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Abstract

Unified Parallel C (UPC) is an extension of the C programming language that
provides a partitioned shared-memory model for parallel programming. On such plat-
forms, a simple assignment operation can perform remote memory reads or writes.
Nevertheless, since bulk transfers of data are more efficient than byte-level copying,
collective operations are needed, and as a result a specification for a standard set of
collective operations was proposed in 2003. This specification is now part of the UPC
V1.2 language specification. However, these operations have limited functionality.
This thesis work explores ways to overcome these limitations by proposing a set of
extensions to the standard collective relocalization operations. The proposal includes
performance and convenience improvements that provide asynchronous behavior, an
in-place option, runtime implementation hints and subsetting feature. Also proposed
are the new one-sided collective operations which are alternatives to the traditional
MPI way of looking at collective operations.

A comparative performance analysis is done to ensure that the reference imple-
mentation of the extended collective operations perform within reasonable bounds of
that of the standard collective operations. This provides necessary support to adopt
these extensions as they provide greater flexibility and power to the programmer with
a negligible performance penalty.
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1 Introduction

1.1 Parallel Computing

Advances in microprocessor technology have revolutionized uniprocessor systems and yielded
clock speeds of over 3.0 GHz. As a result, an observer may be inclined to surmise that
such a system is capable of handling any computational need. However, applications such
as weather forecasting, human genome sequencing, virtual reality, etc., continue to ex-
ceed the capabilities of such computer systems and require more computational speed than
presently available in a uniprocessor system. It seems that whatever the computational
speed of current processors may be, there will always be applications that require still
more computational power. It is this demand for computational speed that leads to parallel
computing.

The basic idea of parallel computing is simple: divide a big task into multiple smaller
subtasks and execute them in parallel on different processing elements. The objective is to
reduce the total time spent on the whole task.

Parallel computing platforms can be organized from two different perspectives: the
physical organization (or the architectural model), which refers to the actual hardware
organization of the platform, and logical organization (or the programming model), which
refers to a programmer’s view of the platform as provided by the language.

1.2 Architectural Model

From an architectural perspective there are two types of parallel platforms: shared memory
and distributed memory.

1.2.1 Shared Memory Platforms

In a shared memory platform, there is a single physical memory that all processors have
access to (Figure 1). The time taken by a processor to access any memory word in such a
system is identical. As a result, this type of platform is also classified as uniform memory
access (UMA) multicomputer.

Processing
Element 1

Processing
Element N

Processing
Element 0

Shared Memory

Figure 1: Shared memory architecture



1.2.2 Distributed Memory Platforms

In a distributed memory platform, each processor has its own private memory and an in-
terconnection network (Figure 2). The time taken by a processor to access certain memory
words in such a system is longer than others. As a result, this type of platform is also
classified as non-uniform memory access (NUMA) multicomputer.
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Figure 2: Distributed-memory architecture

1.3 Programming Model

From a programmer’s perspective, there are two types of parallel platforms: shared address
space and message passing.

1.3.1 Shared Address Space Platforms

The shared address space view of a parallel platform presents a common address space that
is accessible to all processors. Processors interact by modifying data stored in this shared
address space. This model is natural for shared memory systems (Figure 1). However,
it can be implemented on distributed memory systems (Figure 2) through the use of a
runtime system (RTS). The RTS emulates a shared address space architecture (Figure 3)
on a distributed memory computer. Since accessing another processor’s memory requires
sending and receiving messages, this is costly. To cut the cost, algorithms exploit locality,
structuring data and computation accordingly. The presence of a notion of global memory
space makes programming in such platforms easier.

1.3.2 Message Passing Platforms

The logical machine view of a message-passing platform consists of multiple processing
nodes, each with its own exclusive address space (Figure 2). On such platforms, interac-
tions between processes running on different nodes are accomplished using interprocessor
messages. This exchange of messages is used to transfer data and to synchronize actions
among the processes. This model is natural for distributed memory architecture (Figure 2).
However, emulating this model on a shared address space computer is not difficult. This
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Figure 3: Distributed shared-memory architecture

can be done by partitioning the shared address space and assigning one equivalence class
exclusively to each processor (assuming uniprocessor nodes).

The message-passing programming paradigm is one of the oldest and most widely used
approaches for programming parallel computers. However, shared-address-space program-
ming is gaining popularity, mainly because of programming simplicity.

In a multiprocessor system, each processor has a separate program. Each of these pro-
grams generate a single instruction stream for each processor, which operates on different
data. This type of computer is known as multiple instruction stream-multiple data stream
(MIMD). Both the shared memory and the distributed memory multiprocessors fall in this
category. A simple variant of this model, the single program multiple data (SPMD), is
widely used. SPMD relies on multiple instances of the same program executing on differ-
ent data. Examples of such parallel platforms are Sun Ultra Servers, multiprocessor PCs,
workstation clusters, and IBM SP.

2 UPC

Unified Parallel C (UPC) is an extension of the C programming language designed for par-
allel programming. It provides a “partitioned” shared-memory model to the programmer.
One advantage of such a model is that it allows for exploitation of locality and eliminates
the need for message passing.

UPC uses an SPMD model of computation. The programmer sees the UPC program to
be a collection of threads that share a common global address space. Each thread has its
own private address space and part of the global address space which it can access as local.
It is more efficient for a thread to access its own part of the global address space than some
other thread’s (Figure 4).

Any valid C program is a valid UPC program. In order to express parallelism, UPC
extends ISO C 99 in several areas. It provides a “shared” type qualifier, which is similar
to const, volatile, etc. It also carries a positive integer value with it that defines the
shared block size. It describes the way in which the shared object is to be distributed over
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Figure 4: UPC’s memory architecture

the threads.
The language defines two constants, MYTHREAD and THREADS. One is used to distin-

guish between the threads of an UPC program, and the other is to represent the amount of
parallelism available to a program. The value of THREADS can be set at compile time or at
run-time.

2.1 History

UPC is a product of many years of independent and collaborative work done by leading
academic, industrial and government research groups. Immediate predecessors of UPC
are Parallel C Processor (PCP)[9], developed by Brent Gorda, Karen Warren, Eugene D.
Brooks III at the Livermore Lawrence National Laboratory in 1991., Split-C[7], developed
by David E. Culler, Kathy Yelick et. al. at the University of California in 1993, and AC[6],
developed by Jesse M. Draper and William Carlson at the IDA Supercomputing Research
Center in 1995. All of these languages are parallel extensions to ISO C 99. UPC is a
synthesis of these three languages (hence the name “unified”). For a comparative study of
these languages and UPC, see [10].

Similar languages of current time are Co-array Fortran[5], a small extension of For-
tran 95, and Titanium[14], an explicitly parallel dialect of Java, developed at University of
California - Berkeley. All of these languages have an SPMD memory model.

2.2 Implementations

The first version of the UPC compiler was released in May 1999. Today there are sev-
eral compilers available which includes GCC for the Cray T3E[2], HP’s compiler for the
Compaq AlphaServer[3], University of California-Berkeley’s UPC[1], and Michigan Tech-
nological University’s MuPC runtime system[4].



2.3 Terms and definitions

The following terms and definitions apply for the purpose of this document. Other terms
are defined as footnotes where appropriate.

1. Collective:
A constraint placed on some language operations which requires all threads to exe-
cute them in the same order. Any actual synchronization between threads need not
be provided. The behavior of collective operations are undefined unless all threads
execute the same sequence of collective operations.

2. Thread:
According to the UPC Language Specification[12], a thread is “an instance of exe-
cution initiated by the execution environment at program startup”. This means that
processes in UPC are known as threads.

3. Shared:
An area of memory in the shared address space. This area can be accessed by all
threads. The keyword shared is used as a type qualifier in UPC.

4. Private:
An area of memory in the local address space. Only the thread which owns the local
address space can access it.

5. Affinity:
A logical association between shared objects and threads. Each element of data stor-
age that contains shared objects has affinity to exactly one thread.

6. Phase:
An unsigned integer value associated with a pointer-to-shared which indicates the
element-offset within a block of shared memory. Phase is used in pointer-to-shared
arithmetic to determine affinity boundaries.

7. Pointer-to-shared:
A local pointer pointing to a shared object.

8. Pointer-to-local:
A local pointer pointing to a local object.

9. Single valued:
An argument to a collective function which has the same value on every thread. The
behavior of the function is otherwise undefined.



