Computer Science Technical Report

On the Verification of Livelock-Freedom
and Self-Stabilization on Parameterized

Rings
Ali Ebnenasir and Alex Klinkhamer

Michigan Technological University
Computer Science Technical Report
CS-TR-19-01
January 2019

Michigan
" 1L | Technological
University

Department of Computer Science
Houghton, MI 49931-1295
www.cs.mtu.edu

On the Verification of Livelock-Freedom and Self-Stabilization on

Parameterized Rings

Ali Ebnenasir and Alex Klinkhamer
January 2019

Abstract

This paper investigates the verification of livelock-freedom and self-stabilization on parameterized
rings consisting of symmetric, constant space, deterministic and self-disabling processes. The results of
this paper have a significant impact on several fields including scalable distributed systems, resilient and
self-* systems, and verification of parameterized systems. First, we identify necessary and sufficient local
conditions for the existence of global livelocks in parameterized unidirectional rings with unbounded
(but finite) number of processes under the interleaving semantics. Using a reduction from the periodic
domino problem, we show that, in general, verifying livelock-freedom of parameterized unidirectional
rings is undecidable (specifically, H?—complete) even for constant space, deterministic and self-disabling
processes. This result implies that verifying self-stabilization for parameterized rings of self-disabling
processes is also undecidable. We also show that verifying livelock-freedom and self-stabilization remain
undecidable under (1) synchronous execution semantics; (2) the FIFO consistency model, and (3) any
scheduling policy. We then present a new scope-based method for detecting and constructing livelocks
in parameterized rings. The proposed semi-algorithm behind our scope-based verification is based on
a novel paradigm for the detection of livelocks that totally circumvents state space exploration. Our
experimental results on an implementation of the proposed semi-algorithm are very promising as we
have found livelocks in parameterized rings in a few micro seconds on a regular laptop. The results of
this paper have significant implications for scalable distributed systems with cyclic topologies.

Contents

1 Introduction

2 Basic Concepts

3 Local Characterization of Global Livelocks

4 Tiling
4.1 The Domino Problem and Its Periodic Variant

4.2 Reduction to Livelock Detection
4.3 Equivalent Tile Sets

5 Unecidability of Verification

5.1 Verifying Stabilization

5.2 Effects of Consistency Model and Scheduling Policy

6 A Semi-Algorithm for Livelock Detection

7 Experimental Results

7.1 Leader Election
72 Token Ring
7.3 Agreement
74 Coloringo
7.5 Parity

7.6 Comparison With Existing Automatic Verifiers

8 Related Work

9 Conclusion and Future Work

14
15
16

19

24
24
25
25
26
27
28

30

31

1 Introduction

Distributed self-stabilizing systems have the property of recovering from any state to a set of legitimate
states (that capture the normal/desired behaviors) without a need for a central point of coordination. Self-
stabilization has two requirements, namely closure and convergence [13]. Convergence stipulates that, from
any state, every execution will eventually reach a legitimate state. In other words, a system converges to
its legitimate states if and only if it is deadlock-free and livelock-free in illegitimate states. Closure states
that, starting from any legitimate state, system executions remain in legitimate states as long as no faults
occur. Verifying convergence in non-parametric systems is known to be a difficult task [30]. For this reason,
a relaxed version of convergence, called weak convergence, requires that from any state, a system has at least
one execution that reaches legitimate states. Designing and verifying convergence for parameterized systems
are important problems as they have applications in several fields such as network protocols [13, 32], multi-
agent systems [28], cloud computing [50], and equilibrium in socioeconomic systems [31]. Parameterized
systems comprise some families of symmetric processes, where two processes are symmetric if the code of
one can be obtained from the other by a simple variable renaming/re-indexing. Each family may contain
an unbounded (but finite) number of symmetric processes that communicate based on a specific network
topology. This paper investigates the verification of self-stabilization for parameterized rings.

There is a rich body of work on the verification of parameterized systems [68, 7, 37, 57, 41, 19, 33, 29,
12, 62, 54, 25] most of which cannot be directly used for the verification of self-stabilization due to the
requirements that (1) convergence must be met from any state and not just a finite set of initial states,
and (2) convergence is a global liveness property rather than a local liveness property (e.g., progress of
each thread). For example, numerous methods [27, 20, 9, 24] focus on the verification of safety properties
of parameterized systems, where safety requires that nothing bad happens in system executions (e.g., no
deadlock state is reached). Other approaches extend the results of Apt and Kozen [3] where they illustrate
that, in general, verifying Linear Temporal Logic (LTL) [16] properties for parameterized systems is II{-
complete. Suzuki [64] shows that the verification problem remains I19-complete even for unidirectional rings.
The main contributions of this paper are as follows:

Contributions. In this paper, we extend existing results for the special case where the property of interest
is self-stabilization and every system state is under consideration.

e Since convergence entails livelock-freedom, we first study the verification of livelock-freedom under
the assumption of processes that are deterministic, have constant state spaces, and are self-disabling,
i.e.,, no action of a process is enabled immediately after it acts. (Previous work [24] demonstrates
the decidability of deadlock-freedom in parameterized rings.) Specifically, we first illustrate that, even
under our restrictive assumptions livelock detection is undecidable (X9-complete) on unidirectional ring
topologies. The proof of undecidability in our work is based on a reduction from the periodic domino
problem [34] because it is unclear how Suzuki’s proof [64] can directly be used for fully symmetric self-
stabilizing rings. (Please see Section 8 for detailed reasoning). This result implies that verifying self-
stabilization for parameterized rings of self-disabling processes is also undecidable. These undecidability
results hold for any system that includes parameterized rings as subgraphs of its topology graph (i.e.,
cyclic topologies). Our results strengthen Apt and Kozen’s [3] results in that we consider constant
space, deterministic and self-disabling processes, and assume that any state could be an initial state.

e We also show that our undecidability results hold under (1) synchronous and asynchronous execution
semantics; (2) the FIFO consistency model, and (3) any scheduling policy. This is a counterintuitive
result because the common understanding [30] is that assuming strong fairness ensures livelock-freedom.
By contrast, we show that detecting livelocks in symmetric unidirectional rings (a.k.a. uni-rings)
remains undecidable even under strong fairness.

e We then present a novel scope-based method for detecting and constructing livelocks in parameterized
uni-rings. The proposed semi-algorithm behind our scope-based verification is based on a transfor-
mative method for the detection of livelocks that totally circumvents state space exploration. An

implementation of our semi-algorithm, called Prop, is able to find and construct livelocks in parame-
terized rings of several hundred processes in a fraction of a second on a regular laptop machine. It is
infeasible to achieve such efficiency of verification using existing model checkers for parameterized [12]
or non-parameterized [36] systems. We have also developed an enumerator (i.e., Turing recognizer)
that searches through all possible protocols to find the ones that have livelocks and have compared its
time efficiency with Prop in Section 7. The source codes of Prop and the enumerator are available at
https://github.com/grencez/protocon/tree/master/src/uni.

Organization. Section 2 presents some basic concepts. Section 3 provides a local characterization of global
livelocks in unidirectional rings. Then, Section 4 presents a well-known undecidable problem that we will use
to show the undecidability of detecting livelocks in unidirectional ring protocols. Section 5 gives far-reaching
undecidability results for livelock detection and verifying stabilization. Section 6 presents a novel method for
scope-based livelock detection in unidirectional rings. Section 7 presents our experimental results. Section 8
discusses related work, and Section 9 summarizes our contributions and outlines some future work.

2 Basic Concepts

This section presents the definition of protocols, action graphs and propagations. Some concepts in this
section are adapted from [24, 23]. A protocol p is a network of N > 1 processes (finite-state machines),
where each process P; owns a finite set of variables whose valuation determines its state. The state of a
protocol is defined by the current states of all processes. A process acts when it atomically changes its state
based on its current state and the states of its neighboring processes, where neighbors are defined by the
network topology. For example, in a unidirectional ring topology consisting of N processes, each process P;
(wherei € Zy, i.e.,0 <1i < N-—1) has a neighbor P,_, where subtraction is in modulo N. A global transition
is a change in the system state. We assume that one process acts at a time (i.e., interleaving/asynchronous
semantics), therefore each global transition corresponds to the action of a single process from some global
state. In a synchronous protocol, a global transition is the result of simultaneous execution of all processes.
An ezecution/computation of a protocol is a sequence of states Cy, Cq,...,Cy where there is a transition
from C; to C;y; for every i € Zj,. We consider symmetric protocols, where processes have identical rules
for changing their state. Furthermore, we assume that the state space ¥ and rules for each process are
independent of the topology (e.g., number of processes).

Definition 2.1 (Transition Function). Let P, be any process with a state variable z; in a unidirectional
ring protocol p. We define its transition function £ : ¥ x 3 — ¥ as a partial function such that £(a,b) = ¢ if
and only if (iff) P, has an action (z;—1 = aAz; =b — x; := ¢;). In other words, { can be used to define
all actions of P; in the form of a single parametric action:

((xi,l,a?i) S Pre(f)) — T; = 5(1‘1‘,1,1}1');

where (z;_1,x;) € Pre(§) checks to see if the current ;1 and x; values are in the preimage of &.

We use triples of the form (a, b, ¢) to denote actions (r;—1 =aAzx; =
2 ! b — x; '= ¢;) of any process P; in a unidirectional ring protocol. To
visually represent the structure of a process, we depict a protocol by a
labeled directed multigraph, called the action graph of the protocol, where
each action (a, b, ¢) in the protocol appears as an arc from node a to node
c labeled b in the graph. For example, consider the self-stabilizing Sum-
Not-2 protocol given in [23]. Each process P; has a variable x; € Z3 and
actions (x;-1 =0Ax; =2 — a;:=1), (o1 =1Az; =1 — z;:=2),and (2,1 =2A2; =0 — x; :=1).
We represent this protocol with a graph containing arcs (0,2,1), (1,1,2), and (2,0, 1) as shown in Figure 1.
Since protocols consist of self-disabling processes, an action (a, b, ¢) cannot coexist with action (a, ¢, d) for
any d. Moreover, when the protocol is deterministic, a process cannot have two actions enabled at the same

Figure 1: Action graph repre-
senting Sum-Not-2 protocol.

https://github.com/grencez/protocon/tree/master/src/uni

time; i.e., an action (a, b, ¢) cannot coexist with an action (a,b,d) where d # ¢. That is, in action graphs,
the labels of outgoing arcs from any vertex have distinct labels.

Livelock, deadlock, and closure. A legitimate state is a state that we want the system to be in. Let I
be a predicate representing the legitimate states for some protocol p. A livelock of p is an infinite execution
that never reaches I. When legitimate states are not specified, we assume a livelock is any infinite execution.
A deadlock of p is a state in —I that has no outgoing transition; i.e., no process is enabled to act. The state
predicate I is closed under protocol p when no transition exists that brings the system from a state in I to a
state in —I. These concepts allow us to define self-stabilization and weak stabilization (adapted from [30]).

Definition 2.2 (Self-Stabilization). A protocol p is self-stabilizing with respect to its legitimate state pred-
icate I iff from every illegitimate state, all executions reach (i.e., convergence) and remain (i.e., closure) in
the set of legitimate states. That is, p is livelock-free and deadlock-free, and I is closed under p.

Definition 2.3 (Silent Stabilization). A protocol p is silent-stabilizing with respect to its legitimate state
predicate I iff p is self-stabilizing to I and no process is enabled to act within 1.

As an example, the Sum-Not-2 protocol converges to states where the sum of each two consecutive z
values does not equal 2 (i.e., the state predicate Vi : (x;—1 + z; # 2)).

Definition 2.4 (Strong Fairness). We adopt Gouda’s definition of strong fairness [30], where an execution
is strongly fair iff for any state Cy and a transition (Cy, Cy), if Cy is reached infinitely often, then (Cy, Cy)
is executed infinitely often.

Definition 2.5 (Weak Stabilization). A protocol p is weakly stabilizing with respect to its legitimate state
predicate I iff from each illegitimate state, an execution exists to a legitimate state, and I is closed under p.

Definition 2.6 (Weak Fairness). An execution is weakly fair iff any action that is continuously enabled is
executed infinitely often.

Now, we re-state one of our previous results [24] about the relation between livelocks in uni-rings and
weak fairness.

Theorem 2.7. A unidirectional ring protocol p has a livelock L for some ring size under no fairness iff p
has the livelock L for the same ring size on a weakly fair scheduler.

The proof in [24] is intuitively based on the fact that, in any livelocked execution, no process/action of
a uni-ring is continuously enabled, thereby vacuously meeting the requirement of weak fairness.
Propagations and Collisions. When a process acts and enables its successor, it propagates its ability
to act. The successor may enable its own successor by acting, and the pattern may continue indefinitely.
In other words, such behaviors can be represented as sequences of actions that are propagated in a ring,
called propagations. Consider a propagation {(a, b, c), (d, e, f)) of length 2 that says a state exists that allows
some P; to perform an action (a, b, c) that then enables P;;1 to perform (d,e, f). Since P; assigns c¢ to its
variable x; and P,y is then enabled to perform (d,e, f), which relies on z; = d and x;11 = e, we know
¢ = d. We therefore write the jth action of a propagation as (aj_1,b;,a;). It follows that a propagation
is a walk through the protocol’s action graph. For example, the Sum-Not-2 protocol has a propagation
((0,2,1),(1,1,2),(2,0,1),(1,1,2)) whose actions can be executed in order by processes P;, P11, Pit2, and
P, 3 from a state (z;—1,x;, Tit1, Tive, Tivs) = (0,2,1,0,1). A propagation is periodic with period n if its jth
action and (j+n)th action are the same for every index j. A periodic propagation with period n corresponds
to a closed walk of length n in the action graph. The Sum-Not-2 protocol has such a propagation of period
2: ((1,1,2),(2,0,1)).

