Bridge Condition Assessment Using Remote Sensing Technologies

Presenter: Renee Oats

Project Team: Tess Ahlborn, Ph.D., P.E.; Devin Harris, Ph.D.; Larry Sutter, Ph.D.; Colin Brooks; Khatereh Vaghefi; Darrin Evans; Ryan Hoenshied; and K. Arthur Endsley Michigan Technological University

Friday, March 25, 2011 NSBE National Convention Technical Research Exhibition Presentation Project Synopsis

Michigan Tech

Highlights of Presentation

- Introduction
- Overview of Project Concept
- Critical Tasks Involved
- Bridge Condition Challenges
- Evaluation of Technologies
- Application of Technologies
- Scheme of DSS & Bridge Signature
- Concluding Remarks

Michigan Tech

2

Introduction
Project Concept
Critical Tasks
Bridge Condition Challenges

Evaluation of Technologies Application of Technologie DSS & Bridge Signature Concluding Remarks

Introduction

- Bridges are critical in transportation infrastructure
- Endure various loading conditions and environmental effects
- As of 2010, of the near 600,000 US highway bridges, nearly 11.5% were structurally deficient
- There is a need to continuously monitor these structures using non-destructive processes
- A decision supporting system can be incorporated to ensure bridges receive timely maintenance and repair

Introduction
Project Concept
Critical Tasks
Pridge Condition Cha

Evaluation of Technologies
Application of Technologies
DSS & Bridge Signature
Concluding Remarks

The Average U.S. Bridge has received a structural grade of.....

Settlement

Delamination w/ patching

Deck Section Loss

Deteriorated Concrete Element

Michigan Tech

Michigan Tech

4

Critical Tasks

Evaluation of Technologies Application of Technologies DSS & Bridge Signature

Current Approach for Condition Assessment

- At least every two years, FHWA administers bridge inspections according to National Bridge Inspection
- Visual inspections are a most common practice
- Conventional non-destructive evaluation techniques are implemented; can be costly and require a skilled user
- Address advancing technologies, in particular using commercially available remote sensing techniques in bridge inspections

lichigan Tech

Project Concept

Project Concept Critical Tasks

Period 0

(Baseline)

Period 1

Period X

(Current)

Trouble Spot 1

 $s(k, \overline{r}) \approx \frac{e^{-j2kR}}{4\pi R} \int \rho(\overline{r}')e^{-j2k\overline{r}\cdot\overline{r}} dr'$

MANAGEMENT TEAM

Damage Location

Bridge Health Signature

Evaluation of Technologies Application of Technologies DSS & Bridge Signature

Evaluation of Technologies

Application of Technologies

Transportation officials utilize dynam Bridge Health Signature to evaluate

Periodic assessments enhanced with

remote sensing as trouble spots are

Trouble Spot 2

changing condition

DSS & Bridge Signature

Top Priorities / Challenges

BRIDGE

Project Concept

Meteorological Data

Vichigan Tech

Structural Health Monitoring Mode Maintenance Records

Location	"Top 10" Priorities/Challenges
Deck Surface	Map cracking, Scaling, Spalling, Delaminations (thru surface cracks), Expansion Joint External Issues
Deck Subsurface	Scaling, Spalling, Delaminations , Expansion Joint Internal Issues, Corrosion, Chloride Ingress
Girder Surface	Structural Steel and Structural Concrete Cracking, Paint Condition, Steel or Concrete Section Loss
Girder Subsurface	Structural Concrete Cracking, Concrete Section Loss, Chloride Ingress, Prestress Strand Breakage
Global Metric	Bridge Length, Settlement, Transverse Movement, Vibration, Surface Roughness

ichigan Tech

- **Standards**

Evaluation of Technologies Application of Technologies DSS & Bridge Signature

Critical Tasks

ichigan Tech

Critical Tasks

Application of Technologic **Decision Support System**

Commercial Sensor Evaluation Report

Evaluated twelve RS technologies for Bridge Condition Assessment

Performance criteria:

□Commercial availability

☐ Sensitivity of measurement: resolution

□Cost: capital, operational

☐ Ease of pre-collection prep: structure, equip

☐ Ease of data collection and operation

□ Complexity of analysis

□Stand-off distance rating

☐ Traffic Disruption

An Evaluation of Commercially Available Remote Sensors for Assessing Highway Bridge Condition

Written for consideration of bridge engineers

lichigan Tech

Critical Tasks

Application of Technologie DSS & Bridge Signature

CSE Report: Promising Technologies

Further investigated technologies:

➤ Radar including SAR and InSAR

➤ Street-view Style Photography

>3-D Optics including Photogrammetry

Satellite Imagery and Aerial Photography

Thermal Infrared (IR) [featured technology]

Digital Image Correlation [featured technology]

Vichigan Tech

Introduction

defects.

Thermal IR

Definition: Measuring the radiant temperature of the concrete deck by thermal infrared camera (anomalies interrupt the heat transfer through the concrete).

Thermal IR Laboratory Specimen with simulated

Proposed Application: Locating

delaminations and other subsurface

LOAD

Project Concept

Digital Image Correlation

Definition: Technique consisting of correlating pixels on optical images to determine variations **Proposed Application**: Global response (movement, settlement, vibration); 3D models

chigan Tech

Beam

Evaluation of Technologies Application of Technologies DSS & Bridge Signature Concluding Remarks

Scheme of DSS & Bridge Signature

Project Concept
Critical Tasks
Bridge Condition Challenge

Evaluation of Technologies Application of Technologies DSS & Bridge Signature Concluding Remarks

Concluding Remarks

- Further investigated remote sensing technologies shows great feasibility for bridge condition assessment
- Continued laboratory tests and field demonstrations applications for technologies
- An integrated decision support system will be analyze to complement bridge inspection practice
- A comprehensive project review will be completed for total project analysis

Michigan Tech

Acknowledgements

- USDOT Research and Innovative Technology Administration (RITA) Commercial Remote Sensing and Spatial Information Technologies Program
- Project Partners
 - Michigan Department of Transportation
 - Michigan Tech Transportation Institute
 - Michigan Tech Research Institute
 - Center for Automotive Research
- Technical Advisory Council

Project Team / Disclaimer

• Project Team Members: MTTI + MTRI + CAR

Colin Brooks Darrin Evans
Devin Harris Jim Ebling
Larry Sutter Richard Wallace
Bob Shuchman Mike Forster
Joe Burns Ryan Hoensheid

Chris Roussi H. A. de Melo e Silva (Kiko)

Arthur Endsley Shazeb Quadir
Khatereh Vaghefi Christina Nolte
Ben Hart Andrew Leonard
Renee Oats Pam Hannon

Rick Dobson

DISCLAIMER: The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/RITA, or any State or other entity.

Michigan Tech

Michigan Tecl

1

Thank You!

Questions?...

For more information on this project: www.mtti.mtu.edu/bridgecondition/

Michigan Tech

17