
The Unlimited Resource Machine (URM)

David A. Poplawski

February 1995

Abstract
The Unlimited Resource Machine (URM) is a hypothetical instruction set architecture that was designed specifi-

cally for study of the architecture of and code generation techniques for machines exhibiting instruction level paral-
lelism. A set of tools have been implemented to support this machine model, including compilers, a (linking)
assembler, simulators, and trace analyzers. The architecture and its tools are being used in a variety of research
projects at MTU. This report describes the philosophy behind the URM, the architecture and instruction set, the tools
and their interfaces, and how to use the tools to model various ILP architectures.

Introduction

The Unlimited Resource Machine1 (URM) is a hypothetical instruction set architecture that was designed specif-
ically for study of the architecture of and code generation techniques for machines exhibiting instruction level paral-
lelism. A set of tools have been implemented to support this machine model, including compilers, a (linking)
assembler, simulators, and trace analyzers. The architecture and its tools are being used in a variety of research
projects at MTU.

Modeling Strategy
All modeling of instruction level parallel architectures is based on the generation and use of a trace file of the

sequential execution of a URM program. This trace file is then used as input to a program that simulates the action of
the instructions in the context of some target parallel architecture.

The separation of the simulation of the semantics of the instructions and the analysis of their action was done for
three reasons. First, it simplifies the construction of the execution simulator. The simulator focuses on the semantics
of each instruction, one at a time, much the way a simple sequential implementation of a URM computer would.
Since all ILP architectures are supposed to preserve the semantics of the program, as defined by the sequential execu-
tion of instructions, no aspect of parallelism will affect the results (e.g., outputs of the program, operands used by
instructions).

Second, it simplifies the construction of analysis tools. The analyzer does not need to actually simulate the
semantics of each instruction (i.e., computing values), so can be focused on simulating the effect of each instruction
in the parallel architecture. This simplifies the analyzer and reduces the probability of errors.

Third, only one execution simulator needs to be written and debugged. For pragmatic reasons there are currently
two simulators, one a subset of the other. Since we wanted to study speculative execution, the more capable simulator
has the ability to execute, then undo the effect of, instructions that wouldn’t have executed in a normal sequential exe-
cution, and include these “speculatively executed” instructions in the trace of the execution (suitably marked). In the
remainder of this document we will, by default, be talking about the more capable simulator. The simpler simulator
has all the same capabilities except the ability to do speculative execution.

The Trace Files
The trace of execution of a URM program contains a record for every instruction executed, in the order they

would be executed in a sequential machine. The basic trace file contains the following information:

1. A flag for speculative execution, essentially identifying the path of execution past one or more incorrectly exe-

1. In previous publications URM stood for “Uniform” Resource Machine.

cuted branch instructions. This field is not present in the trace file produced by the simpler simulator.
2. The address of the instruction.
3. The op-code of the instruction.
4. A list of registers and memory locations accessed, including the number of bytes and whether each access was a

read or a write.

Instruction Set Architecture
The philosophy behind the instrcution set architecture is to use a generic collection of instructions that corre-

spond to basic C operations. Instructions exist for manipulating 8 bit characters, 16 and 32 bit integers, and 32 and 64
bit floating point numbers. The number of registers is not bounded, nor is the amount of memory (except as dictated
by the available virtual memory on the machine the simulator runs on). Any register can be treated as either 32 bit
integers (with 8 bit characters and 16 bit integers occupying the lower bits), as a 32 bit float, or as a 64 bit float.
Explicit conversion instructions can be used to convert between types. Support for function calls exists in the form of
push, pop, call and return instructions, all of which use an stack pointer register to implement an implicit negative
growing stack.

Although the URM instruction set is rather rich, it is assumed that one will choose a subset of the instructions
(and addressing modes), pick a fixed number of registers, and target a compiler to this subset. Simple RISC architec-
tures should be easy to define, and most existing architectures can be “approximated”. To assist such approximations,
a mechanism for grouping two or more instructions so as to treat them as a single instruction has been included. This
allows for the “implementation” of (more complex) instructions that are not present in the URM set. This grouping
mechanism could also be used to create VLIW-like instructions. To be useful, the grouping information is included in
the trace file created by the simulator.