2.4 Language Basics

Since UPC is an extension to C, any C program is intuitively a valid UPC program. There-
fore, all of C’s syntax and semantics apply along with few additions. A minimal explanation
of the UPC language constructs tailored to this document is presented here. For details on
programming in UPC, see [8, 12].

2.4.1 Predefined identifiers

THREADS and MYTHREAD are expressions with values of type int. The first one speci-
fies the number of threads and has the same value on every thread, whereas the second
one specifies a unique thread index (0...THREADS-1). In figure5, THREADS is 3 and
MYTHREAD values are 0, 1 and 2 (labeled under each thread).

2.4.2 Data declaration

Data that is local to a thread is declared the same way as C; however, shared data is explic-
itly declared with a type qualifier, shared. For example, a shared variable is declared as
follows:

shared int num;

Here num is of type int. The shared keyword is prepended to explicitly state that the
data stored in this variable resides in shared address space and is accessible by all threads.
(Figure 5)

lptrs

lptrl

sptrs

Thread 1 Thread 2

Private
Address Space

Partitioned
Shared Address
Space

Thread 0

A B C D E F G H IJ K L M N
0 1 2 3 4 5 12 13 6 7 89 10 11

src src src

Index of element ’L’ in this array

num0 sptrl

Figure 5: A visual representation of UPC’s memory layout



2.4.3 Arrays

UPC provides the ability to explicitly lay out arrays in shared address space across threads.
For example, an array in shared address space is declared as follows:

shared [3] char src[14];

Here src is a character array of length 14. The shared keyword is proceeded by a layout
qualifier. Its purpose is to block the array in chunks of 3 in round-robin fashion. As a
result, the array’s first 3 elements are in thread 0, the next in thread 1 and so on, and when
it hits the last thread, it winds up to the first thread and keeps on going until all the elements
are placed (Figure 5).

The number in the layout qualifier is known as the blocking factor or block size of the
array. It can be any positive integer, not specified (i.e., []), or*. If the number is 0 or is
not specified then this indicates an indefinite blocking factor (i.e., all elements have affinity
to the same thread). The [*] indicates that the shared array is distributed equally in order.
If there is no layout qualifier at all, then the block size has the default value, which is 1.

Note that the block size is part of the type compatibility. Therefore, type casting be-
tween types with different block sizes is illegal.

2.4.4 Pointers

UPC has four types of pointers:

1. (local) pointer to local, declared as
char * lptrl;

2. (local) pointer to shared, declared as
shared char * lptrs;

3. shared pointer to shared, declared as
shared char shared * sptrs;

4. shared pointer to local, declared as
char shared * sptrl;

Note that a shared pointer to local can only point to local data of a thread to which it
has affinity to, not any others’. (Figure5)

2.4.5 Iteration constructs

Besides all of C’s iteration constructs, UPC provides upc forall. Its syntax extends C’s
for construct by adding a fourth field after the increment expression. This field denotes
affinity.



In the following code segment, upc forall is used to print out contents of the shared
array src along with the thread number which prints it.

int i;
upc_forall( i = 0; i < 14; i++; &src[i] )
{

printf( "Th = %d. %c\n", MYTHREAD, src[i] );
}

Each thread only prints out data that is in its partition of the shared address space (i.e.,
data that has affinity to that particular thread). Therefore, thread 1 will only print out D, E,
F, M, and N. (Figure 5)

Note that upc forall is a collective operation in which, for each execution of the
loop body, the controlling expression and affinity expression are single valued.

2.4.6 Thread synchronization

Since threads in UPC communicate by accessing shared data, synchronizing these accesses
is vital to the proper functioning of parallel programs. To achieve this, UPC provides
upc barrier. When upc barrier is called, all threads wait for all other threads to
synchronize at that point. Once all threads have reached that particular point, they can
advance in program execution.

2.4.7 Bulk transfers

UPC provides upc memcpy which is analogous to C’s memcpy. Basically, it copies a
chunk of shared memory area from one place to another. However, one restriction is that
the shared memory area may not cross a thread boundary.

3 Standard Collective Operations

3.1 Background

A collective operation is a construct which requires all processing elements to execute a
certain function. In a message passing programming model, collective operations play an
important role in relocating data, performing computation, and synchronizing processes.

It could be argued that if UPC is truly based on a shared memory model, why is there a
need for collective operations? The answer can be found within the two aspects of parallel
programming - performance and programmability. Bulk transfer of data is usually more
efficient than element-by-element transfers. For the purpose of elaboration, consider the
collective operation broadcast. In this collective operation one thread has a block of data



that needs to be copied to all other threads. The programmer may choose to use a collective
function or individually assign memory locations to copy over the required data. If the
required data is a string, each thread would have to go through a loop to collect each
character in the string, one at a time. Although all the threads would accomplish the task
simultaneously, it would be inefficient. On the other hand, a collective call could just copy
a block of data all at once, eliminating the performance degradation caused by the loop
in each thread. For a small number of threads and a short string, this problem may seem
irrelevant. However, as the number of threads and the length of the string grows, individual
assignments become very inefficient. Furthermore, it is very natural for a programmer
to want to perform a broadcast operation more than once in a program. In such case,
it is convenient to have a standard function for this operation. Library writers can provide
very efficient low-level implementations of collective operations by taking advantage of the
underlying system architecture. Lastly, in the parallel programming domain, programmers
are already familiar with collective operations in message passing models, such as MPI.

3.2 UPC’s Standard Collective Relocalization Operations

The UPC Collective Operations Specification V1.0[13, 8] was released on December 12,
2003. At present, the document is part of the UPC Language Specifications V1.2 [12]
with the exception of the sort function, which has been deprecated. Details of all the
relocalization and computational operations can be found in any of the aforementioned
documents. However, in this section we present brief descriptions of the six relocalization
collectives, which copy shared data from one location to another in the shared address
space, and propose possible extensions to them in the following section.

For the following collective functions, in the synopses, dst and src are pointers-
to-shared representing, respectively, the destination and the source of the data that is
moved, and nbytes is the number of bytes to be copied from source to destination. For
upc all permute, the shared permutation array is pointed to by perm. The mode
argument specifies the synchronization mechanism.

In the figures, A is the source array and B is the destination array. The contents of B
indicate the effect of the operation.

3.2.1 The upc all broadcast function

Synopsis:

void upc_all_broadcast( shared void * restrict dst,
shared const void * restrict src,
size_t nbytes,
upc_flag_t mode );
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Figure 6: upc all broadcast

Brief description:

The upc all broadcast function copies a block of shared memory with affinity to a
single thread to a block of shared memory on each thread. The number of bytes in each
block is nbytes, which must be strictly greater than 0.

3.2.2 The upc all scatter function

Synopsis:

void upc_all_scatter( shared void * restrict dst,
shared const void * restrict src,
size_t nbytes,
upc_flag_t mode );
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Figure 7: upc all scatter



Brief description:

The upc all scatter function copies the ith block of an area of shared memory with
affinity to a single thread to a block of shared memory with affinity to the ith thread. The
number of bytes in each block is nbytes, which must be strictly greater than 0.

3.2.3 The upc all gather function

Synopsis:

void upc_all_gather( shared void * restrict dst,
shared const void * restrict src,
size_t nbytes,
upc_flag_t mode );
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Figure 8: upc all gather

Brief description:

The upc all gather function copies a block of shared memory that has affinity to the
ith thread to the ith block of shared memory area that has affinity to a single thread. The
number of bytes in each block is nbytes, which must be strictly greater than 0.

3.2.4 The upc all gather all function

Synopsis:

void upc_all_gather_all( shared void * restrict dst,
shared const void * restrict src,
size_t nbytes,
upc_flag_t mode );
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Figure 9: upc all gather all

Brief description:

The upc all gather all function copies a block of shared memory that has affinity to
the ith thread to the ith block of shared memory area on each thread. The number of bytes
in each block is nbytes, which must be strictly greater than 0. This function is analogous
to all the threads calling upc all gather.

3.2.5 The upc all exchange function

Synopsis:

void upc_all_exchange( shared void * restrict dst,
shared const void * restrict src,
size_t nbytes,
upc_flag_t mode );
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Brief description:

The upc all exchange function copies the ith block of memory from a shared memory
area that has affinity to thread j to the jth block of a shared memory area that has affinity
to thread i. The number of bytes in each block is nbytes, which must be strictly greater
than 0.

