REAL ANALYSIS QUALIFYING EXAM

August 2025

Submit complete solutions for exactly 5 of the following 6 problems.

- 1. (a) State the definition of "supremum": We say that $\sup S = a$ if ...
 - (b) Let S and T be nonempty subsets of \mathbb{R} , with $S \subset T$. Prove that $\sup S \leq \sup T$. (Note: one or both of the suprema might be infinite.)
- 2. (a) Prove that all bounded monotone sequences converge.
 - (b) Prove that every sequence has a monotonic subsequence.
 - (c) State and prove the Bolzano-Weierstrass theorem.
- 3. (a) Let f be a real-valued function on (a, b), with $x_0 \in (a, b)$. Complete the definition: "f(x) is continuous at x_0 if ..."
 - (b) Prove that the function $g(x) = \frac{1}{1-x}$ is continuous on (0,1).
 - (c) Let f be a real-valued function on (a, b). Complete the definition: "f(x) is uniformly continuous on (a, b) if ..."
 - (d) Prove that the function $g(x) = \frac{1}{1-x}$ is not uniformly continuous on (0,1).
- 4. State the Mean Value Theorem. Use it to prove the inequalities

$$\frac{h}{1 + (x+h)^2} < \arctan(x+h) - \arctan x < \frac{h}{1+x^2}$$

for all positive x and h.

5. Let $f:(a,b)\to\mathbb{R}$ be a continuous function, let $c\in(a,b)$, and define $F:(a,b)\to\mathbb{R}$ by

$$F(x) = \int_{c}^{x} f(t) dt.$$

Prove that F is differentiable and F'(x) = f(x) for all $x \in (a, b)$.

6. Prove that convergent sequences are Cauchy sequences.