobics I
Improvement of cardiovascular fitness, strength, coordination, and body mechanics through exercise.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0155 - Beginning Road Biking
Learn to be comfortable and confident while riding a regular road bike. Covers basic maintenance repair procedures. Requires own equipment and supplies, including a bike helmet.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 0156 - Beginning Mountain Biking
Learn to be comfortable and confident while riding a mountain bike off-road. Covers basic maintenance repair procedures. Requires own equipment and supplies as well as a biking helmet.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0165 - Introduction to Rowing
This course will teach rowing techniques using indoor rowing machines (ergometers). Classes will consist of learning the parts of the stroke and rowing as a crew. Students will also experience and develop rowing-based workouts designed to target endurance and strength.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0166 - Moving for Fitness
Introductory course to using the Student Development Complex and surrounding outdoor facilities in a variety of group and individual activities. Basic movement at your own level.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0167 - Beginning Yoga
Learn the basics or compliment previous experience while improving flexibility, balance and concentration. Improve focus. Relax mentally and physically.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer

PE 0169 - Indoor Cycling
High energy, group cycling class. No complicated moves to learn. Upbeat music that gets your legs pumping.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0170 - TaeKwonDo and Hapkido I
Introduction to the basic kicking, blocking, punching, joint locking, and self-defense techniques of TaeKwonDo and Hapkido. Emphasizes improvement of flexibility.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0175 - Hiking
Fundamental knowledge and skills specific to hiking will be covered. Appropriate clothing and footwear for hiking is recommended. Course meets on weekends (usually Saturdays). Due to class structure, students must attend all classes - No Exceptions.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Summer

PE 0177 - Fundamentals of Laser Tag
Tactical laser tag is a team based activity that will involve three to four different strenuous game modes per class (Capture the Flag, King of the Hill, Bomb Squad, etc.).
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Summer

PE 0205 - Bowling II
Intermediate to advanced techniques in bowling, including skills and strategy involved in tournament play.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0206 - Intermediate Golf
Intermediate to advanced individual instruction in golf techniques, terms, courtesies, and tournament regulations. Equipment needed; some rental clubs available.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer
PE 0209 - Intermediate Aikido
This course is designed to be a continuation of Aikido.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: On Demand

PE 0210 - Special Topics in Physical Education
Unconventional activity courses that address varying and changing student interests. Topics vary. Each topic may count once as a general education co-curricular course as long as the topic and course content are different than other co-curricular courses taken.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

PE 0215 - Intermediate Swimming
Students learn to swim four basic strokes with proficiency. Requires ability to swim the length of pool comfortably.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0216 - Intermediate Basketball
Intermediate to advanced techniques, skills, and strategies of basketball.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0217 - Intermediate Hockey
Intermediate/advanced techniques, skills, and strategies. Requires basic hockey equipment of helmet with face mask, shoulder pads, hockey pants, shin pads, elbow pads, hockey gloves, skates, supporter, jersey, hockey socks, hockey stick.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0218 - Intermediate Weight Training
Intermediate to advanced techniques of weight lifting.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0219 - Intermediate Fitness Training
This course is designed to be a continuation of Beginning Fitness Training, providing the opportunity to continue in a variety of activities to improve fitness and well being. Activities include using aerobic machines and strength training. Students will learn fitness training concepts and how to safely and properly use fitness center equipment.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0220 - Intermediate Alpine Skiing (Downhill)
Intermediate to advanced skills of alpine skiing techniques taught, evaluated and recommendations made for improvement. Students must provide their own transportation to Mont Ripley. It is recommended that students provide their own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0221 - Intermediate Snowboarding
Intermediate to advanced skills of snowboarding techniques taught, evaluated, and recommendations made for improvement. Students must provide their own transportation to Mont Ripley. It is recommended that students provide their own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0226 - Intermediate Volleyball
Organization and development of team competition in volleyball. Requires previous volleyball experience.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0230 - Water Polo
Fundamental skills, rules, strategy, and play of water polo.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0232 - Intermediate Soccer
Intermediate to advanced techniques, skills, and strategies involved in soccer.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

PE 0235 - Intermediate Cross Country Skiing
Development of touring, recreational, and racing skills in cross country skiing. Own equipment is recommended; rental equipment available. Basic skills evaluated to ensure proper level of skiing proficiency.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0237 - Intermediate Table Tennis
Intermediate/advanced skills of table tennis will be taught.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
PE 0238 - Intermediate Racquetball/Squash
Reviews the fundamentals and instructs the students on the intermediate/advanced skills of racquetball and squash. Gives all students the opportunity to play singles, cutthroat, and doubles. Racquets, balls, and eyewear provided. Recommend use of personal racquet.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0239 - Intermediate Tennis
Intermediate to advanced techniques, skills, and strategies in tennis. Class meets at Gates Tennis Center. Non-marking court shoes must be worn. Tennis balls and racquets provided. Recommend use of personal racquet.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0240 - Intermediate Badminton
Intermediate to advanced techniques, skills, and strategies involved in badminton.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0242 - Brazilian Jiu Jitsu II
Advanced fundamentals of Brazilian Jiu Jitsu, which is a martial art, combat sport and self defense system that focuses on grappling and ground fighting.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0245 - Intermediate Rifle
Intermediate to advanced rifle techniques, skills, and strategies.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0246 - Intermediate Billiards
Intermediate to advanced techniques, skills, and strategies in billiards.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0248 - Intermediate Skating
Intermediate/advanced skills, including three turns, mohawk turns, jumps and spins, and drills for stops, starts, and power skating. Requires own skates.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0250 - Paintball
Students will be exposed to the sport of paintball for enjoyment and physical exercise in a relaxed outdoor setting.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0252 - Social Dance II
Continuation of developing social dance skills, concepts of movement, style, and step patterns. Emphasis on practice in utilizing dance techniques.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0253 - Aerobics II
Intermediate to advanced techniques and steps involved in aerobics. Requires previous aerobics experience.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0256 - Intermediate Mountain Biking
Intermediate to advanced techniques and skills involved in mountain biking.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 0266 - Running for Fitness
The techniques, skills, and strategies involved in running. The class is physically strenuous. Requires appropriate running shoes and attire.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

PE 0267 - Intermediate Yoga
Combined ancient Hatha yoga poses with modern fitness movement to create a total mind/body workout for all fitness levels. Improve breathing and oxygen intake.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0270 - Cardio TaeKwonDo
Improvement of kicking, blocking, punching, joint locking, and self-defense techniques. Emphasizes improvement of skills and strategies involved in TaeKwonDo.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0277 - Strategies of Laser Tag
Strategies of laser tag is a team-based activity where you will learn advanced techniques of different game modes of laser tag (Capture the Flag, King of the Hill, Bomb Squad, etc.).
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0315 - Fitness Swimming
Practices the basic strokes; introduces knowledge in creating workouts to encourage swimming as a lifetime fitness activity.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
PE 0320 - Advanced Skiing
Advanced skills of skiing techniques taught, evaluated, and recommendations made for improvement. Students must provide their own transportation to Mont Ripley. It is recommended that students provide their own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0321 - Advanced Snowboarding
Advanced skills of snowboarding techniques taught, evaluated, and recommendations made for improvement. Students must provide their own transportation to Mont Ripley. It is recommended that students provide their own equipment. Daily rental and "rent for the season" equipment available at Mont Ripley.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0330 - Club Sports
Club sport participation based on student interest. Group must be on the approved list of sports and all membership requirements must be up to date. Students enrolling in this course must participate in 14 hours of activity during the semester. Participation is tracked by instructor of record. No retroactive credit will be awarded for involvement in club sport activity.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

PE 0352 - Social Dance III
Introduction of current dance trends.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0353 - Aerobics III
Cardiovascular fitness course based on current trends in aerobics.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0355 - Advanced Road Biking
Learn advanced road biking techniques and strategies. Course requires own equipment, including road bike/wheels, bike shorts, biking shoes/pedals, and a helmet. Course also requires sufficient fitness to ride continuously in excess of 15 mph for 1.5 hours.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 0367 - Mindful Yoga
A restorative yoga class that is very gentle and has an emphasis on meditations/mindfulness.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 0420 - Ski Instructor Training
Students will learn how to teach ski classes. Upon completion of this course students will have the knowledge to complete the Level I certification test with the American Snowsports Education Association, if they choose.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: On Demand

PE 0421 - Snowboard Instructor Training
Students will learn to teach snowboard classes. Upon completion of this course students will have the knowledge to complete the Level I certification test with the American Snowsports Education Association, if they choose.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: On Demand

PE 0425 - Intramurals
Intramural activity that addresses varying and changing student interests. Sports vary. Students must be a member of IMleagues.com/MTU. Students enrolling in the course must participate in 14 games/contests during the portion of the semester that the course is offered to receive a passing grade. Participation is tracked via IMleagues.com/MTU. No retroactive credit will be awarded for involvement in intramural activities.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman

PE 0430 - Club Sports Leadership
Leadership in club sport participation based on student interests. Students enrolling in this course must hold a position of leadership within the club sport. Group must be on approved list of sports and all membership requirements up to date. Students must participate in 14 hours of leadership activity during the semester. Participation is tracked by instructor of record. No retroactive credit will be awarded for involvement in club sport activity.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required

PE 0450 - Physical Education Fusion-Full
Students will submit activity logs, photos, etc. to the course site. A predetermined number of points will need to be earned doing various activities through the semester. Activities with point values will be posted on the electronic course site.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring, Summer

PE 0451 - Mountain/Road Bike Fusion
Self-paced class requires student to submit electronic tracing that document activity on weekly basis. Electronic app used to uniquely document rides, distance, and pace. Total of 14 hours of riding required for passing grade. Students need to provide bike and safety equipment.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

Undergraduate Course Descriptions Effective Fall 2020, Page 131 of 162
PE 0520 - Alpine Skiing Fusion
Self-paced class requires student to submit electronic tracings that document activity on a weekly basis. Electronic app used to uniquely document runs, vertical feet skied and time descending on hill. Total of 14 hours moving on the hill is required.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 0521 - Snowboard Fusion
Self-paced class requires student to submit electronic tracings that document activity on weekly basis. Electronic app used to uniquely document runs, vertical feet boarded and time descending on hill. Total of 14 hours moving on the hill is required.
Credits: 0.5; Repeatable to a Max of 1; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring

PE 1000 - Fitness Foundations
Students will be introduced to practices and physical activities that they can incorporate into their daily life to sustain their healthy body and mind.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1010 - Active Michigan Tech
Course will focus on developing student well-being through self-guided learning. Topics of interest will include mindfulness, nutrition, sleep, and movement.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Freshman, Sophomore

PE 1028 - Outdoor Emergency Transport
National Ski Patrol training involving fitness, skiing proficiency, toboggan handling, and lift evacuation. Requires payment of dues to become a member of National Ski Patrol. Participation in this course requires PSIA Level skiing/board skiing. Students must provide own equipment Some rentals available at Mont Ripley. Skills demonstration required for continued enrollment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring

PE 1101 - Team Sports
Students will demonstrate fundamental skills, knowledge of rules, strategies, and safety of the following team sports necessary for participation: flag football, softball, volleyball, soccer, basketball, and floor hockey. Students should bring a glove for softball.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1105 - Bowling
Students will learn skills, rules, and scoring of bowling. Including skills and strategy involved in tournament play.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1106 - Golf
Intermediate to advanced individual instruction in golf techniques, terms, courtesies, and tournament regulations. Equipment needed; some rental clubs available.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall, Spring