By contrast, a collision occurs when two consecutive processes, say P; and P;;1, have enabled actions;
e.g., (a,b,c) and (b, e, f), where b # c¢. In such a scenario, x;—1 = a,x; = b, z;1+1 = e. A collision occurs when
P; executes and assigns ¢ to x;. If that occurs, P; will be disabled (due to the assumption of self-disabling
processes), and P11 becomes disabled too because x; is no longer equal to b. The net result is that two
enabled processes become disabled in one action; i.e., a collision.

3 Local Characterization of Global Livelocks

This section presents a local characterization of global livelocks in parameterized rings, which is an extension
of [24, 23]. This characterization is based on the notion of propagations and a leads relation between the
propagations. We shall use propagations and the leads relation to identify necessary and sufficient conditions
for the existence of livelocks in symmetric unidirectional ring protocols of self-disabling processes.

“Leads” Relation. Consider two actions A; and As in a process P;. We say the action Ay leads Ay if
and only if the value of the variable z; after executing A is the same as the value required for P; to execute
Ajy. Formally, this means an action (a,b,c) leads (d,e, f) if and only if e = ¢. For example, in Figure 1,
action Ay = (0,2,1) leads action Ay = (1,1,2) because A; sets x; to 1, which is the value required for As
to execute. Symmetrically, action As also leads action A; because it sets x; to 2, which is a requirement for
Aj to be enabled and executed. Similarly, a propagation leads another if and only if, for every index j, its
jth action leads the jth action of the other propagation. Thus, if we have a propagation whose jth action
is (aj—1,bj,a;) that leads another propagation whose jth action is (d;_1,e;,d;), then we know e; = a; and
write the led action as (d;_1,a;,d;). In the context of the protocol action graph, this corresponds to two
walks (representing propagations) where the jth destination node label of the first walk matches the jth arc
label of the second walk for each index j. After some first propagation executes through a ring segment
Py, ..., Pytn_1, a second propagation can execute through the same segment only if the first propagation
leads the second. This is true since each process F,i; performs the jth action of the first propagation,
assigning its variable x4, ; to some value a;. If the second propagation executes through the segment, each
P,4; must perform the jth action of the second propagation from a state where x44; = a;. As such, each
jth action of the first propagation must lead the jth action of the second propagation. Thus, the first
propagation itself must lead the second.

Example 3.1. Sum-Not-Odd protocol and its periodic propagations.

Consider a unidirectional ring where each process P; has a variable z; € Zs. Figure 2 illustrates the
action graph of a protocol for the set of legitimate states Vi : ((z;—1 + ;) mod 2) = 0; hence the term
Sum-Not-Odd. We find values that show Lemma 3.2 holds for this protocol. Consider the propagation
P =(4,1,2),(2,3,0),(0,3,2),(2,1,4). This propagation can occur in four consecutive process P;, P;11, Piio
and P43, where x;,z;11, ;12 and z;43 are respectively equal to 1, 3, 3, 1. Starting at the node labeled
4, this propagation sets the values of four consecutive nodes to 2,0,2, and 4. Notice that, when a process
takes the value 4, its successor will be enabled only if it has the values 3 and 1 (corresponding to the
two outgoing arcs from Node 4). Now, the propagation P; can lead another propagation, say Pa, if P
respectively carries arc labels 2, 0, 2, and 4 in the action graph of the protocol. The top graph in Figure
2 shows that there is such a propagation P, containing the actions (3,2,3),(3,0,1),(1,2,1),(1,4,3). The
propagation P, will result in values 3, 1, 1, and 3 in the same segment of the ring. By the same reasoning,
we can find values for the third propagation Ps = (0, 3,2),(2,1,4),(4,1,2),(2,3,0) (led by Ps), which will
leave the values 2, 4, 2 and 0 in the same segment of the ring. Finally, the propagation Ps leads propagation
Ps=(1,2,1),(1,4,3),(3,2,3),(3,0,1), which will get the segment back to values 1, 3, 3, 1. That is, Py leads
P.

We focus on scenarios where for some positive integers m and n, there are m periodic propagations with
period n where the ith propagation leads the (i + 1)th propagation for each i € Z,, (and the last propagation
leads the first). This case can be represented succinctly.

Lemma 3.2 (Periodic Propagations that Successively Lead). Consider a unidirectional ring protocol of
symmetric, self-disabling processes that may exhibit m propagations of period n where each ith propagation
leads the (i 4+ 1)th propagation (and i € Z,,). Such propagations exists iff there exist aé— values along with
superscript and subscript indices i and j modulo m and n (respectively) such that (aéfl,a;:_l,a;) would
denote the jth action of ith propagation.

Proof. The proof is by combining the notations used in this section when defining periodic propagations and
the leads relation. Using X as a wildcard value (i.e., any value, do not assume X = X), recall that an action is

defined to lead another action (X, a,X) iff it has the form (X, X, a). Also recall that a propagation of period

n has the form _((an_l,X,ao), (ao,X,al_), o5 (@n—2,X,an-1)). Thus, we can write each ith propagation as
<(a§l_1,X,q6), (aa,x,ai), e (a;_2,X,a;_1)> and can determine the X values as ((al,_q,ab ', a), (ap,ai™",
ai), ..., (al_q a7 al). This makes (aj_1, a;_l, aj) the jth action of the ith propagation. O

0l4
EOEBO=t
3
3 1
1
o1 5 T 1 1o

Figure 2: Action graph representing the Sum-Not-Odd protocol.

Lemma 3.3. Let p be a uni-ring protocol where processes are symmetric and self-disabling. An execution
of p from some state C to itself exists (i.e., a livelock exists) for some ring size iff an execution of p exists
from C to some C' obtained by rotating the values of C' by some k > 0 positions.

Proof. =: An execution from C to C can simply repeat to make an infinite execution; i.e., a livelock. For
k=0 and C’ = C, such an infinite execution must visit C' = C” infinitely often.

<«: To finish the proof, assume an execution from C to C’ exists for some k with the goal of showing
that an execution from C to C exists. Since processes are symmetric, another execution exists that rotates
values by another k positions, leaving the C' values rotated by 2k positions. With N being the ring size, this
can continue for N/k total rotations to return the system to state C. Emerson and Namjoshi [18] similarly
use this notion of rotational symmetry to reason about rings of symmetric processes. O

Lemma 3.4. Let p be a unidirectional ring protocol of symmetric, self-disabling processes. The protocol p
has a livelock for some ring size iff for some m,n > 1, protocol p has m propagations with some period n,
where the (i — 1)-th propagation leads the ith propagation for each index i modulo m; i.e., the propagations
successively lead each other modulo m.

Proof. The proof is broken into two parts that show existence of a livelock is sufficient and necessary for any
m propagations of period n to exist such that each propagation leads the next.

= Assume a livelock exists on a ring of size N. By Lemma 3.3, an execution exists that revisits some
state C. Let m denote the number of enabled processes at C', and let ig,...,14,,_1 denote their positions in
the ring. The number of enabled processes is m in all states between two visitations of C' in the livelock
since, when processes in a unidirectional ring are self-disabling, the number of enabled processes will not
increase or decrease in a livelock [24] (a process enables its successor when it disables itself). Thus, between
two visitations of C, for each i;, actions propagate forward through indices ¢;,%;41,...,%j4+,—1 for some &,
leaving process P;, , enabled. After revisiting C' a total of m times, for each i, the propagation that started
at index i; leaves P, , = P;, enabled. Since each of the m propagations has reached the same position in
the same state after km total transitions, they can repeat with period k.

< Assume that m propagations of period n exist where each (i — 1)th propagation leads the ith for every
index ¢ modulo m. From Lemma 3.2, we can write the jth action of the ith propagation as (a;_17 aé-fl, aé)
using some appropriate az- values from the process domains. We will use these aé— values to find an execution
from some state to itself to form a livelock. Construct a ring of mn processes where the initial state is
defined with @ ((;n—1—iyn+tj) = ag- for alli € Z,, and j € Z,. This initial state and future ones in an execution

are shown as rows in Figure 3. Conceptually, we use the first propagation to initialize the last n processes

(T((m=1)n)s - > T(mn—1)) = (a8,...,a®_1), then use the second propagation to initialize the preceding n
Processes (L((m—2)n)s - - - > L((m-1)n-1)) = (ag,--.,ay_,), and repeat this pattern until the last propagation is
used to initialize the first n processes (o, ..., Tn_1) = (af' ', ...,a™).

o T Tp—1 | eeeeen T(m—2)n T(m—-1)n
m—1 m—1 m—1 1 1 1 0 0 0
Qagq aq [aq aj [¢2] aq aq Qp_q
0 m—1 m—1 2 1 1 1 0 0
Qg aq [aq a; A _q ag aq Qp_q
0 0 m—1 2 2 1 1 1 0
Qg aq [Qg ai Ay q Qg aq a, 1
al a° O | 2 a2, B al .

Figure 3: A livelock on m - n processes using m propagations of period n that lead each other circularly.

In the initial state, every process whose index is a multiple of n is enabled; all other processes are
disabled because their predecessors have the stable value in their corresponding propagation. Each such
process P((m—iyn) has T(m—iyn—1) = al,_, and T((m—i)n) = af)_l, and it is enabled to assign x((m—i)n) = al
since actions have form (a;:_ha;‘-*l,aé). These positions are highlighted in the first row of Figure 3, and
the second row shows the result of all enabled processes acting. Let these m processes act in any order
without creating collisions. The system is now in a state where process P; is enabled along with every nth
process after it. For each such process P(;m—iyn+1), We KNOW Z((n—i)niy1) = ai_l is true due to our choice of
initial state. Sinqe the previous actions have assigned z((p,—i)n) = ag, €ach P((,_4)n41) 1S enabled to assign
T((m—iyn+1) ‘= aj. After these m processes act, the system is in a state where process P is enabled along
with every nth process after it.

As shown in the last two rows of Figure 3, continuing this pattern will eventually enable P, _; and every
nth process after it to act, reaching a state that is a rotated version of our initial state. For each such process
Plm—iynt(n-1)), We KNOW Z((rn—iynt(n-1)) = aﬁl__ll is true due to our choice of initial state. Since the previous
actions have assigned x((m—iyn+(n—2)) = ay,_2, €ach P(m—_iynt(n—1)) is enabled to assign T ((;m—ijnt(n-1)) :=
a,_1. After mn total steps, this execution has reached a state where each z((;m—ijn45) = a;. This state is
a copy of initial state (where x((,—1_ijn+j) = aj-) that is rotated by m positions. Thus, the execution can
revisit the initial state by Lemma 3.3, and a livelock exists. O

Example 3.5. Livelock freedom of the Sum-Not-2 protocol.

Recall from Figure 1 that the sum-not-2 protocol consists of three parameterized actions (0,2, 1), (1,1,2),
and (2,0,1). Every periodic propagation in this protocol alternates between actions (2,0,1) and (1,1,2).
These propagations require z; values to alternate between 0 and 1 for each subsequent i. However, these
propagations assign x; values alternating between 1 and 2 for each subsequent i. Clearly no periodic prop-
agation can execute through a ring segment of alternating 1 and 2 values, therefore no propagation leads
another in this protocol. For any ring size, an infinite execution requires that actions propagate around the
ring. This is not possible since no propagation leads another, therefore the protocol is livelock-free for all
ring sizes.

We form the same argument in terms of walks in the protocol’s graph. Every closed walk in the graph
alternates between visiting node 1 and node 2 indefinitely. No closed walk exists that alternates between
visiting arcs labeled 1 and 2, therefore no periodic propagation leads another in the this protocol. As such,
no livelock exists (based on Lemma 3.4).

Example 3.6. Sum-Not-Odd has a livelock for some ring size.

We previously demonstrated that there are m = 4 periodic propagations with the period n = 4 in the Sum-
Not-Odd protocol. These propagations act on the following values: (1,3,3,1),(2,0,2,4),(3,1,1,3),(2,4,2,0)
in a circular fashion. Using the technique presented in the proof of Lemma 3.4, we construct a ring of size
m x n = 16 and demonstrate that this ring has a livelock. Each row in the following matrix represents
a global state of the ring, starting from the initial state in the first row. Moreover, the underlined values

denote enabled processes, and each enabled process takes an action based on the action graph of Figure 2.
Notice that after 16 rounds this computation gets back to the starting state and none of the rows represents
a legitimate state.

MO DD NI W W WM NN~ R~
B R R R R RO OO O W W Wk i
NI~ = =R DN NIWWWWINY NN
I W W Wk R R R RO OO
Q0 W W WIN N N N[— = NN N
el el =R === SURGURN JURJUN 1NN NN
= RN NN N WW W NN N ==
W B B R R R RO OO0 OWwWwww
MO DO DO D[= = = R RN RN N o W W b
OO OIW W WWhh i iR R R R RHROO
DO NI W W W N NN = = =N NN
B R R RO OO O W W Wk &
I— R P RN NDWWWWN NN N
WW W R R R R EROOOOIWw W
W W NN N= = =N N NW W W
RO OO OIW W W Wk i RP R R

Corollary 3.7. Lemma 3.4 holds under both synchronous and asynchronous execution semantics.

Proof. In Figure 3, even if the transitions from one row to another are synchronous, the proof of Lemma
3.4 would still hold. Moreover, under asynchronous executions, there are collision-free interleavings that can
get us from each row to its successor row. It is straightforward to verify this claim in the context of the
Sum-Not-Odd example and Figure 3. Moreover, a formal proof of this claim appears in our previous work
[24]. O

4 Tiling

With our new characterization of livelocks in a unidirectional ring protocol from Lemma 3.4, we can explore
the difficulty of livelock detection. We use the notion of action graphs as an intuitive bridge between
problems. To complete the bridge, we re-state a well-studied undecidable problem, the domino problem, and
reduce a variant of this problem to the problem of livelock detection.