3.2.6 The upc all permute function

Synopsis:

void upc_all_permute( shared void * restrict dst,
shared const void * restrict src,
shared const void * restrict perm,
size_t nbytes,
upc_flag_t mode );
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Brief description:

The upc all permute function copies a block of shared memory area that has affinity
to the ith thread to a block of shared memory area that has affinity to thread perm[i].
The number of bytes in each block is nbytes, which must be strictly greater than 0.
perm[0..THREADS-1] must contain THREADS distinct values: 0, 1, ..., THREADS-1.



3.3 Limitations of the Standard Relocalization Collective Operations

The standard relocalization collectives are limited in their features. Since the nbytes
argument is single valued over all threads, the size of data movement is the same. However,
there could be cases in functions other than upc all broadcast where a varying size
is desired. For example, a variable length exchange operation is used in parallel bucket
sort. With the current set of collective operations, this is not possible.

For upc all gather and upc all gather all, the assumption is that the source
data resides in the beginning block of each thread. For upc all broadcast and upc all scatter,
the destination data is copied to the beginning block of each thread. This is true for both
the source and destination data of upc all exchange and upc all permute. The
current specifications do not allow any flexibility in the placement of data.

The data blocks of the source array of upc all broadcast and upc all scatter,
and of the destination array of upc all gather and upc all gather all are con-
tiguous. This is true for both the source and destination arrays of upc all exchange.
The current specifications do not allow specifying strides in data or explicitly specifying
data locations.

All of these collective operations assume that all of the source or destination data-blocks
reside in a single array (source data-blocks in a single source array, and destination data-
blocks in a single destination array). The specifications do not, for example, allow data to
be scattered in different arrays in the destination threads.

In all these operations source thread(s) copy data to destination thread(s). It could be
the case that the source and destination are in the same thread. This could be undesirable
as it requires unnecessary copying. For example, a user wishing to do a matrix transpose
can use upc all exchange; but for that we need another array with the same type and
size. After the operation, the new structure would contain the resulting matrix. The current
specifications provide no way to perform such operations “in place”. We cannot simply
have src and dst be pointers to the same location as that would violate the specification
because of the restrict modifier.

The reference implementations of these collective operations can be compiled as ei-
ther a “pull” or a “push” implementation. In a “pull” implementation, destination thread(s)
pull(s) data from source thread(s), whereas in the “push” implementation source thread(s)
push data to the destination thread(s). The programmer has no way of choosing the imple-
mentation at runtime.

Finally, once a collective function is issued, all threads participate in it. There is no way
to perform the collective operations only on a subset of threads.



4 Extensions to the Collective Operations

4.1 Background

The limitations of the standard collective relocalization operations justify the need for ex-
tended versions which provide more flexibility to the programmer.

The MPI library provides a set of collective operations [11] as well as their variants.
The proposed extensions[16] for UPC closely follow MPI’s approach. However, there
are subtle differences in the programming models, which naturally translates to syntax
differences. It is important to note that MPI does not provide anything analogous to UPC’s
permute operation; nor is synchronization as big of an issue with collective operations in
MPI as it is in UPC.

For each standard UPC collective function (see 3.2), there can be two variants. In the
“vector” variant, each block of data can be of different size; and it allows the function to
pick distinct non-contiguous data-blocks. The second variant is a further generalization of
the first variant. In this case, the programmer may explicitly specify each data-block and
their size.

The specification design phase of these functions was driven by the question: “what
does a thread know?”. In other words, what information does each thread require to simul-
taneously and independently (as much as possible) perform the operation taking advantage
of locality? Another aspect that motivated the specification was “how does the program-
mer perceive the programming model?”. For example, a programmer may declare an array
of integers, say A, and specify the second element in the array using normal array index-
ing, A[1]. However, since UPC handles everything at the byte-level1, the second element
would actually be 4 bytes (assuming integers are 4 bytes) away from the first one. There-
fore, the goal is to free the programmer from the hassle of calculating these byte addresses
which can be done internally with little effort, provided that the data-type is known.

There are several ways in which the “in place” option can be implemented. One
straight-forward way is to compare the src and dst pointers and see if src == dst.
Another approach is to specify a value in the mode argument which would trigger the in
place behavior and ignore either src or dst. However, both of these approaches vio-
late the restrict and const modifiers. A proposal from UC-Berkeley pointed out
that passing the defined type UPC IN PLACE as the src argument could solve this issue
without violating any of the existing specifications. This works for upc all exchange,
upc all permute and upc all gather all, but not so easily for upc all broadcast,
upc all scatter and upc all gather. The data layouts of src and dst in these
collective functions make it harder to implement the “in place” option in such fashion.

1If we consider integers to be of 4 bytes, then the first element of an integer array would be at byte location
0, the second one at byte location 4, the third one at byte location 8, and so on. UPC programmers may access
array elements with simple array indexing, but internally this is traslated to the byte addressing form.



Users can choose either “push” or “pull” implementation of the operations at runtime.
The constants UPC PUSH and UPC PULL have been defined, which can be bitwise or-ed
with other defined constants in the mode argument.

4.2 Proposed Extensions

Presented here are variants of three of the relocalization collectives - broadcast, scatter and
exchange. For details on these and other collective operations, see [16].

In the synopses for the vector variants of the following functions, src and dst are
pointers-to-shared representing, respectively, the source and destination of the data that
is moved. sdisp and ddisp are pointers-to-shared representing respectively, arrays of
displacements of the source and destination data. src blk and dst blk are single valued
arguments which represent, respectively, the block sizes of source and destination arrays.
nelems is a pointer to a shared array each of whose elements specify the number of
elements to be copied from source to destination. The typesize argument specifies the
size of the type. The mode argument specifies the synchronization mechanism. In the
synopses for the generalized functions, src and dst are pointers for shared arrays each of
whose elements point to a shared memory area. Except in broadcast, nbytes is a shared
array of THREADS sizes, each representing size of data transfer for that particular thread.

Depending on the presence of UPC ASYNC in the mode argument, the functions im-
mediately return a handle of type upc coll handle t to be consumed by a completion
function at a later time. The synchronization modes are respected in the corresponding
completion function.

In the figures, A is the source array and B is the destination array. The contents of B
reflect the effect of the operation.

4.2.1 Broadcast: Vector Variant

For the first of the two variants of the standard broadcast operation, we intend to be able to
copy the data-block from the source array to the destination array at specific locations in
each thread.

Synopsis:

void upc_all_broadcast_v( shared void * dst,
shared const void * src,
shared size_t * ddisp,
size_t nelems,
size_t dst_blk,
size_t typesize,
upc_flag_t mode );
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Figure 12: upc all broadcast v

Brief Description:

The flexibility as to where the data is copied to on each destination thread is achieved with
the help of the new argument ddisp. It is a pointer to a shared array with the type shared
[1] size t [THREADS]. The programmer provides the array index in ddisp[i]
to specify where in thread i the data is to be placed. nelems specifies the number of
elements to broadcast. In order for the function to work as intended, this value must be
strictly greater than 0. dst blk is the blocking factor for the destination array. Since
the destination pointer is passed in as argument casted as shared void *, the blocking
information is lost, which is needed to perform address calculation. typesize is the size
of the data-type.

In summary, upc all broadcast v copies nelems elements of the shared array
pointed to by src having affinity to a single thread to a block of shared memory pointed
to by dst and with ddisp[i] displacement on thread i (Figure 12).

See Appendix B for a reference implementation.

4.2.2 Broadcast: Generalized Function

This is the most general of broadcast functions. The user is expected to provide explicit
addresses for the source and each destination. As a result, the destinations for each thread
can be in separate shared arrays.

Synopsis

void
upc_all_broadcast_x( shared void * shared * restrict dst,

shared const void * restrict src,



size_t nbytes,
upc_flag_t mode,
upc_team_t team );

upc_coll_handle_t
upc_all_broadcast_x( shared void * shared * restrict dst,

shared const void * restrict src,
size_t nbytes,
upc_flag_t mode,
upc_team_t team );
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Figure 13: upc all broadcast x

Brief Description

This function allows the flexibility of broadcasting data to separate arrays. As a result the
dst pointer is now treated as pointing to a shared memory area with type shared []
char * shared [THREADS]. In plain terms, dst points to a shared array, each of
whose elements point to an area in shared memory.