PE 1113 - Disc Sports
Students will demonstrate fundamental skills, knowledge of rules, strategies, and safety disc golf, frisbee, soccer, and ultimate frisbee. Equipment provided.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1118 - Weight/Fitness Training
This course is designed to introduce students to a variety of weight and fitness activities to improve their well-being. Activities will include using aerobic and strength training machines. Students will learn basic concepts on how to safely and properly use the fitness center equipment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1119 - Conditioning
Students will demonstrate the fundamental knowledge and skills of conditioning, leading to continued enjoyment and participation as a lifelong activity.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1138 - Racquet Sports
Students will demonstrate fundamental skills, knowledge of rules, strategies, and safety of table tennis, racquetball, and badminton. Equipment provided.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1140 - Tennis
Fundamentals of the game, rules, and etiquette of tennis. Non-marking court shoes must be worn. Tennis balls and racquets provided. Recommend use of personal racquet.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1169 - Indoor Cycling
High energy, group cycling class utilizing music to motivate and encourage active engagement throughout the course session. Students will be able to identify basic steps used to ensure proper and safe bike set, recognize and safely demonstrate core moves, and apply rate of perceived exertion in specific work zones to achieve fitness goals.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
PE 1170 - TaeKwonDo
Introduction to the basic kicking, blocking, punching, joint locking, and self-defense techniques of TaeKwonDo and Hapkido. Emphasizes improvement of flexibility, skills and strategies.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1210 - Special Topics
Unconventional activity courses that address varying and changing student interests. Topics vary.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1215 - Introduction to Backcountry Travel
Fundamental knowledge and skills of backpacking leading to continued enjoyment and participation as a lifelong activity. Students will learn/practice on how to pack a backpack, plan food, and be knowledgeable about proper care and use of equipment related to backpacking.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Fall

PE 1220 - Introduction to Canoeing
Fundamental knowledge and skills of canoeing leading to continued enjoyment and participant as a lifelong activity. Students will practice/learn the basic strokes, and be knowledgeable about proper care and use of equipment related to canoeing.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 1225 - Indoor Rock Climbing
Fundamental knowledge and skills of rock climbing leading to continued enjoyment and participation as a lifelong activity. Students will practice/learn the basic terminology, knots, equipment, policies and procedures, and be knowledgeable in the proper care and use of equipment related to climbing, as well as safety concerns when climbing.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1230 - Introduction to Kayaking
Fundamental knowledge and skills of kayaking leading to continued enjoyment and participation as a lifelong activity. Students will learn/practice basic strokes, and be knowledgeable in the proper care and uses of equipment related to kayaking, as well as safety concerns when kayaking.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall

PE 1235 - Introduction to Log Rolling
Fundamental knowledge and skills of log rolling as a sport, the different steps including front, back, and skip steps, and techniques of getting on the log. Log rolling is a different style of workout that works on balance, core, and endurance. History of Log Rolling and current competitive opportunities will be covered.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

PE 1240 - Snowshoeing
Fundamental knowledge and skills of snowshoeing leading to continued enjoyment and participation as a lifelong activity. Students will learn about equipment, proper care and storage of equipment, and basic concepts of snowshoeing.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: Spring

PE 1245 - Wilderness First Responder
The definitive wilderness course in medical training, leadership, and critical thinking for outdoor, low-resource, and remote professionals and leaders. This course is the ideal medical training for leaders in remote areas, as well as general recreation users in remote in wild settings.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-4)
Semesters Offered: On Demand

PE 1435 - Self Defense for Women
The Rape Aggression Defense System (R.A.D.) is a comprehensive course for women that begins with awareness, prevention, risk reduction and avoidance, while progressing on to the basics of hands-on defense training. R.A.D. is not a martial arts program.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1436 - Self Defense for Men
Course teaches the Rape Aggression Defense System for men (TM). Participants will have the opportunity to raise their awareness of aggressive behavior. Hands-on self-defense skills to resist and escape aggressive behavior will be practiced.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

PE 1470 - Lifeguard Swimming
Water strokes and skills required for Lifeguard Training. Requires strong 500-yard continuous swim using front crawl, breaststroke, and sidestroke. Students that successfully complete this course will earn a certification in American Red Cross CPR/AED/First Aid & Lifeguarding.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring
Co-Requisite(s): KIP 2470

PE 2010 - Varsity Football
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall
Restrictions: Permission of department required

PE 2020 - Varsity Basketball
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required

Undergraduate Course Descriptions Effective Fall 2020, Page 133 of 162
PE 2030 - Varsity Hockey
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required

PE 2040 - Varsity Nordic Skiing
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Spring
Restrictions: Permission of department required

PE 2050 - Varsity Soccer
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required

PE 2080 - Varsity Track
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Spring
Restrictions: Permission of department required

PE 2090 - Varsity Tennis
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required

PE 2130 - Varsity Volleyball
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall
Restrictions: Permission of department required

PE 2140 - Varsity Cross Country
Selective collegiate-level sports participation requiring an elite level of skill and extensive time commitment.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall
Restrictions: Permission of department required

PE 2150 - Cross Training
A broad base understanding of sports cross training and activities that can be pursued as lifelong activities. May be used once as a general education co-curricular course.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-5)
Semesters Offered: Fall, Spring
Restrictions: Permission of department required

Physics

PH 1090 - The Physics Behind Music
Physics concepts and methods associated with musical instruments, musical recording, and musical acoustics are discussed at an introductory level. Topics include periodic motion, normal modes and resonance, superposition and Fourier series, waves, sound and acoustics, magnetism and electromagnetic induction, and topics from non-linear physics. Course is also offered online on demand in spring and summer semesters.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 1031(C) or MA 1032(C) or MA 1120(C)

PH 1091 - The Physics Behind Music Lab
A companion hands-on lab course covering topics from PH1090.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer
Pre-Requisite(s): PH 1090(C)

PH 1100 - Physics by Inquiry I
Experiments covering kinematics, force, conservation of momentum, conservation of energy, and waves are explored through guided construction. The course emphasizes understanding physical concepts through inquiry and the scientific method
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): MA 1160(C) or MA 1161(C)

PH 1110 - College Physics I
An overview of basic principles of kinematics, dynamics, elasticity, fluids, heat, thermodynamics, mechanical waves, and interference and diffraction of mechanical waves.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following College(s): College of Engineering; May not be enrolled in one of the following Major(s): Physics, Construction Management, Surveying Engineering, Electrical Eng Tech, General Technology, Mechanical Engineering Tech, Applied Physics, Computer Network & System Admin
Co-Requisite(s): PH 1111
Pre-Requisite(s): MA 1031 or MA 1032 or MA 1120 or MA 1135(C) or MA 1160(C) or MA 1161(C) or ALEKS Math Placement >= 76 or CEEB Calculus AB >= 2 or CEEB Calculus BC >= 2 or CEEB Calculus AB Subscore >= 2 or ACT Mathematics >= 26 or SAT MATH SECTION SCORE-M16 >= 610
PH 1111 - College Physics I Laboratory
Experiments covering kinematics, forces, conservation of momentum and energy, waves, and thermodynamics are explored through guided construction. The course provides inquiry-based laboratory experiences for concepts explored in PH1110.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Summer
Restrictions: May not be enrolled in one of the following
College(s): College of Engineering; May not be enrolled in one of the following Major(s): Physics, Construction Management, Surveying Engineering, Electrical Eng Tech, General Technology, Mechanical Engineering Tech, Applied Physics, Computer Network & System Admn
Co-Requisite(s): PH 1110

PH 1140 - Applied College Physics I
An algebra-based introduction to classical mechanics and its applications. Topics include kinematics, Newton's laws, impulse and momentum, work and energy, simple harmonic motion, mechanical waves and sound, and temperature and heat.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Construction Management, Mechanical Engineering Tech, Electrical Eng Tech, General Technology, Theatre & Entertain Tech (BS), Computer Network & System Admn
Co-Requisite(s): PH 1141
Pre-Requisite(s): MA 1031 or MA 1032 or MA 1120 or MA 1160(C) or MA 1161(C) and (PH 1100 or PH 1111 or PH 1141(C) or PH 1161)

PH 1141 - Applied College Physics I Laboratory
Experiments covering kinematics, forces, conservation of momentum and energy, waves, and thermodynamics are explored through guided construction. The course provides inquiry-based laboratory experiences for concepts explored in PH1140.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Engineering Technology, Mechanical Engineering Tech, Computer Network & System Admn, Electrical Eng Tech, Theatre & Entertain Tech (BS), Construction Management
Co-Requisite(s): PH 1140
Pre-Requisite(s): PH 1160 or PH 2100 and MA 2160(C)

PH 1160 - Honors Physics I - Mechanics
Calculus-based introduction to classical mechanics. Topics include mathematical concepts, kinematics, Newton's laws, the gravitational force, work and energy, and collisions. Also introduces departmental facilities, research within the department, and professional opportunities in physics. Intended for physics majors; highly motivated students seeking an invigorating introduction to physics may enroll with permission of the instructor.
Credits: 4.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Physics (BA), Physics, Applied Physics
Co-Requisite(s): PH 1161
Pre-Requisite(s): MA 1160(C) or MA 1161(C) or MA 2160(C)

PH 1161 - Introduction to Experimental Physics I
A laboratory complement to PH1160. Experiments covering kinematics, force, conservation of momentum, conservation of energy, waves and thermodynamics are explored through guided construction. The course emphasizes understanding physical concepts through inquiry and the scientific method.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Physics (BA), Physics, Applied Physics
Co-Requisite(s): PH 1160

PH 1200 - Physics by Inquiry II
Experiments covering Coulomb's law, electric and magnetic fields, circuits, induction, and geometric optics are explored through guided construction. The course emphasizes understanding physical concepts through inquiry and the scientific method.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): PH 1100 or PH 1111 or PH 1141 or PH 1161

PH 1210 - College Physics II
An overview of basic principles of static and dynamic electricity and magnetism, electromagnetic waves, reflection and refraction of light, interference and diffraction of light, special theory of relativity, wave theory of matter, particle theory of electromagnetic waves, theory of the atom, the nucleus, and elementary particles.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Restrictions: May not be enrolled in one of the following
College(s): College of Engineering; May not be enrolled in one of the following Major(s): Physics, Construction Management, Surveying Engineering, Electrical Eng Tech, General Technology, Mechanical Engineering Tech, Applied Physics, Computer Network & System Admn
Pre-Requisite(s): PH 1200(C) and (PH 1110 or PH 1111 or PH 1100)

PH 1240 - Applied College Physics II
An overview of static and dynamic electricity and magnetism, electromagnetic waves, basic optics, and an introduction to modern and nuclear physics with an emphasis on problem solving and applications.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following
College(s): College of Engineering; May not be enrolled in one of the following Major(s): Physics, Construction Management, Surveying Engineering, Electrical Eng Tech, General Technology, Mechanical Engineering Tech, Applied Physics, Computer Network & System Admn
Co-Requisite(s): PH 1200
Pre-Requisite(s): PH 1140 or PH 1110

PH 1360 - Honors Physics II - Rotation and Vibration
Continuation of PH 1160. Topics include rotational motion, simple harmonic motion and mechanical waves. Offered first half of spring semester.
Credits: 2.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: Spring
Co-Requisite(s): PH 1361
Pre-Requisite(s): (PH 1160 or PH 2100) and MA 2160(C)

Undergraduate Course Descriptions Effective Fall 2020, Page 135 of 162
PH 1361 - Introductory Experimental Physics II
Laboratory complement to PH 1360. Waves and thermodynamics are explored through guided construction. The course emphasizes understanding physical concepts through inquiry and the scientific method.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Spring
Co-Requisite(s): PH 1360

PH 1500 - Extraordinary Concepts in Physics
Extraordinary concepts will be surveyed. Included will be time dilation and length contraction in Special Relativity, physics of Time Travel, curvature in General Relativity, interpretations of Uncertainty Principle, counter-intuitive examples of Two-Slit Experiment, Schrodinger's Cat, Maxwell's Demon, Bell's Inequality, curvature in cosmology, dark matter, dark energy, black hole evaporation, string theory, and gravitational lensing.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: On Demand

PH 1600 - Introductory Astronomy
Introduces fundamentals of astronomy. Topics include Kepler's and Newton's laws of motion, origin and evolution of the solar system, galactic astronomy, extra-galactic astronomy, cosmology, and modern instrumentation, including space-based astronomy.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall, Spring, Summer

