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Abstract

Efficient memory resource management requires the knowledge of the memory demands of applications
or systems at runtime. A widely proposed approach is to construct an LRU-based miss ratio curve
(MRC), which provides not only the current working set size (WSS) but also the relationship between
performance and target memory allocation size. Unfortunately, the cost of LRU MRC monitoring is
nontrivial. Although previous techniques adopt some optimizations, they still incur large overheads. To
attack this problem, this paper proposes a low cost working set size tracking method, which seeks to
generate an accurate MRC of programs with negligible overhead. We first introduce two enhancements
over current techniques: AVL-tree based LRU structure and dynamic hot set sizing. Nonetheless, the
overhead is still as high as 16% on average. Based on a key insight that for most programs the working set
sizes are stable most of the time, we design an intermittent tracking scheme, which can temporarily turn
off memory tracking when memory demands are predicted to be stable. With the assistance of hardware
performance counters, memory tracking can be turned on again if a significant change in memory demands
is expected. Experimental results show that, by using this intermittent tracking design, memory tracking
can be turned off for 82% of execution time while the accuracy loss is no more than 4%. More importantly,
this design is orthogonal to existing optimizing techniques. By combining the three enhancements, the
mean overhead is lowered to only 2%. We show that when applied it to memory balancing for virtual
machines, our scheme brings a speedup of 2.12.

1 Introduction

Modeling the relationship between physical memory allocation and performance is indispensable for opti-
mizing memory resource management. As early as 1970s, working sets were considered as effective tools for
measuring and modeling memory demands [1]. Further, in the studies of phase behavior in real programs,
people gradually realized that disruptive transitions between phases play an important role in describing
the programs’ locality. Because working set provides a desirable metric for memory management, many
solutions have been proposed to track them. One widely proposed method is to build page-level LRU-based
miss ratio curves (MRCs). This approach tracks memory accesses and emulates the LRU replacement policy
by constructing an LRU stack and a histogram that records the number of hits to each stack location. Based
on the LRU histogram, a miss ratio curve can be derived to correlate memory allocation with page misses
and system performance. Studies show that this approach can estimate not only the current working set size
(WSS) but also the performance gain or loss when the system or application’s memory allocation increases or
decreases [2, 3, 4, 5, 6, 7]. However, the runtime overhead of maintaining such miss ratio curves is nontrivial.
Especially because the complexity and data size of modern applications increase dramatically, the overhead
of MRC tracking may overshadow its potential benefits. For example, for SPEC CPU2006, using a simple
linked-list-based implementation, the overall execution time is increased by a factor of 1.73. Although some
previous research optimizes MRC monitoring in terms of data structures [5], the overhead is still considerably
high.

This paper introduces a low cost working set size tracking approach. We first add two refinements
on existing optimizations: AVL-Tree based LRU organization (ABL) and dynamic hot set sizing (DHS).
Compared with the canonical linked-list-based LRU implementation, the AVL-tree based algorithm lowers
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the asymptotic cost of LRU operations from O(N) to O(log N). In addition, we utilize hardware performance
monitoring counters (PMCs) to improve the accuracy of WSS estimation when dynamic hot set sizing [5, 8]
is used. Dynamic hot set sizing helps to lower overhead by controlling the number of memory access
interceptions. It takes program locality into account and adjusts the size of hot set accordingly. However, in
some cases, for some programs with very small working set size, it can substantially overestimate the working
set size. Using hardware performance monitors, our design is able to detect such pathological case and make
appropriate adjustments. Although ABL and DHS reduce the overhead significantly, our experiments show
that the overhead is still as high as 16% on average.

To further lower the overhead without a significant loss of accuracy, we design a novel technique, intermit-
tent memory tracking (IMT). This idea is based on the fact that the execution of a program can be divided
into phases, within each of which, the memory demands are relatively stable [1]. Thus, when the monitored
system or process is predicted to stay in a phase, the memory tracking can be temporarily disabled to avoid
tracking cost. Later on, when a phase change is predicted to occur, the memory tracking is resumed to track
the working set size of the new phase.

The key challenge is the phase change prediction. Since we turn off memory tracking within a phase, we of
course cannot rely on the predicted working set sizes to derive phase changes. Fortunately, We observe that
the stability of memory demands is closely correlated with that of some hardware events such as data TLB
misses, and L1 and L2 cache misses. Inspired by this fact, we design a phase detector by monitoring those
PMCs. A phase change on those counters suggests a likely phase change on memory demands. However,
DTLB and cache level events show much higher fluctuations (noise) than memory demands, which challenge
the accuracy of phase prediction. An over-sensitive phase detector may give false positive results, which leads
to unnecessary activation of memory tracking. On the contrary, an over-tolerant design may miss the actual
phase changes and thus result in loss of accuracy. And the noise level varies by programs or even different
phases of the same program. In addition, unlike off-line phase analysis, which can adopt complicated signal
processing techniques, on-line analysis requires that the algorithm be fast and simple.

To solve this problem, we design a quick self-adaptive phase detector, which adaptively selects a phase-
detection threshold based on the past predicted memory demand trend. Experimental results show that,
during an average of 82% of the time of program execution, memory tracking can be turned off and mean
relative error is merely 3.9%.

Our main contribution is to present a low-overhead software-only miss ratio curve tracking method. We
examine and refine the existing techniques of MRC implementation. Our three approaches, AVL-based LRU
data structure, dynamic hot set sizing, and intermittent memory tracking, are cooperative and complemen-
tary and the combination of all the three leads to an efficient WSS estimator. Figure 1 illustrates the system
organization.

