

Evaluating the Impact of NRCS Programs: New Measures and Improved Communication

Report on the EQI Experts Meeting September 17, 2007 Michigan NRCS building, East Lansing

Nancy French, Tyler Erickson, Robert Shuchman, Colin Brooks, Brian Thelen, Richard Powell, Ben Koziol, and Michelle Wienert

October 2007

Evaluating the Impact of NRCS Programs: New Measures and Improved Communication

Report on the EQI Experts Meeting

Nancy French, Tyler Erickson, Robert Shuchman, Colin Brooks, Brian Thelen, Richard Powell, Ben Koziol, and Michelle Wienert

October 2007

INTRODUCTION

The Michigan Tech Research Institute (MTRI) is working under a cooperative agreement with the Natural Resources Conservation Service (NRCS) in Michigan to support MI-NRCS in its management and administration of agricultural conservation programs. Entitled "Evaluating the Impact of NRCS Programs: New Measures and Improved Communication," this agreement includes efforts to assess the environmental impacts of NRCS programs and practices, with a significant focus on the development of an environmental metric that NRCS managers can use to evaluate program implementation effects. To develop this metric, named the Environmental Quality Index (EQI), MTRI staff has investigated the structure and calculation of existing environmental metrics and the availability of data needed for creating the EQI. An important part of the process to developing an EQI metric is inclusion of expert opinion for weighting the data used in the index. This report presents the process and results of an NRCS experts meeting and workshop held on 17 September 2007 to solicit expert opinion for inclusion in the metric.

BACKGROUND

In the first three years of the cooperative agreement, MTRI developed and demonstrated the mathematical feasibility of a stable and useful environmental quality index (EQI) for NRCS. The approach that has been developed begins by identifying resource concerns that NRCS programs address in their prescribed practices. The effects of these practices that are observable are then measured or modeled using a variety of information collection resources, which are described in the following section titled "Data for the EQI." These resources include remotely sensed imagery, Geographic Information System (GIS) data layers, and results from published models. The EQI is then used to combine these inputs into a metric that can be compared to the implementations made for a single or a set of resources concerns. Figure 1 summarizes this process. Details of this process are presented below, in the overview briefing presented at the meeting, and are included as Attachment A.

Figure 1. Overview of the process for development of the EQI

Calculating the Environmental Quality Index

MTRI has investigated promising methods of best calculating the EQI based on available and disparate data. From this analysis, we determined that statistical approaches rooted in factor analysis (e.g., principal components) are best suited for taking a set of input measures (indicators) in a variety of units and reducing these to a smaller set of calibrated metrics in a normalized unit. This method has been demonstrated in several applications in the scientific literature, including Esty, et al. 2005 and Burns, et al. 2004. As shown in Figure 2, this approach entails several steps mathematically and results in both an overall index or metric (the EQI) and component metrics that can serve to gauge outcomes within the domain of a single resource concern, such as soil condition.

The EQI as presented to the experts at the 17 September meeting employs five components within the overall EQI: soil condition, surface water health, land habitat health, air quality, and societal utility. Because these are not given equal weights in descriptions of NRCS program goals and objectives, as detailed within the agency and USDA as a whole, we foresee employing different weights for each when the category metrics are combined to form an overall EQI as defined by the expert panel. In addition to expert input for assigning weights of inputs and EQI components, the expert panel will help MTRI construct the transformation functions needed to translate the input data into a scale that allows combination with the other inputs. This requires that each input's units be mapped to a quality value via a transformation function.

A more detailed description of the calculation of the EQI is given in the briefing presented at the 17 September meeting and included here as Attachment A.

Figure 2: Approach for Calculation of EQI

Data for the EQI

In the four years of the cooperative agreement, the MTRI team has pursued independent sources of environmental quality data pertinent to assessment of agricultural programs and practice effectiveness. We have concentrated our efforts on remote sensing data sources and techniques and on other agencies and organizations that collect environmental data, such as the U.S. Environmental Protection Agency and the Conservation Technology Information Center (CTIC). These efforts build from MTRI's extensive experience with remote sensing and GIS, take advantage of existing well-documented data sources, and enable the EQI to eventually be applied for multiple time periods. In Figure 3, we list the chosen measures within each of the five envisioned components of the EQI that were selected with the help of the NRCS. These were defined considering NRCS resource concerns (the concerns that are targeted with conservation practice implementations) and discovering relevant and available information products, either measurements or model-based outputs (see Figure 1). More detail on the data sets planned to be used in the EQI are given in the briefing (Attachment A). A full list and description of each input was included on the information passed out at the meeting. The list and descriptions as presented at the meeting are included as Attachment B.

Figure 3. Components and inputs planned for use in the EQI (g	grey text indicates desired but not
available input)	

EQI =	Soil + condition index	Water + health index	Land + habitat index	Air + quality index	Societal utility index
	Soil erosion	Lake Clarity	Habitat improvement	NH ₃ emissions	Economic value
	Residue cover/tillage practice	In-situ stream	T&E&SC plants & wildlife	CH₄ emissions	
	HEL treated	quality			
	Carbon Sequestration	Stream buffers	Biodiversity/ Fragmentation	Particulates	

Components weighted using expert opinion and program goals

EQI EXPERTS MEETING GOALS, OBJECTIVES & PROCESS

The meeting goals, objectives, and process for achieving these goals are given below. The agenda for the meeting is included as Attachment C. The participant list is given in Attachment D.

<u>Goals:</u> Develop numerical weighting factors and transfer functions for the inputs to the Environmental Quality Index (EQI) calculation

Objectives:

- Educate NRCS experts on the EQI concept and needs
- Survey/solicit inputs from experts on the role of information products (inputs) in assessing NRCS conservation program effectiveness
- Gather advice on weighting factors for EQI
- Revise transform functions for each EQI input

Process:

- MTRI presentation on program evaluation activity including (Attachment A)
 - Background of MI-NRCS/MTRI cooperative agreement
 - EQI structure & approach for implementation
 - List of needs for EQI
- NRCS staff fill out initial questionnaire (Attachment E)
- Charge to breakout groups (Attachment F)
- Convene expert breakout groups to discuss EQI information products & finalize questionnaire responses based on consensus
- Meeting participants reconvene to report out breakout group discussions and results and to conduct final discussions

EQI EXPERTS MEETING RESULTS AND PRODUCTS

The meeting goals were fully met in the five-hour meeting time. Condensed notes from the breakout sessions are included in Attachment G. The consensus weightings for both EQI components (Soil, Surface water, Land habitat, and Air quality) and the individual EQI inputs are listed in Attachment H. Figure 4 below reviews these consensus weightings, and also includes the individual participant inputs that were used create the consensus values. These will be the default values in the EQI when an NRCS user sees the results.

Breakout group 1 suggested that crop rotation history be added as an input for the soil condition component of the EQI. This data should be available for all Michigan counties. A discussion on inclusion of a "Societal Utility" component in breakout group 1 led to the full panel deciding that economic and societal utility measures should not be included in the EQI, so this component will be dropped from the EQI structure. Based on NRCS interest, the Societal Utility component could be developed as a separate index.

The discussions conducted in the afternoon included a review of the consensus weightings, so that participants of both groups could comment on each input. Attachment H provides a breakdown of individual weightings, an average of these, and the consensus weightings arrived at following discussion of each component/input.