Tools
The basis of the toolset for the URM is the assembler and instruction-level simulator. It is intended that these

tools be generic enough to support the simulation of a large range of ILP architectural characteristics without having
to be rewritten (or even modified). Given these tools, compilers exhibiting a range of parallel code generation tech-
niques and optimizations can be targetted, and analyzers simulating the effects of various parallel architectural fea-
tures can be written.

Intermediate File Formats
The interface between the compiler and assembler is the assembly language file. Appendix B describes the for-

mat of this file.

The assembler outputs an “executable” (by the simulator) file. This file contains a line for each instruction or data
initializing assembler command (e.g., .word). The first line contains two hexadecimal integers - the address of the
first unused memory location above the program and data, and the highest register number used by the program. Each
successive line contains two hexadecimal integers followed by a string of hexadecimal digits. The first hex number is
a code indicating how to interpret what follows. A code of 0 indicates an executable instruction, non-zero indicates
data, with the value of the code indicating how many “bytes” of data follow. The second hex number is the starting
address of the instruction or data that follows. The string of hex digits after that are the encoding of an instruction or
the actual bytes of data. In the case of an instruction the number of bytes can be determined from the addressing mode
information in the instruction itself.

The simulator outputs a trace of the execution of the program supplied as input. The output is a series of
“records” (in binary), one record per instruction executed. Appendix C describes the format of this file.

Compiler(s)
Compilers that currently generate URM code are based on the ROCKET [1] retargetable compiler.

Assembler
The two-pass assembler reads one or more assembler files and generates an executable object file. Since the

URM system has no linker, the function of linking multiple files and resolving references between files is done by the
assembler. Library functions, also in assembly language, are also linked in. The assembler is invoked by the com-
mand:

asm executable-file asm-file-1 asm-file-2 ... [-llibrary]

The files asm-file-1, asm-file-2, etc will be assembled and linked, and the output written to executable-file. One of
the assembly language files must contain a function named _main, which must be declared global in that file through
the use of the .globl assembler command. The executable-file is appropriate for input to the simulator. If no library is
specified, a default library is linked in. This library uses a stack-based calling sequence.

Library
A library contains interfaces to printf and scanf functions, as well as a few mathematical functions (see Appendix

B). Most library functions consist of a “trap” instruction surrounded by a function entry/exit wrapper. However some
are actually implemented directly in URM instructions. In both cases assumptions have been made about the function
calling conventions (including parameter passing) as well as which URM instructions to use. Since different URM
subsets, with different calling conventions, may be desired, different implementations of the library will be needed.

Simulator
The simulator reads an object file and simulates the execution, instruction by instruction, of the program con-

tained therein. A trace of the execution can be produced upon request, either into a file, or piped into another com-
mand (using popen). All information about grouped instructions appears in the trace file.

The simulator is invoked by the command:

sim [-s] [-t trace-file | -p command] [-m memsize] [-w window-size] executable-file

where trace-file is the name of the file in which to put the execution trace, command is a command to execute
that will read the trace-file from stdin, memsize is the number of bytes of simulated memory to use (default is 1
Mbyte), and executable-file is the output of the assembler. Window-size is the number of instructions to execute down
any wrong path from a conditional branch instruction. Since there may be other conditional branches after the first,
there may be a tree of paths. Window-size is the height of that tree. If some instruction along any path down the tree
causes an execution error (such as reference out of the address space) or is a halt instruction, that path is (prema-
turely) terminated. Hence some paths may not be window-size instructions long. The -s flag will cause the simulator
to collect and print statistics about the executed program.

Analyzer(s)
An analyzer uses a trace file from one of the simulators and produces information about the execution of the pro-

gram. Most analyzers simulate some architectural feature (or combination of features), such as pipelining, functional
units, cache, etc., and many involve some aspect of timing. Since there can be such a wide range of analyzers, no spe-
cific description of one of them is included here. However many have already been constructed for various purposes
(class projects, thesis work and other research)

Miscellaneous Tools
A disassembler reads an executable file and prints the contents in an assembly language like format. This can be

useful in debugging as the address of each instruction and the actual operand values are shown.

