ALGEBRA QUALIFYING EXAM

Fall 2025

Instructions. Solve 2 of the 3 problems from each of the four sections. Clearly indicate which problems you wish to have graded. For full credit you must provide justification of all your answers.

Group Theory

- 1. Fix a group G, and define the map $\varphi:G\longrightarrow \operatorname{Aut}(G)$ by $\varphi(g)=\gamma_g$ (conjugation by the element g). Prove that:
 - a) φ is a group homomorphism.
 - **b)** The kernel of φ is the center of G.
 - c) The image of φ is a normal subgroup of Aut(G).
- **2.** Let G be a group of order pq where p and q are distinct primes with p < q and p does not divide q-1. Use Cauchy's Theorem and Lagrange's Theorem to show that G is cyclic.
- **3.** Describe the action of the symmetric group S_4 on the set of subsets of size 2 from $\{1,2,3,4\}$, and compute the number of orbits using Burnside's Lemma. (Be sure to use Burnside's Lemma; do not simply list the orbits).

Linear Algebra

- **4.** Let k be a field, and V and W two vector spaces of dimension 2025 over k. Show that V and W are isomorphic.
- **5.** Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, compute its characteristic polynomial and trace, and determine if it is diagonalizable.
- **6.** Let $V = \mathbb{R}^4$ be a vector space over \mathbb{R} , and consider the set $S = \{(1,0,1,0),(0,1,1,1)\} \subset V$.
 - a) Prove that S is linearly independent.
 - **b)** Extend S to a basis for \mathbb{R}^4 .
 - c) Define a linear transformation $T:\mathbb{R}^4 \to \mathbb{R}^4$ by

$$T(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_2 - x_3, x_3 + x_4, x_4 - x_1).$$

Find the matrix representation of T with respect to the basis you constructed in part (b).

Ring Theory

For the next problems assume all rings are commutative with identity.

- 7. Let A be a Boolean ring (i.e., all elements $a \in A$ satisfy $a = a^2$).
 - a) Determine all units and all zero-divisors of A.
- **b)** Show that every finitely generated ideal of A is principal. (*HINT*: Prove that the ideals (r,s) and (r+s-rs) coincide, for any $r,s\in A$.)
- **8.** Let S be a ring whose proper ideals are all prime. Show that S is a field.
- **9.** State and prove the First Isomorphism Theorem for rings, and apply it to show that

Fields

- **10.** Let D be a domain that contains a field k. Prove that:
 - a) D is a k-vector space.
 - **b)** If D is finite dimensional over k, then D is a field.
- **11.** Let $\alpha = \sqrt{2} + \sqrt{3} \in \mathbb{R}$.
 - a) Prove that α is algebraic over $\mathbb Q$ and find its minimal polynomial.
 - **b)** Determine the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$.
- **c)** Determine a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q} , and express α^3 and α^{-1} as linear combinations of those basis elements.
- 12. Determine all possible field homomorphisms from K to F, where:
 - a) $K = \mathbb{C}$ and $F = \mathbb{R}$.
 - **b)** $K = \mathbb{R}$ and $F = \mathbb{Q}$.
 - c) $K = F = \mathbb{Q}$.