PH 1610 - Introductory Astronomy Lab
Demonstrates fundamentals of astronomy using non-telescopic and telescopic observations, and computer simulations. Topics include angular size measurements, season-dependent measurements, phases of the moon, phases and orbits of planets, brightness of stars, introduction to the use of MTU's Observatory, instrumentation, and applications of computer programs involving cosmology.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer
Co-Requisite(s): PH 1600

PH 2020 - Introduction to Scientific Programming and Error Analysis
Compiled programming languages, command lines, and scripts will be used to solve simple physics problems. Measurement uncertainties, significant figures, probability distributions, error propagation, and data reduction will be examined in the contexts of experiments and numerical calculations.
Credits: 2.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Physics (BA), Physics, Applied Physics
Pre-Requisite(s): (PH 1160 or PH 2100) and (MA 1160 or MA 1161)

PH 2100 - University Physics I-Mechanics
A calculus-based introduction to classical mechanics. Topics include kinematics, Newton's laws, impulse and momentum, work and energy, and the universal law of gravitation. C or better/AP credit in Calc 1 or co-requisite registration in PH2110 required.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): PH 1100(C) and (MA 1160 or MA 1161 or MA 1135) and PH 2110(C) or (CEEB Calculus AB >= 3 or CEEB Calculus BC >= 3 or CEEB Calculus AB Subscore >= 3 and MA 2160(C) or MA 3160(C))

PH 2110 - University Physics Workshop 1
A mastery-based course integrated with PH2100, providing foundational mathematics and physics skills-development, and hands-on problem-solving skill development to promote success in PH2100.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Co-Requisite(s): PH 2100
Pre-Requisite(s): MA 1161 or MA 1160

PH 2200 - University Physics II-Electricity and Magnetism
A calculus-based introduction to electromagnetism. Topics include Coulomb's law, electric fields, Gauss's law, electric potential, capacitance, circuits, magnetic forces and fields, Ampere's law, induction, Maxwell's equations, and electromagnetic waves.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): (PH 1200(C) or PH 2261(C)) and (PH 2100 or PH 1160) and MA 2160

PH 2230 - Electronics for Scientists
An introduction to analog and digital electronics with an emphasis on their use in the laboratory. Topics include linear devices and basic linear circuit analysis; diodes; transistors; op-amps; the use of digital components, including logic gates, flip-flops, counters, clocks and microcontrollers, and analog to digital conversions.
Credits: 4.0
Lec-Rec-Lab: (3-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following
Major(s): Electrical Engineering, Computer Engineering
Pre-Requisite(s): PH 2200 or PH 2260

PH 2260 - Honors Physics III - Electricity and Magnetism
Calculus-based introduction to electromagnetism. Topics include Coulomb's law, electric fields, Gauss's law, electric potential, capacitance, circuits, magnetic forces and fields, Ampere's law, induction, Maxwell's equations, electromagnetic waves and geometrical optics.
Credits: 4.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (PH 1160 or PH 2100) and (PH 1200(C) or PH 2261(C)) and MA 2160
PH 2261 - Introduction to Experimental Physics III
A laboratory complement to PH2260. Experiments covering Coulomb’s law, electric and magnetic fields, circuits, induction, geometric optics, and modern physics are explored through guided construction. The course emphasizes understanding physical concepts through inquiry and the scientific method.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall
Co-Requisite(s): PH 2260
Pre-Requisite(s): PH 1100 or PH 1161

PH 2300 - University Physics III-Fluids and Thermodynamics
A calculus-based introduction to fluids and thermal physics. Topics include fluid motion, propagation of heat and sound, temperature and the kinetic theory of gases, heat capacity and latent heat, first law of thermodynamics, heat engines and the second law, entropy, and an introduction to statistical mechanics. Offered second half of spring semester.
Credits: 2.0
Lec-Rec-Lab: (4-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 1160 or PH 2100

PH 2400 - University Physics IV-Waves and Modern Physics
A calculus-based introduction to waves and modern physics. Topics include interference and diffraction, special relativity, photons and matter waves, the Bohr atom, wave mechanics, atomic physics, molecular and solid-state physics, and nuclear physics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): PH 2200 or PH 2260

PH 3110 - Theoretical Mechanics I
An intermediate study of mechanics, including the study of Newtonian mechanics of a single particle and multiple-particle systems, oscillations, motion in noninertial reference frames, gravitation and central-force motion, and Lagrangian mechanics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (PH 2200 or PH 2260) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 3111 - Theoretical Mechanics II
A continuation of PH3110. Includes the study of the rigid body motion, relativistic mechanics, and coupled oscillations. Additional topics may include chaos theory, Hamiltonian mechanics, and continuous systems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 3110

PH 3210 - Optics
An introduction to geometrical and physical optics. Topics in geometrical optics include ray analysis of mirrors, lenses, prisms, and optical systems. Topics in physical optics include polarization, interference, interferometry, and diffraction. The laboratory explores optics through experiments in imaging, fiber optics, interferometry, diffraction, polarization, and laser beam propagation.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): MA 3520(C) or MA 3521(C) or MA 3530(C) or MA 3560(C)

PH 3300 - Thermodynamics and Statistical Mechanics
Thermodynamic systems, heat, work, laws of thermodynamics, formal mathematical relations, cycles, phase equilibrium, and multicomponent systems. Elementary kinetic theory. Introduction to microscopic view of entropy, ensemble theory, and applications of statistical mechanics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 2300 or PH 1360

PH 3320 - Methods of Theoretical Physics
Introduction to the techniques and methods frequently encountered in advanced physics with a particular emphasis on application to physical problems. Topics include, but are not limited to, complex numbers, vector analysis, partial differential equations, and integral transforms.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): MA 3160 and (MA 3520 or MA 3521 or MA 3530 or MA 3560) and (PH 2200 or PH 2260)

PH 3410 - Quantum Physics I
An introduction to the foundations of modern physics and Schrodinger's wave mechanics. Topics include thermal radiation, particle-like properties of radiation, Bohr's model of the atom, matter waves, Schrodinger's wave mechanics, quantization of angular momentum, and the one-electron atom.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 2400 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 3411 - Quantum Physics II
A continuation of PH3410. Includes the study of spin and magnetic interactions, multi-electron atoms, quantum statistics, molecules, solids, and elementary particles.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): PH 3410
PH 3480 - Advanced Physics Laboratory
Through a series of experiments, students investigate physical phenomena that underlie modern physics. In the process, students become familiar with experimental techniques and instrumentation used in modern research laboratories.

Credits: 2.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Spring
Pre-Requisite(s): PH 3210

PH 4010 - Senior Physics Colloquium I
Class discussion of the literature in the field of physics. Requires oral and written presentations.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Co-Requisite(s): PH 4080

PH 4011 - Senior Physics Colloquium II
A continuation of PH4011. Class discussion of current literature and recent advances in physics. Requires oral and written presentations.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Co-Requisite(s): PH 4081
Pre-Requisite(s): PH 4010

PH 4050 - Qualitative Methods in Physics
General methods and approaches of the physicist, including modeling, scaling, numerical estimation, and dimensional analysis as applied to the development, understanding, and solution of physics problems. Serves as an excellent preparation for students taking the GRE Subject Test in physics.

Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Physics, Applied Physics; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

PH 4080 - Senior Research I
Introduction to research under the guidance of a faculty member. In addition, creative problem solving will be assessed via a student-initiated project.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Co-Requisite(s): PH 4010
Pre-Requisite(s): PH 3480

PH 4081 - Senior Research II
Continuation of research under the guidance of a faculty member, culminating in a written report and presentation of results at an undergraduate research forum.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior
Co-Requisite(s): PH 4011
Pre-Requisite(s): PH 4080

PH 4090 - Senior Thesis
Students prepare an in-depth written thesis on an approved topic in physics. Normally taken the last semester before graduation in conjunction with PH4081.

Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Spring
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman, Sophomore, Junior

PH 4210 - Electricity and Magnetism I
Intermediate study of the basic theory of electricity and magnetism, including a detailed study of electrostatic field theory and an introduction to magnetostatics.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (PH 2200 or PH 2260) and PH 3110 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4211 - Electricity and Magnetism II
A continuation of PH4210. Intermediate study of magnetostatics, electrodynamics, and electromagnetic waves.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PH 4210

PH 4292 - Light and Photonic Materials
Material properties controlling light propagation in optical crystals and optical waveguides. Photonic crystals and photonic devices based on electrical, magnetic, and strain effects.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): PH 2200(C)

PH 4390 - Computational Methods in Physics
An overview of numerical and computer methods to analyze and visualize physics problems in mechanics, electromagnetism, and quantum mechanics. Utility and potential pitfalls of these methods, basic concepts of programming, UNIX computing environment, system libraries and computer graphics are included.

Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Fall
Pre-Requisite(s): PH 2020 and PH 3410
PH 4395 - Computer Simulation in Physics
Role of computer simulation in physics with emphasis on methodologies, data and error analysis, approximations, and potential pitfalls. Methodologies may include Monte Carlo simulation, molecular dynamics, and first-principles calculations for materials, astrophysics simulation, and biophysics simulations.
Credits: 3.0
Lec-Rec-Lab: (2-0-3)
Semesters Offered: Spring
Pre-Requisite(s): PH 3300 and PH 4390 and (PH 2400 or PH 3410)

PH 4510 - Introduction to Solid State Physics
Crystal structures, X-ray diffraction, phonons, free electron theory of metals, rudiments of band theory, an overview of semiconductors, and other topics in solid-state physics.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall
Pre-Requisite(s): (PH 2300 or PH 1360) and PH 2400 and (CH 1150 and CH 1151) and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4610 - Stellar Astrophysics
Topics include an overview of observational astrophysics, stellar atmospheres, stellar structure, atomic properties of matter, radiation and energy transport in stellar interiors, and stellar evolution to and from the main sequence. Course offered every third year beginning 2008-09.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2008-2009 academic year
Pre-Requisite(s): PH 1600 and PH 2400 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4620 - Galactic Astrophysics
Topics include the composition and dynamics of our galaxy, dynamics of stellar encounters, spiral density wave theory, clusters of galaxies, theoretical cosmology, physics of the early universe, and observational cosmology. Course offered every third year beginning 2009-10.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2009-2010 academic year
Pre-Requisite(s): PH 1600 and PH 2400 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4630 - Particle Astrophysics
Introduction to the twin fields of elementary particle physics and high energy astrophysics. Topics include an overview of particles and interactions, the expanding universe, conservation laws, dark matter and dark energy, large scale structure, and cosmic particles. Course offered every third year beginning 2007-08.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2007-2008 academic year
Pre-Requisite(s): PH 2400 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4640 - Fundamentals of Atmospheric Science
Fundamental principles of atmospheric science including thermodynamics, aerosol and cloud physics, radiative transfer, and atmospheric dynamics.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2013-2014 academic year
Pre-Requisite(s): (PH 2200 or PH 2260) and (PH 1360 or PH 2300) and MA 3160 and (MA 3520 or MA 3521 or MA 3530 or MA 3560)

PH 4710 - Methods of Teaching Physics
Hands-on exploration of physics education methods in classroom, laboratory, and tutoring environments. Students study highlights of physics education research and explore use of several tools and pedagogical techniques, including web-based homework systems, simulations, classroom feedback systems, and equipment for laboratories and lecture demonstrations.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Spring - Offered alternate years beginning with the 2010-2011 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PH 1210 or PH 2200 or PH 2260

PH 4999 - Special Topics in Physics
Selected additional topics in physics for advanced students based on interests of faculty and students. Interested students should contact the physics department.
Credits: variable to 9.0; May be repeated
Semesters Offered: Fall, Spring, Summer

Psychology

PSY 2000 - Introduction to Psychology
Introduction to the scientific study of psychological structures and processes involved in individual and group behavior. Explores theoretical accounts of the foundations of human behavior and examines empirical support. Topics may include personality, disorders, therapy, development, and social psychology, perception, learning, cognition, emotion, and states of consciousness.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer

