Scour Modeling and Analysis Jerry R. Richardson, Ph. D., P.E., D. WRE Associate Professor Civil Engineering UMKC Senior Water Resource Engineer, WRS

Presented to:

Michigan Department of Transportation Bridge Scour Technology Transfer Workshop

October 5, 2017

Objectives

- Advocate for more common usage of advanced modeling for Bridge Scour analysis.
- Outline a strategy for efficient reduction of uncertainty in hydraulic design using the three-level approach
- List advantages to integrated physical/numeric modeling

John Weeks Bridge Greenville MS US 82/287

Level 3 Analysis Tools

- Two-Dimensional hydraulic models
- Physical models
- 3-dimensional and Sediment Transport models

Why are these not used more?

Common beliefs:

- Expensive
- Requires special equipment
- Requires a large laboratory

Hec-18-20 Three-level approach

More emphasis on using 2-dimensional models as the technology has matured. Also guidelines on when to use have been developed:

FHWA HDS 7 -"Design of Safe Bridges"

- Improved guidance for 2-D modeling
 - Complex flow patterns
 - One-dimensional model assumptions are violated
 - Difficulty in visualizing the flow

Criteria for Selecting Hydraulic Models (Web- Only Document 106, NCHRP 2006).

- Improved guidance for 2-D modeling
- Provides for a selection worksheet.

Table 4.1. Bridge Hydraulic Modeling Selection.		
Bridge Hydraulic Condition	Hydraulic Analysis Method	
	One-Dimensional	Two-Dimensional
Small streams	•	
In-channel flows	•	
Narrow to moderate-width floodplains	•	
Wide floodplains		•
Minor floodplain constriction	•	
Highly variable floodplain roughness		•
Highly sinuous channels		•
Multiple embankment openings	D/O	•
Unmatched multiple openings in series	▶/○	•
Low skew roadway alignment (<20°)	•	
Moderately skewed roadway alignment (>20° and <30°)		•
Highly skewed roadway alignment (>30°)	0	•
Detailed analysis of bends, confluences and angle of attack	0	•
Multiple channels		•
Small tidal streams and rivers	•	
Large tidal waterways and wind-influenced conditions	0	•
Detailed flow distribution at bridges		•
Significant roadway overtopping		•
Upstream controls	0	•
Countermeasure design	Þ	•
 well suited or primary use possible application or secondary use unsuitable or rarely used D/O possibly unsuitable depending on application 	1	1

Other level 3 methods:

Physical Models

- Froude Scale
- Rigid Bed
- Moveable Bed
- **3-Dimensional Models**

Sediment Transport models

Currently there is little additional guidance to recommend These techniques.

"Physical First" Strategy

Physical First Advantages

Economics

- Client " buy in"
- Unanticipated findings
- Not just for large projects

North Platte River at State Line Weir

Physical Model Scaling

Parameter	Prototype to Model Scale Ratio
Vertical length	20:1
Horizontal Length	70:1
Time (hydraulic)	16.3:1
Time (sediment)	1,444:1
Velocity	4.5:1
Flow Rate	6300:1
Froude No.	1:1
Slope	1:3.5

Step 1: Existing conditions

Unintended findings: the Ah ha moment

Step 1: Refined Design Conditions

Step 2:Two-dimensional model

Step 3: Final Design and construction

Wow: Hydraulics were insensitive to bridge geometry.

63rd Street Bridge over Brush Creek \$3 to \$1.5 million

Physical First Advantages

Economics

60 % cost reductions

Client " buy in"

Tactile observable

Unanticipated findings

The Ah- ha moment

Other Applications

- Scour conditions during construction.
 - Large obstructions such as work platforms and coffer dams can have significant scour during construction.

Other ApplicationsParallel bridges

Conclusions

- Significantly more hydraulic tools available.
- 2-dimensional modeling should be commonly used as a part of level 2.
- More robust analysis decreases cost by reducing uncertainty.
- Integrated physical/numeric often yields significant cost savings.

Jerry R. Richardson Ph.D., PE, D.WRE Associate Professor, Computing and Engineering, University of Missouri Kansas City Senior Water Resources Engineer WRS

Room 370 J RHFH 5110 Rockhill Road Kansas City, Missouri 64110 913-485-8501 <u>Scourdoc@gmail.com</u> <u>RichardsonJ@umkc.edu</u>

Water Resources Solutions