To evaluate the performance of our tracking mechanism, we implement it in a virtual machine monitor
(VMM), which delivers a great potential for the VMM to make a wise memory management decision. Because
most memory accesses of virtual machines bypass the VMM, there is no straightforward information for a
VMM to estimate the working set size of a guest OS. We show that our mechanism implemented in the VMM
is transparent to the guest OS and can work together with the existing memory management techniques
for virtual machines. We then apply the WSS tracking to memory balancing for multiple virtual machines
by predicting the memory demands of each virtual machine. Our previous work [8] has implemented a
hypervisor memory balancer, but it incurred considerable overhead, especially for applications with large
WSSs. The optimized MRC tracking method helps the balancer achieve further performance improvement.

The remainder of this paper is organized as follows. We provide some background information and discuss
related work in Section 2. Section 3 presents the details of the optimizations on WSS monitoring. Sections 4
and 5 discuss the system implementation and experimental results and give an application scenario. Section 6
concludes the paper.
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Figure 1: System Overview

2 Background and Related Work

2.1 Working Set and Miss Ratio Curve

The active working set of an application refers to the set of pages that it has referenced during the recent
working set window. The application’s working set size is the size of memory footprint of its working set.
Typically, if the WSS is larger than the available memory in the system, the memory manager usually swaps
some pages to disk, which significantly slows down the program. As a result, the significance of working
set size estimation is that it provides a necessary metric that ensures the system to reach the maximum
performance as expected.

Many approaches have been proposed to estimate the active working set size. VMware ESX server adopts
a sampling strategy [9]. During a sampling interval, accesses to a set of random pages are monitored. By
the end of sampling period, the page utilization of the set is used as an approximation of global memory
utilization. This technique can tell how much memory is inactive but it cannot predict the performance
impact when memory resources are reclaimed because the performance of applications is not usually pro-
portional to the size of allocated memory. Geiger [6] detects memory pressure and calculates the amount of
extra memory needed by monitoring disk I/O and inferring major page faults. However, when the memory
is over-allocated, it is unable to tell how to shrink the memory allocation.

Under many circumstances, such as multi-workload scheduling, resource allocation and power saving,
knowing the current working set size alone is insufficient. For example, when two applications compete for
memory resources, in order to achieve optimal overall performance, the arbitration scheme needs to know
how the performance would be impacted by varying their allocation sizes. The miss ratio curve plots the page
miss ratio against varying amounts of available memory and provides a better correlation between memory
allocation and system performance. With an MRC, we can redefine WSS as the size of memory that results
in less than a predefined tolerable page miss rate. Figure 2 shows an example of MRC with varying memory
from 0 to 10 pages. We notice that even if we reduce the memory size by a half, the corresponding page
miss ratio is only 10%, so we may consider the corresponding WSS as five pages.

A common method to calculate an MRC is the stack algorithm [2]. It uses an LRU stack to store the
page numbers of accessed page frames. Each stack entry i is associated with a counter, denoted as Hist(i).
One can plot an LRU histogram relating each counter value to its corresponding LRU location, i.e., stack
distance. When a reference hits a page, the algorithm first computes the stack distance, dist, increments
Hist(dist) by one, and then moves the page to the top. If there is a stack with depth D and we reduce it to
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Figure 2: Page Miss Ratio Curve Example

depth d, then the expected miss ratio can be calculated as follows:

Miss ratio(d) =

∑D

i>d Hist(i)
∑D

i=0
Hist(i)

.

Constructing the LRU histogram and MRC requires capturing or sampling a sufficient amount of page
accesses. Previous research traced MRC through a permission protection mechanism in the OS or hypervi-
sor [8, 4]. The OS or hypervisor can revoke access permission of pages, so the next accesses to those pages
will cause minor page faults. The page fault handling mechanism is extended to analyze the faults and build
the MRC. However, handling minor page faults and updating the LRU histogram are time consuming, the
key challenge is to minimize the overhead which we attempt to address in this paper.

Zhou et al. [4] propose both hardware-based and software-based approaches to trace MRC. The hardware
approach needs extra circuits. In the software solution, for each process, it uses a doubly-linked list to
maintain the stack order. To reduce the cost of maintaining the LRU list, it further adopts a “scan list” to
track those frequently accessed pages by scanning their page table entries. We later on extend the scan list
approach and call it hot set [8].

CRAMM [5] is an MRC tracking based virtual memory manager, which builds a model that correlates the
WSS of a Java application and its heap size. It improves the MRC implementation using dynamic AVL-based
page lists. Desirable as the improvement is, there still exist limitations: (1) On the extreme condition, the
searching operation still yields O(N) time but not O(logN); (2) The dynamic list size is adjusted according
to system overhead, which may sacrifice the accuracy.

Hypervisor exclusive cache [10] uses an LRU-based MRC to estimate the WSS for each virtual machine.
In this design, each VM gets a small amount of machine memory, called direct memory, and the rest of the
memory is managed by the VMM in the form of exclusive cache. Because it can track all memory accesses
above the minimum memory allocation, both WSS increases and decreases can be deduced, although the
maximum increment is bounded by the cache size. The overhead of MRC construction is analyzed but not
quantified in this work.

MEB [8] also uses the permission protection mechanism to build the MRC for each VM to support
memory balancing. Although this method reaches a desirable accuracy, the overhead from MRC monitoring
is significantly high, especially for applications with poor locality and very large WSSs. For example,
Gems.FDTD in SPEC CPU2006 exhibits a 238% overhead.

To optimize cache utilization, Zhang et al. [11] propose to identify hot pages through scanning the
page table of each process. Using “locality jumping”, the scanning cost per application is greatly lowered.
However, the cost of monitoring a virtualized OS is not evaluated.

2.2 Phase Prediction

Most programs show a typical phasing behavior where the program behavior in terms of IPC, branch predic-
tion, memory access patterns, etc. is stable within a phase while there exists disruptive transition between
phases [1, 12].



Sherwood et al. [13] adopt a runtime hardware based phase detection and classification architecture to
capture the periodic behavior of programs. Through the changes of program running characteristics such as
IPC and energy, they divide instructions into a set of buckets based on branch PCs.