PSY 2080 - Special Topics in Psychology
An in-depth analysis of current issues in Psychology. Course content varies with each offering.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000
PSY 2110 - Educational Psychology
The application of psychological factors, theory and research results to teaching and learning. Factors associated with both the learner (development, motivation, personality, behavioral and cognitive factors) and socio-technical learning environments (technology and multimedia, measurement, and evaluation) are examined.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): PSY 2000(C)

PSY 2200 - Behavior Modification
An introduction to techniques of behavior modification through the application of learning theories such as classical and operant conditioning. Students will conduct a case study project designed to modify and assess a personal behavior.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): PSY 2000

PSY 2300 - Developmental Psychology
A survey of human development across the life span (prenatal, infant, child, adolescent, and adult) in the areas of biological, cognitive, social, emotional, and personality development. Provides insight into both the universality of human development and the uniqueness of individuals.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): PSY 2000

PSY 2400 - Health Psychology
Examines the theoretical, empirical, and historical bases for health psychology. Topics may include the effects of stress, determinants of addictive behavior, the impact of psychological factors on physical health, obesity, and the causes and treatment of chronic pain.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000

PSY 2501 - Intro to the Psychology Major
Psychology majors examine the field of psychology and major degree requirements resulting in an undergraduate plan of study focused on graduate school admission or career preparation. Students will be introduced to department research and other opportunities.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Major(s): Psychology; Must be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): PSY 2000(C)

PSY 2600 - Psychology of Death and Dying
An examination of theory, research, and issues in the psychology of death and dying. Topics may include the development of death concepts, death anxiety in society, the needs of the dying person, the psychology of grieving, and unexpected losses.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): PSY 2000

PSY 2720 - Statistics for the Behavioral Sciences
An understanding of statistical concepts and ability to conduct statistical analyses (using both hand calculation and SPSS) as used in Social and Behavioral Sciences research. Topics include descriptive statistics, correlation, and inferential statistics through ANOVA.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Social Sciences, Psychology
Pre-Requisite(s): MA 1031 or MA 1032 or MA 1120 or MA 1160(C) or MA 1161(C) or MA 1135(C)

PSY 2800 - Critical Thinking for Social and Behavioral Sciences
This course will help develop critical thinking skills central to the social and behavioral sciences. Topics may include arguments, logic, evaluating causal claims, evaluating surveys, theory evaluation, experiment evaluation, writing in psychology, and ethical considerations in the social and behavioral sciences.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): PSY 2000(C)

PSY 2900 - Intro to Restorative Practices
Restorative justice practices allow those who have been most affected by an incident to share their feelings, describe how they have been affected and develop a plan to repair the harm done and prevent recurrence. The process is useful for K-12 schools, criminal justice, higher education and workplaces.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000 and (MA 2720 or PSY 2720)
PSY 3001 - Experimental Methods and Statistics II
Second course in psychological research methodology and statistics, both experimental and non-experimental. Students design, execute, interpret, and report psychological research.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000 and PSY 3000

PSY 3010 - Theories of Personality
Introduction to the variety of approaches to personality that underlie many clinical models. Discusses the formulation of personality theory, its purpose, and problems associated with personality theory generation. Emphasizes classical and contemporary theories of personality, their various applications to human behavior, and a review of relevant research findings.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

PSY 3030 - Abnormal Psychology
Helps the student build an understanding of abnormal behavior through critical examination of historical and contemporary models used in this field. The student learns the causes and treatment proposed by Cognitive-Behavioral, Psychodynamic and Social-Cultural Models with particular emphasis placed on the Diagnostic and Statistical manual used by clinicians for diagnoses.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Summer
Pre-Requisite(s): PSY 2000 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

PSY 3040 - History and Systems of Psychology
Traces major historical contributions to current psychology from ancient to modern times. Examines significant ideas and discoveries from philosophy, mathematics, and the natural and medical sciences as they relate to the development of psychology. Discusses philosophical, theoretical, and methodological controversies that surfaced as part of these historical developments.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000

PSY 3060 - Brain and Behavior
Study of the relations between psychological manipulations and resulting physiological responses to promote understanding of mind/body interaction. Will examine psychophysiological measurement methods, research, and the application of psychophysiology.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): PSY 2000 and BL 1020 or BL 1040 or BL 2010 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

PSY 3070 - Cross-Cultural Psychology
Introduces the student to cross cultural psychology and sociocultural theory as it is applied to psychology. Examines research on cultural specific and universal behaviors. Emphasizes the benefits and challenges of diversity in organizations and diversity skills that promote interpersonal and organizational success.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: PSY 2000 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

PSY 3090 - Directed Research: Undergraduate Research Assistant in Psychology
Directed research in the field of Psychology through the application of research techniques.
Credits: variable to 3.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 3095 - Teaching Assistant
Undergraduate Teaching Assistant for Principles of Psychology or other Psych course, including tutoring, assessment, test construction.
Credits: variable to 3.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Psychology
Pre-Requisite(s): PSY 2000

PSY 3100 - Applied Counseling Techniques
An applied review of counseling techniques, their strengths and weaknesses, and the fundamental concepts that support the use of each type of counseling. This is a course in which students will be required to apply and practice one of the counseling techniques with a voluntary client.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 3200 - Motivation and Emotion
Introduction to the theoretical, physiological, cognitive, and behavioral factors underlying the processes of motivated behaviors and emotional states. Emphasis is placed on methods for studying motivation and emotion and their role in human behavior.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

Undergraduate Course Descriptions Effective Fall 2020, Page 141 of 162
PSY 3300 - Psychology of Deviance
This course will guide the student through a scholarly study from how deviance is defined to an in-depth analysis of the numerous theories that seek to explain why individuals commit deviant acts.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000

PSY 3700 - Industrial Organizational Psychology
Introduction to the use and application of psychology in the workplace. Focus is on the development of employees and the management of work groups and organizations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2012-2013 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 3720 - Social Psychology
Survey of social, cultural, and cognitive influences on individual and group behavior. Introduces attitude formation, social conformity, personal perception, aggression, cooperation, and interpersonal and intergroup relations.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): PSY 2000 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

PSY 3800 - Environmental Psychology
Psychological effects of the physical environment and effects of human action on the sociophysical environment, including an examination of global environmental issues and ecologically-relevant behavior.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 3850 - Human Factors Psychology
This class introduces basic psychological concepts critical to the design of human-technological systems. Provides insight into the most unpredictable and error-prone component of human-machine systems-the human! Appropriate for students of all majors.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 3860 - Human Performance
An overview of the psychology of human performance, including topics of movement, attention, perception, speech, expertise, and performance enhancement and degradation.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): PSY 2000

PSY 4010 - Cognitive Psychology
Through lecture, demonstrations, and participation in classic cognitive experiments, this course provides a survey of topics in human cognition, including perception, attention, mental representation and processing, the architecture of memory, knowledge, visual imagery, problem solving, reasoning, and decision making.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 4015 - Cognitive Task Analysis Methods
Cognitive task analysis (CTA) is a cognitive-systems engineering method to unpack complex cognitive work. The results support design requirements for new systems, strategies, or training. Students will practice collecting and analyzing CTA data using several methods.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 4080 - Topics in Psychology
An examination of a specific area or approach within the field of Psychology.
Credits: variable to 4.0; May be repeated
Semesters Offered: On Demand
Pre-Requisite(s): PSY 2000 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

PSY 4090 - Independent Study in Psychology
Designed to allow students to participate in independent readings or research in a variety of areas within psychology.
Credits: variable to 6.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): PSY 2000
PSY 4095 - Internship in Psychology
Firsthand experience with the application of psychological principles in the field through volunteer placement with a community agency or business. Students are responsible for obtaining field placement site in coordination with instructor. Students complete a comprehensive paper.
Credits: 3.0; Repeatable to a Max of 6; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-9)
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): PSY 2000

PSY 4110 - Learning and Memory
Theories of learning and memory from traditional animal research findings, human research, and more recent trends examining the neural basis of learning and memory will be examined to understand changes in behavior, including the acquisition and retention of knowledge.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 4160 - Sensation and Perception
Examination of basic sensory mechanisms and perceptual phenomena. Sensory mechanisms reviewed will include vision, audition, olfaction, gustation, vestibular system and touch.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): BL 1040 or BL 1020 or (BL 1200 and BL 1210) or (BL 1400 and BL 1410)

PSY 4400 - Tests and Measurements
Review of psychological tests and test theory, along with principles of construction and analysis of psychological tests.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2720 or MA 2720

PSY 4500 - Senior Seminar: Psychology Capstone
A practical, task-based course to help you synthesize your post-bachelor's degree plans and goals. Involves work on applying to an advanced educational program or conducting a job search.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Psychology; May not be enrolled in one of the following Class(es): Freshman, Sophomore

PSY 4750 - Judgement and Decision Making
How can we make better decisions? Using examples from medicine, politics, law, business, and daily life, we review "descriptive" (psychological), "normative" (rational), and "prescriptive" (decision-engineering) theory. Topics include judgment, cognition, emotion, risk, uncertainty, heuristics, biases, and applications.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2000

PSY 4870 - Human-Centered Design
This course will focus on the human-system (computers, appliances, mobile devices, etc.) Interaction regarding the design and development of products. Students will experience hands-on HCI activities (analysis-design-evaluation) and practice research methods based on HIC theory and perspectives.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

Sciences and Arts

SA 1000 - Exploring Majors at Michigan Tech
Exploration of majors and related career opportunities. Includes an introduction to University resources such as the Career Center, presentations by students in various majors, an examination of individual interests and abilities, opportunities for discussion and reflection, and guidance in choice of appropriate courses.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring

Systems Admin. Technology

SAT 1610 - Computer and Operating Systems Architecture
Fundamentals of computer organization, operating system architecture, PC/WS major subassemblies, PC and server configuration planning, power interfaces, system assembly/setup, connection of peripherals, installing fundamental operating system software, system testing/debugging and planning and installation of application software portfolios.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): SAT 1200 or CS 1111
SAT 1700 - Cyber Ethics
Ethics, morality, and privacy issues when working with technology. Topics include: foundational and professional issues in cyber ethics; privacy, security, and crime in cyberspace; intellectual property and internet regulation; the digital divide and online communities; and emerging and converging technologies.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admin, Cybersecurity

SAT 2343 - Network Administration I
Introduction to basic networking concepts and implementation. Topics include OSI model, subnetting, network addressing, data encapsulation, network topologies, and basic configuration of networking hardware including cabling, bridges, routers, and other communications.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall, Summer
Pre-Requisite(s): SAT 1200 or CS 1111 or CS 1121 or CS 1131 or CS 1142 or MIS 2100

SAT 2511 - Microsoft System Administration
Microsoft server installation and configuration in an enterprise environment. Topics include: planning for server deployment and management; monitoring and maintaining servers; planning application and data provisioning; and planning for business continuity and high availability.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring, Summer
Pre-Requisite(s): SAT 2343

SAT 2711 - Linux Fundamentals
Fundamental OS concepts, OS design principles, Linux system architecture, Linux installation and package management, GNU and UNIX commands, Linux file systems, hierarchy standards, shells, scripting and data management, user interfaces and desktops, administrative tasks, essential system services, networking fundamentals, and security.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall, Summer
Pre-Requisite(s): SAT 1200 or CS 1111(C) or CS 1121 or CS 1131 or CS 1142 or MIS 2100

SAT 3200 - Storage Area Networking
Study of distributed network storage methods that include iSCSI, NAS, NAS, and SAN technologies. Other topics include configuration management, storage farms, backup, and recovery.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Pre-Requisite(s): SAT 2511 and SAT 2711

SAT 3210 - Database Management
Introductory course on database management. Topics include data modeling, database design, implementation techniques, SQL Language, database administration and security.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SAT 1200 or CS 1111 or CS 1121 or CS 1131 or CS 1142 or MIS 2100