The majority of the time in the afternoon discussions centered on a review of the transformation functions for each input (see Attachment A briefing to review the need for the transformation functions). The final

transformation functions and associated notes are given in Attachment I for each input discusses. Changes to the transformation functions based on the consensus of the panel members discussed during the afternoon session will be made and used in the initial implementation of the EQI.

Figure 4: Consensus scores for the EQI components and input rankings developed by the NRCS EQI Experts Meeting Attendees.

								٩vg
	Consensus		Pa	rticipa	nt rank	s	F	Rank
Component Rankings								
Soil Condition	30	30	35	25	х	х	30	30
Surface Water Quality	30	30	30	25	x	x	30	29
Land Habitat	25	20	25	25	x	x	30	25
Air Quality	15	20	10	25	x	5	10	14
Sum	100	100	100	100		5	100	
Input Rankings								
1 - Soil Condition Index								
Soil Erosion	25	30	20	25	30	Х	Х	26
HEL	15	10	25	5	20	Х	Х	15
Tillage	20	20	15	25	25	Х	Х	21
Carbon	25	25	25	30	10	Х	Х	23
Crop Rotation	15	15	15	15	15	Х	Х	15
	100	100	100	100	100			
2 - Surface Water Health Index								
Lake Clarity	45	50	40	50	40	Х	40	44
Vegetative Riparian Buffers	55	50	60	50	60	Х	60	56
	100	100	100	100	100		100	
3 - Land Habitat Index								
Habitat Improvement	40	Х	Х	Х	Х	Х	40	40
T&E species counts	20	Х	Х	Х	х	Х	20	20
Biodiversity/fragmentation	40	Х	Х	Х	Х	Х	40	40
	100						100	
4 - Air Quality Index								
Ammonia NH3 emissions	20	Х	33	Х	15	Х	15	21
CH4 emissions	20	Х	33	Х	10	Х	25	23
Particulate levels	60	Х	34	Х	75	Х	60	56
	100		100		100		100	

EQI Component and Input Ranking Results

CONCLUSION

The results of the experts meeting will be used in execution of the EQI by MTRI. Once the initial EQI results are available, MTRI will review the outputs with MI-NRCS staff to discuss any further changes needed. The success of the meeting has allowed the EQI metric to have great potential in demonstrating how an holistic assessment of program effectiveness can be made using expert opinion combined with relevant measurements and model-based information.

REFERENCES

- Esty, D.C., M. Levy, T. Srebotnjak and A. de Sherbinin (2005). 2005 Environmental Sustainability Index: Benchmarking National Environmental Stewardship. New Haven: Yale Center for Environmental Law and Policy. http://www.yale.edu/esi/
- Burns, J.W., T. Cors, B. Knight, and B. Thelen. 2004. "Evaluating Advanced Automotive Energy Technologies: A Multivariate Contribution Metric." *International Journal of Energy Technology and Policy*, 2(3): 262-271.

		Agenda
Ī	9:00 – 10:30	Workshop purpose, approach & expected outcome
	10:30 – 10:45	NRCS participants fill out initial questionnaire
	10:45 – 11:00	Breakout session assignments
	11:00 – 12:00	Breakout sessions Group 1: Soil & Water quality discussions Group 2: Land habitat & Air quality discussions
	12:00 – 1:00	Lunch (on your own)
	1:00 – 2:15	Breakout sessions continue
	2:15 – 2:30	Break
	2:30 - 3:00	Report out (:15 per group)
	3:00 - 3:30	Final discussions & wrap-up

	Resource Concerns	5
EQI struc	ture & inputs based on NRCS Resour	ce Concerns
Group	Resource Concern	EQI Input
Air Quality	Particulate matter less than 2.5 micrometers in diameter (PM 2.5) Ammonia (NH3) Excessive Greenhouse Gas - CH4 (methane)	43 Particulates 41 Ammonia emissions 42 Methane emissions
Fish and Wildlife	Inadequate Cover/Shelter Inadequate Food Inadequate Space Threatened and Endangered Fish and Wildlife Species Habitat Fragmentation T&E Species: Declining Species, Species of Concern	31 Habitat improvement 32 T&E&SC counts 33 Fragmentation index 32 T&E&SC counts
Plant condition	Threatened and Endangered Plant Species T&E Plant Species: Declining Species, Species of Concern	32 T&E&SC counts 32 T&E&SC counts
Soil Condition	Organic Matter Depletion	15 Carbon sequestration
Soil Erosion	Classic Gully Ephemeral Gully Mass Movement Sheet and Rill	12 HEL treated 11 Soil erosion reduction
Water Quality	Excessive Suspended Sediment and Turbidity in Surface Water	21 Lake clarity
ssare: Analità		

Mielitgenitee Research Institut USDA	NRCS	Соі	mponents of	the EQI	
EQI =	Soil + condition index	Water + health index	Land + habitat index	Air + quality index	Societal utility index
	Soil erosion	Lake Clarity	Habitat improvement	NH ₃ emissions	Economic value
	Residue cover/tillage practice	In-situ stream	T&E&SC plants & wildlife	CH ₄ emissions	
	HEL treated	quality			
	Carbon Sequestration	Stream buffers	Biodiversity/ Fragmentation	Particulates	
(Components w	eighted us	ing expert opinion	and program	goals
-					

