
Computer Science Technical Report

Illustrative test cases for the UPC
memory model

by William Kuchera and Charles Wallace

Michigan Technological University
Computer Science Technical Report

CS-TR-03-02
March 14, 2003

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu



Illustrative test cases for the UPC memory model∗

William Kuchera and Charles Wallace
Michigan Technological University

March 14, 2003

1 Introduction

The memory model underlying UPC is an important but subtle aspect of the language, and everyone
involved with it must understand its implications. The only resource currently available with
detailed coverage of the memory model is the high-level description in the UPC specification [1].
As mentioned in our previous report [3], it is difficult to tie this description to actual behavior of a
UPC program. UPC implementors and application developers must be able to readily distinguish
program behavior that complies with the UPC specification from behavior that does not comply.
For instance, implementors of UPC on a particular platform need to ensure that the optimizations
they employ guarantee compliant behavior. Programmers exploiting relaxed consistency must have
a grasp of what possible behaviors their programs may induce.

To this end, we have devised a set of test cases for the UPC memory model. These cases fall
into two categories:

Compliance tests. These are examples of behavior that falls outside the UPC specification. They
illustrate the consistency guarantees that UPC gives the programmer.

“Dark corner” tests. These are examples of acceptable behavior, according to the UPC specifi-
cation, that may be surprising to the UPC novice. The UPC memory model is designed to
be quite lax and allows some cases that programmers may not anticipate. These examples
serve to highlight some of these “dark corners”.

Our test cases are at the architecture level rather than the program level; that is, each thread’s
execution is expressed in terms of a sequence of read, write, fence, notify, and wait instructions,
rather than UPC statements. Any references to “ordering”, “following”, “intervening”, etc. refer
to this thread-by-thread instruction ordering. Read and write instructions are assumed to be
relaxed unless specified otherwise. For each case, we illustrate why it illustrates compliance or
non-compliance, using the operational semantics devised in our previous report [3].

∗Financial support for this work has been provided by Hewlett Packard.



2 Memory model overview

The UPC memory model places an order on operations on a per-thread basis. In this regard, it
is similar to processor consistency [2]. There is no mechanism for ordering operations by different
threads. This makes the UPC memory model strictly weaker than sequential consistency [4]. Strict
operations by a single thread are linearly ordered; relaxed operations are ordered with respect
to strict operations but unordered with respect to one another. The lack of a linear order on
all operations by a single thread makes the UPC memory model strictly weaker than processor
consistency.

The constraints on local reading (i.e., a thread’s reading a value that it wrote) are much stricter
than those on remote reading (i.e., a thread’s reading a value that another thread wrote). A local
read always returns the most recent value written by the thread. A thread remotely reading must
follow the ordering of operations established by the writing thread.

Notify and wait, the so-called “split barrier” operations, bring threads to a consensus on the
remotely visible operations for each thread. When each Ti completes its wait, its view of operations
by each Tj is updated to include operations all the way up to Tj ’s notify. Notify and wait do not
order operations by different threads, however, so the operations of Ti and those of Tj remain
unordered.

The UPC memory model does not have the coherence property [2, 5]. Coherence states that
there exists a linear order of writes to a single location that is agreed upon by all threads. This
condition fails in the UPC memory model for two reasons. First, writes by different threads, even
those to a common location, are never ordered. Second, relaxed writes by a single thread, even
those to a single location, are never ordered.

2



3 Compliance test cases

Compliance Test 1 If ordered writes are followed by a local read, only the latest write may be
read.

Thread 0: write(x,1); write(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1)

�� ���� ��W (x, 2)

���
�
�

�� ���� ��R(x, ?)

T0.maxLocal(x)

Explanation.
At the time of T0’s read, t0.maxLocal(x) = W(x,2).
The only write to x locally readable by T0 is maxLocal(x).
So W(x,1) is not legal for this read.

Compliance Test 2 A strict write and a following relaxed write, if read by a remote thread, must
be read in order.

Thread 0: strict-write(x,1); write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��SW (x, 1)

55

�� ���� ��W (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s write W(x,2) is ordered after its strict write SW(x,1).
T1’s first read updates T1.maxRemote(T0) to W(x,2).
Thus at the time of T1’s second read, we have SW(x,1) ≺ W(x,2) = T1.maxRemote(T0).
So SW(x,1) is not legal for this read.

3



Compliance Test 3 A relaxed write and a following strict write, if read by a remote thread, must
be read in order.

Thread 0: write(x,1); strict-write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1)

55

�� ���� ��SW (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s strict write SW(x,2) is ordered after its write W(x,1).
T1’s first read updates T1.maxRemote(T0) to SW(x,2).
Thus at the time of T1’s second read, we have W(x,1) ≺ SW(x,2) = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

Compliance Test 4 Ordered strict writes, if read by a remote thread, must be read in order.