A program for printing the contents of a trace file can be used to get a readable version of a trace file. Versions for
both forms of trace file exist.

References
1. Sweany, Phillip H. and Beaty, Steven J. Overview of the ROCKET Retargetable C Compiler. Technical Report

CS-94-01, Department of Computer Science, Michigan Technological University. January 1994.

APPENDIX A - URM INSTRUCTION SET

Registers
The URM has an unlimited number of registers, numbered starting at 0. Register 0 is assumed to be the stack

pointer, and is used implicitly by several instructions. Any register can contain either a four byte integer, a four byte
single precision floating point number (a float), or an eight byte double precision floating point number (a double). An
attempt to use an integer value in a register as a float or double is undefined. An attempt to use a float value in a reg-
ister as an integer or double is undefined. An attempt to use a double value in a register as an integer or float is unde-
fined.

Memory
The URM has an unlimited number of 8-bit bytes of memory (actually it is limited by the implementation of the

simulator on a given architecture - practically there will be considerably fewer than 232 bytes). Memory is byte
addressible.

The Stack
The URM instruction set supports a negatively growing stack. By convention the stack pointer contains an

address four bytes less than the last thing on the stack. The crt0 instruction initializes the stack pointer to point to the
7 bytes less than the last implemented memory location (it also does other things - see the description below).

Addressing Modes
The URM has five addressing modes:

Mode Assembler Syntax Examples

Immediate $value $78, $0x9, $-88, $x, $x+5, $x-17

Register rnum r9, r100, sp (an alias for r0)

Direct value 4985, x, x+99, x-0x4c

Register Displacement value(rnum) 0(r1), 0x55(sp), -6(r5), x+8(r9)

Memory Displacement value1(value2) 0(100), 0x55(0x34)

All values are signed, 32-bit numbers. The result, when interpreted as an address, is an unsigned value (hence a
negative result will be interpreted as a very large address).

When used as a source:

Immediate The value itself

Register The contents of the register

Direct The contents of memory at the value

Register Displacement The contents of memory at the address that is the sum of the contents of the reg-
ister and the displacement value

Memory Displacement The contents of memory at the address that is the sum of the contents of the index
memory word and the displacement value

If the instruction specifies a byte operand, the lower byte of the immediate or register, or a single byte of mem-
ory, is used. If the instruction specifies a halfword operand, the lower two bytes of the immediate or register, or two
bytes of memory, are used. If the instruction specifies a word operand, the entire immediate or register, or four bytes
of memory, are used. If the instruction specifies a float operand, the entire register, or four bytes of memory, are used.
If the instruction specifies a double operand, the entire register, or eight bytes of memory, are used.

When used as a destination:

Immediate Illegal

Register The register is changed

Direct The memory location at the value is changed

Register Displacement The memory location at the address that is the sum of the displacement value and
the contents of the register is changed

Memory Displacement The memory location at the address that is the sum of the contents of the index
memory word and the displacement value is changed

If the instruction specifies a byte operand, then only the lower byte of the register, or a single byte of memory, is
changed. If the instruction specifies a halfword operand, then only the lower two bytes of the register, or just two
bytes of memory, are changed. If the instruction specifies a word or float operand, the entire register, or four bytes of
memory are changed. If the instruction specifies a double operand, the entire register, or eight bytes of memory, are
changed.

When used as a branch target:

Immediate Illegal

Register The contents of the register is the address transfered to

Direct The value itself is the address transfered to

Register Displacement The sum of the contents of the register and the displaement value is the address
transfered to

Memory Displacement The sum of the contents of the index memory word and the displacement value is
the address transfered to

Instructions
Each instruction consists of an operation code followed from zero to three operands. The type of each operand is

determined by the operation code.

In the descriptions below, an operand can be a source (“src”) or destination (“dst”) or a branch “target”. The type
of each operand is indicated by the suffix (b - byte, h - halfword, w - word, f - float, d - double). A prefix of “r” indi-
cates that the operand must be a register. A prefix of m indicates that the operand must be a memory location (i.e., a
direct, register displacement or memory displacement mode).