Shen et al. [12] predict locality phases by a combination of offline profiling and runtime prediction. Their
scheme first identifies locality phases using reuse distance profiling. When the instrumented program runs,
it uses the first few executions of a phase to predict all its later executions.

RapidMRC [14] estimates L2 cache MRC by collecting memory access traces using the PMU available
in PowerPC. But for most of the modern processors, the PMU cannot provide complete samples of memory
accesses. RapidMRC selects L2 cache miss rate as the parameter to detect a phase change.

3 Low Cost Working Set Size Tracking

In this section, we first introduce two enhancements over existing optimizations. Then, we present our
intermittent memory tracking technique.

3.1 Dynamic Hot Set Size (DHS)

The LRU monitoring overhead is proportional to the number of intercepted memory accesses. It is prohibitive
to intercept every memory page access. Since most programs show good locality, in our previous work [8],
we use a small hot set to reduce the number of interceptions. A page access is intercepted only when it is not
in the hot set, or in other words, in the cold set. The size of the hot set can significantly affect the number of
memory access interceptions as well as estimation accuracy. Though the concept of hot/cold pages is similar
to the active/inactive page lists in [5], our design decouples the page-level hot/cold control from the LRU list
management. The LRU list and histogram can work on a coarser tracking granularity to save space and time
while the fine-grained hot/cold page control provides more precision. Even so, a program with poor locality
can exhibit large overhead due to a great number of interceptions. To control the overhead, we suggested
a dynamic hot set sizing scheme in our previous work [8]. The idea is to dynamically increase the hot set
size when the locality is poor. The locality is evaluated by examining the miss ratio curve. Let m(x) be the
function of the miss ratio curve, where x is miss ratio and m(x) is the corresponding memory size x. We use
α = m(50%)/WSS

2
to quantify the locality. The smaller the value of α is, the better the locality is. When

α is greater than a preset threshold, we incrementally increase the size of hot set until α is lower than the
threshold or the hot set reaches a preset upper bound.

A general knowledge is that the hot set size is far less than the WSS and thus we can rely on the LRU
list itself to estimate the WSS. However, when the hot set size is too big and too many memory accesses fall
into the hot set, the LRU histogram will become more flat, which can cause an overestimation of memory
requirement.

One example is 171.swim. We use a precise instrumentation tool, PIN [15], to record every memory
access of this program and then simulate the process of our LRU monitoring with different hot set sizes.
Figure 3 illustrates the miss rates (in solid lines with respect to the left axes) and accumulated hits (in
dashed lines with respect to the right axes) for two hot set sizes, respectively. As Figure 3(a) shows, when
the hot set size is 0, 12 pages of memory cover more than 95% memory accesses. However, when the hot
set size is 12, as shown in Figure 3(b), we can observe that the miss rates are above 5% until memory
size reaches around 71000 pages, which suggests a memory requirement of 284 MB. And by comparing the
accumulated hits, we can see that, if the hot set size is 12, the tracking system only intercepts about 0.1%
memory accesses. Another case is 436.cactusADM, as the simulation results show in Figure 4(a), its WSS
is only 58 pages when hot set size is no more than 32 pages. When the hot set size exceeds 58, its WSS
estimation soars to 408 MB. To avoid such pathological cases caused by an oversized hot set, we need to
estimate how many accesses go to the hot set. If a majority of accesses are in the hot set, the WSS is the hot
set size. To estimate hot set accesses, we resort to the number of data TLB misses that can be monitored
using hardware performance counters. As the number of entries of a data TLB is relatively small, its miss
number can be seen as an approximation of the number of memory page accesses. We observe that, normally,
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Figure 3: Miss Ratio Curves of 171.swim
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Figure 4: Miss Ratio Curves of 436.cactusADM

the number of the TLB misses, Tm, is no more than two orders of magnitude larger than the number of
intercepted memory accesses, I. If Tm >> I, it implies that there are too many memory accesses that are
not intercepted by the system. As long as such situation occurs, we can either gradually lower the hot set
size or take the hot set size as its WSS.

3.2 AVL-Tree Based LRU Structure

In order to maintain an LRU ordering of page level memory accesses, a common design is to maintain a
linked list of tags, each of which represents a (group of) page(s). Once an access to some page is trapped, its
corresponding tag is moved from its current location to the head (the MRU location) of the linked list. The
positional order of each tag, or its LRU distance, is required to update the LRU histogram counters. The
linked list design enables O(1) tag moving. However, the cost of locating a tag’s position in the list requires
linear search with a cost of O(N) where N is the total number of tags. As a result, the overall time cost
of LRU updating is in O(N). For a program with good locality, a target tag can usually be found near the
beginning of the linked list. Unfortunately, for a program with poor locality and large memory footprint,



(a) Before (b) After

Figure 5: An Example of an AVL-Based LRU List
Before page e is visited, the LRU sequence is c, b, d, a, f, e. Then, e is moved to the left-most position, and then the

tree is re-balanced. In-order traversal gives e, c, b, d, a, f .

the linear search cost can be prohibitive. We observe an overhead up to 238% in one benchmark.
To attack this problem, we use an O(log(N))-time AVL-tree based logical organization for the tags. For

any tag, its left child has shorter LRU distance and its right child has longer LRU distance. That is, an in-
order traversal of the tree gives the same sequence as given by a linked list traversal from the head. Figure 5
gives an example of a tree-based LRU list.