In summary, upc all broadcast x copies nbytes bytes of the shared array pointed
to by src having affinity to a single thread to the areas of shared memory pointed to by
dst[i] on thread i (Figure 13).

See Appendix B for a reference implementation.



4.2.3 Scatter: Vector Variant

For the first of the two variants of the standard scatter operation, we intend to be able to
scatter non-contiguous blocks of varying sizes from the shared array on the source thread
to specific locations in the destination array on each thread.

Synopsis:

void upc_all_scatter_v( shared void * dst,
shared const void * src,
shared size_t * ddisp,
shared size_t * sdisp,
shared size_t * nelems,
size_t dst_blk,
size_t src_blk,
size_t typesize,
upc_flag_t mode );
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Brief Description:

The flexibility as to where the data is copied from on the source thread and copied to on
each destination thread is achieved with the help of the new arguments sdisp and ddisp.
These are pointers to shared arrays with the type shared [1] size t [THREADS].
sdisp[i] contains the index of the ith block in the source array and ddisp[i] contains
the index of where in the destination array in thread i the data is to be placed. nelems is
a pointer to shared array with type shared [1] size t [THREADS]. nelems[i]
specifies the number of elements to copy to thread i. src blk and dst blk are blocking
factors for the source and destination arrays respectively. These are needed to perform
address calculation because the blocking information is lost due to typecasting as shared
void * in parameter list. typesize is the size of the data type.

In summary, upc all scatter v copies the ith block of nelems[i] elements of
the shared array pointed to by src at displacement sdisp[i] and with affinity to a single
thread to a block of shared memory pointed to by dst and with ddisp[i] displacement
on thread i (Figure 14).

4.2.4 Scatter: Generalized Function

This is the most general of the scatter functions. The user is expected to provide explicit
addresses for each block of data. As a result, the data blocks in the source thread and
destinations for each thread can be in separate arrays.

Synopsis:

void
upc_all_scatter_x( shared void * shared * restrict dst,

shared const void * shared * restrict src,
shared size_t * restrict nbytes,
upc_flag_t mode,
upc_team_t team );

upc_coll_handle_t
upc_all_scatter_x( shared void * shared * restrict dst,

shared const void * shared * restrict src,
shared size_t * restrict nbytes,
upc_flag_t mode,
upc_team_t team );
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Figure 15: upc all scatter x

Brief Description:

This function allows the flexibility of copying data-blocks from separate arrays on the
source thread to separate arrays in each destination thread. As a result the src and dst
pointers are both treated as pointing to a shared memory area with type shared []
char * shared [THREADS]. In simple terms, both src and dst point to shared
arrays, each of whose elements point to an area in shared memory.

In summary, upc all scatter x copies nbytes[i] bytes of the shared memory
pointed to by src[i] on the source thread to a block of shared memory pointed to by
dst[i] on thread i (Figure 15).

4.2.5 Exchange: Vector Variant

For the first of the two variants of the standard exchange operation, we intend to be able to
exchange non-contiguous blocks of varying sizes among threads.

Synopsis:

void upc_all_exchange_v( shared void * dst,
shared const void * src,
shared size_t * ddisp,



shared size_t * sdisp,
shared size_t * nelems,
size_t src_blk,
size_t dst_blk,
size_t typesize,
upc_flag_t mode );
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Figure 16: upc all exchange v

Brief Description:

The flexibility as to where the data is copied from on the source threads and copied to on
the destination threads is achieved with the help of the new arguments sdisp and ddisp.
These are pointers to shared arrays with the type shared [3] size t [THREADS].
sdisp[i] contains the index of the ith block in the source array and ddisp[i] contains
the index of where in the destination array the data is to be placed. nelems is a pointer
to shared array with type: shared [3] size t [THREADS]. nelems[i] specifies
the number of elements in the ith block in the source thread. src blk and dst blk are
blocking factors for the source and destination arrays respectively. These are needed to
perform address calculation because the blocking information is lost due to typecasting as
shared void * in parameter list. typesize is the size of the data type.

In summary, upc all exchange v copies the ith block of data in thread j to the jth
block of memory in thread i. The sizes of the data blocks can be different and the data can
be non-contiguous in both the source and destination arrays (Figure 16).



4.2.6 Exchange: Generalized Function

This is the most general of the exchange functions. The user is expected to provide explicit
addresses for all memory areas. As a result, the data blocks in the source and destination
arrays in each thread can be in separate arrays.

Synopsis:

void
upc_all_exchange_x( shared void * shared * restrict dst,

shared const void * shared * restrict src,
shared size_t * restrict nbytes,
upc_flag_t mode,
upc_team_t team );

upc_coll_handle_t
upc_all_exchange_x( shared void * shared * restrict dst,

shared const void * shared * restrict src,
shared size_t * restrict nbytes,
upc_flag_t mode,
upc_team_t team );

Brief Description:

This function allows the flexibility of copying data blocks from separate arrays on the
source threads to separate arrays in the destination threads. As a result the src and dst
pointers are both treated as pointing to a shared memory area with type shared []
char * shared [THREADS*THREADS]. In simple terms, both src and dst point
to shared arrays, each of whose elements point to an area in shared memory. The other
parameters are same as the vector variant.

In summary, upc all exchange x copies nbytes[i] bytes of the shared memory
pointed to by src[i] on source thread j to a block of shared memory pointed to by
dst[j] on thread i (Figure 17).

4.3 Alternative Designs

In the vector variants of both broadcast and exchange, ddisp can be treated in two ways:
starting from ddisp of thread 0, or starting from the beginning block of each thread.
Although we have taken the first approach, the second one can also be taken. We have
reasons to believe that both will yield the same performance. The only factor here that
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led us to take the first approach is programmer convenience and familiarity with MPI’s
collective extensions.

In the standard collective operations of UPC, the size of data movement is specified in
bytes. In the vector variants, the functions require number of elements and the size of the
data type to be specified. This provides user convenience (see4.1). Alternatively, we can
require that the argument be in bytes, just as in the standard collective functions, and the
data type be provided instead of its size. In that case, we will have to define constants, like
UPC INT, UPC CHAR, etc., to be passed in as arguments.

4.4 Completion Operations

The asynchronous collective operations are two folded: posting operation and completion
operation. The posting operation returns a handle of type upc coll handle t immedi-
ately. This handle is then passed to a completion operation to guarantee completion of the
operation.

void upc_wait( upc_coll_handle_t handle );
int upc_test( upc_coll_handle_t handle );
int upc_get_status( upc_coll_handle_t handle );



The upc wait function blocks until the operation corresponding to the handle is com-
plete. Once it is complete, the handle is set to UPC HANDLE COMPLETE so that any future
references to this handle will have the information. upc test on the other hand, returns
whether the corresponding operation is complete or not. If it is complete, it does the same
as upc wait and returns a positive integer. Otherwise, it returns a negative integer. The
upc get status is a convenience function to check whether a handle has been com-
pleted. It has no effect on the handle.

5 One-sided Collective Operations

Traditionally, collective operations have been thought of as two-sided memory operations.
Such operations requires the processing elements (i.e., threads) to synchronize their execu-
tion in order to guarantee certain semantics of the language. At the 2005 UPC workshop,
there were mixed reactions on the subject of the aforementioned complex collective op-
erations. A growing interest for functions that “just do” a collective operation resulted
in a different stream of thought: “Can collectives be implemented as one-sided memory
operations, like upc global alloc or upc free?”

The reference implementations of the collective functions are implemented using UPC’s
upc memcpy family of functions (i.e., upc memget, upc memput, or upc memcpy).
When a call is made, such as upc all broadcast, after handling all synchronization
issues, depending on what implementation hint (i.e., “pull” or “push”) is provided, threads
call upc memcpy to perform the actual data relocation. A careful observation reveals that
upc memcpy does not require the caller to be either the source or the destination of the
relocalization operation. Therefore, a slightly more complex form of upc memcpy can
provide the compiler or the run-time system (RTS) with just enough information to be able
to perform operations analogous to the collective operations.

For convenience, the following four relocalization operations have been proposed. More
operations and detail specification can be obtained from [15]. Since these do not fall in the
traditional realm of collective operations, the all part from the names have been care-
fully omitted to avoid any confusion.