Thread 0: strict-write(x,1); strict-write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��SW (x, 1)

55

�� ���� ��SW (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s strict write SW(x,2) is ordered after its write SW(x,1).
T1’s first read updates T1.maxRemote(T0) to SW(x,2).
Thus at the time of T1’s second read, we have SW(x,1) ≺ SW(x,2) = T1.maxRemote(T0).
So SW(x,1) is not legal for this read.

4



Compliance Test 5 Ordered relaxed writes, if read by a remote thread, must be read in order, if
a strict write intervenes between the writes.

Thread 0: write(x,1); strict-write(y); write(x,2)
Thread 1: read(x,2); read(x,1) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1)

55

�� ���� ��SW (y)
55

�� ���� ��W (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s strict write SW(y) is ordered after its write W(x,1).
T0’s write W(x,2) is ordered after SW(y).
T1’s first read updates T1.maxRemote(T0) to W(x,2).
Thus at the time of T1’s second read, we have W(x,1) ≺ SW(y) ≺ W(x,2) = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

Compliance Test 6 Ordered relaxed writes, if read by a remote thread, must be read in order, if
a strict read intervenes between the writes.

Thread 0: write(x,1); strict-read(y); write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1)

66

�� ���� ��SR(y)
66

�� ���� ��W (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s strict read SR(y) is ordered after its write W(x,1).
T0’s write W(x,2) is ordered after SR(y).
T1’s first read updates T1.maxRemote(T0) to W(x,2).
Thus at the time of T1’s second read, we have W(x,1) ≺ SR(y) ≺ W(x,2) = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

5



Compliance Test 7 Ordered relaxed writes, if read by a remote thread, must be read in order, if
a fence intervenes between the writes.

Thread 0: write(x,1); fence; write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1) ::

�� ���� ��F 77

�� ���� ��W (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s fence F is ordered after its write W(x,1).
T0’s write W(x,2) is ordered after F.
T1’s first read updates T1.maxRemote(T0) to W(x,2).
Thus at the time of T1’s second read, we have W(x,1) ≺ F ≺ W(x,2) = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

Compliance Test 8 Ordered relaxed writes, if read by a remote thread, must be read in order, if
a notify intervenes between the writes.

Thread 0: write(x,1); notify(`); write(x,2)
Thread 1: read(x,2); read(x,?) ⇐ 1 not a legal value

T0 :
�� ���� ��W (x, 1) ::

�� ���� ��F 33
�� ���� ��NOT (`)

�� ���� ��W (x, 2)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
T0’s notify is preceded by an implicit fence F.
F is ordered after T0’s write W(x,1).
T0’s write W(x,2) is ordered after F.
T1’s first read updates T1.maxRemote(T0) to W(x,2).
Thus at the time of T1’s second read, we have W(x,1) ≺ F ≺ W(x,2) = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

6



Compliance Test 9 If a relaxed write and a following strict write precede a notify and corre-
sponding wait, only the strict write may be read after the wait.

Thread 0: write(x,1); strict-write(x,2); notify(`); wait(`)
Thread 1: notify(`); wait(`); read(x,?) ⇐ 1 not a legal value

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

55

�� ���� ��SW (x, 2) 77
�� ���� ��F

OO�
�
� �� ���� ��NOT (`)

Explanation (part 1).
T0’s notify is preceded by an implicit fence F.
F is ordered after T0’s strict write SW(x,2).
SW(x,2) is ordered after T0’s write W(x,1).
At the time of T0’s notify, T0.phaseMax is updated to F.

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

55

�� ���� ��SW (x, 2) 77
�� ���� ��F

OO�
�
�

T1.maxRemote(T0)
PPPPPP

((PPPPP

�� ���� ��NOT (`)
�� ���� ��WAIT (`)

T1 :
�� ���� ��NOT (`)

�� ���� ��WAIT (`)
�� ���� ��R(x, ?)

Explanation (part 2).
When T1’s wait completes, T1.maxRemote(T0) is updated to T0.phaseMax, which is F.
Thus at the time of T1’s read, we have W(x,1) ≺ SW(x,2) ≺ F = T1.maxRemote(T0).
So W(x,1) is not legal for this read.

7



4 “Dark corners” test cases

Dark Corner Test 1 Ordered relaxed writes may be remotely read in different orders by different
threads.

Thread 0: write(x,1); write(x,2)
Thread 1: read(x,1); read(x,2)
Thread 2: read(x,2); read(x,?) ⇐ 1 is a legal value

T1 :
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)

T0 :
�� ���� ��W (x, 1)

T1.maxRemote(T0)
�

�
�

@@�
�

�

�� ���� ��W (x, 2)

T2.maxRemote(T0)

�

�

���
�

T2 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
W(x,1) and W(x,2) are unordered with respect to each other.
T1’s first read updates T1.maxRemote(T0) to W(x,1).
At T1’s second read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
T2’s first read updates T2.maxRemote(T0) to W(x,2).
At T2’s second read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is legal for this read.