To facilitate locating the LRU position and the distance of a tag, each tag has a field, size, which counts
the size of the sub-tree rooted from itself. In Figure 5, the numbers in the square brackets are the values of
the size fields of the nodes. For any tag x, its LRU distance (LD) is calculated recursively by:

LD(x) =

{

0 x is nil
LD(ANC(x)) + size(LC(x)) + 1 x is not nil

,

in which functions size(x) and LC(x) denote the size of the sub-tree rooted as x and x’s left child, respectively.
Function ANC(x) returns either nil or the nearest ancestor y of x such that y’s left child is neither x nor
x’s ancestor. That is, LC(y) /∈ {x and x’s ancestors}. Node y is indeed the immediate previous node of
the leftmost child of x in in-order traversal. If such y cannot be found, ANC(x) is nil. For example, in
Figure 5(a), ANC(c) is nil and ANC(f) is a. Since function ANC walks up along the tree towards the
root, and the tree is balanced, the time cost of LD is O(log(N)). When an access to some physical page is
intercepted, its corresponding tag’s LRU distance is first computed and then the tag is removed and inserted
as the leftmost leaf. During the insertion or removal, at most all the tag’s ancestors’ size fields need to be
updated, which takes O(log N) time, the same cost upper bound for tree balancing. As a result, the overall
time cost is lowered to O(log(N)), while the space cost is still O(N).

3.3 Intermittent Memory Tracking (IMT)

Most programs show typical phasing behavior in terms of memory demands. Within a phase, the working set
size remains nearly constant. This inspired us to temporarily disable memory tracking when the monitored
program enters a stable phase and re-enable it when a new phase is encountered. Through this approach,
the overhead can be substantially lowered. However, when memory tracking is off, the memory tracking
mechanism itself is unable to detect phase transitions anymore. Hence, an alternative phase detection
method is required to wake up memory tracking when it predicts a phase change.

We find that a sudden change of working set size tends be accompanied by sudden changes of the
occurrences of memory-related hardware events like TLB misses, L2 misses, etc. And when the working set
size remains stable, the number of occurrences of those events is relatively stable too. These events can be
monitored by special registers built into most modern processors and accessed with negligible overhead. The
key challenge is to differentiate phase changes from random fluctuations. The remainder of this section will
focus on our solutions to this problem.



3.3.1 Selection of Events

There exist numerous memory-related hardware events in modern processors, such as L1/L2 accesses/misses,
TLB accesses/misses and so on. As a change of working set size implies changes in memory access patterns
at the page level, it suggests that data TLB (DTLB) misses would be a good candidate. L1 accesses and L2
misses may also be candidates for detecting phase changes of memory demands. For example, in Figure 6,
it shows the correlation between WSS and the occurrences of three events, L1 accesses, L2 misses and data
TLB misses, for a set of SPEC CPU2006 benchmarks. The three events are all closely correlated with WSS.
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Figure 6: Examples of WSS and Performance Events
The left Y-axis shows the working set size (MB) and the right Y-axis shows normalized occurrences of the three

events. Sample interval is 3 seconds.

In Fig 6(a), the lines for L2 and DTLB misses overlap most of the time and the spikes of L1 accesses overlap with

sudden drops of WSS as well.

In addition, since some processors support counting multiple events simultaneously, a phase change could
be determined by different policies. An aggressive policy would determine a phase change only if all the
events encounter phase changes. This policy minimizes the time of memory tracking. On the contrary,
a conservative policy is sensitive to any possible phase changes. That is, if any of the events show phase
changes, it will turn on memory tracking. Beside, a moderate voting policy can decide a phase change
only when the majority of the events show phase changes. Without extensive experiments, it is difficult to



conclude which events and policy are the most appropriate ones. In Section 5.2.2, we compare the results of
using different events and policies.

3.3.2 Phase Detection

Previous studies rely on sophisticated signal processing techniques such as Fourier transformation or wavelet
analysis [12, 16] to detect cache-level phases. Though these techniques are able to effectively filter out noises
and identify phase changes in off-line analysis, their prohibitive costs make them inappropriate for on-line
phase detection.

We propose a simple yet effective algorithm to detect behavior changes for both memory demands and
performance counters. First, a moving average filter is applied for signal de-noising. Let vi denote the
sampled value (memory demand or the number of occurrences of some hardware event) during ith time
interval. We pick f(i) = (vi + vi−1 + . . . + vi−k+1)/k as the filtering function to smooth the sampled values,
in which k is the filtering parameter, an empirical value. If the moving average filter has not been filled up
with k data, it means there is not enough information to make any decisions. So memory tracking is always
turned on during this period. When enough data have been sampled, let vj be the current sampled value and
let fmean = mean({f(x)|x ∈ (j − k, j]}) , errr = f(j)/fmean and erra = |f(j) − fmean|. errr is the relative
difference between the current sampled value (smoothed) and the average of history data in the window and
erra is the absolute difference between the two. If errr ∈ [1−T, 1 +T], where T a small threshold of choice
discussed later, we assume the input signal is in a stable phase. Otherwise, we assume that a new phase is
encountered. In this case, all the data in the moving average filter is cleared so the data that belong to the
previous phase will not be used.

Fixed-Threshold Phase Detection T is the key parameter in phase detection. We first propose a
scheme that uses a fixed T. Figure 7 illustrates its organization. One phase detector, based on past WSS,
checks if the memory demands reach a stable state so the WSS tracking can be turned off. The other detector
uses PMC values to check if a new phase is seen so the WSS tracking should be woken up.

For stability test of memory demands, it can be set to a small value (0.05 in our evaluation) to avoid
accuracy loss. In addition, erra can also be used to guide memory tracking. For example, if memory tracking
is used for memory resource balancing at a MB granularity, then as long as erra < 1MB, WSS can still be
assumed in a stable state even when errr > T.

For phase detection of hardware performance events, an over-strict threshold may cause memory tracking
to be enabled unnecessarily and thus undermine performance. On the other hand, if the threshold were too
large, WSS changes would not be detected, which leads to inaccurate tracking results. Our experiments
show that, for a given hardware event, the appropriate T may vary between programs or even vary between
phases for the same program. One solution to find the appropriate value of T is by means of experiments.
By trying different T on an extensive set of programs, a T can be found such that the average overhead can
be lowered with a tolerable accuracy loss.