5.1 The API

void upc_broadcast( shared void *dst,
shared const void *src, size_t nbytes )

void upc_scatter( shared void *dst,
shared const void *src, size_t nbytes )

void upc_gather( shared void *dst,
shared const void *src, size_t nbytes )



void upc_exchange( shared void *dst,
shared const void *src, size_t nbytes )

Gather-all can be implemented by all threads calling upc gather. Because how it is
implemented, permute operation can be simply handled by memcpy; in other words, there
is no added advantage to have a separate function in this regard.

5.2 Cost/Benefit Analysis

Only a single thread needs to call the one-sided collective functions. When the call returns,
it is safe to write to the source on the root thread. On all other threads, the copies of the
source data will be available at the beginning of the next synchronization phase2; however,
they will be observable by the calling thread after it returns from the call. Moreover, by
nature these operations are asynchronous, so better performance is expected.

6 Performance Analysis

The performance study of this project involves a comparative analysis of the standard and
extended collective operations. The reference implementations of both are implemented
at the user-level with upc memcpy; thus, the only difference expected is due to the extra
level of pointer redirection in the extended versions.

The reference implementation of the asynchronous versions of the extended collective
operations have been implemented as blocking. Therefore, their performance yield is same
as the synchronous versions. The completion functions have been implemented to do noth-
ing but return immediately.

6.1 Test Platforms

The reference implementation of both the standard and extended collective operations have
been tested on a 20 2-way 2.0 GHz Pentium node Linux x86 cluster connected by Myrinet
interconnect. However, Myrinet only connects nodes 1 through 15; as a result, the test
cases show only up to 15 threads.

Michigan Tech’s UPC (MuPC) is a runtime system (RTS) for UPC built on top of MPI3.
It is portable to all the platforms that support MPI 1.1 and pthreads.

Berkeley’s UPC (BUPC) is another RTS for UPC built on GASNet infrastructure which
is supported over a wide variety of high-performance networks. GASNet (Global-Address-
Space Networking) is a language-independent, low-level networking library developed at
University of California, Berkeley.

2Eventually, the programmer has to synchronize all threads by calling a barrier.
3Message Passing Interface.



Both of the aforementioned runtime systems were used in testing the standard and ex-
tended collective reference implementations. A single test program was used to measure
the performance of both forms of the collective functions to avoid any discrepancy due to
testing. The program has been carefully designed following other past attempts in which
after performing every collective operation, each thread does some local computation to
reflect more realistic scenario. Further, the initialization overhead time is deducted from
each measured completion time of the collective functions. Finally, the time that is reported
reflects the average of 500 runs of each collective function on each platform. The source
code for the testbed is in Appendix C.

6.2 Results

Each data point in the following graphs is an average over the maximum time taken by all
threads in 500 runs. In other words, for every run the thread with the longest time is added
to a total, and then divided by 500 to get an average of the maximums.
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Figure 18: Broadcast: Standard and Extended implementations.

Figure 18 and 19 shows performance of the broadcast and exchange operations, both
standard and extended versions, on MuPC and Berkeley UPC. The graphs demonstrate
that the reference implementation of the extended collectives do not perform as well as the
corresponding standard ones. However, this is an expected outcome, because the extra level
of pointer redirection involved in the extended collective operations require extra address
computation.
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 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  2  4  6  8  10  12  14  16

T
im

e 
(m

se
c)

Threads

MuPC Broadcast: Std./Ext., push/pull impl., nelems = 256/65536 (unsigned ints)

std 256 push
ext 256 push

std 256 pull
ext 256 pull

std 65536 push
ext 65536 push

std 65536 pull
ext 65536 pull

Figure 20: Effects of utilizing “push” and “pull” implementations of broadcast.

As the number of threads grow, both the implementations experience more time to
complete. This is because of the amount of synchronization and communication involved.4

Implementation hint can be passed to the extended collective functions to take advan-

4UPC IN ALLSYNC|UPC OUT ALLSYNC is OR-ed with the mode arguments.



tage of architecture depended performance improvements. Figure 20 shows results of both
“push” and “pull”-based implementations of standard and extended broadcast operations
on MuPC. The number of elements relocalized is varied between 256 and 65536. Each
thread “pull”-ing data from the source thread performs better compared to the source thread
“push”-ing data to all threads, one at a time. Moreover, the size of data block affects per-
formance. Appendix A contains results of other collective operations.

7 Future Work

The reference implementation of the asynchronous collective relocalization operations are
implemented as blocking. As a result, the completion functions return immediately. Berke-
ley’s UPC provides non-blocking and non-contiguous memcpy functions, which can be
used for a user-level implementation of the asynchronous collective operations. However,
with MuPC further investigation is required to implement non-blocking versions of the
extended collectives within MuPC.

Subsetting features have been specified, but not implemented. This is because of the
complexity involved in providing an elegant solution. The obvious UPC way of grouping
threads is by using the affinity factor. For example, the upc foreach loop is a collective
operation, where the fourth argument is checked to figure out which threads will execute
the loop body.

8 Summary

The success of any programming language depends on its programmability and perfor-
mance. UPC is a comparatively new and expressive parallel programming language. Al-
though the programming model allows for remote read/write using simple assignment op-
erations, a set of collective functions are provided to take advantage of the fact that bulk
transfer of data is more efficient than individual transfers. To overcome the limitations of
the standard collective functions and for better programmability factor a set of extended
collective operations and one-sided collective operations are proposed in this work. Since
the general versions of the extended collectives can handle the vector variants, the col-
lective subcommittee has decided to drop the vector variants from the specification. As a
result, the specification document only shows the general versions. Our performance re-
sults indicate acceptable reasons to adopt the extended collective specification to handle
complex cases elegantly.
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A Performance Graphs
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(a) Scatter: Standard and Extended implementations
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Figure 21: Performance of Scatter: Standard vs Extended, with varying nelems
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(a) Gather: Standard and Extended implementations
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Figure 22: Performance of Gather: Standard vs Extended, with varying nelems
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(a) Gather All: Standard and Extended implementations
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Figure 23: Performance of Gather All: Standard vs Extended, with varying nelems
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B Collective Operation Implementations

B.1 Broadcast - Standard version: Implementation
/*****************************************************************************/
/* */
/* UPC collective function library, reference implementation */
/* */
/* Steve Seidel, Dept. of Computer Science, Michigan Technological Univ. */
/* steve@mtu.edu February 6, 2004 */
/* */
/*****************************************************************************/

void upc_all_broadcast( shared void *dst,
shared const void *src,
size_t nbytes,
upc_flag_t sync_mode )
{
if ( !upc_coll_init_flag )
upc_coll_init();

#ifdef _UPC_COLL_CHECK_ARGS
upc_coll_err( dst, src, NULL, nbytes, sync_mode, 0, 0, 0, UPC_BRDCST);
#endif

#ifndef PULL
#ifndef PUSH
#define PULL TRUE
#endif
#endif
// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
if ( UPC_IN_MYSYNC & sync_mode || !(UPC_IN_NOSYNC & sync_mode) )
upc_barrier;

#ifdef PULL
// Each thread "pulls" the data from the source thread.
upc_memcpy( (shared char *)dst + MYTHREAD, (shared char *)src, nbytes );
#endif

#ifdef PUSH
int i;

// The source thread "pushes" the data to each destination.
if ( upc_threadof((shared void *)src) == MYTHREAD )
{
for (i=0; i<THREADS; ++i)
{
upc_memcpy( (shared char *)dst + i,
(shared char *)src, nbytes );
}
}
#endif

// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
if ( UPC_OUT_MYSYNC & sync_mode || !(UPC_OUT_NOSYNC & sync_mode) )
upc_barrier;
}



B.2 Broadcast - Vector variant: Implementation
/*****************************************************************************/
/* */
/* UPC extended collective function library, reference implementation */
/* */
/* Zinnu Ryne, Dept. of Computer Science, Michigan Technological University */
/* zryne@mtu.edu May, 2005 */
/* */
/*****************************************************************************/

#include <upc.h>
#include "upc_collective_ext.h"

//------------------------------------------------------------------------------
// Broadcast: Vector Variant
//------------------------------------------------------------------------------
void upc_all_broadcast_v( shared void * dst,

shared const void * src,
shared size_t * ddisp,/* array indexes */
size_t nelems,/* number of elements */
size_t dst_blk,/* blocking factor */

size_t typesize,/* typesize in bytes */
upc_flag_t mode )

{
int i;