Dark Corner Test 2 Ordered relaxed writes may be remotely read in different orders by a single
thread.

Thread 0: write(x,1); write(x,2)
Thread 1: read(x,1); read(x,2); read(x,?) ⇐ 1 is a legal value

T0 :
�� ���� ��W (x, 1)

T1.maxRemote(T0)

�

�

���
�

�� ���� ��W (x, 2)

T1 :
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)
�� ���� ��R(x, ?)

Explanation.
W(x,1) and W(x,2) are unordered with respect to each other.
T1’s first read updates T1.maxRemote(T0) to W(x,1).
At T1’s second read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
Since W(x,2) 6�+ W(x,1), T1.maxRemote(T0) is unchanged by T1’s second read.
At T1’s third read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.

8



Dark Corner Test 3 Unordered strict writes may be read in different orders by different threads.

Thread 0: strict-write(x,1)
Thread 1: strict-write(x,2)
Thread 2: read(x,1); read(x,2)
Thread 3: read(x,2); read(x,?) ⇐ 1 is a readable value

T2 :
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)

T0 :
�� ���� ��SW (x, 1)

T2.maxRemote(T0)�

�

OO�
�

T1 :
�� ���� ��SW (x, 2)

T2.maxRemote(T1)
v

v
v

v
v

v
v

::v
v

v
v

v
v

v

T3.maxRemote(T1)

�

�

���
�

T3 :
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
SW(x,1) and SW(x,2) are unordered with respect to each other.
T2’s first read updates T2.maxRemote(T0) to SW(x,1).
At T2’s second read, since there is no chain SW(x,2) ≺+ W(x,*), SW(x,2) is readable.
T2’s second read updates T2.maxRemote(T1) to SW(x,2).
T3’s first read updates T3.maxRemote(T1) to SW(x,2).
At T3’s second read, since there is no chain SW(x,1) ≺+ W(x,*), SW(x,1) is readable.

9



Dark Corner Test 4 Unordered strict writes may be read in different orders by a single thread.

Thread 0: strict-write(x,1)
Thread 1: strict-write(x,2)
Thread 2: read(x,1); read(x,2); read(x,?) ⇐ 1 is a legal value

T2 :
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)
�� ���� ��R(x, ?)

T0 :
�� ���� ��SW (x, 1)

T2.maxRemote(T0)�

�

OO�
�

T1 :
�� ���� ��SW (x, 2)

T2.maxRemote(T1)
�

�
�

GG�
�

�
�

�
�

�
�

�
�

�

Explanation.
SW(x,1) and SW(x,2) are unordered with respect to each other.
T2’s first read updates T2.maxRemote(T0) to SW(x,1).
At T2’s second read, since there is no chain SW(x,2) ≺+ W(x,*), SW(x,2) is readable.
T2’s second read updates T2.maxRemote(T1) to SW(x,2).
At T2’s third read, since there is no chain SW(x,1) ≺+ W(x,*), SW(x,1) is readable.

Dark Corner Test 5 Unordered writes, if one is read locally and the other remotely by the same
thread, may be read in different orders by that thread.

Thread 0: write(x,1)
Thread 1: write(x,2); read(x,1); read(x,2); read(x,?) ⇐ 1 is a legal value

T0 :
�� ���� ��W (x, 1)

T1.maxRemote(T0)

D
D

D

!!D
D

D

T1 :
�� ���� ��W (x, 2)

���
�
�

�� ���� ��R(x, 1)
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

T1.maxLocal(x)

Explanation.
T1’s write updates T1.maxLocal(x) to W(x,2).
T1’s first read updates T1.maxRemote(T0) to W(x,1), but leaves T1.maxLocal(x) unchanged.
Since T1.maxLocal(x) is always a legal readable value, W(x,2) is legal for this read.
T1’s second read has no effect on T1.maxRemote(T0) = W(x,1).
So W(x,1) is still a legal readable value.

10



Dark Corner Test 6 If ordered relaxed writes precede a fence, the writes may be read in different
orders by a single thread.

Thread 0: write(x,1); write(x,2); fence; write(y,0);
Thread 1: read(y,0); read(x,1); read(x,2); read(x,?) ⇐ 1 is a legal value

T0 :
�� ���� ��W (x, 1) ::

�� ���� ��W (x, 2) ::
�� ���� ��F 77

�� ���� ��W (y, 0)

T1.maxRemote(T0)

�

�

���
�

T1 :
�� ���� ��R(y, 0)

�� ���� ��R(x, 1)
�� ���� ��R(x, 2)

�� ���� ��R(x, ?)