4.1 The Domino Problem and Its Periodic Variant

Problem 4.1 (The Domino Problem).
e Input: A set of square tiles with a color (label) on each edge. All tiles are the same size.
e Question: Can copies of these tiles cover the infinite plane by placing them side-by-side, without
changing tile orientations, such that edge colors match where tiles meet? In other words, can the
following be satisfied for each tile Ti, j] at row ¢ and column j on the plane?

(T[i—1, j].5=T1i, j].N) A (T[i, j—1].E=T[i, j].W)

where T'[i, j].N is the color on the north edge of tile T[¢, j]. Similarly, the .S, .W, and .E suffixes refer
to south, west, and east edge colors of their respective tiles.

The domino problem was introduced by Wang [67], and the square tiles are commonly referred to as
Wang tiles. Berger showed the problem to be undecidable [5]. Specifically, the problem is co-semi-decidable,
also written as II)-complete using the arithmetical hierarchy notation of Rogers [58]. A tile set is NW-
deterministic when each tile in the set can be identified uniquely by its north and west edge colors. In this

a a
a’_, a;- a’_,)
K]
al 4
(a) Wang Tile (b) SE-Identical Tile
Figure 4: Tile for action (a}_,, a;_l, ab).

case, if a tile meets another at its southwest (resp. northeast) corner, then the tile to its south (resp east) side
is uniquely determined. Kari proved that the domino problem remains undecidable for NW-deterministic
tile sets [40].

Problem 4.2 (The Periodic Domino Problem). This domino problem asks whether an infinite plane can
be covered by placing copies of a fixed rectangular arrangement of tiles side-by-side such that a repeating
pattern forms. In other words, can Problem 4.1 be solved such that there exist m and n where the following
is satisfied for each tile T'[z, j] on the plane?

(T, 4] = Tli +m, j]) A (T, j] = T[i, j + n])

Problem 4.2 is equivalent to asking whether a torus can be completely covered using the same tiling rules.
Gurevich and Koriakov [34] give a semi-algorithm that terminates if the given tile set can periodically tile
the plane or cannot tile the plane at all, but it does not halt when the plane can only be tiled aperiodically.
It follows that this problem is semi-decidable, also written as X9-complete using notation of Rogers [58].
Action tiles. A tile is SE-identical when it has identical south and east edge colors. For such sets, we
refer to the south and east edge colors of a tile T[i,j] as T[i,j].SE. We write (a,b,c) to denote such a
tile with colors a, b, ¢, and ¢ on its west, north, east, and south edges respectively. A set of SE-identical
tiles is W-disabling when no two tiles that have the same west color have matching north and south colors
respectively. In other words, a SE-identical tile set is W-disabling if and only if for every tile (a,b,c) in the
set, no color d exists such that the tile (a,c,d) is also in the set. We use the term action tile strictly to
denote tiles in a SE-identical W-disabling tile set and action tile set to denote the set itself.

4.2 Reduction to Livelock Detection

The triples that we use to represent tiles in an action tile set are subject to the same constraints as actions
in a unidirectional ring protocol of symmetric, self-disabling processes. That is, the W-disabling constraint
for tiles is equivalent to the self-disabling constraint for actions. As such, we have a bijection between these
kinds of tile sets and protocols.

Lemma 4.3. There is a bijective function that maps an action tile set to a unidirectional ring protocol of
self-disabling processes such that the tile set admits a periodic tiling if and only if the protocol contains a
livelock. The mapping preserves determinism (resp. NW-determinism) in the protocol (resp. tile set).

Proof. Given a set of triples such that no two triples (a,b,c) and (a,c,d) coexist, the set can represent
an action tile set or the actions of self-disabling processes in a unidirectional ring. Likewise, if the set of
triples also ensures that no two triples (a, b, ¢) and (a, b, d) coexist (where ¢ # d), then the corresponding tile
set is NW-deterministic and the corresponding protocol is deterministic. Thus, our mapping function (the
identity) is bijective and preserves determinism.

We are left to show that the conditions that a set of triples must meet in order to form a periodic tiling
are the same conditions that must be met to form a livelock. Recall that a livelock can be characterized
by a list of m periodic propagations of length n where each propagation leads the next one in the list (and
the last leads the first). From Lemma 3.2, we know that this is equivalent to finding a} values, with indices

% i—1

ranging over ¢ € Z,, and j € Z,, such that each triple (aj_l,aj 7a;) forms an action in the protocol

10

Figure 5: “A-b-C” protocol graph.

(with indices computed modulo m and m). Southeast tile colors in a periodic tiling 7" behave the same
as a} since each triple (T'[i,j — 1].SE,T[i — 1,7].SE, T[i, j].SE) is a tile in the set with the same values as
T[i,j] = (T[i, §].W, T[4, §].N, T|i, j].SE). As such, satisfying the constraints on a is equivalent to solving

. . J
the periodic domino problem, where each action (a}_,, a;-fl, aj) must exist as a tile in the action tile set as

shown in Figure 4. 0
Lemma 4.4. An action tile set admits a periodic tiling iff in the protocol obtained by Lemma 4.3 there are
some m propagations with some period n, where the (i — 1)-th propagation leads the i-th propagation for each
index i modulo m. (Proof follows from Lemmas 3.4 and 4.3.)

Example 4.5. Fictional “A-b-C” protocol with a livelock.

Figure 5 shows the action graph of our example unidirectional ring protocol where each arc corresponds
to an action. Note that the labels aq,...,cq4 are constants that could equivalently be changed to numbers
0,...,13. The protocol has an interesting livelock. First, propagations that characterize the livelock do not
correspond to simple cycles in the action graph. Second, 3 of these 6 propagations correspond to walks that
are unique regardless of the starting node.

A livelock can be found by taking a walk through the graph. We start by choosing a closed walk starting
with node ¢y and visiting nodes cs, ¢4, co, ¢1, co, and ¢y without considering which arcs were taken.

1. Using the previous nodes as arc labels ¢, c3, ¢4, ¢, ¢1, and co, start from node as to form a closed

walk visiting nodes ag, a1, as, ag, as, and as. This corresponds to the periodic propagation:
<(a2, Co, ao), (ao, C3, al), (al, Cy4, 0,2), (ag, Co, ao), (ao, Cci, Cl3), (ag, Ca, 0,2)>

2. Using the previous nodes as arc labels ag, a1, a2, ag, as, and as, start from node by to form a closed
walk visiting nodes by, b1, bg, ba, b3, and by. This corresponds to the periodic propagation:
((bs, ao, bo), (bo, a1,b1), (b1, az,bo), (bo, ag, b2), (b2, az, bs), (bs, az, bs))

3. Using the previous nodes as arc labels by, by, by, b2, bg, and by, start from node ¢4 to form a closed
walk visiting nodes cg, ¢1, c2, ¢g, c3, and c4. This corresponds to the periodic propagation:
<(C4, bo, CQ), (Co, bl, 61), (Cl, bo, Cg), (02, b2, C())7 (CQ, bg, 03), (63, b4, C4)>

4. Use previous nodes as arc labels to form a closed walk through nodes as, ag, as, as, ag, a1, and as.

Use previous nodes as arc labels to form a closed walk through nodes by, bs, b3, bs, by, b1, and by.

6. Use previous nodes as arc labels to form a closed walk through nodes cs, cg, c3, ¢4, cg, €1, and cs.
We started with this same sequence of nodes, therefore we are done and have found the last periodic
propagation to be:
<(02, bQ, CQ), (Co, bg, Cg), (63, b4, C4)7 (C47 bo7 Co), (CQ, bl, Cl), (Cl, bo, 62)>

Each of the 6 propagations is compactly illustrated as a row in Figure 6b, which is a periodic block
formed by action tiles in Figure 6a. Since copies of the periodic block can be placed beside themselves to
tile the infinite plane, this is a solution to the periodic domino problem.

ot

Lemma 4.6. A periodic tiling of action tiles exists ift the protocol obtained by Lemma 4.3 has a synchronous
livelock with all processes enabled for some ring size.

Proof. Synchronous semantics ensure that every enabled process acts at every step, which is not allowed
under the interleaving semantics. For example, consider the protocol of Example 4.5 on a ring of size 6

11

Cc3 C1 C4 Co C2
a a a a a:
0 ay 0 a3 1 (o 2 ao 3 o
ap al as as az ao
b b b b b b
0, b2 0, b1 1 b() 2 b3 3, b4 4 bo
b1 b3 bo b b4 bo
c c c c c: c
0) 0 s 1 o 2 o 3 s 4 o
(a) Wang Tile Set
co c3 cq co C1 C2
as ap al az ao as
ao al an ag as a2
ao al as ap as az
by bo by bo b2 b3
bo|,/ 01| bo| b2|, "b3|,/ ba
bo b1 b(, b2 bg b4
Cq Co Cc1 C2 Co c3
Co C1 C2 Co C3 Cq
co cy c2 co c3 cyq
as agp as as ao ai
ao as a2 ao a az
ao as az ao ai az
bo b2 bg b4 b(] bl
b2 b3 b4 b(] bl bO
b2 b3 b4 b() b] b()
Cc2 - co i c3 e Cq ¢ co ¢ Cc1 c
0 3 4 0 1 2

(b) Periodic Block

Figure 6: Instance and solution for the periodic domino problem that corresponds to finding a livelock in
the “A-b-C” protocol.

12

beginning at state (cg, b3, az, co, bs, az). This state is constructed from SE colors of tiles along the antidiagonal
of the periodic block in Figure 6b. In this state, every process is enabled to act, and they all will act
under synchronous semantics, making the subsequent state (ag, ¢3, b4, ag, c3,b4). In the figure, these values
correspond to the SE tile colors that are one tile below the antidiagonal. The execution can continue
with (bg, a1, cq,bo,a1,cq4), and will eventually reach the initial state after 6 total steps. This livelock is no
coincidence, but rather can always be constructed from the antidiagonal of a square periodic block of action
tiles. Indeed, it is by definition that every two consecutive values along the antidiagonal (or shifted version)
will form some action (T[i,j — 1].5E,T[i — 1,5].SE,X) where X is a wildcard value. Furthermore, we can
always construct a square N X N periodic block (for some N) by appropriately placing copies of a non-square
block beside itself. We can of course continue this pattern to form a kN x kN periodic block for any integer
k > 0. Any periodic block of action tiles therefore implies a synchronous livelock where all processes are
enabled on some ring of size IV, and likewise for every ring of size kN.

Given a synchronous livelock where all processes are enabled, it is also straightforward to see that a
periodic block of action tiles exists. Let the livelock occur on a ring of size n. Since the system is finite-state,
a synchronous livelock will have some state C' that it can revisit after some m steps. We would like m and n
to be the same, therefore consider a ring of size N = mn instead whose initial state is created by repeating
CasC = (xg, - ZTn-1)=(XTn,...,Top-1) == (TN—n,...,xn—1). The system will still revisit this state
after m steps, but it can also be said to revisit the state after IV steps. Thus, the initial state of IV values
can be used to form a tiling by using the initial z; values as the SE colors of the antidiagonal in a periodic
block. Each tile T[—j, j] below the antidiagonal can now have its north and west colors filled in to match
the antidiagonal’s SE colors. That is, each north and west color of tile T'[—j, j] are the initial values of ;_;
and x; respectively. Therefore, the SE color of T'[—j, j] is the value of z; after one step, and T'[—j, j] indeed
represents an action from the tile set. Repeating this for all IV steps, we fill a periodic block. O

Lemma 4.7. A unidirectional ring protocol has a synchronous livelock with all processes enabled for some
ring size iff there are some m propagations with some period n, where the (i — 1)-th propagation leads the
i-th propagation for each index i modulo m. (Proof follows from Lemmas 4.6 and 4.4.)

4.3 Equivalent Tile Sets

The remainder of this section shows how to transform a NW-deterministic Wang tile set into a NW-
deterministic action tile set that is equivalent with respect to the domino problems. This gives us the
tools to reduce the periodic domino problem to livelock detection in the next section which proves that
livelock detection is undecidable for unidirectional ring protocols of symmetric, deterministic, self-disabling
processes.

Lemma 4.8. For any set of Wang tiles, a W-disabling set of SE-identical tiles (i.e., an action tile set) exists
that gives the same result to Problem 4.1 and Problem 4.2 and preserves NW-determinism.

b
aXxXd

Proof. Let (a,b, c,d) denote a Wang tile L. N by listing its edge colors in order of W, N, S, and E. From any
Wang tile set, our new action tile set has colors: a_, and a4 for every color a in the original tile set, abed for
every tile (a,b, ¢, d) in the original set, and a new color $. The new set has tiles (a_,, by, abed), (8, abed, ¢t),
(abed,$,d-,), and (ct,d—,$) for each tile (a,b,c,d) in the original set. Figure Figure 7 illustrates this
reduction.

Tiling correspondence. Observe that if a tile with a color of the form abcd is placed on the plane, we
can determine three other tiles that must be placed near it to form the 2 x 2 arrangement shown in Figure 7.
Two of these are determined since the color abed appears on exactly three tiles in the set (for the W, N, and
SE edges). The third tile (¢, d—, $) is determined since any tile with Xy on its W edge or X_, on its NV edge
has a SE edge color of §. Conversely, if a tile of the form (¢y,d_, $) is placed on the plane, its west neighbor
must have the form (8, abed, ¢4) for some a and b corresponding to the original set of colors. After knowing
these a and b, the two tiles to the north are determined due to the reasoning in the previous paragraph.

