Workshop Summary

Optical Remote Sensing of Coastal and Inland Waters: Challenges and Recommendations

Colleen Mouw¹ and Steve Greb²

¹Michigan Technological University ²Wisconsin Department of Natural Resources

Photo credit: Chris Strait

http://www.ssec.wisc.edu/meetings/ciw/

Acknowledgements

The views presented were developed from the contributions of all workshop participants.

Workshop Advisory Committee:

Paul DiGiacomo, Simon Hook, Chuanmin Hu, Zhongping Lee, Ru Morrison

Review Co-authors:

Steve Greb, Dirk Aurin, Paul DiGiacomo, Zhongping Lee, Michael Twardowski, Caren Binding, Chuanmin Hu, Ronghua Ma, Timothy Moore, Wesley Moses, Susanne Craig

Publications

MEETINGS

Inland and Coastal Waters

Workshop for Remote Sensing of Coastal and Inland Waters; Madison, Wisconsin, 20–22 June 2012

Mouw, C. B., & Greb, S. (2012). EOS Trans. AGU, 93(39), 375.

Mouw, C.B., S. Greb, D. Aurin, P. DiGiacomo, Z. Lee, M. Twardowski, C. Binding, C. Hu, R. Ma, T. Moore, W. Moses, and S. Craig, Optical remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. *Remote Sensing of Environment, in revision*.

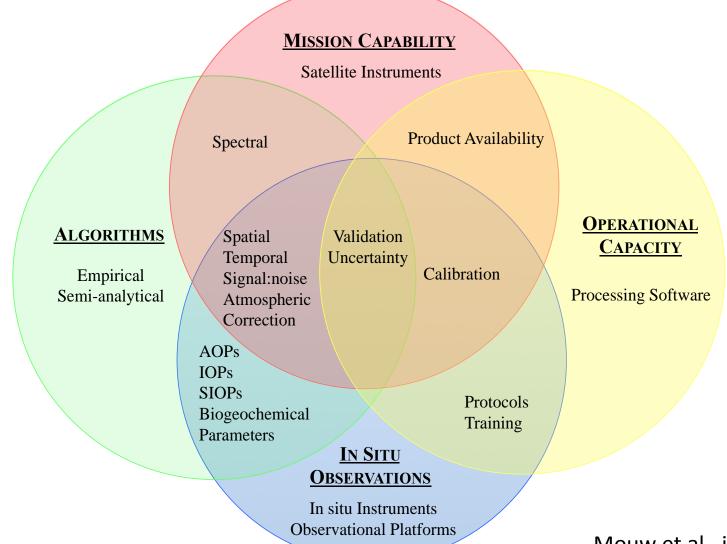
Motivation

- Almost all coastal and inland research and operational activities require ocean color remote sensing capabilities that are not routinely available (NRC, 2011).
- Progress has been limited by the capability of the satellite sensors in orbit. To answer questions focused on coastal and inland waters, one is left to adapt existing capability to systems in which they were not intended.
- The optical complexity requires improved spectral resolution while the physical processes acting require smaller spatial and temporal scales than are currently in orbit.

AIM: Highlight short- and long-term efforts required to ensure that coastal and inland remote sensing is enabled to their full potential.

Spatial and Temporal Resolution

Mouw et al., in revision


Workshop for Remote Sensing of Coastal and Inland Waters

University of Wisconsin - Madison 20-22 June 2012

The goals of the workshop were to:

- Provide an overview of the state of the science.
- Identify pressing needs for the advancement of remote sensing in optically complex waters.
- Establish an inventory of unresolved issues.
- Provide scientific basis/guidance for the next generation of remote sensing of coastal and inland water including a framework and recommendations for future research directions.
- Foster the development of new collaborations.

Integration Schematic of the Fundamental Elements of Satellite Remote Sensing

Mouw et al., in revision

Gap Analysis

Outline of the existing, desired and needed resources for the primary elements required for remote sensing of coastal and inland waters.

	Previous/Existing	Desired	Needed
Mission Capability	300 m – 1 km, multispectral, polar orbiting.	100 – 500 m, hyperspectral, polar orbiting and geostationary with wide dynamic range and high signal to noise to allow for detection across broad parameter ranges.	Investment in geostationary and coastal/inland focused missions to optimize coverage, resolution and availability of new and improved measurements.
Algorithms	Multiple approaches optimized to different datasets for various regions.	A menu of algorithm choices with clear information about their respective strengths and limitations.	 Coordinated algorithm comparison to condense and clarify strengths and limitations and identify fit for purpose options. Research into biogeochemical property variability and relationships with optical properties.