Figure 7: Fixed-Threshold IMT



Adaptive-Threshold Phase Detection To improve upon fixed-threshold phase detection, we propose
a self-adaptive scheme which adjusts T dynamically to achieve better performance. The key is to feed the
current stability of WSS back to the hardware performance phase detector to construct a closed-loop control
system, as illustrated in Figure 8. Initially, the PMC-based phase detector can use the same threshold as
used in fixed-threshold phase detection. When memory tracking is on, its current stability is computed and
compared with the PMC-based phase detector’s decision.

If both of the results are consistent, nothing will be changed. If the current memory demands are stable,
while the PMC-based detector makes the opposite decision (errr > T), it implies that the current threshold
is too tight. As a result, its T is relaxed to its current errr. Next time, with increased T, the PMC-based
detector will most likely find that the system enters a “stable” state and thus turn off memory tracking. On
the contrary, if the current memory demands are unstable, while the PMC-based phase detector assumes
stable PMC values, i.e. errr < T, it implies an over-relaxed threshold. Thus, its current T is lowered to
errr. In short, when the WSS is stable and memory tracking is on, it is only because the PMC-based phase
detector is overly sensitive. As a result, T will be increased until PMC values are considered to be stable
too. Then, memory tracking will be turned off.

As long as WSS tracking is enabled, T is calibrated to make decisions that are consistent with the
stability of current WSS. However, when memory tracking is off, this self-calibration is paused as well, which
might miss the chance to tighten the threshold as it should had memory tracking been on. To solve this
problem, we introduce a checkpoint design. When memory tracking has been turned off for ckpt consecutive
sampling intervals, it is woken up to check if T should be adjusted or not. If no adjustment is needed, it will
be turned off again until it reaches the next checkpoint or meets a new phase. In the ideal case, memory
tracking will be deactivated except for checkpointing. The value of ckpt is adaptive. Initially, it is set to
some pre-defined value ckptinit. Afterward, if no adjustment is made in the previous checkpoint, it can be
increased by some amount (ckptstep) until it reaches a maximum value ckptmax. Whenever an adjustment
is made, ckpt is restored to its default value, ckptinit. In the ideal case, the ratio of the time that memory
tracking is on to the whole execution time, called up ratio, is nearly 1/ckptmax.

Figure 8: Adaptive-Threshold IMT

4 Implementation

To verify the effectiveness of our WSS tracking and evaluate its application in virtualized environments, we
use the Xen 3.4 [17] hypervisor, an open source virtual machine monitor, as the base of our implementation.
When a para-virtualized guest OS that runs in user mode attempts to modify its page tables, it has to make
a hypercall to explicitly notify the hypervisor to do the actual update. In our modified hypervisor, once
such requests are received, our code will first perform the requested update as usual and then revoke the
access permission by setting the corresponding bit on the page table entry. For hardware-assisted virtualized
machines (HVM), this permission revoking mechanism can be done during the emulation of page table
writing or propagation of guest page tables to shadow page tables. Later on, if an access from the guest
OS to that page is made, it will trigger a minor page fault, which will trap into the hypervisor first. In



the modified page fault handling routine, the miss ratio curve is updated for that access and permission is
restored. Meanwhile, the the page is added to the hot set. If the hot set is full, the oldest page is evicted
and set to be cold again. So if the evicted page is accessed again in future, it will be trapped.

To verify the effects of our WSS tracking in memory balancing, we use the VM memory balancer that was
implemented in [8]. When multiple VMs compete for memory resource, given each VM’s miss ratio curve,
the balancer tries to find an allocation plan to achieve optimal overall performance. Each VM’s memory
allocation is resized through the ballooning mechanism [9].

Both IMT and the memory balancer run as services on Dom-0, a privileged virtual machine. IMT is
written in about 300 lines of Python code, with a small C program to initiate hypercalls. Via customized
hypercalls, IMT communicates with the WSS tracker to receive current WSS estimation and PMC counter
values and send “pause/resume” commands to the WSS tracker. Based on the assumption that the memory
access pattern is nearly unchanged in a stable phase, when the WSS tracker is woken up, it uses the same
LRU list and histogram as in the last tracking interval. In our experiments, WSS and PMCs are sampled
every 3 seconds. For checkpointing, its initial value (ckptinit), the increment, and ckptmax are set to 10, 5,
and 20 sampling intervals, respectively, which means the minimum up ratio is nearly 0.05. Figure 9 illustrates
the organization of our system implementation.

Figure 9: Implementation Overview

5 Evaluation

All experiments are performed on a server equipped with one 2.8 GHz Intel Core i5 processor (4 cores with
HT enabled) and 8 GB of 800 MHz DDR2 memory. Each virtual machine runs 64-bit Linux 2.6.18, configured
with 1 virtual CPU and 3 GB of memory (except in the memory balancing test). We select a variety of
benchmark suites, including the SPEC CPU2006 [18] benchmark suite, the 186.crafty in SPEC CPU2000 and
DaCapo [19], a Java benchmark suite, to represent real world workload and evaluate the effectiveness of our
work.

In this section, we first evaluate the effectiveness of DHS and AVL-tree based LRU organization. Then
we measure the performance of IMT with various configurations. And we examine the overhead of WSS
tracking again when all optimizations are put together. Finally, we design a scenario to demonstrate the
application of WSS tracking.