13

by $
a—s bed,
b abed d_,
a d >
c abed d_,
$ ct
%) $

Figure 7: Transform 1 Wang tile to 4 action tiles.

Thus, any valid tiling 7" using the new tile set consists of 2 X 2 blocks corresponding to the tiles in the
original set. Further, since the $ colors must match across these 2 x 2 blocks, the blocks must be aligned.

For correspondence, it remains to show that a valid tiling T exists using the original tile set if and only
if a valid tiling 7" exists using the new set. This is easy to see since two tiles (a, b, ¢,d) and (w,z,y, 2) in the
original set can border each other if and only if their corresponding 2 x 2 blocks in the new set can border
each other.

The new tile set is a W-disabling set of SE-identical tiles. All tiles in the new set are obviously
SE-identical, therefore we only need to show that the set is W-disabling. That is, for every tile (a,b,¢) in
the new set, there does not exist another tile (a,c,e) in the set for any e. Observe in Figure 7 that the
action tiles each use 3 distinct forms of colors: X_,, X, XXXX, and $§. Furthermore, the form of the west color
determines the forms of the other two colors. Thus, for any two action tiles with e the same west color, we
know that their north and southeast colors will not match. The tile set is therefore W-disabling.

The new tile set preserves NW-determinism. Recall that a tile set is NW-deterministic when for
every tile (a,b, ¢, d), there does not exist another tile (a,b, e, f) in the set for any e # ¢ and d # f. If this is
the case in the original set, then any tile in the new set with a west color of a_, and a north color of by for
any a and b has a uniquely determined southeast color abcd.

Each other tile in the new set (those with $ on some edge) can be uniquely identified by its west or north
color. For any abcd, a tile whose west color is abed uniquely has the form (abed,$,d_,). Similarly, a tile
whose north color is abed uniquely has the form (8, abed, ¢t). Lastly, for any ¢, a tile whose west color is ¢¢
uniquely has the form (¢4, d_,$). This covers all forms of tiles in the new set, therefore the new set preserves
NW-determinism. O

5 Unecidability of Verification

This section begins with a theorem of undecidability as a direct consequence of our mappings between livelock
detection and the periodic domino problem. Section 5.1 presents a corollary about the undecidability of
verifying stabilization. Section 5.2 extends these undecidability results to other execution semantics and
fairness assumptions.

Processes are symmetric, constant-space, deterministic, and self-disabling. For brevity, we avoid
restating our usual restrictions on processes within this section. While these restrictions strengthen our
undecidability results, they are also used at every step of reasoning.

Theorem 5.1 (X9-completeness of livelock detection for unidirectional rings). Livelock detection for unidi-
rectional ring protocols is undecidable under no fairness and interleaving semantics (39-complete).

Proof. By Lemma 4.8 and Lemma 4.3, we can construct such a protocol from any NW-deterministic Wang
tile set such that the protocol has a livelock if and only if the set can form a periodic tiling. Since this is a
mapping reduction from tile sets to protocols, livelock detection is at least as hard as the periodic domino
problem. Livelock detection is also no harder than the periodic domino problem since Lemma 4.3 gives a
mapping reduction in the opposite direction. Therefore, like the periodic domino problem, livelock detection
is X9-complete. O

14

Corollary 5.2 (X{-completeness of livelock detection for bidirectional rings). Livelock detection for bidi-
rectional rings of deterministic, constant-space and self-disabling processes is undecidable under no fairness
and interleaving semantics.

Proof. A unidirectional ring is a special case of a bidirectional ring since a bidirectional ring can behave like
a unidirectional ring. O

Corollary 5.3 (X9-completeness of livelock detection for cyclic topologies). Let p be a parameterized protocol
consisting of deterministic, constant-space and self-disabling processes. If the underlying topology graph of p
includes a ring, then detecting livelocks of p is undecidable under no fairness and interleaving semantics.

Proof. Similar to the proof of Corollary 5.2, unidirectional ring is a special case of protocols with a cyclic
topology graph. O

Theorem 5.4 (Undecidability under synchronous semantics for rings). Livelock detection for both unidirec-
tional and bidirectional ring protocols is undecidable under synchronous semantics.

Proof. Proof follows from Lemmas 3.4, 4.6 and 4.7, and Corollary 5.2. O

Corollary 5.5 (Undecidability under synchronous semantics for cyclic topologies). Let p be a parameterized
protocol consisting of deterministic, constant-space and self-disabling processes. If the underlying topology
graph of p includes a ring, then detecting livelocks of p is undecidable under synchronous semantics. (Proof
straightforward; hence omitted.)

5.1 Verifying Stabilization

As the complementary problem of livelock detection, verifying livelock freedom is I19-complete. This livelock
freedom problem can be posed as a problem of verifying silent stabilization (see Section 2), which is a

special case of self-stabilization. Closure and deadlock freedom are satisfied by design, therefore verifying
stabilization is I1{-hard. We first present a lemma that shows IIY membership. Then, we prove I1-completess.

Lemma 5.6 (Membership in ¢ and I19). Livelock detection is in X\ for protocols whose valid topologies and
states can be enumerated and whose executions can only reach a finite number of states. Likewise, verifying
livelock freedom and stabilization are in T19.

Proof. In concrete terms, unidirectional rings can be enumerated by ring size. Each ring of fixed size has
a finite number of states, therefore the states can be enumerated and any execution will only reach a finite
number of states. For each ring size, the detection of livelocks, deadlocks, and closure violations (from any
state) is decidable since only a finite number of states are reachable. Furthermore, we can enumerate (ith
topology, jth state) pairs in order of increasing ¢ + j, which is the natural way to enumerate Z* x Z™.
As such, we can write a semi-algorithm for detecting livelocks or non-stabilization that checks every state
of every valid topology in order of enumeration, halting when it detects invalid protocol behavior. Thus,
detecting livelocks or non-stabilization is in £, and its complement problem is in TI9. O

Theorem 5.7 (II{-completeness of verifying stabilization for unidirectional rings). Verifying stabilization
for unidirectional ring protocols is undecidable (119-complete).

Proof. Verifying stabilization requires livelock-freedom. Theorem 5.1 shows the ¥9-hardness of the com-
plement problem; hence ITY-hardness of livelock-freedom. The membership of I1{ follows from Lemma 5.6;
hence I1{-completeness. O

Corollary 5.8 (I19-completeness of verifying stabilization for cyclic topologies). Let p be a parameterized
protocol consisting of deterministic, constant-space and self-disabling processes. If the underlying topology
graph of p includes a ring, then verifying self-stabilization of p is undecidable (T13-complete) under no fairness,
interleaving and synchronous semantics.

Proof. Proof follows from Corollaries 5.3 and 5.5, and Theorem 5.7. O

15

5.2 Effects of Consistency Model and Scheduling Policy

In Lemma 4.7, we observed that livelock existence is preserved in the extreme case where all processes
are enabled and act synchronously. Synchronous execution can be viewed as a result of a relaxed memory
consistency model or as a very strict kind of process scheduling. We extend the idea of livelock equivalence
to other consistency models that allow communication delay between processes. However, proving the
undecidability of livelock detection in uni-rings under strong fairness cannot be performed using the technique
we use in the proof of Lemma 4.7 because the proof of Lemma 4.7 is based on a correspondence between
the existence of periodic tiling in action tiles sets versus the existence of synchronous livelocks in uni-rings
(Lemmas 4.4 and 4.6). Strong fairness is relevant only if we are concerned with the interleaving/asynchronous
semantics. Instead, we prove the undecidability of livelock detection under any scheduling policy by designing
a reduction to uni-ring protocols where there is exactly one process that is enabled to execute at any moment,
called deterministic livelocks. First, we show that detecting deterministic livelocks is also undecidable. Then,
we prove that the detection of deterministic livelocks (Lemma 5.13) is a precondition for livelock detection
under any scheduling policy, which results in the undecidability of detecting livelocks in uni-rings under any
scheduling policy. This is a counterintuitive result because the common understanding [30] is that assuming
strong fairness ensures livelock-freedom.

Definition 5.9 (FIFO Consistency). In the context of stabilization on unidirectional rings, the weakest
consistency model allows arbitrarily delayed (but ordered) communication between processes.

FIFO consistency on interleaving and no fairness. FIFO consistency [51] adds arbitrary communi-
cation delay between processes while preserving order of communication. Using the common structure and
logic of FIFO queues, we can define FIFO consistency as a simple extension to our usual interleaving seman-
tics. In a uni-ring, consider an unbounded FIFO queue ¢; between P; and P;41, and give each process P;11
access to a variable z} instead of x;. Finally, connect each z; and «} with g; that has the following actions:

Empty(q;) A x; #) — PushLast(g;, x;);
—Empty(g;) A x; # Last(q;) — PushLast(q;, z;);
—Empty(q;) — 1z}, := PopFirst(¢;);

While the second and the third actions introduce non-determinism in queue processes (when they are
non-empty), this non-determinism is constrained in each queue ¢; between P; and P;y;. Consider a scenario
where P; updates x; and becomes disabled, and the queue ¢; is non-empty. In this case, both the second
and the third actions of ¢; are enabled. First, notice that the second action is self-disabling; once a PushLast
operation is done, the condition x; # Last(g;) becomes false and will not hold again until P; updates x;
again. Updating z; can only occur when P; is enabled again by P;_;, which requires P;;1 to propagate the
enabledness by the third action of ¢;. Before the second action executes, the third action may execute several
times depending on the number of values in the queue. Due to non-determinism between the second and the
third actions, the second action may execute anytime as long as the queue is non-empty. However, no matter
when the second action executes, the set of states we can reach will not change because the second action
just adds a new value to the end of the queue and gets disabled. As such, the non-determinism between the
second and the third actions will not have a global impact.

Spectrum of consistency models. The strongest consistency model is strict consistency, where processes
see updates from each other instantly. At the other extreme, we consider FIFO consistency to be the weakest
consistency model in the context of stabilization on unidirectional rings. Our eventual goal is to show that the
choice of consistency model does not impact whether a particular unidirectional ring protocol is stabilizing
for all ring sizes. In the taxonomy of shared memory consistency models given by Steinke and Nutt [63], the
local consistency and slow consistency models are weaker than FIFO consistency. These traditionally weaker
models become equivalent to FIFO consistency by two implicit assumptions, that (1) each P; reads exactly
one variable of P;_1, and (2) each P; sees updated values from P;_; in order. Without the first assumption,
slow consistency would allow changes to different variables be seen at different times, which could introduce

16

new livelocks. Given our choice of a unidirectional ring, a process can always restrict itself to owning a single
variable because multiple variables can be encoded by a single one. This would not be feasible in a more
general context where multiple processes can write to the same variables. Without the second assumption,
local consistency would allow changes to a single variable to be seen out of order, which could introduce new
livelocks. We forbid message reordering since stabilization assumes that faults are transient and eventually
stop occurring.

Simulating strict consistency and synchrony. Since strict consistency is the strongest consistency
model, an execution under strict consistency can be simulated under other consistency models. For example,
an action of any process P; under strict consistency can be simulated under FIFO consistency in 3 steps
from a state with empty queues: (1) P; acts, (2) ¢; performs PushLast to copy the new x; value, and (3) g¢;
performs PopFirst to assign the new value to z}.

Lemma 5.10. If a unidirectional ring protocol p has a livelock under interleaving and no fairness, then p
has a livelock under FIFO consistency and no fairness as well.

Proof. Proof follows from the fact that FIFO consistency model can simulate strict consistency and inter-
leaving semantics, and exhibit a livelock. O

FIFO consistency can also simulate synchronous actions under any consistency model. For example, the
synchronous actions of k processes under strict consistency can be simulated under FIFO consistency in
3k steps from a state with empty queues: (1) k processes act, (2) the k queues of those processes perform
PushLast to copy the new x values, and (3) the queues perform PopFirst to assign the new z’ values.
Propagation count. Until now, we have considered the number of propagations in a state to be the
number of enabled processes. This formula changes when delays are introduced. That is, the propagation
count is computed as the number of pending actions of processes and queues, which is the sum of: (1) number
of enabled processes, (2) number of queues enabled to call PushLast, and (3) number of values in queues.

Lemma 5.11 (Limited Propagations). Given N processes in a unidirectional ring executing under any
scheduler and consistency model, the number of propagations cannot increase and the number of reachable
states is therefore finite for a ring of size N.

Proof. In Section 3, we noticed that the number of propagations (i.e., enabled processes under strict con-
sistency) cannot increase during an execution when processes are self-disabling. This result is preserved for
FIFO consistency and therefore all other consistency models. To see this, consider the 3 types of actions
that can occur: (1) the action of a process P;, (2) a queue g; calling PushLast, and (3) a queue ¢; calling
PopFirst. In the first scenario, P; will disable itself but may enable ¢;. In the second scenario, ¢; will disable
itself from calling PushLast but will increase its number of stored values. In the third scenario, ¢; will reduce
its number of stored values but may enable P; ;. Thus, each of the 3 cases will either decrease the number
of propagations or keep it constant. Given that the number of propagations cannot increase, we have an
upper bound on the number of values in queues for any execution, meaning that the number of reachable
states is finite. O

Lemma 5.12. A unidirectional ring protocol has a livelock under interleaving and no fairness iff it also
has a livelock under FIFO consistency with unbounded queues in any state. The livelocks may appear for
different ring sizes.

Proof. The proof of left-to-right follows from Lemma 5.10. Thus, we are left to show that a livelock of p under
interleaving semantics is implied by a livelock of p under FIFO consistency (allowing unbounded queues in
any state). Assume protocol p has a livelock under FIFO consistency for some ring size. By Lemma 5.11, the
number of propagations cannot increase during an execution but obviously must eventually stop decreasing,
therefore some fixed m propagations eventually exists in an infinite execution.