SAT 3310 - Scripting for Administration, Automation, and Security
Scripting in PERL, Python, BASH, and PowerShell to accomplish and automate common system administration tasks such as working with files, network and web communication, database interaction, and security.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Sophomore, Junior, Senior
Pre-Requisite(s): SAT 1200 or CS 1111 or CS 1121 or CS 1131 or CS 1142 or MIS 2100

SAT 3343 - Network Administration II
Study of network devices in various architectures. Topics include routing protocols, TCP/IP, access-lists, remote network structures, network topologies, telnet and SSH authentication, switch programming, VLAN and STP configuration, IP traffic control, network troubleshooting and WAN encapsulation.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring, Summer
Pre-Requisite(s): SAT 2343 or CS 3411

SAT 3611 - Infrastructure Service Administration and Security
Administrating Linux and Microsoft servers together to provide infrastructure services to mixed clients. Topics include: DNS; DHCP; file, web, mail, and directory security of these services; and best practices for combining and mixing server platforms in an enterprise environment.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Summer
Pre-Requisite(s): SAT 2511 and SAT 2711

SAT 3812 - Cyber Security I
The evolution of information security into cybersecurity and its relationship to nations, organizations, society, and individuals. Exposure to multiple cybersecurity technologies, processes, and procedures; analyzing threats, vulnerabilities and risks present; and developing appropriate strategies to mitigate potential cybersecurity issues. Applied lab to develop cyber security offensive attributes and learn how to prevent and/or mitigate threats.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring, Summer
Pre-Requisite(s): SAT 1200 or CS 1111 or CS 1121 or CS 1131 or CS 1142 or MIS 2100 or EET 2241
SAT 3820 - Wireless System Administration and Security
Study of wireless communications, standards, and regulations in an enterprise environment. Topics include: various radio frequency and light communications; IEEE 802.11 Regulations and Standards; protocols and devices; network implementation; network security; and site surveying.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SAT 1200 or CS 1111 or CS 1121 or CS 1131 or CS 1142 or MIS 2100

SAT 3830 - Discrete Structures for Computing
Fundamental concepts of discrete math and discrete structures used in computing. Topics include discrete data structure, graph theory, logic and set theory, mathematical reasoning, number theory and cryptography, functions and relations.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Spring
Pre-Requisite(s): SAT 3310(C)

SAT 3900 - New Technologies Seminar
Offered first half of semester, to be taken concurrently with SAT 3901. Weekly seminar series in which speakers from industry, universities, and government discuss current developments in networking and computer technology. The emphasis is on open research topics and questions that may lead to collaborative work with faculty and graduate students.
Credits: 1.0; Repeatable to a Max of 6; Graded Pass/Fail Only
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall
Co-Requisite(s): SAT 3901

SAT 3901 - Becoming Human - Communication and Technical Improv Seminar
Offered second half of semester, to be taken concurrently with SAT 3900. Weekly seminar series aimed at developing leadership qualities, soft skills, public speaking, and reactionary skills for students in technical fields. A fun and safe environment to develop and improve communication skills through situation and scenario-based exercises that include team building and games.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall
Co-Requisite(s): SAT 3900

SAT 4114 - Introduction to Artificial Intelligence in Health
This course introduces students to clinical data and artificial intelligence (AI) methods in healthcare. Health AI topics such as risk prediction, imaging, natural language processing of clinical text, and the integration of AI into the clinical environment are covered.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

SAT 4240 - Voice over IP Engineering
Voice over IP (VoIP) engineering and design. Topics include call and session protocols such as SIP, H.323, IAX and MGCP; VAD and PLC; common practical issues such as call redirection; codec integration and quality of service measurements.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: On Demand - Offered alternate years beginning with the 2011-2012 academic year
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admin
Pre-Requisite(s): SAT 2511 and SAT 2711 and SAT 3343

SAT 4310 - Advanced Scripting Programming
Emphasizes advanced portions of scripting programming, testing, implementation and documentation (i.e. PERL, PHP, Python and Scripting). Other topics include language syntax data and file structures, input/output devices, file, database access, and graphical user interfaces.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admin
Pre-Requisite(s): SAT 2711 or SAT 3310

SAT 4343 - Network Engineering
Topics include router and switch flow control; VoIP, compression and load balancing; VPN networks involving MPLS, IPSEC and PPP; advanced access-list configuration; AAA; Kerberos; TACACS; firewalls; and configuration of advanced routing protocols.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring - Offered alternate years beginning with the 2010-2011 academic year
Pre-Requisite(s): SAT 3343

SAT 4411 - Data Center Operations
Data center and virtualization strategies and design for an enterprise environment. Topics include: data center planning; disaster recovery; virtualization methods; and cloud computing services to provide business continuity.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): SAT 3200 or SAT 3210 or SAT 3611 or CS 3425

SAT 4424 - Population Health Management and Monitoring
Introduces organization context of health data for the use of managing populations. Types of health data sources, interventions, data analytics, and policy factors affecting population health are covered. Also explores how information is used for managing population health surveillance.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): SAT 4422 or BL 2010 or BL 3080 or EH 1500 or KIP 1500 or SAT 5121

Undergraduate Course Descriptions Effective Fall 2020, Page 145 of 162
SAT 4480 - Senior Project I
Capstone course requiring the application of knowledge gained in lower division courses. Projects are team oriented, require weekly progress reports, and culminate with a final report and oral presentation.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admn; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): SAT 3812(C)

SAT 4510 - Risk Assessment and Incident Response
Study of risk assessment models and methodologies, incident response and handling, related policies and best practices. Topics include risk analysis, risk management models and processes, risk mitigation economics, communication of risk, incident response, incident identification and containment, and incident handling lifecycle.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): SAT 3812

SAT 4520 - Machine Learning in Security
Study of artificial intelligence and machine learning in cybersecurity. Topics include fundamentals of common machine learning and deep learning algorithms, intelligent threat detection and analysis, user behavior analytics, machine learning in hacking, and automated cybersecurity systems.

Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring
Pre-Requisite(s): SAT 3812 and SAT 4310

SAT 4812 - Cyber Security II
An advanced course in cyber security that covers information assurance, cryptography and data security, and malware analysis. Key topics include: buffer overflow; security audits; cryptographic systems (symmetric and public-key algorithms); public-key certificates (X.509); message authentication; Kerberos; authentication applications; electronic mail security; IP security; and SELinux.

Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Spring, Summer
Pre-Requisite(s): SAT 3812

SAT 4816 - Digital Forensics
Introduction of the basic principles and technology of digital forensics, including acquisition, preservation, and recovery and investigation of the evidence stored in digital devices.

Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Summer
Restrictions: Must be enrolled in one of the following Major(s): Computer Science, Computer Network & System Admn, Computer Engineering; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SAT 3812

SAT 4817 - Security Penetration Testing and Audit
To provide knowledge and demonstrated methods to help prevent security breaches and develop safeguards to protect sensitive information and confidential data. Students learn offensive and defensive security concepts, audit best-practices.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): SAT 3812

SAT 4880 - Senior Project II
Capstone course requiring the application of knowledge gained in lower division courses. Projects are team oriented, require weekly progress reports, and culminate with a final report and oral presentation.

Credits: 3.0
Lec-Rec-Lab: (0-0-6)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Major(s): Computer Network & System Admn; Must be enrolled in one of the following Class(es): Senior
Pre-Requisite(s): SAT 4480

SAT 4996 - Special Topics in Computer Network Systems Administration
Selected additional topics of interest in Computer Network Systems Administration based on student and faculty demand and interest. May be a tutorial, seminar, workshop, project, or class study.

Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Computer Network & System Admission; Must be enrolled in one of the following Class(es): Senior

SAT 4997 - Independent Study in Computer Network Systems Administration
Independent study of an approved topic under the guidance of a Computer Network Systems Administration faculty member. May be either an academic, design, or research problem/project.

Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Computer Network & System Admin; Must be enrolled in one of the following Class(es): Senior

SAT 4998 - Undergraduate Research in Computer Network Systems Administration
An undergraduate research experience in Computer Network Systems Administration. Under the guidance of a CNSA faculty member, students work on a selected/approved research problem or work directly with faculty on active research projects/grants. May require more than one semester to complete.

Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Computer Network & System Admin; Must be enrolled in one of the following Class(es): Senior
Social Sciences

SS 1001 - Orientation to the Social Sciences
Introduction to departmental requirements, relevant university resources, careers in social sciences and history, skill expectations, and portfolio development; assessment of current knowledge.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Sustainability Sci and Society, Social Sciences, Anthropology, History

SS 1002 - Introduction to Law and the Legal Practice
An introduction to how one becomes an attorney, what it is like to be an attorney, and the career options available to attorneys.
Credits: 2.0
Lec-Rec-Lab: (2-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year

SS 2001 - Introduction to Social Science Research
Students are introduced to various social science research methods and design. Covers scientific reasoning, developing questions, sampling, ethics, and quantitative and qualitative data collection using experiments, content analysis, survey, interview, oral history, statistics, GIS, comparative analysis, and archaeology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): UN 1025(C) and (SS 2100(C) or SS 2300(C) or SS 2400(C) or SS 2600(C) or SS 2700(C) or SS 2610(C) or SS 2635(C))

SS 2050 - Fundamentals of Geographic Information Systems and Technologies
Introduction to geospatial sciences and technologies that are widely used for mapping and analyzing geographic patterns of human activities. Students gain hands-on experience in data collection, spatial data editing, georeferencing, spatial analysis, cartography, and spatial problem solving.
Credits: 3.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Fall

SS 2100 - Introduction to Cultural Anthropology
Introduction to the field of cultural anthropology with a focus on human diversity, patterns of culture and human organization, globalization, and social change.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

SS 2200 - Introduction to Archaeology
Introduction to the methods of archaeology and the contributions of the discipline to understanding of world prehistory. Topics include the ways archaeologists discover and excavate sites, the analysis of archaeological artifacts and features, human evolution, and the patterns of world prehistory.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

SS 2210 - Evolution of Cities: Their origins, growth, and future
This introductory course will explore questions by examining the physical, social, and spatial systems that influence how and where we live, work, and play in the ever-changing industrial and post-industrial city.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year

SS 2300 - Environment and Society
Examines social approaches to understanding why environmental problems happen and how environmental problems are resolved. Includes concepts such as sustainability, market-based environmental policies, property systems, and environmental justice. Case studies may include biodiversity, deforestation, climate change, water quality, and toxics.
Credits: 3.0
Lec-Rec-Lab: (2-1-0)
Semesters Offered: Spring, Summer

SS 2400 - Introduction to Human Geography
This course introduces students to concepts, problems, and case studies that make up the study of human geography: the spatial differentiation and organization of human activity, environmental sustainability, and the role of space and place in our everyday lives.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer

SS 2500 - United States History to 1877
This broad historical survey will examine the social, political, and economic development of North America and the US from initial human settlement through the civil war.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

SS 2501 - United States History Since 1877
This broad historical survey will examine important intellectual, political, and social changes and events in the United States over the course of the twentieth century and beyond, representing the perspective of a wide variety of diverse individuals and groups.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
SS 2502 - European History to 1650
A survey of the history of Europe from the Archaic Greek period to 1650. Covers political, social, intellectual, religious, economic, and artistic developments of the European continent.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year

SS 2503 - European History Since 1650
A survey of the history of Europe from the mid-seventeenth century to the present. Covers political, social, intellectual, religious, economic, and artistic developments of the European continent.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year

SS 2504 - World History to 1500
An introduction to the basic themes and content of world history from antiquity to 1500 CE.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year

SS 2505 - World History Since 1500
Survey of world history from 1500 CE to the present. Traces the evolution of different societies from around the world, emphasizing exchanges, interactions, and conflicts that produced global change.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year

SS 2510 - Gender and the Past
This course has two main goals: to explore the relationship between gender in the past and present; and to evaluate the actual empirical evidence that speaks to people's gendered lives in many times and places.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year