Explanation.
W(x,1) and W(x,2) are unordered with respect to each other.
Both W(x,1) and W(x,2) are ordered before F.
F is ordered before W(y,0).
T1’s first read updates T1.maxRemote(T0) to W(y,0).
At T1’s second read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.
Since T1.maxRemote(T0) = W(y,0) and W(y,0) � W(x,1), T1.maxRemote(T0) is unchanged.
At T1’s third read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
Since T1.maxRemote(T0) = W(y,0) and W(y,0) � W(x,2), T1.maxRemote(T0) is unchanged.
At T1’s fourth read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.

11



Dark Corner Test 7 If ordered relaxed writes precede a notify and corresponding wait, the writes
may be read in different orders by a single thread.

Thread 0: write(x,1); write(x,2); notify(`); wait(`)
Thread 1: notify(`); wait(`); read(x,1); read(x,2); read(x,?) ⇐ 1 is a legal value

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

%%�� ���� ��W (x, 2) ''�� ���� ��F

OO�
�
� �� ���� ��NOT (`)

Explanation (Part 1).
W(x,1) and W(x,2) are unordered with respect to each other.
Both W(x,1) and W(x,2) are ordered before F.
T0’s notify updates T0.phaseMax to F.

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

%%�� ���� ��W (x, 2) ''�� ���� ��F

OO�
�
�

T1.maxRemote(T0)
E

E
E

E

""E
E

E

�� ���� ��NOT (`)

T1 :
�� ���� ��NOT (`)

�� ���� ��WAIT (`)
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)
�� ���� ��R(x, ?)

Explanation (Part 2).
T1’s wait updates T1.maxRemote(T0) to T0.phaseMax, which is F.
At T1’s first read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.
Since T1.maxRemote(T0) = F and F � W(x,1), T1.maxRemote(T0) is unchanged.
At T1’s second read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
Since T1.maxRemote(T0) = F and F � W(x,2), T1.maxRemote(T0) is unchanged.
At T1’s third read, since there is still no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.

12



Dark Corner Test 8 If ordered relaxed writes precede a notify and corresponding wait, the writes
may be read in either order by different threads.

Thread 0: write(x,1); write(x,2); notify(`); wait(`)
Thread 1: notify(`); wait(`); read(x,1); read(x,2)
Thread 2: notify(`); wait(`); read(x,2); read(x,1)

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

&&�� ���� ��W (x, 2)
''�� ���� ��F

OO�
�
� �� ���� ��NOT (`)

Explanation (part 1).
W(x,1) and W(x,2) are unordered with respect to each other.
Both W(x,1) and W(x,2) are ordered before F.
T0’s notify updates T0.phaseMax to F.

T1 :
�� ���� ��NOT (`)

�� ���� ��WAIT (`)
�� ���� ��R(x, 1)

�� ���� ��R(x, 2)

T0.phaseMax

T0 :
�� ���� ��W (x, 1)

&&�� ���� ��W (x, 2)
''�� ���� ��F

OO�
�
�

T1.maxRemote(T0)
~

~
~

~
~

~
~

??

T1.maxRemote(T0)

D
D

D
D

!!D
D

D

�� ���� ��NOT (`)
�� ���� ��WAIT (`)

T2 :
�� ���� ��NOT (`)

�� ���� ��WAIT (`)
�� ���� ��R(x, 2)

�� ���� ��R(x, 1)

Explanation (part 2).
When T1’s wait completes, T1.maxRemote(T0) is updated to T0.phaseMax, which is F.
At T1’s first read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.
Since T1.maxRemote(T0) = F and F � W(x,1), T1.maxRemote(T0) is unchanged.
At T1’s second read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
When T2’s wait completes, T2.maxRemote(T0) is updated to T0.phaseMax, which is F.
At T2’s first read, since there is no chain W(x,2) ≺+ W(x,*), W(x,2) is readable.
Since T1.maxRemote(T0) = F and F � W(x,2), T1.maxRemote(T0) is unchanged.
At T2’s second read, since there is no chain W(x,1) ≺+ W(x,*), W(x,1) is readable.

13



References

[1] T. El-Ghazawi, W. Carlson, and J. Draper. UPC language specifications, v1.0. Technical report,
Center for Computing Sciences, 2001.
Available at http://www.gwu.edu/~upc/doc/upc_specs.pdf.

[2] J.R. Goodman. Cache consistency and sequential consistency. Technical Report 1006, Computer
Science Dept., University of Wisconsin–Madison, 1989.

[3] W. Kuchera and C. Wallace. Toward a programmer-friendly formal specification of the UPC
memory model, 2002.

[4] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. on Computers, C-28(9):690–691, 1979.

[5] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A new memory model
for architects and compiler writers. In Proc. ISCA, pages 150–161, 1999.

14