Data Movement

ldb rdst.b,msrc.b load byte
ldh rdst.h,msrc.h load halfword
ldw rdst.w,msrc.w load word
ldf rdst.f,msrc.f load float
ldd rdst.d,msrc.d load double
stb rsrc,.b,mdst.b store byte
sth rsrc.h,mdst.h store halfword
stw rsrc.w,mdst.w store word
stf rsrc.f,mdst.f store float
std rsrc.d,mdst.d store double

movb dst.b,src.b move byte
movh dst.h,src.h move halfword
movw dst.w,src.w move word
movf dst.f,src.f move float
movd dst.d,src.d move double

Arithmetic

addb dst.b,src1.b,src2.b add byte
addh dst.w,src1.h,src2.h add halfword
addw dst.h,src1.w,src2.w add word

addf dst.f,src1.f,src2.f add float
addd dst.d,src1.d,src2.d add double
subb dst.b,src1.b,src2.b subtract byte (dst = src1-src2)
subh dst.h,src1.h,src2.h subtract halfword
subw dst.w,src1.w,src2.w subtract word
subf dst.f,src1.f,src2.f subtract float
subd dst.d,src1.d,src2.d subtract double
mulb dst.b,src1.b,src2.b multiply byte
mulh dst.h,src1.h,src2.h multiply halfword
mulw dst.w,src1.w,src2.w multiply word
mulf dst.f,src1.f,src2.f multiply float
muld dst.d,src1.d,src2.d multiply double
divb dst.b,src1.b,src2.b divide byte (dst = src1/src2)
divh dst.h,src1.h,src2.h divide halfword
divw dst.w,src1.w,src2.w divide word
divf dst.f,src1.f,src2.f divide float
divd dst.d,src1.d,src2.d divide double
modb dst.b,src1.b,src2.b modulo byte (dst = src1%src2)
modh dst.h,src1.h,src2.h modulo halfword
modw dst.w,src1.w,src2.w modulo word

Logical

bcompb dst.b,src.b bitwise complement byte (ones complement)
bcomph dst.h,src.h bitwise complement halfword
bcompw dst.w,src.w bitwise complement word
bandb dst.b,src1.b,src2.b bitwise and byte
bandh dst.h,src1.h,src2.h bitwise and halfword
bandw dst.w,src1.w,src2.w bitwise and word
borb dst.b,src1.b,src2.b bitwise or byte
borh dst.h,src1.h,src2.h bitwise or halfword
borw dst.w,src1.w,src2.x bitwise or word
bxorb dst.b,src1.b,src2.b bitwise exclusive or byte
bxorh dst.h,src1.h,src2.h bitwise exclusive or halfword
bxorw dst.w,src1.w,src2.w bitwise exclusive or word

blshb dst.b,src1.b,src2.w bitwise left shift byte (dst = src1 << src2)
blshh dst.h,src1.h,src2.w bitwise left shift halfword
blshw dst.w,src1.w,src2.w bitwise left shift word
brshb dst.b,src1.b,src2.w bitwise right shift byte (dst = src1 >> src2)
brshh dst.h,src1.h,src2.w bitwise right shift halfword
brshw dst.w,src1.w,src2.w bitwise right shift word

Note: the shift instructions use C semantics for left and right shifts.

Conversions

cvtbh dst.h,src.b convert byte to halfword
cvtbw dst.w,src.b convert byte to word
cvtbf dst.f,src.b convert byte to float
cvtbd dst.d,src.b convert byte to double
cvthb dst.b,src.h convert halfword to byte
cvthw dst.w,src.h convert halfword to word
cvthf dst.f,src.h convert halfword to float
cvthd dst.d,src.h convert halfword to double

cvtwb dst.b,src.w convert word to byte
cvtwh dst.h,src.w convert word to halfword
cvtwf dst.f,src.w convert word to float
cvtwd dst.d,src.w convert word to double
cvtfb dst.b,src.f convert float to byte
cvtfh dst.h,src.f convert float to halfword
cvtfw dst.w,src.f convert float to word
cvtfd dst.d,src.f convert float to double
cvtdb dst.b,src.d convert double to byte
cvtdh dst.h,src.d convert double to halfword
cvtdw dst.w,src.d convert double to word
cvtdf dst.f,src.d convert double to float

Note: all values are assumed to be signed when converting to larger types.