We are left to show that these m propagations respect the properties given in Section 3 and that they are
sufficient to form an interleaved livelock. Indeed, if a process Py performs an action (a;_1,b;,a;), then a; is
pushed onto ¢;, and eventually we have z}, = a;, allowing Py41 to perform an action (aj,b;j41,a;41). Thus,

17

the propagations match the definition given in Section 3. Furthermore, the action (aj_1,b;,a;) must lead
the next action (d;_1,e;,d;) that Py takes, making e; = aj. We therefore have m propagations that lead
each other. Using the same proof idea as in Lemma 3.4, we can show that the propagations are periodic.
Only a finite number of states exist with m propagations by Lemma 5.11, therefore the system must revisit
some state C' by Lemma 3.3. Consider a fixed execution from C' to itself that involves n process actions.
After revisiting C a total of m times using this fixed execution, each propagation is located exactly where
it was initially. Since each of the m propagations has reached the same position in the same state after nm
total process actions, they can repeat with period n. Finally by Lemma 3.4, m propagations of period n
lead each other, implying that protocol p has a livelock under interleaving semantics. O

Lemma 5.13 (Deterministic Livelock). If a unidirectional ring exhibits a livelock where exactly one enabled
action exists, then a livelock exists under every scheduler and consistency model.

Proof. If such a deterministic livelock exists, there is only one choice for each subsequent state in the
execution because only one process or queue is enabled. Thus, the livelock is not affected by the scheduler
choice. Furthermore, adding or removing delay between processes simply changes whether a process enables
its successor in the ring immediately. Thus, the livelock is not affected by the consistency model. O

Lemma 5.14. There is a ring protocol that has a livelock for some ring size N iff there is a ring protocol
that has a deterministic livelock for the ring size N.

Proof. We show that there is a function that maps any unidirectional ring protocol p to another such protocol
p’ such that if p has a synchronous livelock with all processes enabled, then p’ has a deterministic livelock
for the same ring size. Otherwise, both protocols are livelock-free. Without loss of generality, we can assume
each process P; acting under p has a single variable x;. Let each P; have transition function £, and recall
from Definition 2.1 that we can define all actions of P; as:

(332‘_1,331') S Pre(f) —r T; = §(mi_1,xi);

In the new protocol p’, give each process P; variables x; and) and give it read access to x}_;. The new
protocol p’ is defined by giving each process P; the action:

o {s@c;l,xi); if (2} = ;)

(@)_1,2;) € Pre(§) — o} = .
i otherwise

?

i = (@1,);

<: Notice that in a livelock, p’ performs the p protocol using x;_, instead of z;_1, and z_, is eventually
updated to x;_1. Therefore we can safely say that if p does not have a livelock under FIFO consistency, then
p’ does not have a livelock. By Lemma 5.12 and Lemma 4.7, a livelock exists under FIFO consistency iff a
synchronous livelock exists with all processes enabled. Thus, livelock freedom of p implies livelock freedom
of p'.

=: We are left to show that if p has a livelock, then p’ has a deterministic livelock. Assume p has
a livelock where all processes are enabled. By Lemma 3.3, an execution exists that revisits some state
C = (co,...,cn—1). Let C’ be a state of a system executing p’ such that z; = ¢; for all ¢ and z; = ¢g. Our
goal is to make only P; enabled, therefore for all ¢ # 1, choose z;_; such that («}_;,¢;) & Pre(§). Finding
such values is of course possible because processes are self-disabling. Now only P; is enabled in C’. When
Py acts, it assigns x| as ¢; and assigns 1 as &(co, ¢1).

Now only P, is enabled, and it assigns x5 as ¢y and assigns x5 as &(c1,c2). At the Nth step, Py acts to
assign both z{, and zy as (en—1,¢p). In this state, we have x; = (¢;—1,¢;) for all i, [= o, and z; = ¢;
for all ¢ > 0. On the x; values, this is the same state that would be visited after one synchronous step of p
from state C. Likewise, the z) values meet the same constraints as in C’, where z{, = ¢ and the other a
values (where ¢ > 0) make P, disabled. Since z{, = {(cn—1,¢0) and z1 = &(co, c1), process P is once again
enabled. Since P; is enabled again, this execution of p’ can continue to use one propagation to simulate the
synchronous livelock of p.

18

This is indeed a deterministic livelock since one process is enabled at all times, actions are deterministic
and self-disabling in both p and p’, and an action of P; in the livelock only changes values read by P;+1. We
have therefore shown a mapping from p to p’ such that p has a livelock if and only if p’ has a deterministic
livelocks. O
i

Theorem 5.15. Livelock detection for unidirectional ring protocols is undecidable -complete) for any

choice of scheduler and consistency model.

Proof. Given such a protocol p, we can create a similar protocol p’ using the method of Lemma 5.14. That
is, if p has a livelock, then p’ has a deterministic livelock and otherwise, both protocols are livelock-free.
In the case of a p livelock, the deterministic p’ livelock exists under every scheduler and consistency model
by Lemma 5.13. In the case that p is livelock-free, no livelock exists in p’ under FIFO consistency by
Lemma 5.12, which means p’ is livelock-free for every scheduler and consistency model because FIFO model
is the weakest consistency model in the context of our work. A livelock in p has been shown to exist under
interleaving semantics if and only if a livelock exists in p’ under any particular choice of scheduler and
consistency model. Thus, the X9-hardness of livelock detection shown in Theorem 5.1 is preserved for any
particular choice of scheduler and consistency model.

We can enumerate the valid topologies for a protocol p by number of processes, and we can enumerate
states by their number of propagations. By Lemma 5.11, a state of p can only reach a finite number of
other states under any scheduler and consistency model. Thus, the problem of livelock detection remains
¥9-complete. O

Lemma 5.16. If a unidirectional ring is stabilizing under FIFO consistency and no fairness, then it is
stabilizing under every scheduler and consistency model.

Proof. Consider a protocol p that is stabilizing to legitimate states where no process or queue action is
enabled. Since FIFO consistency is the most relaxed model in the context of our work, it can simulate
any scheduling policy and any consistency model. Such a simulation will not have an impact on the form
of individual execution steps (be it process action or queue action). Thus, the choice of scheduler and
consistency model will not break closure, nor will it create livelocks in illegitimate states. Likewise, no
deadlocks will be created outside legitimate states because the choice of scheduler and consistency model
will not disable any action outside the legitimate states. Therefore, the ring remains stabilizing under every
scheduler and consistency model. O

Corollary 5.17. Verifying stabilization for unidirectional ring protocols is undecidable (T13-complete) for
any choice of scheduler and consistency model.

Proof. Since we have considered livelock detection in the entire state space, even for arbitrarily filled queues
in the case of FIFO consistency (Lemma 5.12), we can reduce the problem of verifying livelock freedom
to that of verifying stabilization to states where all processes and queues are disabled. Using this set of
legitimate states and the X9-completeness result of Theorem 5.15, the proof of Theorem 5.7 applies for any
particular scheduler and consistency model, showing that verifying stabilization is I1j-complete. O

6 A Semi-Algorithm for Livelock Detection

In this section, we address the following question: Given the action graph of a protocol, can we verify livelock
freedom up to a finite scope? We show that the answer to this question is affirmative. Specifically, we present
a semi-algorithm that can detect the existence of livelocks in rings of specific sizes. We then scale up the scope
of the search to larger periodic propagations (in terms of their period and the number of propagations). Our
semi-algorithm is an implication of Lemma 3.4 that provides a different approach for verification of uni-rings
where, instead of state space exploration, we search for periodic propagations that lead each other circularly.
We show that this approach significantly outperforms state-of-the-art model checkers (see Section 7). Thus,
we focus on the following problem:

19

Problem 6.1 (Find Periodic Propagations).

- INPUT: A protocol p in terms of its actions or its action graph; positive integers m,n > 1; domain
size M.

- OUTPUT: m propagations with period n that lead each other circularly. An empty set, if no such
propagations exists.

In the context of action graphs, Problem 6.1 poses the following question: Are there m closed walks with
length n that lead each other circularly? Recall that a closed walk is a walk that starts from some vertex and
traverses the action graph (potentially with repeated vertices/arcs) and returns to the starting vertex. To
compute walks of different length, one could start from small lengths and check if a set of closed walks that
form circular periodic propagations exist. For each length, we will have a finite (but potentially exponential)
number of closed walks. This approach is incomplete because if we do not find periodic propagations up to
some upper bound, then we cannot say that no livelocks exist for larger sizes. Is there a specific length where
we should stop the search and conclude that there are no such periodic propagations that lead each other
circularly for any ring size? In general, it is impossible to answer this question due to the undecidability of
the problem. As a result, we propose a finite-scope search for specific values of m and n that can exhaustively
search the problem space for m propagations with period n that lead each other circularly. To solve Problem
6.1, we present Algorithm 1

Algorithm 1. FindPropagations(G = (V, A): action graph, m,n: positive integers greater than 1; M:
domain size)
Output: A set of sets of m propagations with period n that circularly lead each other.
1: Represent the action graph G = (V, A) as a matriz D, where each entry d;; in D contains the set of
arc labels between v; and v;.
2: forlen :=2 ton do
3: Compute D'™, where each entry d;; of DD is computed by Uﬁgl{dik} x{dp;} for0 <i,j < M-—1,
and {d;i} x {dk;} denotes the Cartesian product of the set of labels of d;i, by the set of labels of dy;.
That is, each entry of matriz D? includes a set of ordered pairs of arc labels, each entry of matric
D3 includes a set of ordered triples of arc labels, and so forth. Thus, each entry of the matriz D"
contains a set of tuples of length len, each representing the labels of a walk of size len in the action
graph. As such, each entry on the diagonal of D™ includes a set of (labels of) closed walks of length
len.
4: end for

Let C denote the set of closed walks of length n extracted from the diagonal entries of D™.

6: Let S™ denote another M x M matriz derived from D", where each entry s;; of S™ is a set of tuples
each obtained by including the labels of the destination vertices of a closed walk in the corresponding
entry of D™.

7: Create a directed graph Gyw = (Viv, Aw), where each vertex w € Vi represents a closed walk with
length n in C. For any pairs of vertices wy,ws € Vi, if w1 appears in some entry on the diagonal of
S™ and wy appears in some entry on the diagonal of D™, then include an arc (wy,ws) € Aw .

8: Return the simple cycles of Gy with length m. Fach cycle of length m represents a set of m propaga-
tions with period n that successively lead each other.

>

end

Algorithm 1 starts with the action graph G = (V, A) of a protocol, where V' denotes the set of vertices
and A represents the set of arcs of G. The graph G may be a multigraph because P; may execute an action
where x;_1 = vp, but x; could have one of several values in Zj;. Due to determinism of processes, the
outgoing arcs from each vertex v have distinct labels. Since there is a one-to-one correspondence between
periodic propagations and closed walks in G, Algorithm 1 actually searches for sets of closed walks that
successively lead each other. One can compute the set of closed walks with a specific length n from a vertex
v by representing G as a matrix D, where each entry d;; in D contains the set of labels of arcs from v; to v;.
Then, the set of closed walks with length n from each vertex v is captured by the entry d,, in D™ (Steps 2 to
4 of Algorithm 1). Step 5 makes a union of all diagonal entries of D™ in a set C'. In other words, each element

20

w of the set C represents the arc labels of a unique closed walk. To find leading closed walks, we need to
determine the values that are assigned to x; in each closed walk w; € C (i.e., labels of the vertices reached
in wy) because such values will be the labels of another walk wo led by w;. Thus, Algorithm 1 computes
another matrix S”, where each entry s;; contains the set of vertex labels corresponding to each closed walk
in the entry d;; of D™. To find the closed walks that lead each other in a circular way, we construct another
directed graph Gw = (Viy, Aw), where each Vi captures the set of vertices and Ay denotes the set of arcs
of Gy . There is a one-to-one correspondence between the elements of C' and vertices of Viy; i.e., each vertex
of Vi represents a closed walk in C. We draw an arc (wy, w2) between two vertices of Vi (i.e., closed walks)
iff w1 appears in some entry on the diagonal of S™ and wy appears in some entry on the diagonal of D™.
Each simple cycle of length m in Gy captures m propagations with period n that lead each other circularly.
Based on Lemma 3.4, such propagations represent a livelock.

For example, consider the action graph of the Sum-Not-Two protocol in Figure 1 (where M = 3 and
Zy = {0,1,2}). The first step of Algorithm 1 creates a matrix D as follows where each entry d;; (for
0 <i,j < 2) contains the arc label from vertex i to vertex j.

D =

{r 2 O
O
{+ {op §

Let n =2 and m = 2. Then, in Steps 2 and 3, Algorithm 1 computes D?.
D? =

O &}
{+ {Lo}y
0 {0}

Observe that, entry di; (respectively, dos) is equal to (1,0) (respectively, (0, 1)), which means a closed
walk of length two that starts and ends at vertex 1 (respectively, 2) first takes an arc with label 1 (respectively,
0) and then an arc with label 0 (respectively, 1) in Figure 1. In Step 5, we compute the set C' as the union
of all sets on the diagonal of D2, which is equal to {(1,0),(0,1)}. In Step 6, we calculate the matrix S? as
follows:

52 =

0 {
{+ {&Vy
0 {G2)}

The entry (2, 1) is a tuple of vertex labels that are reached in the closed walk (1,0). Likewise, entry (1, 2)
captures the vertices met in the closed walk (0, 1). Notice that, in Step 7, the graph Gy has no arcs because
none of the tuples on the diagonal of S? appears in set C. As such, there are no two periodic propagations of
length 2 in the Sum-Not-Two protocol that lead each other circularly. In search of livelocks, we can re-invoke
Algorithm 1 for larger values of n and m as long as we have computational resources.

