OBSERVATION METHOD: A NEW TOOL FOR THE BRIDGE SCOUR ENGINEER

Jean-Louis BRIAUD

Distinguished Professor Texas A&M University and President of FedIGS

Acknowledgements

- Texas DOT (John Delphia)
- Massachusetts DOT (Rich Murphy)
- Dr. Chen, Dr. Oliveira
- Anand Govindasamy, Dekay Kim, Inwoo Jung

SCOUR DEPTHS

1 BRIDGE FAILS EVERY 10 DAYS

SCOUR = NO.1 KILLER OF BRIDGES

IT IS GETTING BETTER

RESEARCH PAYS OFF

PROBLEM

- Comparison between measured and calculated scour depths by current method exhibits a lot of scatter
- Comparison between measured and calculated scour depths by current method shows excessive conservatism on the average

HEC-18 RESULTS

HEC-18 RESULTS

OMS-TEXAS & MASSACHUSETTS

J.-L. Briaud, Texas A&M University

Jean-Louis Briaud – Texas A&M University

EFA - EROSION FUNCTION APPARATUS

POCKET ERODOMETER PET test result = Depth of hole in mm after 20 squirts at 8 m/s

\$0.49 at WalMart

Jean-Louis BRIAUD – Texas A&M University

EROSION CLASSIFICATION

-12.0 -14.0
-16.0
-18.0
-20.0
-22.0
-24.0
20.0

OBSERVATION METHOD FOR SCOUR

 Developed at Texas A&M University for TxDOT

 Because of experience with calculating scour depths that seemed unreasonably large compared to observations by inspectors in the field

OBSERVATION METHOD FOR BRIDGE SCOUR

- Step 1: Observe maximum scour depth = Zmo
- Step 2: Find out the maximum flood the bridge has been subjected to : Collect gage data, RI from TAMU-OMS, Qmo/Q100, Vmo/V100
- Step 3: Extrapolate field measurements to predict future scour depth

Zfut / Zmo = F (Vfut / Vmo)

• Step 4: Compare future scour depth to foundation depth (pier) Zfut < Zfound / 2

Step 1: Observe maximum scour depth = Zmo

930 Flow Gages in Texas

Maximum flood analysis

Maximum RI map between 1970 and 2005

Automated with TAMU-FLOOD software

Maximum RI map between 1920 and 2005

Automated with TAMU-FLOOD software

GETTING Q_{MO}/Q_{FUT} FROM RI_{MO}/RI_{FUT}

GETTING V_{MO}/V_{FUT} FROM Q_{MO}/Q_{FUT}

$\frac{V_{\rm mo}}{V_{100}} = \left(\frac{Q_{\rm mo}}{Q_{100}}\right)^{0.25 \sim 0.4}$

Wide channel = 0.4 Narrow channel = 0.25 Most likely value = 0.35

GETTING THE VELOCITY RATIO FROM THE RECURENCE INTERVAL RATIO

$$\left(\frac{v}{v_{100}}\right) = \left(\frac{Q}{Q_{100}}\right)^{0.35} = \left(\left(\frac{RI}{RI_{100}}\right)^{0.261}\right)^{0.261} = \left(\frac{RI}{RI_{100}}\right)^{0.091}$$

EVALUATING TAMU-FLOOD PRECISION

PRECISION OF TAMU-FLOOD

Step 3: Extrapolates field measurements to predict future depth

$$Z_{fut} / Z_{mo} = F (V_{fut} / V_{mo})$$

•Known = Z_{mo} and V_{mo}

•Choose V_{fut}

•Obtain Z_{fut} from charts

Step 3: Extrapolates field measurements to predict future depth Zfut

$$Z_{fut} / Z_{mo} = F (V_{fut} / V_{mo})$$

The Z-Future Charts were developed by performing a large number (~350,000) of HEC-18 Clay simulations using

- -Varying pier, contraction & Abutment scour geometry
- -Varying soil conditions
- -Varying velocities
- -Varying age of the bridge

Step 3: Extrapolates field measurements to predict future scour depth Zfut/Zmo = Vfut/Vmo

Step 3: Extrapolates field measurements to predict future scour depth Zfut/Zmo = F(Vfut/Vmo)

Zfuture Chart-CategoryIII-Abutment

Zfut/Zmo

Vfut/Vmo

Step 4: Compare future scour depth to foundation depth Zfut < Zfound / 2

OMS-TEXAS & MASSACHUSETTS

Limitations

- Requires a good network of flow gages (and rain gages). Interpolation could be refined
- Cannot be used directly for new bridges but lessons learned (database) can be useful for new bridges
- Estimate in filling (USGS research and a TxDOT survey have found that it was rare (10% of the time) and ranged from 2 to 4 ft)
- Not yet developed for layered soil (be careful with thin hard layer over soft layer)

Advantages

- Valuable tool to prioritize bridge repairs, countermeasure decisions, asset management
- Can serve as an input to FHWA risk approach
- Part of the practical design concept
- No need for erosion testing
- Actual soil
- Actual flow history
- Actual geometry
- Based on observed measurements

COMPARISON

HEC 18

OMS

DIFFERENCES BETWEEN HEC 18 AND OBSERVATION METHOD

<u>HEC 18</u>

- Flume tests (scale pb?)
 Full scale
- Wrong worst soil (Fine sand)
- Simplified geometry
- Simplified single velocity

Right soil

- Exact geometry
- Exact velocity hydrograph

CITY: SHEFFIELD HIGHWAY: MAPLE AVE RIVER: WATER HOUSATONIC RIVER

CITY: DEERFIELD HIGHWAY: US 5 RIVER: WATER DEERFIELD RIVER

CITY: BUCKLAND HIGHWAY: STATE ROUTE 2 RIVER: DEERFIELD RIVER

- 1. TAMU-OMS significantly decreases the scatter between measured and calculated scour depths
- 2. TAMU-OMS eliminates the excessive conservatism
- 3. TAMU-OMS is a valuable new tool for the bridge scour engineer (e.g.: can be used to prioritize repairs, to evaluate risk, as a management tool, for practical design)
- 4. TAMU-OMS is available for all states in the country