Comparisons

cmpeqb dst.w,src1.b,src2.b compare equal byte (dst = (src1==src2))
cmpeqh dst.w,src1.h,src2.h compare equal halfword
cmpeqw dst.w,src1.w,src2.w compare equal word
cmpeqf dst.w,src1.f,src2.f compare equal float
cmpeqd dst.w,src1.d,src2.d compare equal double
cmpneb dst.w,src1.b,src2.b compare not equal byte (dst = (src1 != src2))
cmpneh dst.w,src1.h,src2.h compare not equal halfword
cmpnew dst.w,src1.w,src2.w compare not equal word
cmpnef dst.w,src1.f,src2.f compare not equal float
cmpned dst.w,src1.d,src2.d compare not equal double
cmpltb dst.w,src1.b,src2.b compare less than byte (dst = (src1 < src2))
cmplth dst.w,src1.h,src2.h compare less than halfword
cmpltw dst.w,src1.w,src2.w compare less than word
cmpltf dst.w,src1.f,src2.f compare less than float
cmpltd dst.w,src1.d,src2.d compare less than double
cmpleb dst.w,src1.b,src2.b compare less than or equal byte (dst = (src1 <= src2))
cmpleh dst.w,src1.h,src2.h compare less than or equal halfword
cmplew dst.w,src1.w,src2.w compare less than or equal word
cmplef dst.w,src1.f,src2.f compare less than or equal float
cmpled dst.w,src1.d,src2.d compare less than or equal double
cmpgtb dst.w,src1.b,src2.b compare greater than byte (dst = (src1 > src2))
cmpgth dst.w,src1.h,src2.h compare greater than halfword
cmpgtw dst.w,src1.w,src2.w compare greater than word
cmpgtf dst.w,src1.f,src2.f compare greater than float
cmpgtd dst.w,src1.d,src2.d compare greater than double
cmpgeb dst.w,src1.b,src2.b compare greater than or equal byte (dst = (src1 >= src2))
cmpgeh dst.w,src1.h,src2.h compare greater than or equal halfword
cmpgew dst.w,src1.w,src2.w compare greater than or equal word
cmpgef dst.w,src1.f,src2.f compare greater than or equal float
cmpged dst.w,src1.d,src2.d compare greater than or equal double

Transfers of Control

beqb src1.b,src2.b,target branch equal byte (if src1 == src2)
beqh src1.h,src2.h,target branch equal halfword
beqw src1.w,src2.w,target branch equal word
beqf src1.f,src2.f,target branch equal float
beqd src1.d,src2.d,target branch equal double

bneb src1.b,src2.b,target branch not equal byte (if src1 != src2)
bneh src1.h,src2.h,target branch not equal halfword
bnew src1.w,src2.w,target branch not equal word
bnef src1.f,src2.f,target branch not equal float
bned src1.d,src2.d,target branch not equal double
bltb src1.b,src2.b,target branch less than byte (if src1 < src2)
blth src1.h,src2.h,target branch less than halfword
bltw src1.w,src2.w,target branch less than word
bltf src1.f,src2.f,target branch less than float
bltd src1.d,src2.d,target branch less than double
bleb src1.b,src2.b,target branch less than or equal byte (if src1 <= sec2)
bleh src1.h,src2.h,target branch less than or equal halfword
blew src1.w,src2.w,target branch less than or equal word
blef src1.f,src2.f,target branch less than or equal float
bled src1.d,src2.d,target branch less than or equal double
bgtb src1.b,src2.b,target branch greater than byte (if src1 > src2)
bgth src1.h,src2.h,target branch greater than halfword
bgtw src1.w,src2.w,target branch greater than word
bgtf src1.f,src2.f,target branch greater than float
bgtd src1.d,src2.d,target branch greater than double
bgeb src1.b,src2.b,target branch greater than or equal byte (if (src1 >= src2)
bgeh src1.h,src2.h,target branch greater than or equal halfword
bgew src1.w,src2.w,target branch greater than or equal word
bgef src1.f,src2.f,target branch greater than or equal float
bged src1.d,src2.d,target branch greater than or equal double
jmp target jump (always)