SS 2600 - American Government & Politics
Outlines the principles and logic of American Government and politics and explores contemporary issues in national and state government.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

SS 2610 - Introduction to Law and Society
Examining the civil and criminal justice system to explain how law informs yet is shaped by political, economic, and social forces. This course covers issues such as individual rights, the jury system, tort law, legal reform movements and constitutional interpretation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

SS 2635 - Comparative Politics
Study of the government and politics of non-U.S. countries. Covers parliamentary, authoritarian, and presidential systems. Some attention to politics of the European Union.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year

SS 2700 - Introduction to Sociology
Introduces students to the way that sociologists think about different components of society. Topics include the family, religion, markets, organizations, political systems, and educational systems. Also covers the source of individual values, beliefs, and attitudes.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer

SS 3090 - Undergraduate Program for Exploration and Research in Social Sciences (UPERSS)
An undergraduate research experience for students to work with a faculty mentor to undertake research, creative work, or community-based project. The student typically signs up for 1-3 credits per semester. Requires GPA of 2.5 or higher.
Credits: variable to 3.0; Repeatable to a Max of 9; Graded Pass/Fail Only
Semesters Offered: On Demand
Restrictions: Permission of instructor required

SS 3105 - Native American and Indigenous Communities
Exploration of contemporary Native American and Indigenous communities worldwide, using a cross-cultural and comparative approach, with some historical context. Topics examined include the legacy of settler colonialism, issues facing Indigenous communities today, and Indigenous renewal and resistance, with emphasis on Native North America.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3110 - Food Systems & Sustainability
Compresses the embedded nature of culturally defined food production and consumption habits: the crux of nature meeting and mixing with culture. The course features classic food system scholarship as well as emerging topics and contemporary case studies.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3200 - Archaeology of the Modern World
Introduction to historical archaeology. Topics include the methods of historical archaeology, theoretical approaches, and sources of evidence. Emphasizes archaeological contributions to understanding of the American past, and the contributions of historical archaeology to an alternative view of American history and culture.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3210 - Field Archaeology
Practical experience and training in the methods and techniques of field archaeology. Selected readings are followed by active participation in site survey, testing, excavation, record keeping, and analysis. Students benefit through involvement in ongoing research projects.
Credits: variable to 8.0; Repeatable to a Max of 8
Semesters Offered: Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3215 - Archaeological Laboratory Practicum
This hands-on lab practicum course exposes students to various stages of artifact processing and analysis in archaeological research. Projects teach best practices for cleaning, identification, data analysis, report preparation, and curation, all undertaken within critical framework structured by professional ethics.
Credits: variable to 6.0; Repeatable to a Max of 12
Semesters Offered: On Demand
Restrictions: Permission of department required

SS 3221 - Archaeological Sciences
Introduction to the archaeological sciences, including geo/bioarchaeology and materials science. Course emphasizes connections between field and laboratory, and scientific and environmental perspectives on the world's peoples and cultures, both ancient and industrial.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Co-Requisite(s): SS 3222

SS 3222 - Archaeological Sciences Laboratory
Using hands-on exercises and project-based learning, labs include identification, analysis, and stabilization of metals, ceramics, and organics from archaeological contexts, and include elements of geo- and bioarchaeology, and materials science.
Credits: 1.0
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Co-Requisite(s): SS 3221

SS 3225 - Capitalism and the Modern World
This course explores an anthropological perspective themes concerned with the increasing interconnectedness of world cultures and economies after 1400. Focusing on Western expansion and the establishment of global networks in the Modern Era and tracing the social, political, and economic interactions that have shaped our contemporary world.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3230 - Archaeology of Industry
The study of industrial heritage using archaeological and historical perspectives. Covers theories, methods, and techniques by means of lectures, readings, and case studies. Students conduct original research, generally on Copper Country industrial sites, under the guidance of the instructor.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): SS 2200 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3240 - Reading the Landscape: Archaeology, Geography, History
Landscape is a lens through which scholars study people, environment, and place. The concept transcends traditional disciplinary boundaries. Students will read and discuss different approaches to landscape, with special focus upon anthropological, geographic, and historical perspectives.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3250 - Biological Anthropology
A human evolution course focusing upon a summary of general bio- anthropological principles of evolutionary change, the current fossil record evidencing human evolution, and the consequences of human evolutionary change for modern human variability, health, and behavior.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3260 - Latin American Cultural History
This course examines the diverse, but interconnected, cultures of Latin America. The class will examine the sources and patterns of particular cultural traditions, while at the same time understanding the trajectory of social, political, and economic transformations throughout the region.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3270 - Archaeology of the African Diaspora
Forced into slavery, the 'scatterlings' of Africa adapted and struggled to thrive in the New World. Archaeologists studying the Diaspora generally examine: ethnogenesis and blending of identity, migration, structural inequalities, and the construction of race and racism.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3280 - Anthropology of Energy
Examines energy and its role in culture & human society from the 19th century to the present. Case studies from around the world are used to expore energy infrastructure, consumption, and technology and its role in culture and human society. Approach is historical and comparative across disciplines emphasizing the different modes of explanation.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3300 - Environmental Problems
An examination of local, regional, and global contemporary environmental problems. Critical consideration of underlying social, historical, and economic causes. Case studies drawn from topics such as global warming, ozone depletion, groundwater pollution, solid waste disposal, deforestation, and resource depletion. Studies proposed solutions and their impacts.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3313 - Sustainability Science
Foundational scientific concepts (dynamic systems and catastrophe theory) as applied to socioecological systems. Use of indicators and indices to track progress towards sustainability goals. Review of local, national, and global sustainability policies to avoid catastrophes and guide sustainable development.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3315 - Population and Environment
This course investigates relationships between the world's population, population change, population distribution, resource consumption, and environmental and social consequences. Addresses local and global relationships and the population processes (mortality, fertility, and migration) involved.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): (MA 1030 and MA 1031) or MA 1032 or MA 1120 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3400 - Contemporary Europe
Examination of the landscapes and cultures of modern Europe. Emphasizes cultural patterns and diversity, environmental quality, economic development, and forces of economic and political unification. Examines urbanization, industry, population, nationalism, and political change through regional examples.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3501 - Making History: Historical Research and Writing
Learn how and why historians examine the past, and how they craft stories about it for readers. Emphasis on disciplinary approaches and philosophies of history. Students will practice research skills with archival, oral, and digital sources, and apply them in written, oral, and online work products.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2021-2022 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman

SS 3505 - Military History of the U.S.
History of the American military and its place in American society in both peace and war from the colonial period until the present.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3510 - History of American Technology
Survey of the technological changes that transformed a rural, agrarian America into an urban, industrialized nation. Focuses on how America's social values and geographical situation influenced the direction taken by its technology and engineering community and how America's industrialization, in turn, had significant effects on American society.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3511 - History of Science in America
Examines the development of scientific enterprises in the U.S. from the colonial period through the present day. Emphasizes institutional bases of science and the place of scientific activities within American society.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3513 - History of Making Things: Craft and Industry in America
Examines historical relationships between skill, tool use, embodied knowledge, and the design process in America from the colonial era to today. Includes production techniques, distribution systems, technological changes, industrialization, post-war globalization, and current craft and design.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3515 - History of American Architecture
Survey of North American architecture from prehistoric times to the present. Focuses on principal architectural styles, building types, and construction technologies. Also examines ideas about architecture to understand the American past.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3520 - U.S. Environmental History
Examines how human interaction with physical environment has changed in North America over the last four centuries. Topics include uses of land by Native Americans, changes associated with European colonization, incorporation of natural resources into industrial economy, early conservation and preservation movements, and environmental concerns accompanying urbanization and industrialization.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3530 - The Automobile in America
Examines the automobile in diverse ways, seeing it as a complex product to be manufactured, as a stimulus to reshaping the environment, as an object that has altered social behavior, and as a problem solver and problem maker.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3540 - History of Michigan
The history of Michigan from before European settlement to the present.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3541 - The Copper Country
Examines the social, labor, and technological history of the Copper Country from the frontier era until the shutdown of the mines.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3552 - Renaissance & Reformation
The history of Europe from 1300 to 1650.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3553 - Empires in World History
This course examines the social, political, cultural, economic, and geographical dimensions of imperialism. Students will research ancient and modern empires, with an emphasis on the long-run effects of the emergence, evolution, and collapse of empires.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3560 - History of England I
The social, economic, and political history of England from Stonehenge to 1750.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Summer - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3561 - History of England II
History of England from 1750 to the present, including political, social, and economic developments in the period of Britain's greatest influence in the world.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring, Summer - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3560 - History of Canada
Political, social, economic, and cultural development of Canada from earliest European settlement to the present.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3570 - History of Science
A survey of the development of scientific ideas (abstractions about how nature is and behaves) from the Greeks to the modern world, including major physical and life science revolutions by natural philosophers like Copernicus, Galileo, Darwin, and Einstein.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2014-2015 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3580 - Technology and Western Civilization
An overview of the evolution of technology in Western civilization from classical antiquity to mid-twentieth century. In addition, the course looks at ways technology influenced development of civilization and ways societal values of civilization have conditioned technology.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3630 - Environmental Policy and Politics
A broad survey of how environmental policy making actually works in the U.S. Covers both environmental policy processes and politics, and the major environmental policies themselves for control of air pollution, water pollution, hazardous wastes, and other major environmental problems.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3636 - Perceptions of The Modern State and Governance
Classic and contemporary theories of the state and approaches to governance are examined.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3640 - Selected Topics in Cyber-Law
Applies legal and ethical principles to evolving computer technology. Explores current legal issues such as surveillance, privacy, free speech, crime, encryption, on line contracting, intellectual property and censorship, as well as legislative efforts to resolve these and other computing dilemmas.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2015-2016 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3650 - Intellectual Property Management
Covers principles of intellectual property law, addressing managerial and policy issues in copyright, trademark, trade secret, and patents. Readings and discussions also cover how these property and legal systems impact the balance between property exclusivity, technological innovation, and public access.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3660 - Constitutional Law
Introduces the U.S. Constitution and how it has been interpreted by the Supreme Court over time. Explores historical, social and political consequences of major constitutional themes such as federalism, judicial review, and evolving view of individual rights and liberties.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3661 - Civil Rights & Civil Liberties
Seminar focused on the rights and liberties guaranteed by US Constitutional amendments. Students learn constitutional theory and interpretation on topics of privacy, speech, media, religion, criminal justice, and gender/ethnic equality. Constitutional Law I is not required.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3665 - Crime, Incarceration, and Social Policy
Explores criminal and social justice policies including policing and control of crimes involving violence, drugs, sexual offenses, and terrorism. Sentencing, effects of mass incarceration, and inequalities based on race and class will also be examined in student writing and debate.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3750 - Social Inequality
A critical assessment of social and cultural processes associated with group-based or categorical patterns of inequality. Examines the creation, persistence, and attempts at reduction of structured inequality based on categorical factors such as social class, race, ethnicity, and gender. May explore other significant sources of social inequality.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)
SS 3760 - Human Dimensions of Natural Resources
Uses sociological concepts to cover facets of human relationships to natural resources, including human values, beliefs, and attitudes regarding the environment; rural resource-dependent communities; natural resource professions and expert knowledge; and the history of American perspectives on the environment.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3800 - Energy Policy and Technology
This course examines the policies and technologies affecting the production, transportation, and use of energy. It focuses on U.S. domestic energy policy and places it in the context of the global energy system. The course aims at providing a holistic view of energy systems connecting technological options with societal and environmental concerns.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3801 - Science, Technology, & Society
Examines the relationship between science, technology, society, and the environment. Topics may include effects of technologies such as computers, biotechnology, and chemicals on society and nature, science and technology policy, and the history of technology and its global consequences.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3805 - Environmental Justice
This course focuses on the histories, theories, and practices of environmental justice in local, national, and global contexts. Topics to be explored include environmental racism, industrial facility siting, sustainable development, as well as food, energy, and climate justice.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3811 - Energy Security and Justice
This course focuses on concepts that are fundamental to energy policy: energy security and energy justice. It introduces students to the three main views of energy security (supply, demand, and energy services). In addition, the course provides a critical perspective of evaluating energy decision-making through the lenses of justice.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3815 - Energy and Society
This course reviews extent that our lives are integrated with energy production and consumption, and related problems and solutions in our intertwined energy and social systems.

Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3910 - Histories and Cultures
Covers selected topics in world history, geography, or anthropology. Important concepts are the relationship between societies and regional geography, the sources and patterns of major cultures, and transformations of social, cultural, political, and economic institutions over time. May be repeated if topic differs.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3920 - Topics in Anthropology/Archaeology
Survey of a major branch of American anthropology or archaeology, or a specific time period or region. Topics may include North American prehistory, experimental archaeology, applied anthropology, economic anthropology, or other specialized themes. Readings will emphasize both theoretical and substantive contributions. May be repeated if topics differ.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Pre-Requisite(s): (SS 2100 or SS 2200) and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3950 - Topics in American History
Examines an important theme, topic, or era in the development of American society, ranging from the colonial era up to the present. May include such topics as the Vietnam War, sports in America, American vernacular architecture, or urban America, all from a historical viewpoint. May be repeated if topic differs.

Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

Undergraduate Course Descriptions Effective Fall 2020, Page 154 of 162
SS 3951 - Topics in European History
Examines important themes, topics, or eras in European history, from late Antiquity to the present. Topics may include intellectual history, revolutions, monarchy, military history (incl. the Crusades), or migrations. May be repeated if topic differs. See department for current offering.
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3952 - Topics in World History
Examines major ideas, processes, and events in world history. Topics may include trade and commodities, imperialism, slavery, migration, or other subjects with transnational significance. May be repeated if topic differs
Credits: 3.0; Repeatable to a Max of 6
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3960 - Cultural Immersion
Course designed for students on supervised study abroad or exchange programs in which they investigate and report on cultural patterns and behaviors.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3961 - Preparing for Cross-Cultural Immersion Experiences
Preparation for study abroad, service learning, and cross-cultural research or internships. Students reflect on their cultures; explore how to live and work effectively with other cultural groups, discuss cross-cultural professional ethics; and consider holistic approaches to social problems and change.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 3990 - Topics in the Social Sciences
Examines an important theme or topic in the social sciences, such as social theory, work and society, or the engineer in American society. May be repeated if topic differs.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4000 - Independent Study
Independent study of topic of special interest with assistance and supervision from appropriate faculty.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required

SS 4001 - History of Social Thought
An intensive survey of the literature of 19th-20th century history of social thought, including the writings of Marx, Durkheim, Weber, and other prominent anthropologists, sociologists, and political philosophers.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2016-2017 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4009 - Introduction to Survey Methodology
A general introduction to survey methods. Students will learn the basics of survey design from questionnaire construction to the measurement of complex social science concepts. Students will also demonstrate their ability to conduct an original survey through a class project.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

SS 4010 - Statistics for the Social Sciences
Covers basic concepts and methods used in conducting empirical research in the social sciences. Topics include research design, hypothesis testing, measurement of concepts, and computer-based data analysis. Assumes familiarity with Social Sciences concepts.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): PSY 2720 or MA 2720 or BUS 2100

SS 4050 - Advanced GIS Methods and Projects
Advanced application of Geographic Information Systems in social sciences as a tool to collect and analyze qualitative and quantitative data. Students gain hands-on experience in data collection, advanced spatial analysis, and scripting.
Credits: 3.0
Lec-Rec-Lab: (1-0-2)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): SS 2050 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4120 - Anthropology of International Development
Advanced anthropology course that focuses on cultural, social structural, historical, and environmental analyses of international development. Students engage with relevant social theory and practical applications in international development case studies.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

Undergraduate Course Descriptions Effective Fall 2020, Page 155 of 162
SS 4200 - Environmental Anthropology
A seminar on the study of culture and politics in marginal environments and disadvantaged communities. Draws upon research in anthropology and geography to examine the interaction in the Americas, Asia, Africa, Europe, the Pacific, and the Arctic.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): SS 2100 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4205 - Applied Anthropology
Course examines the ways anthropology is used outside of an academic context. Students study how anthropological theory and methods are used in a variety of contexts and how they benefit society. This course also emphasizes the impact of applied anthropology on the development of American anthropology as a whole, and how it has advanced our theoretical knowledge of culture and human behavior.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

SS 4211 - Ethnographic Methods
Field-based course that surveys basic concepts of ethnography and applies them in a class research project. Provides practical experience in field observation, interviews, field notes, and write-up of research.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

SS 4220 - Archaeological Thought in Society
This course explores themes concerned with the intellectual development of archaeology, including research methods, theoretical concepts, and problems that have characterized the history of the discipline. Particular emphasis is placed on the broader social contexts in which archaeology has developed.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

SS 4230 - Archaeological Analysis and Interpretation
Course focuses on how archaeologists mobilize material data to understand everyday life in the past. Discussion, exercises, and lab time are used to cover the goals of archaeology, nature of archaeological data, research design, sampling, typology, classification, database management, and quantitative and qualitative analytical methods.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand - Offered alternate years beginning with the 2017-2018 academic year
Pre-Requisite(s): SS 2200

SS 4325 - Water Policy, History, and Governance
This course will explore the global history, politics, and governance of freshwater resources. Topics will include the effects of forestry, mining, watershed management, sanitation systems, climate change, fisheries, contaminants, and agriculture on water history, governance, and policies.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): SS 3520

SS 4390 - Seminar in Sustainability
This seminar in sustainability topics will cover a rotating set of topics, depending on semester offering. Topics may include energy use, justice, pollution, green design, or regulations bearing on sustainability.
Credits: 3.0; Repeatable to a Max of 9
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): SS 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4500 - Historiography
The history of historical writing from Herodotus to the present.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

SS 4501 - Senior Thesis
Directed study leading to production of a senior thesis for all social science majors.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Major(s): Liberal Arts with History Opt; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SS 4500(C)

SS 4502 - Historical Research
This course supports historical research in conjunction with any upper-division history seminar. Students must take both courses simultaneously, and will work directly with the instructor to produce an original research paper.
Credits: 1.0; May be repeated
Lec-Rec-Lab: (0-1-0)
Semesters Offered: On Demand
Restrictions: Permission of instructor required; May not be enrolled in one of the following Class(es): Freshman

Undergraduate Course Descriptions Effective Fall 2020, Page 156 of 162
SS 4530 - Deindustrialization and the Urban Environment
This course examines economic, environmental, and social problems associated with deindustrialization in postwar North American cities and the strategies adopted to ameliorate them. Major topics include segregation and housing, environmental regulation, environmental justice, industrial heritage, and economic and urban development policy.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4540 - Global Environmental History
This course explores changes in human interactions with earth systems over time, starting with the development of agriculture and continuing to the present. Case studies include mining, forestry, water, agricultural sustainability, and urban development.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): SS 3520

SS 4550 - History of Technology
Advanced reading and discussion course focusing on the various ways in which we understand writing about the history of technology. This course provides the theoretical framework for research and writing in the field, and culminates in a major research project with primary source research as well as a required interpretive component.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): (SS 2500 or SS 2501 or SS 2502 or SS 2503 or SS 3510 or SS 3580) and UN 1015 and (UN 1025 or 3000 level or higher)

SS 4551 - Industrial Communities
Introduces advanced students to scholarly literature on industrial communities and company towns. Focus will be in North America, but also includes cases in Latin America, Europe, Africa, and Asia. Students will acquire skills in oral history, work with archival materials, and conduct field-based research.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

SS 4552 - Historical Archaeology
This course examines the relevance of archaeology and the varied approaches archaeologists use in examining our Modern World. How do archaeologists interpret the archaeological record and how do archaeological perspectives effect the questions, interpretations, and meanings we bring to understanding the past, the present, and the future.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4553 - Material Culture Studies
Advanced reading and research in material culture studies. Learn to interpret the cultural and historical meanings in physical objects such as tools, housewares, memorials, furniture, etc. Emphasis on American craft, industry, and deindustrialization. Methodologies from anthropology, American studies, museum studies, public history, art history, etc.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman
Pre-Requisite(s): SS 3513 and UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4600 - Industrial Archaeology
This course is an advanced exploration of the industrial past using archaeological perspectives. It is a seminar combining scholarship from different fields and using material evidence to examine the evolution of work and production in industrial society.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2018-2019 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SS 2200 or SS 3200 or SS 3230 or SS 3270

SS 4630 - Advanced Research in the Social Sciences
Capstone course for students to develop an original social science thesis research project in the areas of History, Anthropology, Law, Sociology, or Sustainability. Students will prepare a proposal for a senior research project or thesis.
Credits: 2.0
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
SS 4700 - Communities and Research
A rural sociology course analyzing the sustainability of rural communities (socially, environmentally, economically, and culturally). The course involves participatory research conducted together with a local community organization. Students practice research skills while making a difference in improving community life.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4900 - Seminar in Social Sciences
An intensive seminar study of a topic of importance and special interest in the social sciences. Topics could focus on the history of anthropological theory or on world religious systems in comparison. May be repeated if topic differs.
Credits: variable to 3.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: May not be enrolled in one of the following Class(es): Freshman

SS 4910 - Professional Development for the Social Sciences
Assessment of learning and preparation for post-graduate work, professional training, or graduate school.
Credits: 1.0
Lec-Rec-Lab: (1-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Sustainability Sci and Society, Social Sciences, Anthropology, History; May not be enrolled in one of the following Class(es): Freshman, Sophomore

SS 4920 - Internship Experience
Internship, on or off campus, providing appropriate practical, professional experience in an area related directly to a student's course of study. Students work under professional supervision. Requires a written evaluation of the work.
Credits: variable to 9.0; Repeatable to a Max of 9
Semesters Offered: On Demand
Restrictions: Permission of department required

SS 4921 - Washington Internship - Professional Practicum
Students participate in a colloquium in Washington D.C., offered as part of an academic internship program, that includes a range of prominent speakers, information interviews, and a capstone reflection. This course will have a program fee attached that is equal to the room and board fee charged by the Washington Center.
Credits: variable to 3.0
Semesters Offered: On Demand
Restrictions: Permission of department required
Pre-Requisite(s): UN 1015 and (UN 1025 or Modern Language - 3000 level or higher)

SS 4922 - Washington Experience Topics
Students take an academic course that is offered as part of an academic internship program in Washington D.C., with offerings including courses in American history and government, international affairs, and law.
Credits: variable to 3.0
Semesters Offered: On Demand
Restrictions: Permission of department required

SS 4990 - Directed Study in Anthropology
An original study of an anthropological problem, including literature search, data collection, and analysis, culminating in a research report.
Credits: variable to 3.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of instructor required; Must be enrolled in one of the following Class(es): Senior

Surveying

SU 1000 - Introduction to Surveying and Geoinformatics
Introduction to the surveying and geoinformatics profession with emphasis on technology and careers. Topics include: technology, specialties, education, professional practice, life-long learning, and ethics related to surveying engineering.
Credits: 1.0
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Major(s): Surveying Engineering, Geospatial Engineering

SU 2000 - Introduction to Surveying
An introductory course exploring surveying instruments and their use in the measurement of angles, distances and elevations. Subject areas apply mathematics, fundamentals of mapping, computational methods, measurement analysis and proper instrument care in plane surveying.
Credits: 2.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: Fall, Spring

SU 2050 - Plane Surveying
Course covers the methods and techniques to observe, analyze and report field measurement data through surveying applications. Topics include horizontal and vertical control, survey data reduction, computations, computer applications, and coordinate geometry.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Pre-Requisite(s): SU 2000(C)