Lemma 6.2. Each simple cycle in Gw (constructed in Algorithm 1) corresponds to a set of periodic prop-
agations.

Proof. Each vertex w € Gy represents a closed walk (with length n) from some vertex v in the action graph.
Let wy and we be any pair of vertices in Gy, where w; denotes a closed walk wvy,l1,vo,lo, -+ vy, I, v1,
where [; values represent the arc labels and v; values denote vertices in action graph. Likewise, wy represents
another closed walk X, vo, X, vg,---, X, v,, X,v1, X, where X denotes a placeholder for any value in Z;.
Based on the definition of the leads relation in Section 2, w; denotes a propagation that leads the propagation
represented by ws. Thus, a simple cycle in Gy represents a set of propagations with length n that lead each
other successively. 0

21

Theorem 6.3 (Soundness). Algorithm 1 is sound.

Proof. Soundness follows from Lemma 6.2 as any return value of Algorithm 1 does indeed represent a set of
periodic propagations that lead each other circularly. O]

Theorem 6.4 (Complexity). The asymptotic time complexity of Algorithm 1 is O((M - bm)lm/2] km/21y,
where M denotes the domain size, m and n capture the block size of periodic propagations, b represents the
branching factor of the action graph and k is the degeneracy of Gyw constructed in Step 7.

Proof. In the worst case, Steps 2 to 4 take O(n- M3). Let b denote the branching factor of the action graph.
Then, Step 5 has an asymptotic complexity in M - b™, which is the maximum number of closed walks of
length n. Manoussakis [53] shows that listing all cycles of a fixed size m in a digraph G with V vertices has
time complexity of O((|V|)l™/2) . k[™/21) where k is the degeneracy of G. Thus, Step 7 has time complexity
O((M - bm)lm/2] . |;Im/21) " (The degeneracy of a graph G is the smallest value k for which every subgraph of
G has the max degree k.) O

While the result of Theorem 6.4 may seem a little disheartening, we would like to note that the focus

of this paper is on constant-space parameterized protocols with small domains (e.g., up to M = 5). As
such, we conjecture that, in practice, the worst case complexity would be manageable if one can guarantee
that variable domains remain small. Moreover, we plan to exploit the computational power of Graphics
Processing Units (GPUs) for the verification of livelock-freedom in parameterized protocols.
Application. An important application of Algorithm 1 is in bounded scope verification where we incre-
mentally increase the values of m and n for each given protocol. While the idea of scope-based verification
is not new (see [38]), our verification method is novel in that we search for periodic propagations instead
of searching the state space of protocols (often represented as a reachability graph, a decision diagram or
a constraint satisfaction problem). We argue that Algorithm 1 can verify livelock-freedom in large-scale
parameterized systems in a more efficient way. As an example, consider a protocol on a uni-ring whose
action graph is illustrated in Figure 8 (for M = 5).

Figure 8: Action graph of an example protocol for M = 5.

We have implemented Algorithm 1 as a bounded scope model-checker, called PROP, that incrementally
searches for periodic propagations. Our current sequential implementation of PROP symbolically represents

22

periodic propagations in memory; nonetheless, we are currently developing a matrix-based implementation
of PROP that can exploit the computational power of GPUs towards the verification of livelock-freedom in
parameterized rings. The first set of propagations that PROP finds is for m = n = 21 illustrated as an
instance of tiling problem in Figure 9. These propagations represent a livelock in a ring of 441 processes that
can be constructed using the technique presented in Section 3. The search for the periodic propagations of
Figure 9 took a fraction of a second on a MacBook Air laptop with 2.2 GHz Intel Core i7 and 8GB RAM,
and OS X 10.11.6.

Figure 9: 21 propagations with period 21 illustrated as periodic tiles. Using the approach of Section 3, one can build
a ring of size 441 processes that has a livelock represented by these propagations.

Theorem 6.5. Assume a unidirectional ring protocol of symmetric, self-disabling processes. Let P =
{(m1,n1), -+ ,(mg,ng)} be the set of all periodic propagations found by Algorithm 1 in successive invoca-
tions of Algorithm 1 for different values of m;,n;, where m; < my and n; < ng for 1 < i < k. Let
N = my X ng denote the mazimum value among all multiplications m; X n;, for 1 <i < k. Then, for rings
of size up to N, any ring whose size is not equal to some value (m; x n;) for some (1 < i < k) is livelock-free.

Proof. By contradiction, consider that there is some ring size N’ < N, where Vi : 1 < < k: N' # m; X n;,
but the protocol has a livelock. Then, Lemma 3.4 implies that there must exist m’ propagations with
some period n’ such that these propagations successively lead each other modulo m/. Since N’ < N, either
m’ < my, or n’ < ny or both. Thus, during successive invocations of Algorithm 1 for incremental values of
m; and n; we would have reached m’ and n’. That is, (m/,n’) € P, which is a contradiction. Therefore, N’
does not exist. O

Notice that Theorem 6.5 has significant applications in the design and verification of distributed pro-
grams (e.g., network protocols) whose underlying communication topology includes rings. More specifically,
Theorem 6.5 along with Algorithm 1 enable designers to predict the ring sizes at which livelock failures may
occur. Such predictions can result in saving time, energy and costs by ensuring that the system is in a safe
scale where no livelocks can occur.

23

7 Experimental Results

In this section, we present the experimental results we obtained through a sequential implementation of Prop
(introduced in Section 6). The platform used for these experiments is a regular MacBook Air laptop with a
2.2 GHz Intel Core i7 with 8GB of memory. The timing results are averaged over 100 runs for each example
protocol and each domain size. Our objective in these experiments is to evaluate the effectiveness of Prop in
finding livelocks when the domain size of variables and the length of the periodic propagations (i.e., length
of livelocks) grow. We would like to note that we have also developed an enumerator (i.e., Turing recognizer)
[43] that searches through all possible protocols for each specific domain size and prints out the protocols
that have livelocks. Our experimental results with this enumerator show that this is a very inefficient way
for verification and the average search time is exponentially larger than the results we report in this section
on the performance of Prop. Sections 7.1 to 7.5 present five case studies, and Section 7.6 discusses relevant
verifier tools and compares their capabilities with Prop.

7.1 Leader Election

Leader election is an important protocol in distributed systems and is used in a variety of contexts such as
wireless networks resistant to jamming [44], mobile ad-hoc networks [14], locking, synchronization and load
balancing [42, 52]. While it is known that there is no leader election protocol on symmetric uni-rings [4],
our objective here is to evaluate the power of Prop in finding livelocks that prevent stabilization to states
where a unique leader is elected. We consider a leader election protocol on a symmetric uni-ring of N > 1
processes, where the objective is to assign unique values modulo IV to processes. That is, the protocol should
self-stabilize to legitimate states where processes have unique values. In such states, the process with value
0 can be declared as the leader. For each process of the Leader Election (LE) protocol, we consider the
following action:
(Tic1=m) 2 x; =2, B 1

where @ denotes addition modulo M, and M represents the domain size of variable z; of process P;.
Stabilization is impeded by livelocks that we detect using Prop. The input to Prop includes the Protocol
Under Verification (PUV), the domain size of z; and an upper bound on the period of propagations that
may create a livelock. That is, an upper bound on the scope of the search for leading closed walks.

LEADER ELECTION

Livelockin Livelock in Domain Size=2
Ring Size 25 Ring Size 36

& Domain Size=3

. Livelock in Livelockin |
Ring Size 4 |jyelack in Ring Size 16
RingSize 9 gy

Domain Size=4
Domain Size=5

N Domain Size=6

Livelock in

Ring Size 49 Domain Size=7

Verification Time (micro sec.)

Domain Size

Upper Bound of the Period of Propagations

Figure 10: Verifying livelock-freedom in leader election on a ring.

Figure 10 illustrates the results of verifying the LE protocol introduced above. We have verified this
protocol for domain sizes of 2 to 7 and for propagations with periods 1 to 10. The vertical axis captures the

24

average verification time in micro seconds. Notice that for period 2, we find a livelock that manifests itself
in a ring size 4, which is the result of a 2 x 2 periodic propagation (see Figure 11). This pattern continues
as we increase the period length of propagations to livelocks in ring sizes 9,16,25,---. As the domain size
increases (i.e., the depth dimension), the average verification time slowly increase to 9 microsecond, which
is not significant.

1 2 3 4 0
11 2 3 4 0
2 3 4 0 1
1 2 3 0 .2 3 4 0 1
1 2 3 0 2 3 4 0 1
2 3 0 1 1.3 4 0 1 2
1 2 0 2 3 0 1 3 4 0 1 2
1 2 0 2 3 0 1 3 4 0 1 2
2 0 1 3 0 1 2 1 4 0 1 2 3
N1 0 2 0 1 3 0 1 2 4 0 1 2 3
1 0 2 0 1 3 0 1 2 |4 0 1 2 3
|/ 0 1 0 1 2 0 1 2 3 |~ 0 1 2 3 4
;0 1 0 1 2 0 1 2 3 N o 1 2 3 4
1o 1 0 1 2 0 1 2 3 0 1 2 3 4
1 0 1 2 0 1 2 3 0 1 2 3 4 0

Figure 11: Periodic propagations found in Leader Election, each representing a livelock in ring sizes 4, 9, 16 and 25.

7.2 Token Ring

Token Ring (TR) is another important protocol in distributed computing used to implement mutual exclusion
[13] on rings. We verify a candidate TR, protocol where each process in the ring is privileged to take an action
when its x; value is one unit less than its predecessor’s modulo domain size M. The objective is to design
a self-stabilizing TR protocol that self-stabilizes to the set of legitimate states where there is at most one
token in the entire ring. While Dijkstra has already solved this problem [13], it took him a long time to prove
the correctness of his design and prove that it is impossible to solve this problem on a fully symmetric ring.
Our proposed method implemented in Prop provides an automatic approach for showing why a symmetric
uni-ring does not self-stabilize to legitimate states by finding its livelocks in a few microseconds. Each process
in a symmetric uni-ring includes the following parameterized action:
(l’l‘,l =x; D 1) — X = X1
Figure 12 illustrates our experimental results for verifying livelock-freedom of this protocol. We found
livelocks for ring sizes 2 to 7 as we increased the domain size from 2 to 7. We observe that, in the case
of TR, the existence of livelocks depends on domain size. That is, as we increase the domain, we detect a
set of periodic propagations whose period is equal to the domain size. Figure 13 illustrates a few periodic
propagations we found for ring sizes 2, 3, 4 and 5. For larger ring sizes, we find similar propagations that
have a larger dimension of k x 1 for ring sizes £ > 5. Similar to leader election, the average verification time
remains in the scope of a few micro seconds.

7.3 Agreement

When processes in a distributed system decide on a value (i.e., output of a function, vote, etc.), some sort of
collective agreement must be reached. As such, reaching agreement is an important primitive and a classic
problem in distributed computing. Designing a self-stabilizing agreement protocol requires recovery to the
set of legitimate states Vi : i € Zy : ;01 = x;, where N represents the number of processes in the ring and
© denotes subtraction modulo N. We verify the following agreement protocol where each process copies the
value of its predecessor if x; 1 # x; holds.
Ti—1 7& Ty — Tj i= Tj—1

Figure 14 shows how average verification time increases when domain size and period of propagations

grow. Up to the scope we searched, we just found a livelock in a ring size 2. This livelock could occur

25

TOKEN RING PROTOCOL

] in Size=:
Liveloek in Domain Size=2

Ring Size 7

Domain Size=3
Livelock in o
Ring Size 2 Domain Size=4
Livelock in Domain Size=5
Livelock in RingSize 6

RingSize 4 Domain Size=6

Livelock in

Livelock in Ring Size 5

e Domain Size=7
Ring Size 3

Verification Time (micro sec.)

Domain Size

1 2 3 4 5 6 7 8 9 10
Upper Bound of the Period of Propagations

Figure 12: Verifying token passing on a uni-ring.

0
1
1
0 1
1 2
1 2
: 1 2
1 2 3
1 2 3
0 1 2 3
1 2 3 4
1 2 3 4
1 2 3 4
0 0 0 0
0 0 | 0 0

Figure 13: Periodic propagations found in Token Ring, each representing a livelock in ring sizes 2, 3, 4 and 5.

regardless of the domain size, where two processes (in a ring size 2) alternatively execute the actions (1,0, 1)
and (0,1,0) generating two propagations of period 1 that lead each other circularly.

7.4 Coloring

The graph M-coloring problem (where M > 1) asks for the coloring of a graph using M colors in such a
way that no two neighboring vertices have the same color. The coloring problem has significant applications
in several domains such as scheduling, register allocation, frequency band allocation, etc. We have verified
a candidate coloring protocol on uni-rings with the following parameterized action for each process. The
candidate coloring protocol should stabilize to legitimate states Vi : i € Zn : (zig1 # i) A (Tig1 # x;), where
© and @ respectively denote subtraction and addition modulo N. While it is known [6] that no self-stabilizing
coloring protocol exists on uni-rings, we are interested in verifying the source of such impossibility results in
an automated fashion. For example, we have verified the following coloring protocol and have identified its
livelocks.
(xi—1 = m;) = x; :=other(z;—1,x;)

The increase in the size of the livelocks found in the coloring protocol is proportional to the domain size.
More specifically, starting from domain size 2 and upper bound 2 for the period of propagations, we find
periodic propagations of size M x M, which would constitute a livelock in a ring size M2. The average
verification time remains below 11 micro seconds.