Input Units Where from Practice Notes Soil erosion tons EPA STEPL model Sheet & rill erosion Sheet & rill erosion EPA STEPL model Sheet & rill erosion Sh	Mielity Researc	A INRCS			EQI Inpu	uts
Joint Product Spect 3 rill erosion EPA STEPL model Spect 3 rill erosion EPA STEPL model is being investigated - mode for watershed assessment 11 Soil erosion Spect 3 rill erosion EPA STEPL model Spect 3 rill erosion EPA STEPL model is being investigated - mode for watershed assessment 12 HEL treated % treatede % treatee % tr	Input Soil com	tition Index	Units	Where from	Resource Concern or Practice	Notes
11 Solit encision Long EPA STEPL model Sheet & rill erosion assessment 12 HEL treated % treated MTRI developed Guly erosion/mass movement % HEL acrestreated by courty 13.14 Tillage practice CmC (Purdue); Gaston Sequestration MTRI developed Gaston Sequestration MTRI developing pondust for other years using remote sensing % StrEES researce 21 & 822 Lake clarity index USQS & MTRI developed Turbid surface water podds for other years using remote sensing % Streated MTRI developing 21 & 822 Lake for esteed MTRI developed Insidenuate cover from USQS and State of Michigan analysis of Chang 31 Habitat improvement acres MTRI developed Insidenuate cover from USQS and State of Michigan analysis of Chang 32 T& E&SSC species count MTRI Til dev	Jon Lon					EPASTEPL model is being investigated - made for watershed
12 HEL treated % treated MTRi developed Gully grosion/mass movement % HE L acres treated by county 13 11 Tillage practice % CTIC (Purdue); conservation tillage practice Avail. up to 2002; This data in longer collected for all counters; Developed tillage practice Avail. up to 2002; This data in longer collected for all counters; Developed tillage practice 13 Carbon sequestration Inst in developed Cg; 344,345,340; Developed tillage practice Deve	11	Soil erosion	tons	EPASTEPL model	Sheet & rill erosion	assessment
12 nEL treated is treated in the before the second of the second o	40	1151 Avenue al	of American	NTDI developed		of UCL and the state in the second
13.8.14 Tillage practice onservation NTRI developed (328, 344, 345, 345) Deviced tillage practice trom remds sensing: CSREES research 15 Carbon sequestration tons USDA-COMET VR output Organic matter depletion scale	12	ncu treateu	% treated	CTIC (Purdue):	conservation tillage practices	Avail, up to 2002. This data no longer collected for all counties:
Implementation UsDA-COMET VR ough Implementation of COMET-VR is under development on the co Surface valuer health index USOS has 2002 may of take dealty Surface valuer health index 21 & 22 Lake clarity index USOS has 2002 may of take dealty (SI); MTRI developing products for other years using remote sensing & in-situ data 23 Riparian buffers % forested MTRI developed Riparian buffer years using remote sensing & in-situ data 31 Habitat index USOS has 2002 may of take dealty (SI); MTRI developed Land cover from USOS and State of Michigan analysis of chang or vitin e 32 T 8E 8SC species count MTRI developed Inadequate cove/shetter/space Cover from USOS and State of Michigan analysis of chang or vitin e 32 T 8E 8SC species count MTRI T 8E species Revocunts of special concern animals and plants by country or tim e 33 Biodiversity/Fragmentation index MTRI developed Habitat tragmentation USOS ind cover from USOS and State of Michigan analysis of chang or vitin e 41 NH3 emissions kg EPA - NEI Ammonia Country-level an monia encisions itrom anima histand plants by country 42 CH4 emissions	13 8 14	Tillage practice	conservation	MTRI developed	(329, 344, 345, 346)	Derived tillage practice from remote sensing: CSREES research
15 Carbon sequestration bns USDA-COMET VR output Organic matter depletion scale Sec #th UNwwcom etv acotstate edu/ Surface vector health Index USDS 182 2002 map of lake datity (TSI); MTRI developing, products for other years using remote sensing the index instrument acres USDS 182 2002 map of lake datity (TSI); MTRI developing, products for other years using remote sensing the instru data 21 8.22 Lake clarity index USDS 3 MTRI developed Riparian buffer practice (381) GIS analysis of USDS and cover with stream networks 23 Riparian buffers % forested MTRI developed Riparian buffer practice (381) GIS analysis of USOS and State of Michigan analysis of chang over time 31 Habitat in provement acres MTRI developed Inadequade cove/shelter/space over time over time 32 TBESSC species court MNRI TBE species Park stress shore and edge cortrast using FRAOSTATS with 33 BiodiversityFragmentation Index USOS land cover Park stress shore and edge cortrast using FRAOSTATS with 33 BiodiversityFragmentation Index USOS land cover Park stress shore and edge cortrast using FRAOSTATS with 33 <	14					Implementation of COMET-VR is under development on the cour
Surface water health index USGS & MTRI developed Turbid surface water USGS has 2002 map of take darity (TSI); MTRI developing products for dher years using remote sensing & in-stu data 21 & 22 Lake clarity index USGS & MTRI developed Turbid surface water products for dher years using remote sensing & in-stu data 23 Riparian buffers % forested MTRI developed Riparian buffer practice (391) GIS analysis of USGS and Over with stream networks Land babititi index	15	Carbon sequestration	tons	USDA-COMET VR output	Organic matter depletion	scale See: http://www.com.etvr.colostate.edu/
21 8.22 Lake clarity index USGS has 2002 map of lake darity (US); M FRI developer products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years using rende sensing à In-stu data products for other years of the developed and products for the years of the developed and products of the years of the developed and over from USOS and State of Michigan analysis of chang over fine are using rende sensing à In-stu data products of special concern animals and plants by county and fail and plants by county and fail and plants by county	Surface u	water health index			1	
1 22 24 CH4 Clarky Intex USCS and Introgregation Filter strate and the strate and st	24 0.22	l oko olovitu	index	UCOC 0 MTDL developed	Turkid ourfood unter	USGS has 2002 map of lake dartity (TSI); MTRI developing
23 Riparian buffers % forested MTRI developed Riparian buffer practice (391) GIS analysis of USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over from USGS and State of Michigan analysis of Changes over the event over time over the transformation over from the USGS and State over the event over the transformation over the event the event over the event over traneover over the event over thev	21 8 22	Lake clarity	muex	USGS & MTRI developed	Turbid Surface water	products for other years using remote sensing & in-situ data
Land habitulinder Land cover from USGS and State of Michigan analysts of changes 31 Habitat improvement acres MTRI developed Inadequate cove/shelter/space over from USGS and State of Michigan analysts of changes 32 T&E&SC species count MNFI T&E species Parto Asset of Michigan analysts of Changes 33 Biodiversity/Fragmentation index MTRI developed Parto Asset of Michigan analysts of Changes 41 NH3 emissions kg EPA. NEI Ammonia county-level ammonia emissions from animals and feltiber is monoia 42 CH4 emissions Tg CO2 equiv, group Excessive greenhouse gas - CH4 EPA.nodas CH4 from animal husbanny in ts greenhouse gas - CH4 43 Particulate levels density MTRI developed PM 2.5 level 43 Particulate levels density MTRI developed PM 2.5 level 43 Particulate levels density MTRI developed PM 2.5 level 43 Particulate levels density MTRI developed PM 2.5 level 43 Particulate levels density MTRI developed PM 2.5 level	23	Riparian buffers	% forested	MTRI developed	Riparian buffer practice (391)	GIS analysis of USGS land cover with stream networks
31 Habitat in provement acres MTRI developed Inadequate cove/shelter/space Land cover from USCS and State of Michigan analysis of changes over time 32 T&E&SC species count MNPI T&E species Revocunts of special concern animals and plants by country 33 Biodiversity/Freamentation index MTRI developed Habitat tragmentation USOS land cover 34 NH3 emissions kg EPA-NEI Ammonia county-level ammonia emissions from animal seand fettilizer is modeled for the National Emissions intertory (NEI) 41 NH3 emissions kg EPA-NEI Ammonia county-level ammonia emissions from animal seand fettilizer is modeled for the National Emissions intertory (NEI) 42 CH4 emissions 1g CO2 equiv, group Excessive greenhouse gas - CH4 emissions eminal husdant/ini its greenhouse gas - CH4 43 Particulate levels density MTRI developed PM 2.5 level emissions eminal husdant/ini its greenhouse gas - CH4 43 Particulate levels density MTRI developed PM 2.5 level emissions eminal husdant/ini its greenhouse gas - CH4 43 Particulate levels density MTRI dev	Land hab	nitet index	200			
31 Habitat improvement acres MTRI developed Inadequate cover/shelter/space over time 32 T&ESSC species count MTRI T&E species Pach size, shape and edge contrast using FRAOSTATS with 33 Biodiversity/Fragmentation index MTRI developed Habitat tragmentation Pach size, shape and edge contrast using FRAOSTATS with 33 Biodiversity/Fragmentation index MTRI developed Habitat tragmentation USGS land cover Air guidity index county-level am monia emissions tom animals and fetilizer is modeled of the National Emission frame Emissions from animals and fetilizer is modeled of the National Emission frame Emissions from animals and fetilizer is modeled of the National Emission frame Emissions from animals and fetilizer is modeled of the National Emission frame Emissions from animals and fetilizer is modeled to the National Emission frame Emissions from animals and fetilizer is modeled to the National Emission frame Emission settin ades 41 NH3 emissions Tg CO2 equiv proup Excessive greenhouse gas - CH4 emissions estim ades 42 CH4 emissions Tg CO2 equiv proup PM 2.5 level measures 43 Particulate levels denisty MTRI developed PM 2.5 level measures 51						Land cover from USGS and State of Michigan analysis of change
32 T&E:SSC species count MNFI T&E: species Rewcounts of special concern animals and plants by county. 33 BiodiversityFragmentation index MTRI developed Habitat tragmentation Pach size, shape and edge contrast using FRAOSTATS with USSS indi cover 41 NH3 emissions kg EPA-NEI Ammonia county-level ammonia emissions irom animals and fertilizer is modeled for the National Emissions instructory (NEI) 42 CH4 emissions Tg CO2 equiv, group ERA-climate change Excessive greenhouse gas-CH4 Emissions animal hasandry in its greenhouse gas-CH4 43 Particulate levels density MTRI developed PM 2.5 level measures 42 CH4 emissions Tg CO2 equiv, group Excessive greenhouse gas-CH4 Model Sd Tk PA/2.5 product compared with EPA in situ 43 Particulate levels density MTRI developed PM 2.5 level measures 50 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	31	Habitat in provement	acres	MTRI developed	Inadequate cove/shelter/space	over tim e
32 LocksC: species Doubling mitrin Lock Section Pack Section		TOFOCC analise		NO.	705	Devices where of exercised ensurements and a second scheme by second
33 Biodiversity/Fragmentation Index MTRI developed Habitat tragmentation USOS land cover Air quality index County-level ammonia emissions' tom animals and fetilizer is modeled to the Mational Emission is tom animals and fetilizer is modeled to the Mational Emission is tom animal and fetilizer is modeled to the Mational Emission is tom animal and fetilizer is modeled to the Mational Emission is tom animal and fetilizer is modeled to the Mational Emission is tom animal and fetilizer is modeled to the Mational Emission is tom animal and send fetilizer is emissions estimates 42 CH4 emissions Tg CO2 equiv group Excessive greenhouse gas - CH4 Excessive greenhouse gas - CH4 measures EPA.noldis CM4 from animal husbander (NEPA in situ measures 43 Particulate levels for Economic value density MTRI developed PM 2.5 level measures measures 51 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	32	TAEASC Species	COUNT	MINEL	The species	Patch size, shahe and edge contrast using FR AGST ATS with
Air quality index County-level am nonia emissions from anim als and fetilizer is modeled for the National Emissions from anim als and fetilizer is modeled for the National Emissions Inventory (NEI) 41 NH3 emissions kg EPA - NEI Ammonia modeled for the National Emissions Inventory (NEI) 42 CH4 emissions fig CO2 equiv group Excessive greenhouse gas - CH4 End modes CH4 from animal husbandry in its greenhouse gas 43 Particulate levels density MTRI developed PM 2.5 level MODIS-derived PM2.5 product compared with EPA in-situ measures 50 Economic value dollars Census of Agriculture Question of yield or com modity value more valid for EQI	33	Biodiversity/Fragmentation	index	MTRI developed	Habitat fragmentation	USGS land cover
41 NH3 emissions kg EPA-NEI Ammonia courty-level am monia emissions from anim als and fetilizer is modeled for the National Emissions from animal Emissions from animal Emissions 42 CH4 emissions T_GCO2 equiv group Excessive greenhouse gas - CH4 emissions estim alse 43 Particulate levels density MTRI developed PM 2.5 level 50 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	Air qualif	ly index				
41 NH3 emissions kg a EPA-NEL Aminoria inodeled for the National Emissions Inventory (NEI) 42 CH4 emissions To CO2 equity group EPA-cellinate change EPA - demissions eminal husbandhing in its greenhouse gas - CH4 emissions eminal husbandhing in its greenhouse gas - CH4 43 Particulate levels density MTRi developed PM 2.5 level MO25/derived PM2.5 product compared with EPA in-atiu 50:ebit utility index 51 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI						county-level ammonia emissions from animals and fertilizer is
42 CH4 emissions Tg CO2 equity group Excessive greenhouse gas - CH4 emissions estim ades 43 Particulate levels density MTRI developed PM 2.5 level MODIS-derived PM2.5 product compared with EPA in-situ 51 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	41	NH3 emissions	kg	EPA-NEI ER & olive ato aborect	Ammonia	Imodeled for the National Emissions Inventory (NEI)
43 Drift unicate levels density MTRI developed PM 2.5 level Immodify derived M2.5 product compared with EPA in-situ measures 50rtell utility index 51 Economic value dollars Census of Agriculture Guestion of yield or commodity value more valid for EQI	42	CH4 emissions	To CO2 equiv	crows - clini ale change	Everenius meanhouse res. CH4	emissions estimates
43 Particulate levels Idensity MTRI developed PM 2.5 level measures Societal utility index 51 Economic value dollars Census of Agriculture Question of yield or com modify value more valid for EQI	74	onn omoarono	- g CO2 cqui #.	growp	Encounte greeninguoe gus - CI14	MODIS-derived PM2.5 product compared with EPA in-situ
Societal utility index 51 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	43	Particulate levels	density	MTRI developed	PM 2.5 level	measures
51 Economic value dollars Census of Agriculture Question of yield or commodity value more valid for EQI	Societal	utility index				1977-2077-2077-1
Si [customic value] [dutestion of yield or commonity value in one valid for EQI	CA	Constantia contra		Comment of Suriau Burgo		
	[5]	Economic value	laonars	UCENSUS OF Agriculture		judestion of yield or commodity value more valid for EQI

