Remote Sensing Technologies for Detecting Bridge Deterioration and Condition Assessment

Tess Ahlborn, Ph.D., P.E.
with Devin Harris, Colin Brooks, Arthur Endsley, Darrin Evans, Renee Oats, Khatereh Vaghefi, Larry Sutter, Bob Shuchman, Joe Burns, and Chris Roussi
Michigan Technological University
August 18, 2010
NDT/NDE for Highway Bridges – SMT 2010

Structural Health Monitoring

- Ensuring structural integrity and safety
- Static/dynamic field testing
- Periodic and continuous monitoring
- Routine and special inspections
- Data management / interpretation
- Decision support
Structural Health Monitoring

- Traditional Inspection Techniques
 - Visual, chain drag, half-cell potential, accelerometers
- Advanced Monitoring Techniques
 - GPR, impact echo, fiber optics, thermal IR, ultrasonic
- Remote Sensing: Non-contact data collection
 - “the collection of data about an object, area, or phenomenon from a distance with a device that is not in contact with the object.”

Project Goals

- Establish remotely sensed bridge condition “signature”
 - Assess the potential for commercial remote sensors to be used to assess bridge condition and performance
 - No lane closures, no traffic disruption, no contact with bridge
- Provide bridge inspectors with data to enhance inspection processes
 - Provide condition monitoring between required inspections
- Create the framework for a decision support system to prioritize needs
 - Correlate on-site, in-situ, and stand-off sensors with conventional assessment methods, historic bridge information, and bridge standards and requirements

Top 10 Priorities / Challenges

- Scour/Settlement – The group agreed that scour is a project within itself and beyond the scope of this project. However, settlement is something that should be considered.
- Corrosion damage of prestressed concrete beams is a serious concern, especially with end deterioration, section loss, and strand damage.
- Steel beam section loss is also a serious concern, often most serious at the end of the beams and base of columns.
- Vibration can be an indication of other concerns with the bridge.
- Large cracking is an indication of structural damage.
- Decks - delamination/spalling, one of the largest influences on public perceptions of road condition.
- Decks – map cracking and other material related distresses.
- Expansion joint failure – expansion joint damage can be an indicator of water and other damage that can lead to further problems.
- Chloride ingress – if DOTs had a better way of estimating the chloride level, deck replacements would be scheduled differently.
- Length of bridge – the typical bridge shortages over time - a location item and length change concern.
Electro-Optical Imagery

Definition: Any digital photography in the optical, thermal infrared, and near infrared parts of the spectrum collected from an aerial, satellite, or other platform.

Proposed Application: Mapping bridge features; 3D models; characterizing deck surface (spalling, cracks).

Speckle Photography and Speckle Pattern Interferometry

Definition: Speckle patterns are high-contrast, fine-scale, granular patterns produced by light reflected from optically rough surfaces.

Proposed Application: Interferometry of speckle patterns produces fringes from which deformations or displacement gradients (strain) can be inferred.

Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR)

Definition: SAR collection uses multiple radar (electromagnetic [radio] wave reflections) returns from small(er) antennae to simulate one radar measurement from a single, large antenna; increases effective resolution.

Proposed Application: Bridge dynamics, vibration, and strain; bridge stiffness; bridge settlement.

Example of InSAR used for infrastructure mapping.
Ground-Penetrating Radar (GPR)

Definition: Depth sounding by radio waves emitted over a wide frequency band either continuously or in discrete pulses as an antenna sweeps the ground.

Proposed Application: Characterization of deck subsurface; detection of delaminations, voids, etc.

LiDAR / Laser Scanning

Definition: 3D mapping (scanning) of surfaces or objects by timing the reflection of millions of laser pulses.

Proposed Application: 3D modeling; detecting bridge displacement; measuring size and shape of features

GPS/Geodetic Measurement

Definition: Use of precision measurements of position to determine movement over time

Proposed Application: Absolute displacement measurements of structural elements; measuring bridge length

GPS/Geodetic Measurement

Definition: Use of precision measurements of position to determine movement over time

Proposed Application: Absolute displacement measurements of structural elements; measuring bridge length

From Roberts (2005): Lateral bridge movement detected by GPS
Infrared Thermography and Spectroscopy

Definition: Images collected in thermal infrared spectrum from which features are identified by their size/shape (thermography) or their spectral content (spectroscopy)

Proposed Application: Locating delaminations and other subsurface defects

![Hot Spots at World Trade Center](Image)

Commercial Sensor Evaluation

<table>
<thead>
<tr>
<th>Location</th>
<th>"Top 10" Priorities/Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck Surface</td>
<td>Map cracking, Scaling, Spalling, Delaminations (thru surface cracks), Expansion Joint External Issues</td>
</tr>
<tr>
<td>Deck Subsurface</td>
<td>Scaling, Spalling, Delaminations, Expansion Joint Internal Issues, Corrosion, Chloride Ingress</td>
</tr>
<tr>
<td>Girder Surface</td>
<td>Structural Steel and Structural Concrete Cracking, Paint Condition, Steel or Concrete Section Loss</td>
</tr>
<tr>
<td>Girder Subsurface</td>
<td>Structural Concrete Cracking, Concrete Section Loss, Chloride Ingress, Prestress Strand Breakage</td>
</tr>
<tr>
<td>Global Metric</td>
<td>Bridge Length, Settlement, Transverse Movement, Vibration, Surface Roughness</td>
</tr>
</tbody>
</table>

Performance metrics for each technology

- Commercial availability
- Sensitivity of measurement
- Cost
- Ease of pre-collection prep
- Ease of data collection
- Complexity of analysis
- Stand-off distance rating

Table:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Deck Surface</th>
<th>Deck Subsurface</th>
<th>Girder Surface</th>
<th>Girder Subsurface</th>
<th>Global Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel cracking</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concrete cracking</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface corrosion</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steel structural cracking</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concrete section loss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concrete section loss in concrete area</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deformation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paint condition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concrete thickness loss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Girder steel thickness loss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bridge length change</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Settlement</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transverse movement</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vibration</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

- **X** = potential for technology to meet measurement needs; **0** = little or no potential
Acknowledgements

• USDOT – Research and Innovative Technology Administration
 – Commercial Remote Sensing and Spatial Information Program Manager: Caesar Singh
 – Cooperative Agreement #DTO59-10-H-00001

• Project Partners
 – Michigan Department of Transportation
 – Michigan Tech Transportation Institute
 – Michigan Tech Research Institute
 – Center for Automotive Research

• Technical Advisory Council

Thank You

www.mtti.mtu.edu/bridgecondition/

Tess Ahlborn, Ph.D., P.E. tess@mtu.edu