Introduction

- Bridges are critical in transportation infrastructure
- Endure various loading conditions and environmental effects
- As of 2010, of the near 600,000 US highway bridges, nearly 11.5% were structurally deficient
- There is a need to continuously monitor these structures using non-destructive processes
- A decision supporting system can be incorporated to ensure bridges receive timely maintenance and repair
Current Approach for Condition Assessment

- At least every two years, FHWA administers bridge inspections according to National Bridge Inspection Standards
- Visual inspections are a most common practice
- Conventional non-destructive evaluation techniques are implemented; can be costly and require a skilled user
- Address advancing technologies, in particular using commercially available remote sensing techniques in bridge inspections

Critical Tasks

- **Task A - Condition Assessment**
 - Raw GPR Output
 - Post-processed Output

- **Task B - Commercial Sensor Evaluation**
 - Raw GPR Output
 - Post-processed Output

- **Task C - Decision Support System**
 - Task D - Field Demonstration

- **Task E - Assessment**

Top Priorities / Challenges

<table>
<thead>
<tr>
<th>Location</th>
<th>“Top 10” Priorities/Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck Surface</td>
<td>Map cracking, Scaling, Spalling, Delaminations (thru surface cracks), Expansion Joint External Issues</td>
</tr>
<tr>
<td>Deck Subsurface</td>
<td>Scaling, Spalling, Delaminations , Expansion Joint Internal Issues, Corrosion, Chloride Ingress</td>
</tr>
<tr>
<td>Girder Surface</td>
<td>Structural Steel and Structural Concrete Cracking, Paint Condition, Steel or Concrete Section Loss</td>
</tr>
<tr>
<td>Girder Subsurface</td>
<td>Structural Concrete Cracking, Concrete Section Loss, Chloride Ingress, Prestress Strand Breakage</td>
</tr>
<tr>
<td>Global Metric</td>
<td>Bridge Length, Settlement, Transverse Movement, Vibration, Surface Roughness</td>
</tr>
</tbody>
</table>
Commercial Sensor Evaluation Report

Evaluated twelve RS technologies for Bridge Condition Assessment

Performance criteria:
- Commercial availability
- Sensitivity of measurement: resolution
- Cost: capital, operational
- Ease of pre-collection prep: structure, equip
- Ease of data collection and operation
- Complexity of analysis
- Stand-off distance rating
- Traffic Disruption

Written for consideration of bridge engineers

CSE Report: Promising Technologies

Further investigated technologies:
- Radar including SAR and InSAR
- Street-view Style Photography
- 3-D Optics including Photogrammetry
- Satellite Imagery and Aerial Photography
- Thermal Infrared (IR) [featured technology]
- Digital Image Correlation [featured technology]

Thermal IR

Definition: Measuring the radiant temperature of the concrete deck by thermal infrared camera (anomalies interrupt the heat transfer through the concrete).

Proposed Application: Locating delaminations and other subsurface defects.

Digital Image Correlation

Definition: Technique consisting of correlating pixels on optical images to determine variations

Proposed Application: Global response (movement, settlement, vibration); 3D models
Further investigated remote sensing technologies shows great feasibility for bridge condition assessment

- Continued laboratory tests and field demonstrations applications for technologies
- An integrated decision support system will be analyze to complement bridge inspection practice
- A comprehensive project review will be completed for total project analysis

Acknowledgements

- USDOT – Research and Innovative Technology Administration (RITA) Commercial Remote Sensing and Spatial Information Technologies Program

- Project Partners
 – Michigan Department of Transportation
 – Michigan Tech Transportation Institute
 – Michigan Tech Research Institute
 – Center for Automotive Research

- Technical Advisory Council

Project Team / Disclaimer

- Project Team Members: MTTI + MTRI + CAR
 Colin Brooks
 Devin Harris
 Larry Sutter
 Bob Shuchman
 Joe Burns
 Chris Roussi
 Arthur Endsley
 Khaterheh Vaghefi
 Ben Hart
 Renee Oats
 Rick Dobson

 Darrin Evans
 Jim Ebling
 Richard Wallace
 Mike Forster
 Ryan Hoensheid
 H. A. de Melo e Silva (Kiko)
 Shazeb Quadir
 Christina Nolte
 Andrew Leonard
 Pam Hannon

DISCLAIMER: The views, opinions, findings and conclusions reflected in this presentation are the responsibility of the authors only and do not represent the official policy or position of the USDOT/RITA, or any State or other entity.
Thank You!

Questions?...

For more information on this project:
www.mtti.mtu.edu/bridgecondition/