SU 2220 - Route and Engineering Surveying
Study of the geometry and computations utilized in the design and construction of roads and highways. Topics include horizontal, spiral and vertical curves, alignments, centerline profiles/cross sections, grades, earthwork quantities and mass diagrams.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Pre-Requisite(s): SU 2050 or SU 2000
SU 3110 - Surveying Field Practice
Field to finish survey projects using current surveying instrumentation and software. Field applications include: Cadastral, topographic, as-built, quantity, construction layout, ALTA, and control surveys.
Credits: 4.0
Lec-Rec-Lab: (0-2-6)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 2220 and SU 2050

SU 3180 - Boundary Surveying Principles
Interpretation of property descriptions used to establish land boundaries. Resolving conflicts in boundary descriptions as well as conflicts in evidence. Review doctrines pertaining to transferring title and the role of the surveyor in issuing opinions on boundary location in boundary disputes.
Credits: 4.0
Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 2000

SU 3540 - Geographic Information Systems with Elements of Digital Cartography
Application of GIS technology methods for processing geospatial data. Concepts of interoperability and metadata organization are considered. Includes map projection review and 2D and 3D cartographic data visualization.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Spring - Offered alternate years beginning with the 2019-2020 academic year
Pre-Requisite(s): MA 3710

SU 3600 - Surveying Computations and Adjustments
Basic computations and analysis of surveying measurements by adjustment theory are introduced. Students will gain the ability to use computer software to perform the computations. Analysis of measurements and errors based on statistical principles and least squares principles will be discussed.
Credits: 4.0
Lec-Rec-Lab: (0-3-2)
Semesters Offered: Fall
Pre-Requisite(s): SU 2050 and (MA 2320 or MA 2321 or MA 2330) and MA 3710(C)

SU 4010 - Geospatial Concepts, Technologies, and Data
High level review of geospatial data acquisition systems, sensors, and associated processing technologies. Course considers geospatial metadata generation principles, interoperability, and major tools for manipulation with geospatial data. Course may help in transition of non-geospatial majors to geospatial field.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: On Demand
Restrictions: Permission of instructor required

SU 4011 - Cadastre and Land Information Systems
Topics include: an introduction to land rights, land ownership, lease, and traditional rights, mortgaging and land as capital, description of land rights, boundary description, land information systems, examples of cadastre types over the globe, and modern technical aspects.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Fall

SU 4012 - Geospatial Data Mining and Crowdsourcing
This course comprises theory and applications of geospatial data mining. Typical application scenarios are covered. Attention is given to open-source data and systems crowdsourcing, as well as social media. Special focus on imaging and visual analytics.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring

SU 4013 - Hydrographic Mapping and Surveying
This course comprises theory and applications of hydrographic mapping technologies. Typical application scenarios are covered. An intensive lab component provides hands-on experience in hydrographic data processing and visualization.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring

SU 4060 - Geodesy
Introduction to geometrical and physical geodesy. Examines computations on the ellipsoid, elements of datums, map projections, and state plane coordinate systems.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 2050 and (MA 2320 or MA 2321 or MA 2330) and MA 2160

SU 4060 - Geodesy
Introduction to geometrical and physical geodesy. Examines computations on the ellipsoid, elements of datums, map projections, and state plane coordinate systems.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 2050 and (MA 2320 or MA 2321 or MA 2330) and MA 2160

SU 4100 - Geodetic Positioning
Introduces the theory and practice of global positioning systems, primarily global navigation satellite systems (GNSS). Examines data collection, quality assessment, analysis and adjustment.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2020-2021 academic year
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 4060 and SU 3600

SU 4140 - Photogrammetry
Basic principles of photogrammetry and its role as a technology for spatial data collection. Use of photogrammetry in the fields of surveying, engineering, and geographic information management will be discussed.
Credits: 3.0
Lec-Rec-Lab: (0-2-2)
Semesters Offered: Fall, Spring
SU 4142 - 3D Surveying and Modeling with Laser Scanner Data
Theory and application of terrestrial LIDAR scanning. Typical application scenarios are also included. Intensive lab component provides hands-on experience in LIDAR point cloud processing and visualization.
Credits: 3.0
Lec-Rec-Lab: (0-2-1)
Semesters Offered: On Demand
Restrictions: Must be enrolled in one of the following Class(es): Senior

SU 4180 - Land Subdivision Design
Introduces aspects of land use within the framework of state and local regulations of land divisions for development. Additional topics include: legal principles, preparing land descriptions, state surveying laws, rules, ethics and professional conduct.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior
Pre-Requisite(s): SU 3180 and (CMG 3200 or SU 3210)

SU 4300 - Geospatial Monitoring of Engineering Structures and Geodynamic Processes
Course comprises methods and applications of geospatial monitoring technologies. Typical application scenarios are presented in this course. Course has a number of labs which allow students to get a hands-on experience in processing and modeling monitoring data.
Credits: 3.0
Lec-Rec-Lab: (2-0-2)
Semesters Offered: Fall
Restrictions: Permission of instructor required
Pre-Requisite(s): SU 2000 or SU 2050

SU 4601 - R for Geosciences in Applied and Fundamental Tasks and Research
R for Geosciences is intended to build up modern engineers and scientists and to get them acquainted with a powerful tool for the solution of miscellaneous applied statistical tasks in geosciences.
Credits: 3.0
Lec-Rec-Lab: (0-1-2)
Semesters Offered: On Demand

SU 4900 - Capstone Design Project
An engineering design project which integrates multiple aspects of previous surveying coursework while working with an industry partner. Includes project description, project planning, field work, office analysis, computer-aided design, final project completion and oral presentation skills.
Credits: 3.0
Lec-Rec-Lab: (0-2-3)
Semesters Offered: Fall, Spring
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Senior

SU 4996 - Special Topics in Geospatial Technologies
Selected additional topics of interest in Geospatial Technologies based on student and faculty demand and interest. May be a tutorial, seminar, workshop, project, or class study.
Credits: variable to 3.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Senior

SU 4997 - Independent Study in Geospatial Technologies
Independent study of an approved topic under the guidance of a Surveying Engineering faculty member. May be either an academic, design, or research problem/project.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Senior

SU 4998 - Undergraduate Research in Geospatial Technologies
An undergraduate research experience in Geospatial Technologies. Under the guidance of a Surveying Engineering faculty member, students work on a selected/approved research problem or work directly with faculty on active research projects/grants. May require more than one semester to complete.
Credits: variable to 6.0; Repeatable to a Max of 6
Semesters Offered: On Demand
Restrictions: Permission of instructor required; Must be enrolled in one of the following Major(s): Surveying Engineering; Must be enrolled in one of the following Class(es): Senior

SU 4999 - Professional Practice Review
A review of the elements of the NCEES Fundamentals of Surveying examination, utilizing on-line quizzes, as well as administering the Michigan Tech Surveying Engineering Exit Exam. Course taken in final semester only.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Class(es): Junior, Senior

University Wide

UN 0500 - Effective Scholarship
Course meets federal requirements for responsible conduct of research training for graduate students. Students who pass the course will be awarded a certificate of completion.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-2-0)
Semesters Offered: Fall, Spring
Restrictions: Must be enrolled in one of the following Level(s): Graduate
UN 1000 - Frameworks for Success for ExSEL
Course that explores ways to become a more effective student. The course focuses on metacognition and individual learning styles, the skills and habits that support academic success, and utilizing campus resources. Counts as a free elective.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

UN 1005 - Initiatives for Success
Course that explores ways to become a more effective student. The course focuses on metacognition and individual learning styles, the skills and habits that support academic success, and utilizing campus resources. This course includes a mandatory learning center appointment assigned upon registration. Course counts as a free elective.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

UN 1010 - Creating Your Success for Themed Communities
First year seminar course that develops community among members of residential themed communities and provides an introduction for creating academic, professional, and personal success. This course is required for all first-year and transfer (with less than 30 credits) students living in a residential themed community. Course counts as a free elective.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

UN 1011 - Strategies for Success
Seminar course that provides a framework to assess the strategies a student is currently using to achieve academic, professional, and personal success. The course is designed to look at ways to improve upon a student's strategies for success or adopt new ones. This course is required for all first-year or transfer (with less than 30 credits) students who are on academic probation for the first time after fall or spring of their first year. This course is also available with permission from the Dean of Students, to any student who feels they would benefit from additional strategies for success. Course counts as a free elective.
Credits: 1.0
Lec-Rec-Lab: (0-0-2)
Semesters Offered: Fall, Spring, Summer

UN 1012 - Academic Language & Practice
This course is designed for speakers of English as a second language admitted into academic study, not native speakers of English. It assesses language ability and focuses on academic language and practices.
Credits: 1.0; Graded Pass/Fail Only
Lec-Rec-Lab: (0-0-3)
Semesters Offered: Fall, Spring

UN 1015 - Composition
Provides direct instruction in composition. Students examine and interpret communication practices and apply what they learn to their own written, aural, and visual compositions. Class projects ask students to communicate in a variety of modes and to attend to audience, purpose, and context.
Credits: 3.0
Lec-Rec-Lab: (0-3-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Freshman

UN 1025 - Global Issues
Study of contemporary global issues, their origins, impacts, and solutions through the thematic and comparative exploration of worldview and culture, population, globalization, development, politics and global governance, environment, and sustainability. Emphasis on global literacy and information literacy.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall, Spring, Summer
Restrictions: Must be enrolled in one of the following Class(es): Freshman

UN 2600 - Fundamentals of Nanoscale Science and Engineering
Team-taught introduction to the fundamentals of nanotechnology, emphasizing the interdisciplinary nature of this field. Modern instrumentation, key scientific foundations, and current and potential applications will be discussed. Real and potential societal implications of nanotechnology will be explored.
Credits: 2.0
Lec-Rec-Lab: (1-1-0)
Semesters Offered: Spring, Summer - Offered alternate years beginning with the 2007-2008 academic year

UN 3002 - Undergraduate Cooperative Education I
Credits may count as free or technical electives based on academic department. Requires advisor approval, good conduct and academic standing, registration with Career Services, and an official offer letter from the employer.
Credits: variable to 2.0; May be repeated
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Level(s): Graduate

UN 3003 - Undergraduate Cooperative Education II
Credits may count as free or technical electives based on academic department. Requires advisor approval, good conduct and academic standing, registration with Career Services, and an official offer letter from the employer.
Credits: variable to 2.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): UN 3002
UN 3004 - Undergraduate Cooperative Education III
Credits may count as free and technical electives based on academic department. Requires advisor approval, good conduct and academic standing, registration with Career Services, and an official offer letter from the employer.
Credits: variable to 2.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): UN 3003

UN 3005 - Undergraduate Cooperative Education IV
Credits may count as free or technical electives based on academic department. Requires advisor approval, good conduct and academic standing, registration with Career Services, and an official offer letter from the employer.
Credits: variable to 2.0
Semesters Offered: Fall, Spring, Summer
Restrictions: Permission of department required; May not be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): UN 3004

UN 3990 - Special Topics - Interdisciplinary
Study of interdisciplinary special topics as specified by section title.
Credits: variable to 6.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required

UN 4000 - Seminar Series in Earth, Planetary, and Space Sciences
A seminar series that covers topical issues in remote sensing, ecosystem research, global change, and space sciences.
Credits: 1.0; Repeatable to a Max of 2
Lec-Rec-Lab: (0-1-0)
Semesters Offered: Fall, Spring
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

UN 4400 - Climate Science and Policy
An interdisciplinary discussion-format course covering the basic science of climate change and the development of international climate policy. Includes an analysis of policy targets in their scientific context and links to global sustainable development goals. Additional topics will be guided by the interests of the class and current events.
Credits: 3.0
Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2019-2020 academic year
Restrictions: May not be enrolled in one of the following Class(es): Freshman, Sophomore

UN 4990 - Special Topics - Interdisciplinary
Study of interdisciplinary special topics as specified by section title.
Credits: variable to 6.0; May be repeated
Semesters Offered: On Demand
Restrictions: Permission of instructor required