Function Calls

pushb src.b push byte (then decrement stack pointer by 1)
pushh src.h push halfword (then decrement stack pointer by 2)
pushw src.w push word (then decrement stack pointer by 4)
pushf src.f push float (then decrement stack pointer by 4)
pushd src.d push double (then decrement stack pointer by 8)
popb dst.b pop byte (increment stack pointer by 1 first)
poph dst.h pop halfword (increment stack pointer by 2 first)
popw dst.w pop word (increment stack pointer by 4 first)
popf dst.f pop float (increment stack pointer by 4 first)
popd dst.d pop double (increment stack pointer by 8 first)
call target “pushw” address of next instruction, jump to target
callr rdst.w,target put address of next instruction into rdst.w, jump to target
ret “popw” value from stack, jump to that value

Miscellaneous

crt0 direct initialize stack pointer, pushw return address, jump to direct
nop do nothing
trap imm, msrc.w invoke simulator function (code = “imm”, params at “src.w”)
halt terminate execution

Note: the crt0 instruction requires a “direct” addressing mode, and the trap instruction requires an “immedi-
ate” addressing mode.

Debugging

regdmp dump all registers used by program

Trap Functions
The “trap” instruction is used to provide access to what would normally be operating system or complex library

functions. The execution of a trap instruction causes the simulator to take zero or more parameters starting at the
address indicated by the second operand of the trap instruction, call the function indicated by the first operand, and
return the result at the address indicated by the second operand. The stack are all registers are left unchanged. The
functions currently implemented are:

_atan expects a double, returns a double
_cos expects a double, returns a double
_exit no parameters expected, never returns (executes a halt)
_exp expects a double, returns a double
_fabs expects a double, returns a double
_log expects a double, returns a double
_printf expects an address of a format string and a value
_scanf expects an address of a format string and an address for the value, returns an integer
_sin expects a double, returns a double
_sqrt expects a double, returns a double

APPENDIX B - ASSEMBLER SYNTAX AND OPERATIONS

Syntax
Any line of input may contain a comment, which begins with a pound sign (#) and ends at the end of the line.

Everything from the pound sign to the end of the line is ignored by the assembler, except the end of the line itself,
which, as described below, terminates a statement.

Input is free form - there are no indentation or column requirements. White space (spaces and tabs) is optional,
except as stated below.

A program is a sequence of statements. Each statement can contain zero or more labels, which need not be on the
same line as the statement, but must preceed it. Each label is followed by a colon. Blank lines can appear between
labels and the statment they label. A label consists of a sequence of lower/upper case letters, digit, and the under-
score, and must not begin with a digit.

The value associated with a label is equal to the address of the first byte of the statement it labels, including any
alignment that is required by the statement. The scope of a label is the file in which it occurs, unless it is made global
to all files being linked via the .globl assembler command.

A statement is either a list of executable instructions or assembler commands separated by semicolons. It termi-
nates with the end of the line the statement is on. Statements cannot span more than one line. All instructions or
assembler commands consist of an operation followed by zero or more operands. The operation and its operands must
be separated by at least one space or tab. Operands are separated by commas.

Examples:

instruction # an unlabeled statement containing one instruction
L1: command # a statement with one label (L1) containing one command
_main:

instruction1; instruction 2 # another statement with one label (_main) containing
two instructions

L2:
L3: L4:
L5:

instruction # a statement with 4 labels (L2-L5) containing one instruction

Assembler Commands
Assembler commands are used to give the assembler information about the scope of a name (.globl), reserve uni-

tialized memory (.space), or initialize memory locations to a value (.byte, .halfword, .word, .float, .double, .string).