	Previous/Existing	Desired	Needed
<i>In Situ</i> Observation	multi-agency efforts with data going to many different data repositories, if any and often with limited public data access.	 Limited number of centralized publically- available data repositories ensuring access to consistent high quality data. Protocols that cover a dynamic range of variability. At minimum, collect coincident observations of the standard suite of parameters (Table 4); if possible collect a broader suite of data products. 	 Invest in technology development to address instrumentation gaps; such a sensors designed for high turbidity waters, and hyperspectral bb. Clear, consistent and coordinated data sharing policies across agencies. Update protocols. NOMAD-like dataset for coastal and inland waters. Investment in sustaining and increasing observation networks.

Operational• Global - open• Routine and sustained• Ongoing coordinated field	
Capacity ocean mission delivery of high-quality observations for each	
/product operational color data coastal/inland region ¹ to	
heritage. in NRT and delayed ensure continual validation	
• Tailored products modes for coastal and • Identification of best	
available for inland waters. performing practices and	
some regions and • Development of approaches and continual	
applications. merged remote sensing evaluation as new approach	hes
• Support and and integrated remote are developed.	
training often sensing-in situ • Facilitate user data/produc	t
geared more to (information) products. access and utilization,	
expert users. • Development of robust including development of	
 Limited access to color-derived proxies application portals. 	
some satellite and indicators. • Expanded user outreach and	d
color data • Optimal algorithms training.	
streams, identified for most/all • Free, open and timely acces	55
especially in NRT coastal and inland (NRT or other) to all satelli	te
mode. regions with color data streams.	
limitations and • Implement user-driven	
uncertainties / errors community of practice for	
clearly indicated. remote sensing of coastal a	nd
inland water to facilitate	
communication, best practi	ces
and harmonization efforts.	

Mouw et al., in revision

Standard Observations

Recommended standard *in situ* observations for algorithm development, refinement and validation.

	Minimum Parameters	Additional Parameters
AOPs	$\underline{R_{rs}}(\lambda), \underline{K_d}(\lambda), \underline{Z_{eu}} \text{ (or } Z_{10\%})$	
IOPs	$\underline{a}_{t}(\lambda), \underline{a}_{CDOM}(\lambda), \underline{a}_{NAP}(\lambda), \underline{a}_{ph}(\lambda), \underline{b}_{bp}(\lambda)$	$\underline{b}_{bp,NAP}(\lambda), \underline{b}_{bp,ph}(\lambda)$
Biogeochemical	[Chl], TSM, OSM, ISM, DOC	HPLC pigments, primary
		productivity

*spectral parameters should be observed at the highest spectral resolution allowed by the instrumentation or at 2-5 nm increments.

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
1	In Situ Observations: Establish limited number of centralized publically available data repositories.	In Situ Observations: Invest in data collection in complex waters and the characterization of SIOP variability.	<u>Mission Capability</u> : Ensure satellite mission capability with flexibility to handle appropriate sensitivity,
	<u>Operational Capacity:</u> Provide more training opportunities for non- specialists.	<u>Operational Capacity:</u> Work to ensure free, open and timely (NRT or other) access to all satellite color data streams.	spectral, spatial and temporal scales found in coastal and inland systems. Move toward sensor agnostic hyperspectral design that could be resampled for various applications.

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
2	In Situ Observations:	Operational Capacity:	
	Establish standard	Identify best practices	
	measurements for any	and approaches for use	
	in situ campaign	of color remote sensing	
	supporting remote	data in applications.	
	sensing. Update	Develop decision	
	community (NASA et	support information and	
	al.) protocols to	tools for algorithm and	
	include consideration	product selection.	
	of the dynamic range of	Develop application	
	properties encountered	portals to facilitate	
	in these systems and	access and fit for	
	extend to include	purpose use of color	
	biogeochemical	remote sensing data.	
	properties.		

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
3	Operational Capacity: Establishment of a user-driven community of practice for remote sensing of coastal and inland waters to link freshwater and marine, satellite and in situ data, data providers and users, science and societal considerations, to work collaboratively with IOCCG, space agencies et al.	<u>Algorithms</u> : Perform an algorithm intercomparison for consolidation and/or simplification of algorithm choices. <u>In Situ Observations:</u> Create a 'NOMAD-like' dataset with coincident observations for the inland/coastal waters.	

Recommendation Summary

Interest in inland and coastal waters cross numerous scientific, management and societal realms. Recommend develop of a professional identity that encompasses the intersection of communities, lead by a dedicated staff person.

- Mission Capability: Ensure planned geostationary missions proceed.
- In Situ Observations: Data sets should be as comprehensive as possible (temporal, spatial, cover large dynamic ranges), moved toward autonomous platforms, protocol improvement, centralized database regardless of funding agency.
- **Algorithms:** A comparison or 'round robin' exercise is recommended to document algorithms fit for use, in addition to consolidation and simplification of the range of algorithm options.
- **Operational Capacity:** Educate the user community who are interested in applying satellite products to their study region or application but are not trained in optics and remote sensing techniques. Panel of experts to provide recommendations on the 'fit for purpose'.