1. Ammonia Emissions	kg (month and year)
rigin of data for i	nput measure
lizer application dat scription of der	a ivation of input
ammonia emissions EPA, is used to cha chigan county from a pricultural sources co putry, and Turkey) op m the Census of Ag nerican Plant Food C del output consists onth, or totaled for th 6DA, 2002. "2002 Ce sociation of America	inventory model, developed at racterize the amount of ammoni gricultural sources. nist of livestock (Dairy Cattle, E erations and fertilizer application iculture for livestock operations ontrol Officials (AAPFCO) for fer for county-level NH ₃ emissions, e a year. nsus of Agriculture." http://www. n Plant Food Control Officials (A

INPUTS TO THE EQI

Summary list

Resource Concern or

Input		Units	Where from	Practice	Notes
Soil con	dition Index				
					EPA STEPL model is being investigated - made for watershed
11	Soil erosion	tons	EPA STEPL model	Sheet & rill erosion	assessment
12	HEL treated	% treated	MTRI developed	Gully erosion/mass movement	% HEL acres treated by county
		%	CTIC (Purdue);	conservation tillage practices	Avail. up to 2002; This data no longer collected for all counties;
13 & 14	Tillage practice	conservation	MTRI developed	(329, 344, 345, 346)	Derived tillage practice from remote sensing; CSREES research
					Implementation of COMET-VR is under development on the county
15	Carbon sequestration	tons	USDA-COMET VR output	Organic matter depletion	scale See: http://www.cometvr.colostate.edu/
Surface	water health Index	•		• = · ·	
					USGS has 2002 map of lake clartity (TSI); MTRI developing
21 & 22	Lake clarity	index	USGS & MTRI developed	Turbid surface water	products for other years using remote sensing & in-situ data
			· · · · · ·		
23	Riparian buffers	% forested	MTRI developed	Riparian buffer practice (391)	GIS analysis of USGS land cover with stream networks
Land hal	bitat index		• •	· · · · · · · ·	· · ·
					Land cover from USGS and State of Michigan analysis of change
31	Habitat improvement	acres	MTRI developed	Inadequate cove/shelter/space	over time
			•		
32	T&E&SC species	count	MNFI	T&E species	Raw counts of special concern animals and plants by county
	·			· ·	Patch size, shape and edge contrast using FRAGSTATS with
33	Biodiversity/Fragmentation	index	MTRI developed	Habitat fragmentation	USGS land cover
Air quali	ty index		•	5	
					county-level ammonia emissions from animals and fertilzer is
41	NH3 emissions	kg	EPA- NEI	Ammonia	modeled for the National Emissions Inventory (NEI)
		Tg CO2	EPA - climate change		EPA models CH4 from animal husbandry in its greenhouse gas
42	CH4 emissions	equiv.	group	Excessive greenhouse gas - CH4	emissions estimates
				<u> </u>	MODIS-derived PM2.5 product compared with EPA in-situ
43	Particulate levels	density	MTRI developed	PM 2.5 level	measures
Societal	utility index	, ,			
51	Economic value	dollars	Census of Agriculture		Question of yield or commodity value more valid for EQI