.globl name declares name to be known outside this file

.space bytes,alignment reserves bytes bytes, aligned according to alignment

.byte value stores value as a fixed point value in 1 byte
value may be an integer or a C character constant

.halfword value stores value as a fixed point value in 2 bytes, aligned on a 2-byte boundary
value must be an integer

.word value stores value as a fixed point value in 4 bytes, aligned on a 4-byte boundary
value can be an integer or a name

.float value stores value as a single precision value in 4 bytes, aligned on a 4-byte boundary
value must be C float constant

.double value stores value as a double precision value in 8 bytes, aligned on an 8-byte boundary
value must be C double constant

.string value stores value as a null terminated string
value must be C string

Examples:

.globl _main # declares _main to be global to all files being linked
stuff: .space 16, 4 # reserves 16 bytes aligned on a multiple of 4 boundary

.byte 7 # initializes a single byte to the value 7

.halfword 28 # initializes two bytes to the value 28

.word 1951 # initializes four bytes to the integer value 1951

.word abc # initializes four bytes to the address of abc
myval: .float -8.43 # initializes four bytes to the float value -8.43

.double 8.43E4 # initializes eight bytes to the float value 8.43x104

Miscellaneous
The assembler automatically puts a “crt0 _main” instruction at memory location 0. This instrucution causes the

the stack pointer to be initialized to the highest usable memory locations and then “call”s the function _main.

The assembler automatically assembles a library of “system call”s at the end of the program. This library con-
tains:

_atan
_cos
_exit
_exp
_fab
_free
_log
_malloc
_printf
_scanf
_sin
_sqrt

To call any of the mathematical functions, push a double onto the stack and call the function. The result is
returned in r2 as a double.

To call malloc, push an integer onto the stack and call the function. A result is returned in r2 as an integer. To call
free, push the address of the block onto the stack and call the function. (Currently malloc allocates space but free does

not free it. Therefore use these functions with care).

To call _scanf, push the address of a word on the stack, then push the address of the format string, then “call
_scanf”, and upon return, add 8 to the stack pointer. The return value of from _scanf is returned in r2 as an integer. To
call _printf, push a word value on the stack, then push the address of the format string, then “call _printf”, and upon
return, add 8 to the stack pointer. In both cases, the format string can contain only a single format descriptor.

APPENDIX C- TRACE FILE FORMAT
The trace file consists of a series of records, one per instruction executed by the simulator. Each record contains

the following:

A four byte speculative execution flag (not present in the trace file from the simpler, non-speculative simulator).
For all normally executed instructions except conditional branches this flag is 0. For normally executed conditional
branches it is either 0 (if the branch was taken) or 0x80000000 (if the branch was not taken). For instructions that
should not have been executed (down wrong paths of the program), the value of the flag indicates how prior branch
instructions were executed (correctly or incorrectly) to get to that instruction. Consider a flag value 1bibi-1 ... b2b1.
This value implies that i conditional branch instructions were executed after the first branch that started the program
down the wrong path. If bi is a 1 then ith previous conditional branch was correctly executed to get to this instruction.
If bi is a 0 then the ith previous conditional branch was incorrectly executed to get to this instruction. For example,
the flag value 1101 imples that the previous conditional branch instruction was correctly executed, the one before that
incorrectly executed, and the one before that correctly executed. Of course the branch that started the program down
the incorrect path was incorrectly executed. The 1 bit to the left of bi is a marker to indicate how many branch instruc-
tions were executed down the wrong path. It serves no other purpose. If a condition branch instruction in the trace
down an incorrect path has a negative flag, then that specific branch instruction was taken (a positive flag means not
taken). Simply negate the flag value (i.e., make it positive) to get the bits indicating the preceeding branch instruction
behavior.

The next byte of the record is the opcode of the instruction executed.

The next three bytes contain 6 four bit fields, one for each register or memory operand referenced by the instruc-
tion when it executed. Each four byte field consists of a two bit indicator of the size of the operand (0 -> 1 byte, 1 ->
2 bytes, 2 -> 4 bytes, 3 -> 8 bytes) and a two bit indicator of whether the operand was read or written (1 -> read, 2 ->
written). If fewer than 6 operands were accessed, then only the first few four bit fields are set - the remainder are 0.

For each operand describe by a four bit field there will be four bytes following the three bytes of fields. If the ref-
erence was to a register then the four byte field will be the negative of the register number (e.g., -5 means register 5, 0
means register 0). If the reference was to a memory location, the four byte field will be the memory address (memory
address 0 cannot be expressed since 0 means register 0).

