

SHM Project Concept Remote Sensing In-Progress General Concepts Techniques

Structural Health Monitoring

- Traditional Inspection Techniques
 - Visual, chain drag, half-cell potential, accelerometers
- Advanced Monitoring Techniques
 - GPR, impact echo, fiber optics, thermal IR, ultrasonic
 - Wireless remote monitoring
- Remote Sensing: Non-contact data collection
 - "the collection of data about an object, area, or phenomenon from a distance with a device that is not in contact with the object."

Michigan Tech

5

SHM
Project Concept
Remote Sensing

pt Goals ng Concep

Project Goals

- Establish remotely sensed bridge condition "signature"
 - Assess the potential for commercial remote sensors to be used to assess bridge condition and performance
 - No lane closures, no traffic disruption, no contact with bridge
- Provide bridge inspectors with data to enhance inspection processes
 - Provide condition monitoring between required inspections
- Create the framework for a decision support system to prioritize needs
 - Correlate on-site, in-situ, and stand-off sensors with conventional assessment methods, historic bridge information, and bridge standards and requirements

Michigan Tech

SHM
Project Concept
Remote Sensing
In-Progress

Goals Concept

Top 10 Priorities / Challenges

- Scour/Settlement The group agreed that scour is a project within itself and beyond the scope of this project. However, settlement is something that should be considered.
- Corrosion damage of prestressed concrete beams is a serious concern, especially with end deterioration, section loss, and strand damage.
- Steel beam section loss is also a serious concern, often most serious at the end of the beams and base of columns.
- Vibration can be an indication of other concerns with the bridge.
- Large cracking is an indication of structural damage.

- Decks delamination/spalling, one of the largest influences on public perceptions of road condition.
- Decks map cracking and other material related distresses.
- Expansion joint failure expansion joint damage can be an indicator of water and other damage that can lead to further problems.
- Chloride ingress if DOTs had a better way of estimating the chloride level, deck replacements would be scheduled differently.
- Length of bridge the typical bridge shortens over time - a location item and length change concern.

Michigan Tech

6

Location	Challenges	Indicator	Desired Measurement Sensitivity / Rating	Spectra	3-D photogrammetry	EO airborne & satellite imagery	inteferometry	LiDAR	thermal IR	acoustic	digital image correlation
Girder Surface	Steel structural cracking	Surface Cracks	< 0.1 mm (.004"), hairline	х	×	х	х	х	х	0	х
	concrete structural cracking	Surface Cracks	.1 mm (.004")	х	×	х	х	х	х	0	х
	steel section loss	loss/change in x-sect area	% thickness of web or flange	0	Х	х	0	х	х	0	0
	Paint	paint condition	amount of missing paint (X %)	х	0	0	0	0	х	0	0
	concrete section loss	loss/change in x-sect area	%volume per foot	0	х	х	0	х	х	Х	0
Girder Subsurface	concrete structural cracking	internal cracks (e.g. box beam)	approx 0.8 mm (1/32")	0	0	0	0	0	х	0	0
	concrete section loss	loss/change in x-sect area	%volume per foot	0	0	0	0	0	х	х	0
	prestress strand breakage	loss/change in x-sect area	wire that 2 mm (0.08") in diameter or strand 9.5 mm (3/8") diameter	0	0	0	0	0	x	0	0
	Corrosion	Corrosion rate (resistivity)	5 to 20 kΩ-cm	0	0	0	0	0	х	0	0
	choride Ingress	Choride content through the depth	0.4 to 1.0 % Chloride by mass of cement	0	0	0	0	0	х	0	0
Global Metrics	Bridge Length	Change in bridge length	Accuracy to 30 mm (0.1ft) (smaller)	0	х	х	0	х	0	0	х
		Vertical movement of bridge	approximately 6 mm to 12 mm (1/4" to 1/2")	0	х	х	0	х	0	0	х
	Bridge Movement	Transverse directions	approximately 6 mm to 12 mm (1/4" to 1/2")	0	x	х	0	x	0	0	х
	Surface roughness	Surface roughness	Change over time	х	Х	Х	х	х	0	0	0
	Vibration	Vibration	.5 -20 Hz, amplitutde?	0	0	0	х	0	0	0	Х

Project Concept Remote Sensing In-Progress Sor Evaluation					
SOI EVAIUATION					
"Top 10" Priorities/Challenges					
urface Map cracking, Scaling, Spalling, Delaminations (thru surface cracks), Expansion Joint External Issues					
Scaling, Spalling, Delaminations , Expansion Joint Internal Issues, Corrosion, Chloride Ingress $\label{eq:correction}$					
Structural Steel and Structural Concrete Cracking, Paint Condition, Steel or Concrete Section Loss					
Structural Concrete Cracking, Concrete Section Loss, Chloride Ingress, Prestress Strand Breakage					
Bridge Length, Settlement, Transverse Movement, Vibration, Surface Roughness					

Commercial Sensor Evaluation

Performance metrics for each technology

Commercial availability

Sensitivity of measurement

Cost

Ease of pre-collection prep

Ease of data collection

Complexity of analysis

Stand-off distance rating

Acknowledgements USDOT – Research and Innovative Technology Administration Commercial Remote Sensing and Spatial Information Program Manager: Caesar Singh Cooperative Agreement #DTOS59-10-H-00001 Project Partners Michigan Department of Transportation Michigan Tech Transportation Institute Michigan Tech Research Institute Center for Automotive Research Technical Advisory Council