Attachment B: Descriptions of EQI inputs as presented at EQI Meeting 17 Sept 2007

EQI input name	Units of input	Index component	-
11. Soil erosion	tons	Soil condition index	

Origin of data for input measure

STEPL (Spreadsheet Tool for Estimating Pollutant Load) model outputs – an EPA model for assessing sediment load by watershed

Description of derivation of input

Spreadsheet Tool for Estimating Pollutant Load (STEPL) employs simple algorithms to calculate nutrient and sediment loads from different land uses and the load reductions that would result from the implementation of various best management practices (BMPs). STEPL provides a user-friendly Visual Basic (VB) interface to create a customized spreadsheet-based model in Microsoft (MS) Excel. It computes watershed surface runoff; nutrient loads, including nitrogen, phosphorus, and 5-day biological oxygen demand (BOD5); and sediment delivery based on various land uses and management practices. For each watershed, the annual nutrient loading is calculated based on the runoff volume and the pollutant concentrations in the runoff water as influenced by factors such as the land use distribution and management practices. The annual sediment load (sheet and rill erosion only) is calculated from the Universal Soil Loss Equation (USLE) and the sediment delivery ratio. The sediment and pollutant load reductions that result from the implementation of BMPs are computed using the known BMP efficiencies.

For the EQI, we use outputs of sediment loads from sheet and rill erosion by watershed that are then transformed by area weighting to county-level sediment load estimates.

http://it.tetratech-ffx.com/stepl/default.htm

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component	
12. HEL land	% treated	Soil condition index	

Origin of data for input measure

- 2001 National Land Cover Data (NLCD) land cover map
- SSURGO with HEL table
- ProTracts data on practice implementations

Description of derivation of input

Agricultural land is intersected with HEL and PEL designated soil polygons to assess agricultural areas with HEL/PEL.

Total area of agricultural HEL is compared with HEL erosion control practice data to produce % of HEL treated.

See Sept 2005 project report from the cooperative agreement for a more detailed description of treated HEL analysis and product

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component
13. Tillage practice	Percent of conservation tillage	Soil Condition Index

Origin of data for input measure

County-level tillage practice data from the Conservation Technology Information Center (CTIC) based at Purdue University (http://www.ctic.purdue.edu/).

Description of derivation of input

Field survey data collected by the Conservation Technology Information Center, capturing conservation (no-till, ridge-till, and mulch-till methods) and conventional (intensive and reduced tillage methods) tillage practices by county is linked within a GIS to county boundary data to model the distribution of tillage practices across the state.

Tillage practice is presented as a percentage of tilled acres using conservation tillage practice.

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component

14. Tillage practice by % of conservation Soil Condition Index mapped crop residue tillage cover

Origin of data for input measure

MTRI-developed process of image analysis of Landsat, ASTER, and other remote sensing image data.

Description of derivation of input

Expanding upon methods described in the literature, MTRI uses multi-spectral remote sensing data and advanced statistical and image processing techniques to distinguish bare soils from crop residues to estimate and map crop residues and tillage practices.

The output is percent of tilled acres in conservation tillage.

- Bannari, A., D. Haboudane, H. McNairn, and F. Bonn. 2000. Modified Soil Adjusted Crop Residue Index (MSACRI): A new index for mapping crop residue. IGARSS 2000, 24-28 July, Honolulu, Hawaii, 2000:2936:2938.
- Bannari, A, M Chevrier, K Staenz, H McNairn 2003. Senescent vegetation and crop residue mapping in agricultural lands using artificial neutral networks and hyperspectral remote sensing. IGARSS 2003, 21-25 July 2003:4292:4294,
- Vina, A., Peters, AJ., Lei Ji. 2003. Use Of Multispectral Ikonos Imagery For Discriminating Between Conventional And Conservation Agricultural Tillage Practices. Photogrammetric Engineering and Remote Sensing. Vol. 69, No. 5, May 2003:537:544

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component
-		-

15. Carbon Tons Sequestration Soil condition index

Origin of data for input measure

COMET-VR model outputs – used to assess soil carbon sequestration/emissions

Description of derivation of input

The Voluntary Reporting of Greenhouse Gases-CarbOn Management Evaluation Tool (COMET-VR) tool is a decision support tool for agricultural producers, land managers, soil scientists and other agricultural interests.

COMET-VR provides an interface to a database containing land use data from the Carbon Sequestration Rural Appraisal (CSRA) and calculates in real time the annual carbon flux using a dynamic Century model simulation.

Users of COMET-VR specify a history of agricultural management practices on one or more parcels of land. The results are presented as ten year averages of soil carbon sequestration or emissions with associated statistical uncertainty values. Estimates can be used to construct a soil carbon inventory for the 1605(b) program.

See http://www.cometvr.colostate.edu/

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component
21 Laka Clarity	indox	Surface Water Health
ZI. Lake Glafily	Index	

Origin of data for input measure

- In-situ water quality measurements from EPA, USGS, MDEQ, and volunteer networks
- Landsat TM/ETM+ remote sensing image data analysis

Description of derivation of input

Using methods developed by the University of Wisconsin and implemented by the USGS in the Upper Midwest, a regression model and image processing algorithm is used to relate *in-situ* turbidity and chlorophyll-*a* measurements to large (> 20 acre) lakes in the Landsat imagery and calculate an index value representing the trophic state of a water body at the time the image was collected.

- Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography. 22:361-369.
- Fuller, L.M, S.S. Aichele, and R.J. Minnerick, 2004, Predicting Water Quality by Relating Secchi-Disk Transparency and Chlorophyll a Measurements to Satellite Imagery for Michigan Inland Lakes, August 2002, U.S. Geological Survey Scientific Investigations Report 2004-5086 http://pubs.usgs.gov/sir/2004/5086/
- Kloiber, S.M., Brezonik, P.L., Olmanson, L.G., and Bauer, M.E., 2002, A procedure for regional lake water clarity assessment using Landsat multispectral data: Remote Sensing of Environment, v. 82, p. 38–47.
- Lillesand, T.M., Johnson, W.L., Deuell, R.L., Lindstrom, O.M., and Meisner, D.E., 1983, Use of Landsat data to predict the trophic state of Minnesota lakes: Photogrammetric Engineering and Remote Sensing, v. 49, no. 2, p. 219–229.