26

AGREEMENT PROTOCOL

Domain Size=2

Livelock in Domain Size=3
Ring Size 2

Domain Size=4

Domain Size=5

w
o

Domain Size=6

§ 3 Domain Size=7
o
S
£ 25
g
= 2
c
8 15
8 o
2 £
05 £
5
a
"]
1 2 3 4 5 6 7 8 9 10
Upper Bound of the Period of Propagations
Figure 14: Verifying agreement on a uni-ring.
COLORING PROTOCOL
Livelock in
Ring Size 36 Domain Size=2
Livelock in - e
Ring Size 25 | Domain Size=3
10 3 Domain Size=4
Livelock in Domain Size=5
B e
Ring Size 9 Domain Size=6
5 Domain Size=7
@
o 7 Livelock in Livelock in
2 . . Ring Size 16 Ring Size 49
€ ¢ Livelock in
- Ring Size 4
L]
E s
=
£
o 4
®
=
% 8
&
> n
‘T
1 13
o
o

Upper Bound on the Period of Propagations

Figure 15: Verifying M-coloring on a uni-ring.

7.5 Parity

The Parity protocol requires the entire ring to stabilize to a set of legitimate states where all x; values
are even or odd. If there is an even (respectively, odd) value in the ring, then all values should be even
(respectively, odd) in a legitimate state. Thus, from any state, Parity will converge to either an all-odd or an
all-even state. This protocol has applications in choosing a common parity policy in a distributed system,
where from an arbitrary state all nodes will agree on a common parity policy. The set of legitimate states
includes states where Vi : i € Zn : ((] ;-1 — z; |) mod 2) = 0 holds. A candidate parameterized action for
the symmetric uni-ring is as follows, where & and © respectively denote addition and subtraction modulo
domain size M.
(|zic1©2; | mod 2) #0 = z;:=x;—1 D2

We have verified the livelock-freedom of Parity for domain sizes of 2 to 8 and propagations with periods
1 to 10 (see Figure 16). We observe that this protocol is livelock-free for odd-size domains (i.e., when M is
odd) because in an odd domain the number of odd values is one less than the number of even values. This
will break the symmetry that forms periodic propagations created by the above action.

27

PARITY PROTOCOL

X Domain Size=2

& Domain Size=3

. = P, Domain Size=4
&2 Livelock in 1 o
) 7 Ring Size 16 | Domain Size=5
Livelock in Z

T Ring Size4 | Livelockin 2 | N Domain Size=6
g s RingSize12 __ ' -
9 Z N) Domain Size=7
o
E . Livelock in Domain Size=8
- Ring Size2
Q
E
-
c
o 10
-
T
o
&
=
g

Domain Size

Upper Bound of the Period of Propagations

Figure 16: Verifying the parity protocol on a uni-ring.

Notice that the average verification time hiked to around 25 micro seconds for some instances of this
protocol. However, such an average verification time is still significantly better than the state-of-the-art
verifiers such as Cubicle [12, 11] and ByMC (i.e., parameterized Promela/SPIN) [49].

7.6 Comparison With Existing Automatic Verifiers

In this section, we discuss the related research on the verification of parameterized systems that has cul-
minated in the development of verifier tools. Most existing automatic verifiers for parameterized systems
focus on safety properties and can be classified into SMT-based, symbolic and explicit-state verifiers. We
first introduce some of these verifiers and then compare them with respect to a set of criteria in Table 1.
Cubicle. Cubicle is a Parameterized Model Checker (PMC) [12, 11] for the verification of safety properties of
concurrent array-based systems, where system state is modeled as an array whose each memory cell represents
the local state of a process. Cubicle formulates the verification problem as a backward reachability problem
and utilizes SMT solvers to search for violations of safety properties.

ByMC. ByMC model checker [49] extends Promela/SPIN [36] for threshold-guided distributed algorithms,
which form a special family of parameterized systems that have Threshold-Guarded Actions (TGA). Each
TGA includes conditions specified on the number of messages sent/received from a portion of all processes
(called the action threshold) without the need for knowing the identity of those processes. ByMC targets
the verification of threshold-guarded Fault-tolerant Distributed Protocols (FTDP), which covers a subset of
distributed protocols with TGAs. Protocols are specified in an extended version of Promela, which is the
specification language of the SPIN model checker. Then, ByMC automatically extracts Threshold-Automata
(TA) from the input specifications. The TA is then transformed into an abstract counter system that captures
the behaviors of the input protocol in terms of the number of processes that are in a specific location of their
code at any system state; hence the term counter system. ByMC uses BMC and SMT solving to conduct
verification on the counter system.

Sally. Sally provides a language and a verification framework for the specification and verification of
synchronous FTDP. Sally utilizes several state-of-the-art verification methods (e.g., Property-Directed k-
induction [39]) to enable Bounded Model Checking (BMC) using SMT solvers.

IronFleet. IronFleet [35] provides a framework for formal specification, verification and the generation of
correct code for distributed protocols. At its verification core, IronFleet uses BMC and SMT solving in order
to verify he correctness of safety and liveness properties of distributed protocols. After verification, IronFleet
can generate verified code as well.

Ivy. vy [65] provides a novel method for the verification of safety properties in infinite-state protocols. vy

28

‘ Average System Safety (S) Verification System Fault
Verifier Fairness
Verification Time Topology | Liveness (L) Method Scope Tolerance

| Cubicle [12, 11] | Tens of milli seconds to minutes | General | S | Symbolic and SMT | Array-based systems | No | N/A |
| ByMC (47, 48, 46, 49] | Seconds to hours | Clique | Sand L | Abstraction, SMT, Explicit state | Threshold Automata | Yes | Yes |
‘ Sally [15] ‘ Tens of milli seconds to minutes ‘ General ‘ S ‘ SMT, k-induction, BMC ‘ Synchronous array-based ‘ Yes ‘ N/A ‘
‘ IronFleet (35] ‘ Minutes to hours ‘ General ‘ S and L ‘ SMT ‘ Distributed Protocols ‘ Yes ‘ Yes ‘
‘ Ivy (56, 65] ‘ Minutes ‘ General ‘ S ‘ Inductive invariants and BMC ‘ Distributed Protocols ‘ No ‘ N/A ‘
‘ BIP [45] ‘ Tens of milli seconds ‘ General ‘ S ‘ Model checking and SMT ‘ Multi-Party synchronous ‘ No ‘ N/A ‘
‘ Prop ‘ Micro seconds ‘ Specific ‘ L ‘ Periodic Propagations ‘ Distributed Protocols ‘ Yes ‘ No ‘

Table 1: Comparison of state-of-the-art verifiers for distributed parameterized protocols.

employs BMC and a new bounded debugging method for the generation of inductive invariants used to prove
safety properties. Ivy also benefits from a graphical user interface that facilitates user interactions as Ivy is
not a fully automatic verifier.

Behavior-Interaction-Priority (BIP). Parameterized BIP [45] provides a framework for the verification
of distributed protocols specified in BIP as a parameterized system. The scope of parameterized BIP includes
multi-party synchronous systems, where transitions of a subset of components that take part in an interaction
are executed synchronously. The BIP framework determines which existing method for the verification of
parameterized systems is applicable to the extracted model of the system. The verification engine of BIP
uses temporal model checking and SMT solving to conduct the verification of safety properties.
Comparison. Table 1 positions the aforementioned verifiers with respect to a set of criteria such as average
verification time, topology of the system under verification, safety and liveness properties, verification method
used, scope of the systems that can be verified, support for verification of fault-tolerant systems and fairness
assumptions for the verification of liveness properties. As such, fairness is irrelevant to verifiers that focus
on the verification of safety properties. Moreover, the issue of fairness brings up a trade off for protocol
designers and protocol developers. Assuming fairness would simplify the task of designers and verifiers
because resolving some livelocks under fairness becomes simplified. However, implementing a particular
fairness policy in a distributed system is by itself a daunting task. As such, if a verifier is able to verify liveness
properties under no fairness assumptions, then it would make life easier for designers and programmers of
distributed systems. Notice that, Prop’s average verification time is in the scale of micro seconds while
all other tools have a timing in the range of milli seconds to minutes/hours. Moreover, Prop can verify
livelock-freedom and self-stabilization under no fairness for both synchronous and asynchronous systems.
The verification method of Prop is totally different from most extant methods, where we detect periodic
propagations and construct livelocks as well. While Prop benefits from a significant speed up in average
verification time, it is a topology-specific verification method. Prop is the first step in our ongoing work on
a paradigm of topology-specific verification, where we will develop a repository of efficient topology-specific
verifiers along with property-preserving compositions that can create more complicated topologies out of
elementary ones such as ring, tree, mesh, etc. The other two verifiers (ByMC and IronFleet) that can verify
liveness properties each have their own limitations. For example, both of them assume some sort of fairness
policies, whereas we make no such assumptions in Prop. Livelock detection in ByMC focuses on threshold
automata and counter systems, where processes cannot refer to the local state of specific neighbors (which
is what we need in uni-rings). Instead of weak fairness, IronFleet [35] implements always-enabled actions
where processes are not blocked when a condition is false. Always-enabled actions ensure fairness for proving
local liveness properties — where a process should eventually respond to some request — but cannot help for
proving global liveness properties (e.g., convergence) where all processes should collectively make some global
condition true.

29

8 Related Work

This section discusses related work regarding necessary and/or sufficient conditions for livelock freedom and
decidability of livelock freedom in Parameterized Systems (PSs). Specifically, our previous work [24] inves-
tigates sufficient conditions for livelock freedom in symmetric unidirectional ring protocols of self-disabling
processes. We also present necessary and sufficient conditions for deadlock detection in symmetric unidirec-
tional and bidirectional ring protocols. This paper complements our previous work by showing that, even
when assuming deterministic and self-disabling properties, livelock freedom on ring topologies is undecidable
in general.

Decidability. In [3], Apt and Kozen prove that verifying an LTL formula holds for a parameterized
system is IT1Y-complete. Suzuki [64] builds on this result, showing that the problem remains I19-complete for
unidirectional ring protocols of symmetric processes. Emerson and Namjoshi [20] show that the result holds
even when a token that can take two different values is passed around such a ring. Abello and Dolev [2] present
a reduction from any Turing machine to a self-stabilizing bidirectional chain protocol. Fabret and Petit [22]
use the domino problem to show that reaching a deadlock from an initial state is undecidable for planar grid
topologies. We strengthen existing results by considering constant space, deterministic and self-disabling
processes. Moreover, it is unclear how Suzuki’s proof [64] can be used for proving the undecidability of
livelock-freedom and verification of self-stabilization on fully symmetric distributed rings for several reasons.

e First, his proof relies on constructing a Turing machine that simulates an asymmetric unidirectional ring
(a.k.a. uni-ring), where there is a distinguished machine, denoted My, that has a specific functionality
different from other machines in the ring (and has buffers of different sizes). By contrast, we investigate
fully symmetric uni-rings.

e Second, his proof is based on the interleaving execution semantics where at any moment at most
one machine executes, whereas our proof of undecidability of livelock-freedom is not limited to the
interleaving semantics; even if we assume the synchronous execution semantics — where all processes
are executed at the same time — our proof still remains valid (Corollary 3.7). Suzuki’s proof does not
address synchronous protocols. o

e Third, Suzuki’s proof relies on constructing a Turing machine that starts from a specific initial con-
figuration/state; the distinguished machine My starts executing by observing a special symbol % just
acceptable to My. To address this issue for self-stabilization, one has to devise a proof that works
no matter what symbols are on the tape when the uni-ring starts executing, which would make it
a tedious proof. Instead of doing that, we reduce the Wang Tiles problem to livelock-freedom and
self-stabilization because (1) tiles are intuitively similar to the self-disabling actions, and (2) the proof
becomes applicable for both the interleaving and the synchronous executions.

Abstraction methods [7, 37, 57, 19] generate a finite-state model of a PS and then reduce the verifi-
cation of the PS to the verification of its finite model. SMT-based verification [29, 12] is an example of such
abstraction methods where SMT solvers are used to verify safety and inclusion properties in a reachability
analysis phase. Parameterized Visual Diagrams (PVDs) [62] model a PS and its required properties in terms
of visual abstractions (e.g., predicate automata); however, they assume weak fairness and generate a large
number of verification conditions that should be verified by model checking. Esperza et al. [21] show the
decidability of verifying whether a population protocol is well-specified; i.e., stabilizes to a predicate from
any initial configuration. There are several differences between our work and Esperza et al.’s [21]. First, as
an example, Esperza et al. [21] assume strong fairness, which means they focus on weak stabilization, where
only reachability of legitimate states is required; i.e., livelock detection is not required in their work. By con-
trast, we verify stabilization under no fairness, where livelock-freedom is an important property to be verified.
Second, they consider the clique topology where pairs of processes can read/sense each other’s state and take
an action. As a result, in the context of IOPP there are no topological constraints similar to what we have
in uni-rings where processes receive information only from their predecessor. Third, in population protocols
processes are anonymous and process identifiers (IDs) are not explicitly specified, whereas in our context,

30

processes can refer to a specific neighbor using process IDs. This issue also impacts the kind of predicates
that can specify the set of legitimate states. Fourth, the kind of constraints to which population protocols
stabilize include only counting constraints, which are disjunctions of conjunctive counting constraints of the
form (zq < u) A--- A (zr > v), where z;, for 1 <1 < k, denotes the number of processes that are in some
state 7. As a result, population protocols compute counting predicates. By contrast, the specifications of the
set of legitimate states that we can capture can be significantly more complicated and general (see Section
7 for examples). Fifth, our undecidability results are not limited to interleaving semantics; rather we show
that our results hold even for synchronous systems and FIFO consistency model.

Network invariant approaches [68, 41, 33| find a process that satisfies the property of interest and
is invariant to parallel composition; i.e., composing it with itself for an arbitrary number of times will
create a system that still satisfies the property of interest. The network invariant method is mostly used
for the verification of safety properties, whereas self-stabilization includes a global liveness property, namely
convergence. Neo [54] uses network invariants to identify architectures [54] with special topologies (e.g.,
trees) for which safety properties are verifiable. Neo’s topology-specific verification has similarities to our
topology-specific method.