//---------------------------------------------------------------------------
// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
//---------------------------------------------------------------------------
if( (UPC_IN_MYSYNC & mode) || !(UPC_IN_NOSYNC & mode) )
{

upc_barrier;
}

//---------------------------------------------------------------------------
// PULL implementation (default):
// Each thread "pulls" the data from the source thread.
//---------------------------------------------------------------------------
if( ((UPC_PULL & mode) && !(UPC_PUSH & mode)) || // only PULL specified

(!(UPC_PULL & mode) && !(UPC_PUSH & mode)) ) // or, nothing.
{

//------------------------------------------------------------------------
// ADDRESS COMPUTATION:
//
// The source and number of elements to broadcast arguments are same for
// all threads; destination is the only thing that varies depending on
// thread. Once the ’shared void *’ typecasting is done, we loose the
// blocking information; that is why we have to figure out the exact
// mapping.
//
// The destination argument to ’upc_memcpy’ is a optimized one from a
// more complex variant. Here we try to explain how we do the mapping,
// with a formal proof for the optimization.
//
// We start with the following destination argument to pass to upc_memcpy:
//
// (shared char *)dst
// + (dst_blk*typesize)
// * ((ddisp[MYTHREAD]*typesize)/(dst_blk*typesize)
// - (((ddisp[MYTHREAD]*typesize)/(dst_blk*typesize))%THREADS))



// + ((ddisp[MYTHREAD]*typesize)/(dst_blk*typesize))%THREADS
// + ((ddisp[MYTHREAD]*typesize)%(dst_blk*typesize))*THREADS
//
// For reference:
// t = THREADS
// d = disp[MYTHREAD]*typesize
// b = dst_blk*typesize
//
// So the computation is:
// b*((d/b) - ((d/b)%t)) + (d/b)%t + (d%b)*t
//
// Explanation:
// [1] b*((d/b)-((d/b)%t)) gives us the index of the first element of a
// block on thread 0. That block is in the same relative location as
// the block on MYTHREAD that contains the element at displacement d.
// [2] (d/b)%t is the thread number that contains the desired block, i.e.,
// MYTHREAD.
// [3] (d%b)t is the phase of the desired element within its block.
//
// We can optimize the first part using the claim that
// b*((d/b) - ((d/b)%t)) = (d/(tb))tb
//
// ------------------------------------
// | A FORMAL PROOF (by Steve Seidel) |
// ------------------------------------
//
// Claim: b(d/b - (d/b) % t) = (d/(tb))tb
//
// Proof: The last b’s cancel, so it is sufficient to prove that
// d/b - (d/b) % t = (d/(tb))t.
//
// For some j and k such that 0 <= j < tb and k >= 0,
// it is true that
// d = ktb+j.
//
// Then for the right side of this claim,
// (d/(tb))t = ( (ktb+j)/(tb) )t
// = ( k + j/(tb) )t
// = kt
//
// Since j < tb, so j/(tb) = 0.
//
// And for the left side,
// d/b - (d/b) % t = (ktb+j)/b - ((ktb+j)/b) % t
// = kt + j/b - (kt + j/b) % t
// = kt + j/b - (j/b) % t
// = kt
//
// Since j/b < t, so (j/b) % t = j/b.
//
// So using this claim, we can have the following:
//
// (shared char *)dst
// + ((ddisp[MYTHREAD]*typesize)/(THREADS*(dst_blk*typesize)))
// *THREADS*(dst_blk*typesize)
// + ((ddisp[MYTHREAD]*typesize)/(dst_blk*typesize))%THREADS
// + ((ddisp[MYTHREAD]*typesize)%(dst_blk*typesize))*THREADS
//
// And finally, the following:
//
// (shared char *)dst



// + (ddisp[MYTHREAD]/(THREADS*dst_blk))*THREADS*dst_blk*typesize
// + (ddisp[MYTHREAD]/dst_blk)%THREADS
// + ((ddisp[MYTHREAD]*typesize)%(dst_blk*typesize))*THREADS,
//
//------------------------------------------------------------------------

//------------------------------------------------------------------------
// If IN_PLACE is specified, move data for all but the source thread
//------------------------------------------------------------------------
if( (UPC_IN_PLACE & mode) )
{

if( upc_threadof( (shared void *)src ) != MYTHREAD )
{

upc_memcpy( (shared char *)dst
+ (ddisp[MYTHREAD]/(THREADS*dst_blk))*THREADS*dst_blk*typesize
+ (ddisp[MYTHREAD]/dst_blk)%THREADS
+ ((ddisp[MYTHREAD]*typesize)%(dst_blk*typesize))*THREADS,

(shared const char *)src,
nelems*typesize );
}

}
//------------------------------------------------------------------------
// Otherwise, move data for all threads
//------------------------------------------------------------------------
else
{

upc_memcpy( (shared char *)dst
+ (ddisp[MYTHREAD]/(THREADS*dst_blk))*THREADS*dst_blk*typesize
+ (ddisp[MYTHREAD]/dst_blk)%THREADS
+ ((ddisp[MYTHREAD]*typesize)%(dst_blk*typesize))*THREADS,

(shared const char *)src,
nelems*typesize );
}

}
//---------------------------------------------------------------------------
// PUSH implementation:
// The source thread "pushes" the data to each destination.
//---------------------------------------------------------------------------
else if( (UPC_PUSH & mode) && !(UPC_PULL & mode) ) // only PUSH specified
{

//------------------------------------------------------------------------
// Find the source thread
//------------------------------------------------------------------------
if( upc_threadof( (shared void *)src ) == MYTHREAD )
{

//---------------------------------------------------------------------
// If IN_PLACE is specified, move data for all but the source thread
//---------------------------------------------------------------------
if( (UPC_IN_PLACE & mode) )
{

//------------------------------------------------------------------
// Push each block of data to the destination threads, one at a time
//------------------------------------------------------------------
for( i = 0; i < THREADS; i++ )
{

if( upc_threadof( (shared void *)src ) != i )
{

upc_memcpy( (shared char *)dst
+ (ddisp[i]/(THREADS*dst_blk))*THREADS*dst_blk*typesize
+ (ddisp[i]/dst_blk)%THREADS
+ ((ddisp[i]*typesize)%(dst_blk*typesize))*THREADS,



(shared const char *)src,
nelems*typesize );

}
}

}
//---------------------------------------------------------------------
// Otherwise, move data for all threads
//---------------------------------------------------------------------
else
{

//------------------------------------------------------------------
// Push each block of data to the destination threads, one at a time
//------------------------------------------------------------------
for( i = 0; i < THREADS; i++ )
{

upc_memcpy( (shared char *)dst
+ (ddisp[i]/(THREADS*dst_blk))*THREADS*dst_blk*typesize
+ (ddisp[i]/dst_blk)%THREADS
+ ((ddisp[i]*typesize)%(dst_blk*typesize))*THREADS,

(shared const char *)src,
nelems*typesize );

}
}

}
}
//---------------------------------------------------------------------------
// The user provided both UPC_PUSH and UPC_PULL in ’mode’.
//---------------------------------------------------------------------------
else
{

// This is an error case which must be caught and reported!
}

//---------------------------------------------------------------------------
// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
//---------------------------------------------------------------------------
if( (UPC_OUT_MYSYNC & mode) || !(UPC_OUT_NOSYNC & mode) )
{

upc_barrier;
}

}



B.3 Broadcast - Generalized version: Implementation
/*****************************************************************************/
/* */
/* UPC extended collective function library, reference implementation */
/* */
/* Zinnu Ryne, Dept. of Computer Science, Michigan Technological University */
/* zryne@mtu.edu September, 2005 */
/* */
/*****************************************************************************/

#include <upc.h>
#include "upc_collective_ext.h"

//------------------------------------------------------------------------------
// Extended Broadcast
//------------------------------------------------------------------------------
void upc_all_broadcast_x( shared void * shared * dst, shared const void * src,

size_t nbytes, upc_flag_t mode )
{

int i;

//---------------------------------------------------------------------------
// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
//---------------------------------------------------------------------------
if( (UPC_IN_MYSYNC & mode) || !(UPC_IN_NOSYNC & mode) )
{

upc_barrier;
}

//---------------------------------------------------------------------------
// PULL implementation (default):
// Each thread "pulls" the data from the source thread.
//---------------------------------------------------------------------------
if( ((UPC_PULL & mode) && !(UPC_PUSH & mode)) || // only PULL specified