Transfer Function used in initial EQI analysis

EQI input name	Units of input	Index component
23. Riparian buffers	% forested	Surface Water Health

Origin of data for input measure

- 1995 and 2001 land cover maps from NOAA Coastal Change Analysis
 Program (C-CAP)
- 2007 National Hydrography Dataset (NHD)

Description of derivation of input

NHD high-resolution stream lines were buffered by 100 meters on each side to capture a reasonable extent of riparian vegetation. Areas of forest (and wetland) were calculated using ESRI GIS software by intersecting the buffered streams with the 1995 and 2001 C-CAP land cover data created with Landsat satellite imagery and field work. The total amounts of forest with 100-m of each side of the streams were summarized by county, and were converted into a percent of the total buffered area adjacent to streams.

This analysis method answers the question of how much forest cover is adjacent to streams, and can be tracked over time and calculated historically using standardized land cover maps and satellite imagery analysis.

- Abel, R. and J.D.Allan. 2002. Riparian shade and stream temperatures in an agricultural catchment, Michigan, USA. Verh. Internat. Verein. Limnol. Vol. 28, pgs. 232-237.
- Environment Canada. 2004. "How Much Habitat is Enough" 2nd Edition, Great Lakes Fact Sheet. <u>www.on.ec.gc.ca/wildlife</u>
- Goetz, S.J. 2006. Remote sensing of riparian buffers: Past progress and future prospects. Journal of the American Water Resources Association, February 2006, pgs. 133-143.

Transfer Function used in initial EQI analysis

EQI input name	Units of input	Index component

31. Habitat % of area improved Land habitat index improvement

Origin of data for input measure

- 1996 and 2001 C-CAP (Coastal Change Analysis Program) land cover classifications and change
- 1978 MIRIS land use maps

Description of derivation of input

The C-CAP land cover maps are created using Landsat TM/ETM+ images from 1995 and 2001. MIRIS is a set of maps showing land use by county from air photos collected c. 1978. An increase or decrease in land cover is computed from the remote sensing-derived land cover classifications. The following land cover categories are used to assess wildlife habitat change by county:

- 1. Grassland
- 2. Forest
- 3. Scrub/Shrub
- 4. Wetland

Transfer Function used in initial EQI analysis

EQI input name	Units of input	Index component

32. T&E&SC species count Land Habitat Health

Origin of data for input measure

Michigan Natural Features Inventory (MNFI)

Description of derivation of input

A count of the numbers of state endangered, threatened, and special concern plant and animal species is derived from MNFI census data collected for each county.

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component

33. Fragmentation (varies - see description) Land habitat index

Origin of data for input measure

Land cover from 1996 and 2001 C-CAP (Coastal Change Analysis Program)

Description of derivation of input

Land cover classes (originally 19) were collapsed into the following categories:

- 1. Unclassified
- 2. Developed
- 3. Cultivated Land
- 4. Grassland
- 5. Forest
- 6. Scrub/Shrub
 7. Wetland
- 8. Bare Land
- 9. Water

Fragmentation metrics are calculated using FRAGSTATs, a popular spatial statistics program freely distributed by the University of Massachusetts. The three fragmentation measures are:

- 5. Patch Area (km²) mean patch area
- Shape Index (unitless) On a scale starting at one and increasing indefinitely, this metric tests the perimeter of a patch against the perimeter of the patch if it were reduced to a square. Hence, the more square a patch is the closer the metric is to one.
- Edge Contrast (ratio, 0 to 100) Measures the 'strength' of transition between land covers of differing types. 'Strengths' are determined subjectively through an edge contrast weights table containing a weight for each possible land cover transition.

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component
41. Ammonia Emissions	kg (month and year)	Air Quality Index

Origin of data for input measure

EPA National Emissions Inventory (NEI)

Description of derivation of input

An ammonia emissions inventory model, developed at Carnegie Mellon University for EPA, is used to characterize the amount of ammonia (NH₃) emissions in each Michigan county from agricultural sources.

Agricultural sources consist of livestock (Dairy Cattle, Beef Cattle, Swine, Goats, Poultry, and Turkey) operations and fertilizer applications. Activity levels are derived from the Census of Agriculture for livestock operations and from the Association of American Plant Food Control Officials (AAPFCO) for fertilizer applications. The model output consists of county-level NH₃ emissions, expressed in kilograms, by month, or totaled for the year.

USDA, 2002. "2002 Census of Agriculture." http://www.agcensus.usda.gov/

Association of American Plant Food Control Officials (AAPFCO), 2002. Commercial Fertilizers 2002.

Transfer Function used in initial EQI analysis

EQI input name Units of input Index component

42. Methane emissions kg

Air Quality Index

Origin of data for input measure

• U.S. EPA U.S. Greenhouse Gas Inventory Reports

Description of derivation of input

US Environmental Protection Agency (EPA) greenhouse gas emissions reports for agricultural sources of methane (enteric fermentation, manure management, and soil management) are used to characterize methane emissions over time for each county.

U.S. Greenhouse Gas Inventory Reports. http://www.epa.gov/climatechange/emissions/usinventoryreport.html

http://yosemite.epa.gov/oar/globalwarming.nsf/content/ /ResourceCenterPublicationsGHGEmissionsUSEmissionsInventory2005.html

Transformation Function used in initial EQI analysis

EQI input name	Units of input	Index component	-
43. Particulate levels	ua/m ³	Air Quality Index	

Origin of data for input measure

- NASA Level1 and Atmospheric Archive and Distribution System (LAADS)
- U.S. EPA Air Quality System (AQS)

•

Description of derivation of input

An estimate of particulate concentrations may be derived using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in conjunction with a statistical analysis of US Environmental Protection Agency (EPA) air quality monitoring data.

- Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff (2004), Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmos. Environ., 38(16), 2495 2509.
- Liu, Y., R.J. Park, D.J. Jacob, Q. Li, V. Kilaru, and J.A. Sarnat. 2004. Mapping Annual Mean Ground-Level PM2.5 Concentrations Using Multiangle Imaging Spectroradiometer Aerosol Optical Thickness over the Contiguous United States. Journal of Geophysical Research 109 D22206, doi: 10.1029/2004JD005025.
- Liu, Y., J.A. Sarnat, V. Kilaru, D.J. Jacob, and P. Koutrakis. 2005. Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite Remote Sensing. Environmental Science and Technology 39: 3269–78.

Transfer Function used in initial EQI analysis

EQI input name	Units of input	Index component
51. Economic Value	(\$1,000)	Societal Utility Index

Origin of data for input measure

- USDA, 2002. "2002 Census of Agriculture." http://www.agcensus.usda.gov/
- USDA, 1997. "1997 Census of Agriculture." http://www.agcensus.usda.gov/

Description of derivation of input

The gross market value before taxes and production expenses of all agricultural products sold or removed regardless of who received the payment. It is equivalent to total sales and includes both crops and livestock. It does not include income from farm-related sources such as customwork and other agricultural services, or income from nonfarm sources.