5.1 Effectiveness of DHS and ABL

To measure the effects of various techniques on lowering overhead, we first measure the running time of
SPEC 2006 and DaCapo benchmark suite without memory tracking as the baseline performance. For SPEC
2006, each program is measured individually. While for DaCapo, each of them is run in alphabetic order
and the total execution time is measured because some programs finish in several seconds, which is too



short for IMT to start working. Then we measure the running time of with memory tracking enabled, using
plain linked list LRU implementation, dynamic hot set sizing, AVL-tree based LRU implementation and
the combination of the latter two respectively. Columns two to five of Table 1 list the normalized overhead
against the baseline setting. For the whole SPEC 2006 benchmark suite, the plain linked-list design incurs a
mean overhead of 173%. Using DHS and ABL separately, the mean overheads are lowered to 39% and 43%,
respectively. Applying DHS and ABL together, the mean overhead is further reduced to 16%. When the
memory working set size is small or the locality is good, the advantage of ABL and DHS over the regular
linked list implementation is not obvious. However, for benchmarks with large WSS, the performance gain of
them is prominent. For example, in SPEC CPU2006 suite, the top three programs with the largest WSSs are
459.GemsFDTD, 429.mcf and 410.bwaves, whose WSSs are 800 MB, 680 MB and 474 MB, respectively [20].
Using DHS and ABL together, the overhead against the linked-list setting is reduced by 69.8%, 98.7%, and
85.7%, respectively. For 483.xalancbmk, although its WSS is merely 28 MB, its poor locality leads to a
681% overhead under the linked-list design. Replacing the linked-list LRU with the AVL-tree based LRU
and applying DHS, its overhead is cut to only 5%. However, even both of ABL and DHS are enabled, for
the whole SPEC 2006 benchmark suit, the mean overhead of 16% is still non-trivial.

5.2 Performance of Intermittent Memory Tracking

The performance of intermittent memory tracking is evaluated by two metrics: (1) the time it saves by
turning off memory tracking, reflected by up ratio, and (2) the accuracy loss due to temporary inactivation
of memory tracking, indicated by mean relative error. We first run each of the SPEC 2006 benchmarks
and sample the memory demands and hardware performance counters every 3 seconds without intermittent
memory tracking. Then, we feed the trace results to the intermittent memory tracking algorithm to simulate
its operations. That is, given inputs {M0, . . . ,Mi} and {P0, . . . , Pi}, the intermittent memory tracking
algorithm outputs mi, in which Mi and Pi are the i-th memory demand and i-th PMC value sampled in
the trace results, respectively, and mi is the estimated memory demand. When the IMT algorithm indicates
the activation of memory tracking, mi = Mi, otherwise, mi = Mj where j is the last time when memory
tracking is on. Given a trace with n samples, its mean relative error is computed as

MRE = (

n
∑

i=1

|Mi − mi|

Mi

)/n,

in which n is the number of samples.

5.2.1 Fixed-Threshold vs. Adaptive-Threshold

To evaluate the performance of fixed and adaptive thresholds for IMT, we use a DTLB miss as the hardware
performance event for phase detection. For fixed thresholds, T varies from 0.05 to 0.3, two extreme ends of
the spectrum. Table 2 shows the details.

Using fixed thresholds, when T = 0.05, memory tracking is off nearly three fourths of the time with an
MRE of about 6%. When T is increased to 0.3, memory tracking is activated for only about one tenth of the
time, while the MRE increases to 13%. With adaptive thresholds, its up ratio is nearly the same as that of
T = 0.3, while its mean relative error is even smaller than that of T = 0.05. Clearly, the adaptive-threshold
algorithm outperforms the fixed-threshold algorithm.

Figures 10, 11 and 12 show the results of several cases using adaptive-threshold IMT. The upper parts
of each figure show the status of memory tracking: a high level means it is enabled and a low level means
it is disabled. In the bottom parts, thick lines and thin lines plot the WSS and normalized data TLB
misses from the traces (sampled without IMT), respectively. Dotted lines plot the WSS assuming IMT is
enabled. Figures 10(a) and 10(b) show two simple cases. Both WSS and DTLB misses are stable during
the whole execution except for a spike. Hence, most of the time, memory tracking is turned off except for
checkpointing. Figures 11 shows the typical cases where there are multiple phases in terms of WSS and
DTLB misses. 416.gamess (see Figure 12(a)) is an exception. When examined from an overall scope, its



Program
Normalized Execution Time Up Ratios

L D A D+A D+A+I(f) D+A+I(a) I (f) I (a)
400.perlbench 1.54 1.28 1.07 1.05 1.00 1.02 0.22 0.11
401.bzip2 1.03 1.04 1.01 1.02 1.01 1.01 0.76 0.14
403.gcc 1.96 1.17 1.37 1.08 1.02 1.03 0.87 0.11
410.bwaves 3.30 2.81 1.30 1.33 1.19 1.02 0.56 0.15
416.gamess 1.01 1.01 1.01 1.01 1.00 1.00 0.18 0.09
429.mcf 59.16 9.07 3.21 1.75 1.41 1.04 0.72 0.37
433.milc 13.08 8.45 3.35 2.74 2.46 1.05 0.52 0.11
434.zeusmp 2.49 1.33 1.22 1.14 1.06 1.06 0.13 0.21
435.gromacs 1.01 1.01 1.00 1.00 1.00 0.99 0.13 0.10
436.cactusADM 1.20 1.12 1.08 1.09 1.00 1.02 0.14 0.15
437.leslie3d 2.68 1.01 1.37 1.00 1.00 1.00 0.13 0.10
444.namd 1.02 1.01 1.01 1.01 1.00 1.00 0.15 0.11
445.gobmk 1.07 1.02 1.02 1.02 1.01 1.01 0.38 0.10
447.dealII 1.34 1.09 1.17 1.03 1.02 1.01 0.87 0.11
450.soplex 3.16 1.27 1.43 1.13 1.01 1.10 0.49 0.21
453.povray 1.01 1.01 1.01 1.01 1.00 1.00 0.26 0.09
454.calculix 1.03 1.01 1.01 1.01 1.00 1.00 0.10 0.12
456.hmmer 1.01 1.01 1.01 1.01 1.00 1.01 0.25 0.09
458.sjeng 9.74 1.13 1.79 1.06 1.01 1.01 0.31 0.10
459.GemsFDTD 6.79 4.17 3.28 2.75 0.99 0.99 0.15 0.10
462.libquantum 7.89 1.02 1.29 1.02 1.00 1.01 0.15 0.10
464.h264ref 1.04 1.02 1.02 1.01 1.01 1.00 0.15 0.14
465.tonto 1.01 1.00 1.01 1.00 1.00 1.01 0.13 0.09
470.lbm 4.31 2.34 1.71 1.65 1.01 1.00 0.17 0.10
471.omnetpp 41.13 1.07 4.60 1.05 1.00 1.04 0.26 0.23
473.astar 15.77 1.02 2.92 1.01 1.01 1.00 0.51 0.13
481.wrf 1.18 1.12 1.12 1.13 1.00 1.00 0.13 0.09
482.sphinx3 1.03 1.01 1.02 1.02 1.00 1.00 0.14 0.09
483.xalancbmk 7.81 1.33 2.28 1.05 1.02 1.00 0.57 0.09
Mean (SPEC 2006) 2.73 1.39 1.43 1.16 1.06 1.02 0.26 0.12