(!(UPC_PULL & mode) && !(UPC_PUSH & mode)) ) // or, nothing
{

//------------------------------------------------------------------------
// If IN_PLACE is specified, move data for all but the source thread
//------------------------------------------------------------------------
if( (UPC_IN_PLACE & mode) )
{

if( upc_threadof( (shared void *)src ) != MYTHREAD )
{

upc_memcpy( dst[MYTHREAD], src, nbytes );
}

}
//---------------------------------------------------------------------
// Otherwise, move data for all threads
//---------------------------------------------------------------------
else
{

upc_memcpy( dst[MYTHREAD], src, nbytes );
}

}
//---------------------------------------------------------------------------
// PUSH implementation:
// The source thread "pushes" the data to each destination.
//---------------------------------------------------------------------------
else if( (UPC_PUSH & mode) && !(UPC_PULL & mode) ) // only PUSH specified
{



//------------------------------------------------------------------------
// Find the source thread.
//------------------------------------------------------------------------
if( upc_threadof( (shared void *)src ) == MYTHREAD )
{

//---------------------------------------------------------------------
// If IN_PLACE is specified, move data for all but the source thread
//---------------------------------------------------------------------
if( (UPC_IN_PLACE & mode) )
{

//------------------------------------------------------------------
// Push each block of data to the destination threads, one at a time
//------------------------------------------------------------------
for( i = 0; i < THREADS; i++ )
{

if( upc_threadof( (shared void *)src ) != i )
{

upc_memcpy( dst[i], src, nbytes );
}

}
}
//---------------------------------------------------------------------
// Otherwise, move data for all threads
//---------------------------------------------------------------------
else
{

//------------------------------------------------------------------
// Push each block of data to the destination threads, one at a time
//------------------------------------------------------------------
for( i = 0; i < THREADS; i++ )
{

upc_memcpy( dst[i], src, nbytes );
}

}
}

}
//---------------------------------------------------------------------------
// The user provided both UPC_PUSH and UPC_PULL in ’mode’.
//---------------------------------------------------------------------------
else
{

// This is an error case which must be caught and reported!
upc_coll_warning( 1 );

}

//---------------------------------------------------------------------------
// Synchronize using barriers in the cases of MYSYNC and ALLSYNC.
//---------------------------------------------------------------------------
if( (UPC_OUT_MYSYNC & mode) || !(UPC_OUT_NOSYNC & mode) )
{

upc_barrier;
}

}



C Testbed Source

C.1 Setup and Execution Script
#!/bin/bash

################################################################################
#
# This script is used for performance results only!
# It compiles the sources with appropriate flags, runs the executables,
# collects data in a file, and then runs GNUPlot to create EPS files, all stored
# in $(PRES) directory. Finally it converts all the EPS files to PDFs.
#
#
# Date : November 25, 2005
# Author : Zinnu Ryne
# Email : zryne@mtu.edu
#
################################################################################

PDIR="performance"
PRES="$PDIR/results"

MUPC="/home/zhazhang/MuPC-working/bin/mupcc"
BUPC="/home/zhazhang/Berkeley/bin/upcc"

make clean

################################################################################
# Relocate ’n’ elements or ’n*sizeof(TYPE)’ bytes
################################################################################
for n in 256 65536
do

#############################################################################
# Apply implementation ’m’
#############################################################################
for m in PUSH PULL
do

##########################################################################
# Test on runtime system ’k’
##########################################################################
for k in $MUPC $BUPC
do

if [ "$k" = "$MUPC" ];
then

rts="mpirun"
thdflag="-f"
optflag="-D$m"

elif [ "$k" = "$BUPC" ];
then

rts="/home/zhazhang/Berkeley/bin/upcrun -q"
thdflag="-T"
#optflag="-network=gm -D$m"
optflag="-norc -network=mpi -D$m"

else
echo "ERROR: Runtime System not defined!"

fi

#######################################################################
# Compile/run relocalization collective ’j’



#######################################################################
for j in pbcast pbcastx pscat pscatx pgath pgathx pgall pgallx pexch pexchx pperm ppermx
do

if [ "$k" = "$MUPC" ];
then

echo "# $j on MuPC, $m $n elements" > "$PRES/$j-$m-$n-average-MUPC.txt"
elif [ "$k" = "$BUPC" ];
then

echo "# $j on BUPC, $m $n elements" > "$PRES/$j-$m-$n-average-BUPC.txt"
fi

####################################################################
# Compile/run results for ’i’ threads

####################################################################
for i in 2 3 4 5 6 7 8 9 10 11 12 13 14 15
do

echo ""
echo " -- make COM=$k"
echo " ------- OPF=$optflag NUM=$n TFLG=$thdflag THD=$i $j"
make COM="$k" OPF="$optflag" NUM="$n" TFLG="$thdflag" THD="$i" "$j"

if [ "$k" = "$MUPC" ];
then

make RUN="$rts" TFLG="$thdflag" THD="$i" "$j-run" >> "$PRES/$j-$m-$n-average-MUPC.txt"
elif [ "$k" = "$BUPC" ];
then

make RUN="$rts" TFLG="$thdflag" THD="$i" "$j-run" >> "$PRES/$j-$m-$n-average-BUPC.txt"
fi

make clean
sleep 5

done
done

done
done

done



C.2 Test Program
//------------------------------------------------------------------------------
//
// Author: Zinnu Ryne
// Email: zryne@mtu.edu
//
// This program is intended for a comparative performance analysis of the
// extended collectives with regards to the standard ones. For simplicity,
// all code for performance analysis is put in one source file.
//
//
// Start date: 11/09/2005
// Finalized : 12/13/2005
//
// COMPILE: mupcc -D_<STD|EXT>_COLL
// -D_<STD|EXT>_<BCAST|SCAT|GATH|GALL|EXCH|PERM>
// [-DNELEMS=1024]
// -f <threads> -o <exec> upc_all_... Performance.c
//
// DISCLAIMER: This code is based on Jaisudha Purushothaman’s performance
// testsuite for her Prefix-Reduce implementation.
//
//------------------------------------------------------------------------------

#include <upc.h>
#include <time.h>
#include <sys/time.h>

#ifdef _STD_COLL
#include "../src/std/upc_collective.h"
#endif

#ifdef _EXT_COLL
#include "../src/ext/upc_collective_ext.h"
#endif

//------------------------------------------------------------------------------
// All defined macros
//------------------------------------------------------------------------------
#define TYPE unsigned int // The data-type we’re using

#ifndef NELEMS
#define NELEMS 4096 // Number of elements to relocate
#endif

#define SRC_BLK_SIZE NELEMS*THREADS // Block size of the source array
#define DST_BLK_SIZE NELEMS*THREADS // Block size of the destination array
#define SRC_SIZE SRC_BLK_SIZE*THREADS // Size of the source array
#define DST_SIZE DST_BLK_SIZE*THREADS // Size of the destination array
#define TIME_ITERATIONS 100 // Iterations in overhead timing
#define TEST_ITERATIONS 500 // Iterations in real testing
#define COMP_ITERATIONS 50

//------------------------------------------------------------------------------
// Data storage
//------------------------------------------------------------------------------
shared [SRC_BLK_SIZE] TYPE src[SRC_SIZE];
shared [DST_BLK_SIZE] TYPE dst[DST_SIZE];
shared [1] size_t perm[THREADS];



#ifndef _EXT_EXCH
shared [] TYPE * shared [1] mySrc[THREADS];
#ifndef _EXT_GALL
shared [] TYPE * shared [1] myDst[THREADS];
#endif
#ifdef _EXT_GALL
shared [] TYPE * shared [THREADS] myDst[THREADS*THREADS];
#endif
shared [1] size_t nBytes[THREADS];
#endif

#ifdef _EXT_EXCH
shared [] TYPE * shared [THREADS] mySrc[THREADS*THREADS];
shared [] TYPE * shared [THREADS] myDst[THREADS*THREADS];
shared [THREADS] size_t nBytes[THREADS*THREADS];
#endif

//------------------------------------------------------------------------------
// Timing storage
//------------------------------------------------------------------------------
shared [1] unsigned int measured[THREADS];
shared double avgtime, max, mintime;

//------------------------------------------------------------------------------
// Function to calculate time differeces.
// Subtract the ‘struct timeval’ values X and Y, and store the result in RESULT.
// Return 1 if the difference is negative, otherwise 0.
//------------------------------------------------------------------------------
int timeval_subtract (result, x, y) struct timeval *result, *x, *y;
{

