

Great Lakes Workshop Series On Remote Sensing of Water Quality

Workshop 1 Workshop 2

March 12-13 May 7-8 Cleveland, OH Ann Arbor, MI

Larry C. Liou

Space Science Project Office NASA John H. Glenn Research Center

Steering Committee

Larry Liou (Co-Organizer)

Dr. Robert Shuchman (Co-Organizer)

Dr. Steve Greb

Dr. George Leshkevich

Dr. John Bratton

Dr. Jennifer Read

Dr. John Lekki

Lead for Freshwater Research

NASA Glenn Research Center

Co-Director

Michigan Tech Research Institute
Michigan Tech University

Hydrologist

Wisconsin Department of Natural Resources

Physical Scientist

NOAA Great Lakes Environmental Research Laboratory

Deputy Director

NOAA Great Lakes Environmental Research Laboratory

Executive Director

Great Lakes Observing System

Optical Systems Research Engineer

NASA Glenn Research Center

Goal for the Workshop Series

"Identification of gaps in science and technology for remote sensing of water quality

Featuring:

- > An emphasis on Great Lakes waters
- Building upon results of past workshops
- > Formulation of potential, short, pilot projects

Objectives for the Workshops

Workshop 1

March 12-13 Cleveland, Ohio

- Identify gaps between <u>availability</u> and <u>needs</u> of water quality data
- Identify science, technology, & missions required for satisfying the needs

Objectives for the Workshops

Workshop 2

May 7-8 Ann Arbor, MI

- Conclude identification of gaps & define research/technology/mission needs
- Foster Great Lakes remote sensing and community development and data sharing

Post Workshop Activities

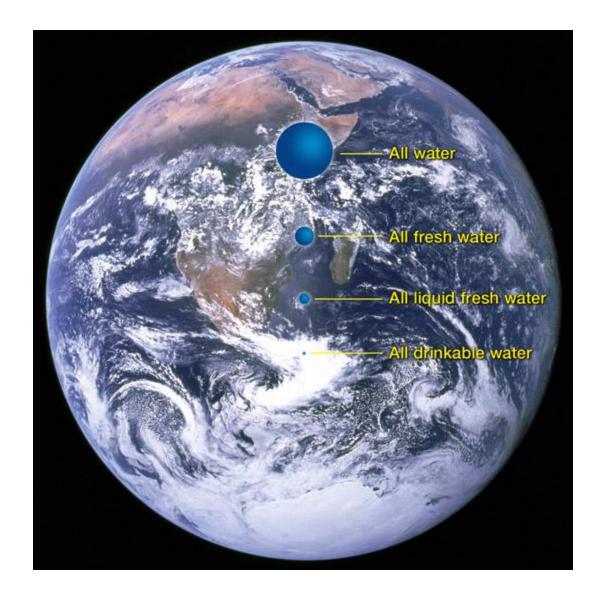
- Co-authors will be invited for a white paper
- The workshop website continues into future for further exchanges and collaboration
- Collaborate on potential, short (10-week) projects

Workshop Format

Plenary talks in morning

Lay ground information for breakout discussions in afternoon

Afternoon breakout discussion topics


- 1. Update sensor requirements
- 2. Identify gaps in remote sensing data and derived product
- Identity technology gaps (sensors, instrument, & hardware)

- New potential applications for remote sensing of inland waters
- 5. Algorithms/modeling current approaches: Status, strengths, and deficiencies
- 6. Platform/mission gaps and recommendations

Reasons for Freshwater Research...

Water Research

- Water & Energy Cycle
- Water Resource
 - Quantity
 - Quality
 - Decisions/Management
 - Capacity Building

Water Research

- Coordinate water quality research regionally, nationally, & internationally
- Help organize the Great Lakes and other remote sensing communities and activities
- Coordinate in-situ (air, water surface & under, and ground stations) and remote sensing measurements
- Develop instrument for remote sensing, airborne, in-situ, and in-water
 - ✓ Test and validation

The Great Lakes...

- Contain 18% of the world's fresh surface water and 95% of the U.S. supply
- Provide drinking water to over 40 million people
- Have over 500 recreational beaches
- Generate \$4 billion in commercial and fishing business

http://www.glerl.noaa.gov/res/Centers/HumanHealth/

GRC Air Fleet for Arial Remote Sensing

Aerial Monitoring Enables & Enhances measurement capabilities

- In Situ many physical measurements at a point but poor spatial coverage
- Satellite Measurements over a large area but poor / marginal temporal coverage
- Aerial Monitoring is Complementary
- More frequent measurement opportunities to understand rapidly changing blooms
- Lower concentrations potentially detectable because of higher spatial and spectral resolution
- Can quickly locate areas of interest and guide in situ measurements
- Easily tailor instrumentation to suit the problem

Observation Method	Observation Frequency	Resolution
Satellite Landsat TM	Once every 8 days	30 meter
Satellite MODIS	2/day	1km
Satellite MERIS	Every 2-3 days	300m
Satellite SeaWiFS	1/day	1km
Research Vessel In situ	Flexible	Point
Aerial Monitoring	As Needed	1- 5 m (Variable)

Questions? Inputs?

Larry Liou NASA GRC (216) 977-7433 Larry.C.Liou@nasa.gov