Methods for compositional model checking of PSs (e.g., cache coherence [55]) use abstract interpreta-
tion to reduce the verification of unbounded systems to finite-state model checking of a set of local temporal
properties. Such abstractions are too coarse for synthesizing self-stabilization because a self-stabilizing sys-
tem must guarantee convergence from each concrete state. Logic program transformations and inductive
verification methods [59, 60, 61, 26] encode the verification of a PS as a constraint logic program and verify
the equivalence of goals in the logic program. Proof spaces [25] enable a novel method for automated
extraction of Hoare triples for unbounded multi-threaded programs, where these verification conditions are
used in a deductive reasoning system.

In regular model checking [27, 8, 1], states of parameterized rings are represented by strings of arbitrary
length, and a protocol is represented by a finite state transducer. Let R be the relation of this transducer
and let I be the regular language of legitimate states (including impossible states like the empty string). All
states are reachable in the context of stabilization, therefore closure is expressed as the closure of I under
the operation R; i.e., R(I) C I. Deadlock freedom is also decidable by checking whether R produces output
for every state in —I; i.e., =1 C Pre(R). For livelock detection, we must check if the iterative application of
R to some string w € —I can yield w. With RT as the transitive closure of R, livelock freedom is therefore
equivalent to checking (Vw € =I : w ¢ RT({w})). R' is uncomputable in general, but sometimes it can be
computed using techniques such as widening [66].

Emerson et al. [18, 17] present cutoff theorems for the verification of temporal logic properties in
parameterized systems, where a property P holds for a parameterized protocol p if and only if P holds for
an instantiation of p with a fixed number of processes k, called the cutoff. This method is mainly applicable
for properties that are specified in terms of the locality of each process.

Our reasoning strongly resembles that of regular model checking. We can interpret the graph of a protocol
p as a transducer, where arc and node labels denote input and output symbols respectively (i.e., a Moore
machine). To represent periodic propagations, we must ensure that the initial and final nodes are the same.
Thus, the actual transducer is a union of all machines formed by marking a single node as both initial and
accepting, where the initial node does not output a symbol. Livelock freedom can be verified directly using
regular model checking, with the detail that =1 is all nonempty strings because strings represent propagations
instead of states.

9 Conclusion and Future Work

We investigated the problem of verifying livelock-freedom and self-stabilization on parameterized symmetric
rings of constant space, deterministic and self-disabling processes. We presented three major results. First,
we strengthened Apt and Kozen’s [3] results in showing that even for constant space and self-disabling
processes verifying livelock freedom and self-stabilization for parameterized rings remain undecidable. We
also extended this result for any system with a cyclic topology. Moreover, we showed that our undecidability

31

results hold under (1) synchronous and asynchronous execution semantics; (2) the FIFO consistency model,
and (3) any scheduling policy. Then, we presented a transformative method for scope-based model checking
of parameterized symmetric rings, where one could detect and construct livelocks in very large rings. We
have implemented this method as a scope-based model checker, called Prop, that can verify livelock-freedom
for parameterized symmetric rings by totally circumventing state space exploration. Prop can also construct
livelocks in rings of large sizes when it finds them in the given scope, in addition to determining the ring sizes
for which that livelock will manifest itself. This is a significant achievement as most existing model checkers
of parameterized systems focus on safety and local liveness properties, whereas self-stabilization includes a
global liveness property that must be achieved by the collective actions of all processes. We plan to extend
this work for asymmetric parameterized rings, where a ring contains several families of symmetric processes.
Moreover, we would like to extend our work for the verification of hyperproperties [10].

References

[1] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking. In
International Conference on Concurrency Theory, pages 3548, 2004.

[2] J. Abello and S. Dolev. On the computational power of self-stabilizing systems. Theoretical Computer
Science, 182(1-2):159-170, 1997.

[3] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent systems. Infor-
mation Processing Letters, 22(6):307-309, 1986.

[4] H. Attiya, M. Snir, and M. K. Warmuth. Computing on an anonymous ring. Journal of the ACM
(JACM), 35(4):845-875, 1988.

[5] R. Berger. The Undecidability of the Domino Problem. Memoirs ; No 1/66. American Mathematical
Society, 1966.

[6] S. Bernard, S. Devismes, M. G. Potop-Butucaru, and S. Tixeuil. Optimal deterministic self-stabilizing
vertex coloring in unidirectional anonymous networks. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1-8. IEEE, 2009.

[7] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for ctl*. In IEEE
Symposium on Logic in Computer Science (LICS), pages 388-397, 1995.

[8] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In International Confer-
ence on Computer-Aided Verification, pages 403—418, 2000.

[9] D. Cachera and K. Morin-Allory. Verification of safety properties for parameterized regular systems.
ACM Transactions on Embedded Computing Systems, 4(2):228-266, 2005.

[10] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer Security, 18(6):1157-1210,
2010.

[11] S. Conchon, D. Declerck, and F. Zaidi. Cubicle-W: Parameterized model checking on weak memory. In
International Joint Conference on Automated Reasoning, pages 152-160. Springer, 2018.

[12] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaidi. Cubicle: A parallel smt-based model checker
for parameterized systems. In CAV, pages 718-724. Springer, 2012.

[13] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643-644, Nov 1974.

[14] S. Dulman, P. Havinga, and J. Hurink. Leader election protocol for energy efficient mobile sensor
networks (eyes). 2002.

32

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

B. Dutertre, D. Jovanovié, and J. A. Navas. Verification of fault-tolerant protocols with sally. In NASA
Formal Methods Symposium, pages 113-120. Springer, 2018.

E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 995-1072. Elsevier, 1990.

E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In International
Conference on Automated Deduction, pages 236-254, 2000.

E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 85-94, 1995.

E. A. Emerson and K. S. Namjoshi. On reasoning about rings. International Journal of Foundations
of Computer Science, 14(4):527-550, 2003.

E. A. Emerson and K. S. Namjoshi. On reasoning about rings. International Journal of Foundations
of Computer Science, 14(4):527-550, 2003.

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy. Verification of immediate observation
population protocols. arXiv preprint arXiv:1807.06071, 2018.

A. Fabret and A. Petit. On the undecidability of deadlock detection in families of nets. In E. Mayr
and C. Puech, editors, STACS 95, volume 900 of Lecture Notes in Computer Science, pages 479-490.
Springer Berlin Heidelberg, 1995.

A. Farahat. Automated Design of Self-Stabilization. PhD thesis, Michigan Technological University,
2012.

A. Farahat and A. Ebnenasir. Local reasoning for global convergence of parameterized rings. In IEEE
International Conference on Distributed Computing Systems, pages 496-505, 2012.

A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameterized programs. In Proceedings of
the 81st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 185-196. ACM, 2016.

F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification of
infinite state systems. TPLP, 13(2):175-199, 2013.

L. Fribourg and H. Olsén. Reachability sets of parameterized rings as regular languages. Flectronic
Notes in Theoretical Computer Science, 9:40, 1997.

P. Funk and I. Zinnikus. Self-stabilization as multiagent systems property. In AAMAS, pages 1413-1414.
ACM, 2002.

S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories, pages 22-29. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

M. G. Gouda. The theory of weak stabilization. In A. K. Datta and T. Herman, editors, WSS, volume
2194 of Lecture Notes in Computer Science, pages 114-123. Springer, 2001.

M. G. Gouda and H. B. Acharya. Nash equilibria in stabilizing systems. Theoretical Computer Science,
412(33):4325-4335, 2011.

M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE Transactions on Computers,
40(4):448-458, 1991.

O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants automatically. In Automated
Reasoning, pages 483—-497. Springer, 2006.

33

[34]

[35]

Y. Gurevich and I. O. Koriakov. A remark on Berger’s paper on the domino problem. Siberian Mathe-
matical Journal, 13(2):319-321, 1972.

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. Setty, and B. Zill.
Ironfleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 1-17. ACM, 2015.

G. J. Holzmann. The model checker spin. IEFE Transactions on Software Engineering, 23:279-295,
1997.

C. N. Ip and D. L. Dill. Verifying systems with replicated components in murphi. Formal Methods in
System Design, 14(3):273-310, 1999.

D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256-290, 2002.

D. Jovanovi¢ and B. Dutertre. Property-directed k-induction. In Proceedings of the 16th Conference on
Formal Methods in Computer-Aided Design, pages 85—92. FMCAD Inc, 2016.

J. Kari. The nilpotency problem of one-dimensional cellular automata. SIAM Journal on Computing,
21(3):571-586, 1992.

Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In Concurrency Theory,
pages 101-115. Springer, 2002.

C.-T. King, T. B. Gendreau, and L. M. Ni. Reliable election in broadcast networks. Journal of Parallel
and Distributed Computing, 7(3):521-540, 1989.

A. Klinkhamer and A. Ebnenasir. A Model Checker for Lovelock-Freedom in Symmetric Rings.
https://github.com/grencez/protocon/tree/master/src/uni.

M. Klonowski and D. Pajak. Electing a leader in wireless networks quickly despite jamming. In
Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures, pages 304—
312. ACM, 2015.

I. Konnov, T. Kotek, Q. Wang, H. Veith, S. Bliudze, and J. Sifakis. Parameterized systems in bip:
design and model checking. In Proceedings of the 27th International Conference on Concurrency Theory
(CONCUR 2016), number EPFL-CONF-221300, pages 30-1. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

I. Konnov, M. Lazié¢, H. Veith, and J. Widder. A short counterexample property for safety and liveness
verification of fault-tolerant distributed algorithms. ACM SIGPLAN Notices, 52(1):719-734, 2017.

I. Konnov, H. Veith, and J. Widder. Smt and por beat counter abstraction: parameterized model
checking of threshold-based distributed algorithms. In International Conference on Computer Aided
Verification, pages 85—-102. Springer, 2015.

I. Konnov, H. Veith, and J. Widder. On the completeness of bounded model checking for threshold-based
distributed algorithms: Reachability. Information and Computation, 252:95-109, 2017.

I. Konnov and J. Widder. Bymc: Byzantine model checker. In International Symposium on Leveraging
Applications of Formal Methods, pages 327—-342. Springer, 2018.

H. J. La and S. D. Kim. A self-stabilizing process for mobile cloud computing. In IEEFE International
Symposium on Service-Oriented System Engineering, pages 454-462, 2013.

R. J. Lipton and J. S. Sandberg. PRAM : a scalable shared memory. Technical Report CS-TR-180-88,
Princeton University, Sept. 1988.

34

[52]

[53]

[54]

C. Malloth and A. Schiper. View synchronous communication in large scale networks. In 2nd Open
Workshop of the ESPRIT project BROADCAST, number 6360. Citeseer, 1995.

G. Manoussakis. Listing all fixed-length simple cycles in sparse graphs in optimal time. In International
Symposium on Fundamentals of Computation Theory, pages 355—-366. Springer, 2017.

O. Matthews, J. Bingham, and D. J. Sorin. Verifiable hierarchical protocols with network invariants on
parametric systems. In Formal Methods in Computer-Aided Design (FMCAD), 2016, pages 101-108.
IEEE, 2016.

K. L. McMillan. Parameterized verification of the flash cache coherence protocol by compositional model
checking. In Correct hardware design and verification methods, pages 179-195. Springer, 2001.

O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy: safety verification by interactive
generalization. ACM SIGPLAN Notices, 51(6):614-630, 2016.

A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter abstraction. In International
Conference on Computer Aided Verification (CAV), pages 107-122, 2002.

H. Rogers. Theory of recursive functions and effective computability (Reprint from 1967). MIT Press,
1987.

A. Roychoudhury, K. N. Kumar, C. Ramakrishnan, I. Ramakrishnan, and S. A. Smolka. Verifica-
tion of parameterized systems using logic program transformations. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 172-187. Springer, 2000.

A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of parameterized protocols?
In Computer Aided Verification, pages 25—-37. Springer, 2001.

A. Roychoudhury and I. Ramakrishnan. Inductively verifying invariant properties of parameterized
systems. Automated Software Engineering, 11(2):101-139, 2004.

A. Sanchez and C. Sanchez. Parametrized verification diagrams. In Temporal Representation and
Reasoning (TIME), 2014 21st International Symposium on, pages 132-141. IEEE, 2014.

R. C. Steinke and G. J. Nutt. A unified theory of shared memory consistency. Journal of the ACM,
51(5):800-849, Sept. 2004.

I. Suzuki. Proving properties of a ring of finite-state machines. Information Processing Letters,
28(4):213-214, July 1988.

M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham, J. R. Wilcox, and D. Woos. Mod-
ularity for decidability of deductive verification with applications to distributed systems. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
662-677. ACM, 2018.

T. Touili. Regular model checking using widening techniques. Electronic Notes in Theoretical Computer
Science, 50(4):342-356, 2001.

H. Wang. Proving theorems by pattern recognition II. Bell System Technical Journal, 40:1-42, 1961.

P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants.
In International Workshop on Automatic Verification Methods for Finite State Systems, pages 68-80,
1989.

35

	Introduction
	Basic Concepts
	Local Characterization of Global Livelocks
	Tiling
	The Domino Problem and Its Periodic Variant
	Reduction to Livelock Detection
	Equivalent Tile Sets

	Unecidability of Verification
	Verifying Stabilization
	Effects of Consistency Model and Scheduling Policy

	A Semi-Algorithm for Livelock Detection
	Experimental Results
	Leader Election
	Token Ring
	Agreement
	Coloring
	Parity
	Comparison With Existing Automatic Verifiers

	Related Work
	Conclusion and Future Work