// Perform the carry for the later subtraction by updating y.
if( x->tv_usec < y->tv_usec )
{

int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
y->tv_usec -= 1000000 * nsec;
y->tv_sec += nsec;

}

if( x->tv_usec - y->tv_usec > 1000000 )
{

int nsec = (y->tv_usec - x->tv_usec) / 1000000;
y->tv_usec += 1000000 * nsec;
y->tv_sec -= nsec;

}

// Compute the time remaining to wait. tv_usec is certainly positive.
result->tv_sec = x->tv_sec - y->tv_sec;
result->tv_usec = x->tv_usec - y->tv_usec;

// Return 1 if result is negative.
return x->tv_sec < y->tv_sec;

}

//------------------------------------------------------------------------------
// MAIN
//------------------------------------------------------------------------------
int main()
{

int i, j;
int temp, l, m, n;
struct timeval time_start, time_stop, time_diff;



double overhead = 0.0;
size_t dataSize;

//---------------------------------------------------------------------------
// STEP 1: Calculate the average overhead of getting time.
//---------------------------------------------------------------------------
for( i = 0; i < TIME_ITERATIONS; i++ )
{

gettimeofday( &time_start, NULL );
gettimeofday( &time_stop, NULL );

if( timeval_subtract( &time_diff, &time_stop, &time_start ) )
{

printf( "ERROR: Th[%d] has negative time, so exiting!\n", MYTHREAD );
exit( 1 );

}

//************************************************************************
// Total overhead
//************************************************************************
overhead += time_diff.tv_sec * 1000000.0 + time_diff.tv_usec;

}

//***************************************************************************
// Average overhead:
// Uncomment the print function to see the average overhead per thread.
//***************************************************************************
overhead /= TIME_ITERATIONS;
//printf( "Th[%d]: Average overhead = %f\n", MYTHREAD, overhead );

upc_barrier;

//---------------------------------------------------------------------------
// STEP 2: Initialize all necessary data.
//---------------------------------------------------------------------------
dataSize = NELEMS*sizeof(TYPE); // Used for standard collectives,

// instead of nBytes. This is local to
// all threads.
#ifndef _EXT_EXCH

nBytes[MYTHREAD] = NELEMS*sizeof(TYPE);
#endif
#ifdef _EXT_EXCH

for( i = 0; i < THREADS; i++ )
{

nBytes[MYTHREAD*THREADS+i] = NELEMS*sizeof(TYPE);
}

#endif

perm[MYTHREAD] = THREADS - MYTHREAD - 1;

if( MYTHREAD == 0 )
{

for( i = 0; i < SRC_SIZE; i++ )
{

src[i] = (char)(1 + i);
}

for( i = 0; i < THREADS; i++ )
{

#ifdef _EXT_BCAST
myDst[i] = (shared [] TYPE *)&(dst[i*DST_BLK_SIZE]);



#endif
#ifdef _EXT_SCAT
mySrc[i] = (shared [] TYPE *)&(src[i*NELEMS]);
myDst[i] = (shared [] TYPE *)&(dst[i*DST_BLK_SIZE]);
#endif
#ifdef _EXT_GATH
mySrc[i] = (shared [] TYPE *)&(src[i*SRC_BLK_SIZE]);
myDst[i] = (shared [] TYPE *)&(dst[i*NELEMS]);
#endif
#ifdef _EXT_GALL
mySrc[i] = (shared [] TYPE *)&(src[i*SRC_BLK_SIZE]);
for( j = 0; j < THREADS; j++ )
{

myDst[i*THREADS+j] = (shared [] TYPE *)&(dst[(i*THREADS+j)*NELEMS]);
}
#endif
#ifdef _EXT_EXCH
for( j = 0; j < THREADS; j++ )
{

mySrc[i*THREADS+j] = (shared [] TYPE *)&(src[(i*THREADS+j)*NELEMS]);
myDst[i*THREADS+j] = (shared [] TYPE *)&(dst[(i*THREADS+j)*NELEMS]);

}
#endif
#ifdef _EXT_PERM
mySrc[i] = (shared [] TYPE *)&(src[i*SRC_BLK_SIZE]);
myDst[i] = (shared [] TYPE *)&(dst[i*DST_BLK_SIZE]);
#endif

}
}

upc_barrier;

//---------------------------------------------------------------------------
// STEP 3: Run the actual test.
// NOTE that we run 1 extra test to discard the first test case.
//---------------------------------------------------------------------------
for( j = 0; j <= TEST_ITERATIONS; j++ )
{

gettimeofday( &time_start, NULL );

#ifdef _STD_BCAST
upc_all_broadcast( dst, src, dataSize, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_BCAST
#ifdef PULL

upc_all_broadcast_x( myDst, src, dataSize,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );

#endif
#ifdef PUSH

upc_all_broadcast_x( myDst, src, dataSize,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );

#endif
#endif

#ifdef _STD_SCAT
upc_all_scatter( dst, src, dataSize, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_SCAT
#ifdef PULL



upc_all_scatter_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );
#endif
#ifdef PUSH

upc_all_scatter_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );
#endif
#endif

#ifdef _STD_GATH
upc_all_gather( dst, src, dataSize, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_GATH
#ifdef PULL

upc_all_gather_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );
#endif
#ifdef PUSH

upc_all_gather_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );
#endif
#endif

#ifdef _STD_GALL
upc_all_gather_all( dst, src, dataSize, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_GALL
#ifdef PULL

upc_all_gather_all_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );

#endif
#ifdef PUSH

upc_all_gather_all_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );

#endif
#endif

#ifdef _STD_EXCH
upc_all_exchange( dst, src, dataSize, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_EXCH
#ifdef PULL

upc_all_exchange_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );

#endif
#ifdef PUSH

upc_all_exchange_x( myDst, mySrc, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );

#endif
#endif

#ifdef _STD_PERM
upc_all_permute( dst, src, perm, dataSize,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC );

#endif

#ifdef _EXT_PERM
#ifdef PULL



upc_all_permute_x( myDst, mySrc, perm, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PULL );
#endif
#ifdef PUSH

upc_all_permute_x( myDst, mySrc, perm, nBytes,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC | UPC_PUSH );
#endif
#endif

gettimeofday( &time_stop, NULL );

//************************************************************************
// Some computation to keep the thread busy. Basically, garbage!
//************************************************************************
for( l = 0; l < COMP_ITERATIONS; l++ )
{

for ( m = 0; m < COMP_ITERATIONS; m++ )
{

for( n = 0; n < COMP_ITERATIONS; n++ )
{

temp = l + m * n;
}

}
}
temp = temp + 1;

//************************************************************************
// Elapsed time in microseconds = 1E+06 seconds.
//************************************************************************
if( timeval_subtract( &time_diff, &time_stop, &time_start ) )
{

printf( "ERROR: Th[%d] has negative time, so exiting!\n", MYTHREAD );
exit( 1 );

}

measured[MYTHREAD]= time_diff.tv_sec * 1000000.0
+ time_diff.tv_usec - overhead;

upc_barrier;

if( MYTHREAD == 0 )
{

max = 0.0;

//*********************************************************************
// For each run, get the longest time from all threads
//******************************************************************
for( i = 0; i < THREADS; i++ )
{

if( measured[i] > max )
{

max = measured[i];
}

}

//*********************************************************************
// Ignore the first run in calculating the sum of all max’s.
//*********************************************************************
if( j != 0 )
{

avgtime += max;



}

//*********************************************************************
// Uncomment the following if acquiring all data
// NOTE: (1) Comment out the average data printouts below.
// (2) Use the runtest.alldata to get results.
//*********************************************************************
//printf( "%f\n", max );

if( j == 0 )
{

mintime = max;
}
else if( max < mintime )
{

mintime = max;
}

} // end of if
} // end of for

//---------------------------------------------------------------------------
// STEP 4: A single thread will collect and report data.
//---------------------------------------------------------------------------
if( MYTHREAD == 0 )
{

avgtime /= TEST_ITERATIONS;
//*********************************************************************
// Uncomment the following if acquiring only average.
// NOTE: (1) Comment out the individual data printouts above.
// (2) Use the runtest.average to get results.
//*********************************************************************
printf( "%d\t%10f\t%10f\n", THREADS, mintime, avgtime );

}

//***************************************************************************
// Just so that the compiler doesn’t act smart!
//***************************************************************************
dataSize = dataSize * 2;

}
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