DaCapo 1.28 1.07 1.14 1.07 1.04 1.01 0.82 0.20

Table 1: Normalized Execution Time and Up Ratios When IMT Is Enabled
L: linked list, D: dynamic hot set, A: AVL-Tree based LRU, I(f): IMT with fixed-threshold of 0.2, I(a): IMT with

adaptive-threshold

WSS varies gradually. However, the WSS looks more stable when examined from each small time window.
This makes the program assume that the WSS is in the stable mode and thus turns off memory tracking.
Nonetheless, with the checkpointing mechanism, the WSS variances are still captured. Figure 12(b) shows
that, though the WSS is stable most of the time, the DTLB miss fluctuates randomly. With the adaptive
algorithm, the noise is filtered by increased thresholds.

Overall, adaptive-threshold based IMT achieves an up ratio of 11.5% with MRE of 3.9%. With adaptive-
threshold IMT, the mean MRE of all other programs except for 429.mcf is merely 2%. For 429.mcf, as
Figure 11(d) shows, most of the time, the WSS estimation using IMT follows the one without using IMT.
The high relative error is because its WSS changes dramatically up to 9 times at the borders of phase
transitions. Though after a short delay, IMT detects the phase change and wakes up memory tracking, those
exceptionally high relative errors lead to a large MRE. More specifically, during 67% of its execution time,
the relative errors are below 4%, and during 84% of the time, the relative errors remain within 10%.



Program
T = .05 T = .10 T = .15 T = .20 T = .25 T = .30 Adaptive

UR MRE UR MRE UR MRE UR MRE UR MRE UR MRE UR MRE
40.perlbench .47 .075 .33 .119 .21 .162 .20 .167 .20 .167 .20 .171 .29 .031
401.bzip2 .83 .003 .79 .007 .68 .013 .62 .016 .58 .023 .50 .038 .23 .035
403.gcc .84 .002 .80 .008 .68 .017 .64 .017 .61 .017 .51 .020 .23 .036
41.bwaves .47 .020 .45 .022 .45 .022 .43 .012 .40 .014 .35 .019 .13 .045
416.gamess .26 .017 .03 .045 .03 .045 .03 .045 .03 .045 .03 .045 .07 .009
429.mcf .53 .025 .40 .042 .35 .103 .33 .146 .29 .352 .24 .621 .23 .387
433.milc .21 .054 .07 .108 .06 .132 .06 .132 .02 .167 .02 .167 .08 .077
434.zeusmp .80 .004 .54 .009 .04 .018 .04 .018 .04 .018 .04 .018 .13 .017
435.gromacs .13 .005 .05 .011 .04 .011 .04 .011 .04 .011 .04 .011 .09 .002
436.cactusADM .08 .114 .06 .095 .05 .086 .04 .083 .04 .083 .04 .083 .08 .015
437.leslie3d .06 .009 .03 .016 .03 .016 .03 .016 .03 .016 .03 .016 .07 .003
444.namd .10 .002 .05 .003 .05 .003 .05 .003 .05 .003 .05 .003 .10 .001
445.gobmk .60 .004 .15 .012 .05 .021 .05 .021 .05 .021 .05 .021 .10 .008
447.dealII .98 .000 .98 .000 .97 .000 .99 .000 .96 .001 .88 .010 .50 .039
45.soplex .18 .041 .18 .041 .14 .083 .13 .084 .13 .084 .13 .084 .16 .037
453.povray .17 .062 .17 .062 .17 .062 .16 .064 .16 .064 .15 .065 .17 .011
454.calculix .14 .015 .02 .063 .02 .063 .02 .063 .02 .063 .02 .063 .06 .005
456.hmmer .23 .054 .03 .740 .03 .740 .03 .740 .03 .740 .03 .740 .13 .035
458.sjeng .09 .029 .07 .031 .05 .059 .02 .061 .02 .061 .02 .061 .10 .026
459.GemsFDTD .03 .004 .02 .005 .02 .005 .02 .005 .02 .005 .01 .005 .05 .006
462.libquantum .04 .000 .04 .002 .04 .002 .04 .002 .04 .002 .04 .003 .07 .002
464.h264ref .60 .002 .56 .006 .14 .014 .07 .022 .07 .022 .07 .022 .08 .005
465.tonto .79 .001 .29 .017 .14 .109 .14 .109 .14 .109 .14 .109 .30 .035
47.lbm .05 .025 .05 .025 .05 .025 .05 .025 .05 .025 .04 .025 .09 .006
471.omnetpp .02 .426 .02 .426 .02 .426 .02 .426 .02 .426 .02 .426 .07 .036
473.astar .16 .004 .13 .004 .13 .006 .12 .009 .10 .017 .10 .017 .08 .010
481.wrf .25 .017 .17 .019 .05 .061 .05 .028 .05 .028 .06 .011 .08 .005
482.sphinx3 .30 .004 .04 .051 .04 .051 .04 .051 .04 .052 .04 .052 .08 .005
483.xalancbmk .19 .070 .14 .106 .10 .112 .09 .106 .09 .106 .09 .107 .14 .032
Mean .27 .057 .19 .089 .14 .099 .13 .100 .12 .113 .11 .126 .11 .039

Table 2: Up Ratios and MREs With Respect To Various Fixed-Thresholds and Adaptive-Threshold

5.2.2 Selection of Hardware Performance Events

In addition to the fixed/adaptive threshold algorithms, the other dimension of the design space of IMT is the
selection of hardware performance events. For comparison purpose, three memory related events are traced
simultaneously: DTLB misses, L1 references and L2 misses. First, each of the events is used separately.
Second, all combinations of these events are tested with different phase identification policies. Table 3 lists
the test results. The first column lists the name of the monitored events and the letter in parentheses
denotes the adopted policy: “a”, “c” and “v” stand for the aggressive policy, the conservative policy and the
voting-based policy, respectively. (The details of each policy are discussed in Section 3.3.1).