Market Value of Agricultural Products Sold Including Direct and Organic: 2002 and 1997. 2002 Census of Agriculture. Volume 1 Chapter 2: Michigan County Level Data. http://www.nass.usda.gov/census/census02/... volume1/mi/st26_2_002_002.pdf

Transformation Function used in initial EQI analysis

Attachment C

Agenda (as conducted) [NOTE: Planned agenda is given in briefing slides. Attachment A]

9:00 - 10:30	Workshop purpose, approach & expected outcome
10:30 - 10:45	NRCS participants fill out initial questionnaire
10:45 - 11:00	Breakout session assignments
11:00 - 12:00	Breakout sessions
	Group 1: Soil & Water quality discussions
	Group 2: Land habitat & Air quality discussions
12:00 - 1:00	Lunch (on your own)
1:00 - 2:45	Review of weightings & transformations for each input with all
2:45 - 3:00	Final discussions & wrap-up

The Environmental Quality Index (EQI): Experts Meeting & Workshop USDA-NRCS Michigan State Office, East Lansing, MI

USDA-NRCS Michigan State Office, East Lansing, MI September 17, 2007

Participant List

USDA	Emails/Phone Numbers
Vicki Anderson	vicki.anderson@mi.usda.gov, 517-324-8158
Betsy Dierberger	betsy.dierberger@mi.usda.gov, 517-324-5265
Mike Gangwer	mike.gangwer@mi.usda.gov, 517-324-5167
Jerry Grigar	jerry.grigar@mi.usda.gov, 517-324-5250
Gary Rinkenberger	gary.rinkenberger@mi.usda.gov, 517-324-5266
Lynn Sampson	lynn.sampson@mi.usda.gov, 517-324-5267
Ruth Shaffer	ruth.shaffer@mi.usda.gov, 517-324-5239

MTRI	Emails/Phone Numbers
Colin Brooks	colin.brooks@mtu.edu, 734-913-6858
Tyler Erickson	tyler.erickson@mtu.edu, 734-913-6846
Nancy French	nancy.french@mtu.edu, 734-913-6844
Ben Koziol	bkoziol@mtu.edu, 734913-6849
Rick Powell	rbpowell@mtu.edu, 734-913-6861
Robert Shuchman	shuchman@mtu.edu, 734-913-6860
Brian Thelan	brian.thelen@mtu.edu, 734-913-6845
Michelle Wienert	mwienert@mtu.edu, 734-913-6870

Environmental Quality Index (EQI) component/input weighting questionnaire

Describe your area(s) of expertise:

Name (optional):

INSTRUCTIONS:

1. Complete Sections A & B of the questionnaire before the breakout session by filling in the "initial" column (*)

2. Determine a final weighting after breakout session discussions; they need not change nor comply with consensus of breakout group (**)

Section A. EQI component weighting:

 How would you weight the EQI components (groupings). Your weights should add up to 100%:

	<u>initial*</u>	<u>tinal**</u>
Soil condition		
Surface water health		
Land habitat		
Air quality		
Societal utility		
Total	100%	100%
	Soil condition Surface water health Land habitat Air quality Societal utility Total	Initial* Soil condition Surface water health Land habitat Air quality Societal utility Total

2. Do these five components (groupings) cover the resource concerns that should be included in evaluation of program effectiveness for this program? Please comment.

Environmental Quality Index (EQI) component/input weighting questionnaire

Section B. Weighting of index inputs:

Please fill out within your area of expertise and any other areas to which you would like to contribute

3. Weight the inputs for each component. Weights should add up to 100% for each component group.

	i	nitial*	final**
1 Soil	condition index		
11	Soil erosion reduction		
12	HEL treated		
13/14	Tillage practice		
15	Carbon sequestration		
	Total	100%	100%
2 Surf	ace water heath index		
21/22	Lake clarity		
23	Riparian buffers		
	Total	100%	100%
Land I	nabitat index		
31	Habitat improvement		
32	T&E&SC species counts		
33	Biodiversity/Fragmentation		
	Total	100%	100%
Air qu	ality index		
41	Ammonia (NH ₃) emissions		
42	CH ₄ emissions		
43	Particulate levels		
	Total	100%	100%
Societ	al utility index		
51	Economic value		
50	Other		
	Total	100%	100%

4. Do these inputs cover the resource concerns that should be included in evaluation of program effectiveness for this program? Please comment (use back of page if necessary)

Additional comments (use back of page):

Mitchitte Research		naire samp	ble
S	ection A. EQI component weighting:		
1.	How would you weight the EQI compone should add up to 100%:	ents (groupings). `	Your weights
		initial*	final**
1	Soil condition	25 63 	
2	Surface water health		
3	Land habitat		
4	Air quality		
5	Societal utility		
	Total	100%	100%
2.	Do these five components (groupings) constrained be included in evaluation of program? Please comment.	over the resource gram effectiveness	concerns that for this

SDA O		re sample (cont)	
Sec	tion B. Weighting of index inputs			
3. PI	lease fill out within your area of exp which you would like to contribute	ertise and any o	other areas to	
Weight the inputs for each component. Weights should add up to 100% for each component group.				
1	Soil condition index			
11	Soil erosion reduction			
12	HEL treated		a. 8	
13/1	4 Tillage practice	2		
15	Carbon sequestration	<u></u>	· · · · · · · · · · · · · · · · · · ·	
	Total	100%	100%	
I MO	DRE			
4. Do these inputs cover the resource concerns that should be included in evaluation of program effectiveness for this program? Please comment (use back of page if necessary)				
	Sec 3. P Wei 11 12 13/1 15 . M ⁽¹⁾ 4. D	Section B. Weighting of index inputs Section B. Weighting of index Section B. Weighting of index inputs Section B. Weigh	Section B. Weighting of index inputs: 3. Please fill out within your area of expertise and any of which you would like to contribute Weight the inputs for each component. Weights should 100% for each component group. <u> 1 Soil condition index 11 Soil erosion reduction 12 HEL treated 13/14 Tillage practice 15 Carbon sequestration 16 Total 100% MORE A. Do these inputs cover the resource concerns that sh included in evaluation of program effectiveness for Please comment (use back of page if necessary)</u>	

UM		Breakout slide 1 Component weighting
	 Review and discus components (group 	s weightings of the five (5) EQI bings):
	Component	Weight (consensus)
	Soil Condition Index Surface Water Health Land Habitat Index	Index
	Air Quality Index	
	Societal Utility Index	BOTH GROUPS

Michityenifed Research Institu USDA	Breakout slide 4 Weighting of index inputs (o	cont)
● V 1	Veight the inputs for each component. Weights shou 00% for each component group.	ıld add up to
<u> </u>	and habitat index	
31	Habitat improvement	
32	T&E&SC species counts	
33	Biodiversity/Fragmentation	
	Total	100%
A	ir quality index	
41	Ammonia (NH3) emissions	
42	CH4 emissions	
43	Particulate levels	<u> </u>
	Total GROUP 2	100%

	Breakout slide Weighting of index inp	5 outs (cont)			
• Wei 100	 Weight the inputs for each component. Weights should add up to 100% for each component group. 				
	netal utility index				
51 E					
50 C	Other				
Т	Fotal	100%			
 Disc 	cuss the inclusion of societal utility as a con	nponent of the EQI.			
		BOTH GROUPS			
		9			

Notes from Breakout Groups

At approximately 11AM, meeting participants divided up into two breakout groups. The notes collected are included below. The culmination of the discussions resulted in EQI weightings that are summarized in a separate attachment of this report.

Group 1: Discussions of Soil condition and surface water components of the EQI Participants: Betsy Dierberger, Mike Gangwer, Ruth Shaffer, Gary Rinkinberger (Joined late after Group 2 discussions on Air quality), Tyler Erickson, Colin Brooks (MTRI facilitator), Rick Powell (MTRI note-taker)

Weightings (both components and inputs) were discussed and compiled (see Attachment H). This group concluded that the Societal Utility component should be dropped because it was not comparable to the other components that are attempting to measure environmental change on the ground in response to NRCS conservation programs. Inclusion of this type of economic and social information should be done trough another means, potentially as a separate stand-alone "EQI"-like assessment.

