Qualifying Examination Linear Algebra

Fall 2025

Instructions:

- There are two parts in the exam. Solve <u>only three out</u> of the four problems in each part. Indicate which three problems you have chosen to solve. Only first three solved problems in each part will be graded.
- Start each problem on a new sheet of paper.
- Define all variables that are introduced in solving the problems.
- No calculators or electronic devices are allowed.
- Justify all answers and show all work.
- Each problem carries the same weight.
- Part 1. Solve three out of the four problems.
 - 1. Let $V = \mathbb{R}^4$, and consider the subspace W spanned by the vectors $\mathbf{v}_1 = (1, 2, -1, 0)$, $\mathbf{v}_2 = (0, 1, 2, 3)$, and $\mathbf{v}_3 = (2, 5, 0, 3)$.
 - (a) Determine if the vectors, v_1 , v_2 , v_3 are linearly independent.
 - (b) Find a basis and the dimension of W.
 - (c) Find a vector in \mathbb{R}^4 that is orthogonal to W.
 - 2. Consider the matrix $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$.
 - (a) Find eigenvalues and eigenvectors of A.
 - (b) Compute A^{50} using the diagonalization of A.
 - (c) Is A diagonalizable? Justify your answer.
 - 3. Let $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$, which is symmetric.

- (a) Compute the eigenvalues and the corresponding eigenvectors of A. Show that the eigenvectors corresponding to distinct eigenvalues are orthogonal.
- (b) Find an orthogonal matrix P and a diagonal matrix D such that $P^TAP = D$.
- 4. Find the least-squares solution of Ax = b where:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 0 \end{pmatrix}.$$

- (a) Set up and solve the normal equations $A^T A x = A^T b$.
- (b) Verify that the solution minimizes the error ||Ax b||.
- Part 2. Solve three out of the four problems.
 - 1. Let A be a positive definite real matrix. Show that
 - (a) There exists an invertible real matrix B such that $A = B^T B$.
 - (b) There exists a positive definite real matrix B such that $A=B^2$.
 - 2. Let V be an inner product space over a field \mathcal{F} .
 - (a) Let $\{u_1, \dots, u_m\}$ be a basis of V, Show that the Gram matrix $G = (\langle u_i, u_j \rangle)_{m \times m}$ is invertible.
 - (b) Let U be another inner product space over the field \mathcal{F} , and $T:U\to V$ be a linear operator. Show that $\operatorname{kernel}(T)\cap\operatorname{range}(T^\star)=\{\vec{0}\}$, where T^\star is the adjoint operator of T, i.e. $\langle T(u),v\rangle=\langle u,T^\star(v)\rangle$.
 - 3. Let \mathcal{F} be a number field, $A \in \mathcal{F}^{m \times n}$, and $B \in \mathcal{F}^{n \times k}$. Show that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n + \operatorname{rank}(AB)$.
 - 4. Given finite dimensional linear spaces over a number field \mathcal{F} : $V_0 = \{0\}, V_1, \dots, V_n, V_{n+1} = \{0\}$. Let $\phi_i : V_i \to V_{i+1}$ be linear transforms satisfying $\operatorname{kernal}(\phi_{i+1}) = \operatorname{range}(\phi_i),$ $i = 0, \dots, n-1$. Show that $\sum_{i=1}^{n} (-1)^i \operatorname{dim}(V_i) = 0$.