Interestingly, each of the single events and any combinations of them with the aggressive policy achieve
similar performance. The conservative policy gives the best accuracy. However, the up ratios are the highest
too. When all three events are used, the voting policy shows a moderate result. Since using more than one
event does not boost performance significantly, in the following experiments, we use only DTLB misses.
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Figure 10: Examples of Using Adaptive-Thresholds IMT (Simple Cases)

Events and Policies UR MRE
DTLB 0.115 0.039
L2 Miss 0.103 0.046
L1 Ref 0.118 0.041
DTLB+L1 (a) 0.114 0.031
DTLB+L1 (c) 0.185 0.016
DTLB+L2 (a) 0.102 0.044
DTLB+L2 (c) 0.179 0.017
L1+L2 (a) 0.106 0.041
L1+L2 (c) 0.177 0.020
DTLB+L1+L2 (a) 0.105 0.041
DTLB+L1+L2 (v) 0.137 0.025
DTLB+L1+L2 (c) 0.190 0.018

Table 3: Effects of Different Hardware Performance Events and Policies

5.2.3 Overhead Revisited

To evaluate the actual effects of using IMT, we measure the WSS tracking overhead on actual runs. As
Table 1 shows, for SPEC CPU2006, even optimized with AVL-based LRU and dynamic hot set sizing, the
mean overhead is 16% due to large WSSs and/or bad locality of some programs. For example, for high-
overhead programs, such as 429.mcf and 433.milc, the average WSSs are 859 MB and 334 MB, respectively,
while the average WSSs of 401.bzip2 and 416.gamess are only 24 MB and 45 MB, respectively.

Enhanced with fixed-threshold IMT (T = 0.2), the mean overhead is lowered to 6%. Using adaptive-
threshold IMT, the mean overhead is further reduced to 2% by cutting off half of the up time of memory
tracking.

5.3 Application to VM Memory Balancing

One typical scenario of the working set tracking is memory resource balancing. Two virtual machines are
monitored on a Xen-based host. We design two experiments with different benchmarks and initial memory
size. In the baseline setting of both experiments, no memory balancing or WSS tracking is used. When
memory balancing is used, three variations are compared: memory tracking without IMT, using IMT with
a fixed threshold of 0.2 and using IMT with adaptive threshold.
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Figure 11: Examples of Using Adaptive-Thresholds IMT (Common Cases)
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Figure 12: Examples of Using Adaptive-Thresholds IMT (Special Cases)

Experiment One Initially, each VM is allocated 250 MB of memory. One VM runs the DaCapo bench-
mark, which consists of ten Java programs with various working set sizes. The other VM runs 186.crafty,
a SPEC 2000 program that uses few memory resources. Figure 5.3 shows the normalized speed-ups with
memory balancing against the baseline setting.
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Figure 13: Memory Balancing of DaCapo and 186.crafty

For 186.crafty, its performance degrades by 2% − 4% due to the overhead of memory tracking. For
DaCapo, even with the overhead of memory tracking, its performance is boosted by at least 96% due to
the extra memory it gets from the other VM. As a result of 3% and 6% overhead reduction provided by
fixed-threshold IMT and adaptive-threshold IMT respectively, the speed-up of DaCapo is increased from
1.96 to 2.06 and 2.12 correspondingly. Compared with no IMT and fixed-threshold IMT, adaptive-threshold
IMT delivers the best performance due to its low overhead and high accuracy.

Experiment Two Initially, each VM is allocated 700 MB of memory. One VM runs 470.lbm, meanwhile,
the other VM runs 433.milc. Figure 14 shows the normalized speedups with memory balancing against
the baseline setting. Note that, the balancer is designed to reclaim unused memory, so the total allocated
memory to the two VMs may be less than 1400 MB.
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Figure 14: Memory Balancing of 470.lbm and 433.milc

When balanced without IMT, the performance of 470.lbm degrades by 10% due to the overhead of
memory tracking, while the performance of 433.milc is boosted by 2 times due to the extra memory it
gets from the other VM. Using IMT, the performance impact of memory tracking on 470.lbm is lowered to
4%. For 433.milc, with fixed-threshold or adaptive-threshold IMT, its speedup is increased from 2.96 to
3.06 and 3.56 respectively. The overall speedups of balancing without IMT, with fixed-threshold IMT and
adaptive-threshold IMT are 1.63, 1.72 and 1.85. Hence, using adaptive-threshold IMT, an additional 22%
speedup is gained.

6 Conclusion and Future Work

LRU-based working set size estimation is an effective technique to support memory resource management.
This paper makes this technique more applicable by significantly reducing its overhead. We improve previous
achievements on overhead control and present a novel intermittent memory tracking scheme. Experimental
evaluation of shows that our solution is capable of reducing the overhead with enough precision to improve
memory allocation decisions. In an application scenario of balancing memory resources for virtual machines,
our solution boosts the overall performance. In the future, we plan to develop theoretical models that
verify the correlations among various memory events. Moreover, we expect to develop a system to derive a
cache-level miss ratio curve with the assistance of a page miss ratio curve, or vice versa.
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