Discussion of additional inputs resulted in one suggestion (adding crop rotation as an input):

Additional Inputs:

Conservation Crop Rotations

- Can be assessed using remote sensing and FSA-578 records. Preferable to model output.
- However, a component of both Soil Erosion and Tillage practice.
- Assumption = The higher the level of, the greater the environmental benefit
- The advisory group wants this added as an additional component, we agreed to develop as best as possible in the time remaining.

Other inputs discussed, but not recommended by the group for adding to the EQI at this point in time:

Wind Erosion

• Not especially applicable to Michigan. Focus on water erosion. Pathogens | BOD5 | Nutrients

Further investigation would be needed, potential exists for future

application

Pasture Quality for Riparian Buffers

Further investigation would be needed, potential exists for future

application

Stream Health

Further investigation would be needed (current focus is on lakes as water quality indicators), potential exists for future application

Group 2: Discussions of Land habitat and Air quality components of the EQIParticipants: Lynn Sampson, Gary Rickenberger (Gary moved to Group 1 after discussion of the air quality component discussion), Nancy French, Ben Koziol (MTRI facilitator), Michelle Weinert (MTRI note-taker).

Component weights were first reviewed:

- "We need a better vision for good research/modeling, so that we can rate [the Air quality] component."
- Would like flexibility in ranking past vs. future because air is a relatively new set of concerns for NRCS.
- Societal utility needs to be addressed separately, should be a stand alone model.
- Economic value from recreation and forest products should be included into the societal utility component of EQI

Air quality was discussed next:

- Particulate Levels (wind erosion and NRCS uses the wind erosion equation) Where do you draw the line and how will you know where the source is (Wisc./MI)?
 - Apr/May highest levels of wind erosion (look at it during those time periods). If it spikes in the spring, that may show agriculture. What level? PM2.5, PM10. PM2.5 is a good level (improvement of what they already have).
 - Numbers to stay static? They will probably shift.
 - Monitor it by concentration would be valuable, but the tons/year is more representative.

Land habitat was discussed next:

- Lynn Overall weights: **Hab** 40% **BioDiv** 40% **TEandSC** 20% (Threatened, Endangered, and Species of Concern)
- Listings for **T,E, & SC** may not be good reflections of poor/good habitat... Some species of concern happen due to geography N/S line. Mitchell's Satyr butterfly (poor flyers, don't spread easily) is an example of a species that have life history restrictions. A lot of species indicates a diverse habitat, but does it mean anything (quantifiable). Can you select species that are habitat related? Indicator species should come from the federal lists. Should we separate animals from plants? Lynn thinks we should consider federal list to indicate that they are threatened or endangered across a whole range. The numbers will change drastically, but using the 25 listed species would be good... Candidate species - Eastern Massasauga Rattler. Using Federally Listed species would make applying it nationally easier.
- BioDiversity/Fragmentation Given a five year timeframe might not show much change.
 We should look at areas that have been implemented by programs to see if you can see the activity using remote sensing. Think about testing WRP lands (GIS data). This will also help determine habitat improvement. CREP has filter strips geographically (Saginaw Bay). CREP minimum width is 66 ft. wide for

filter strips (enhanced program). Think about how you want to classify the Mean Edge Contrast... You'll want to weight all the different contrasting land cover types... Weight the transition with what you think it should be (soft edge, hard edge). Are the three factors weighted equally right now, yes. Edge contrast should be weighted less than the other two by Lynn's suggestion. 40/40/20? Are there better measures of fragmentation? No, Lynn thought it was fine.

								Avg
	Consensus		Pa	rticipa	nt rank	s		Rank
Component Rankings								
Soil Condition	30	30	35	25	Х	Х	30	30
Surface Water Quality	30	30	30	25	Х	Х	30	29
Land Habitat	25	20	25	25	Х	Х	30	25
Air Quality	15	20	10	25	Х	5	10	14
Sum	100	100	100	100		5	100	
Input Rankings								
1 - Soil Condition Index								
Soil Erosion	25	30	20	25	30	Х	Х	26
HEL	15	10	25	5	20	Х	Х	15
Tillage	20	20	15	25	25	Х	Х	21
Carbon	25	25	25	30	10	Х	Х	23
Crop Rotation	15	15	15	15	15	Х	Х	15
	100	100	100	100	100			
2 - Surface Water Health Index								
Lake Clarity	45	50	40	50	40	х	40	44
Vegetative Riparian Buffers	55	50	60	50	60	X	60	56
	100	100	100	100	100		100	
3 - Land Habitat Index								
Habitat Improvement	40	Х	Х	Х	Х	Х	40	40
T&E species counts	20	Х	Х	Х	Х	Х	20	20
Biodiversity/fragmentation	40	Х	Х	Х	Х	Х	40	40
	100						100	
4 - Air Quality Index								
Ammonia NH3 emissions	20	Х	33	Х	15	Х	15	21
CH4 emissions	20	Х	33	Х	10	Х	25	23
Particulate levels	60	Х	34	Х	75	Х	60	56
	100		100		100		100	

EQI Component and Input Ranking Results

Attachment I

Notes on revision of transformation functions

Transformation Function (see notes for changes)

Rate by soil (T)

NRI data gives data in ton/acre (not looking at agriculture only, but the whole county)

- (Lynn) Instead of total tons of sediment, maybe average tons per acre. Agricultural areas...
 - Comparing the LP with the UP, Ag. Land is so different. How do you normalize... Maybe collapse the different land uses.
- No change to the straight line.

EQI input name	Units of input	Index component

12. HEL land % treated Soil condition index

Transformation Function (revised)

This is progressive modeling.

Slope ok? No. Red Line supports the new slope rating, 95% to score a 1.

EQI input name	Units of input	Index component
13 &14. Tillage practice	% of conservation tillage	Soil Condition Index

Transformation Function (unchanged)

EQI input name	Units of input	Index component
15. Carbon Sequestration	Tons	Soil condition index

Transformation Function (unchanged)

Reflectance data will help with this input of the model.

Extreme change in land use may cause an extreme change in carbon

21. Lake Clarity index Surface Water Health

Transformation Function (revised)

Is there a point where the water is unnaturally clear and account for it? Updated line in red!

23. Riparian buffers % forested Surface Water Health

Transformation Function (unchanged)

Keep as a linear model.

EQI input name	Units of input	Index component
31. Habitat improvement	% of area improved	Land habitat index

Transformation Function (revised)

10% would be a better break.

EQI input nameUnits of inputIndex component

32. T&E&SC species count Land Habitat Health

Transformation Function (unchanged except axis scale)

Use federal listed species only. #'s of species to change.

33. Fragmentation (varies - see description) Land habitat index

Transformation Functions (unchanged)

Separate out the land cover types and apply the linear model.

EQI input name	Units of input	Index component
41. Ammonia Emissions	kg (month and year)	Air Quality Index

Transformation Function (unchanged – check on axis scale)

What's the natural break point? It's in concentrations.

EQI input nameUnits of inputIndex component

43. Particulate levels $\mu g/m^3$

Air Quality Index

Transformation Function (unchanged except for axis scale)

