
Computer Science Technical Report

Local Reasoning for Global Convergence

of Parameterized Rings
Aly Farahat and Ali Ebnenasir

Michigan Technological University

Computer Science Technical Report

CS-TR-11-04

November 2011

Department of Computer Science

Houghton, MI 49931-1295

www.cs.mtu.edu



Local Reasoning for Global Convergence of Parameterized Rings

Aly Farahat and Ali Ebnenasir

November 2011

Abstract

This report demonstrates a method that can generate Self-Stabilizing (SS) parameterized protocols
that are generalizable; i.e., correct for arbitrary number of finite-state processes. Specifically, we present
necessary and sufficient conditions for deadlock-freedom specified in the local state space of the repre-
sentative process of parameterized rings. Moreover, we introduce sufficient conditions that guarantee
livelock-freedom in arbitrary-sized unidirectional rings. More importantly, we sketch a methodology for
automated design of global convergence in the local state space of the representative process. We illustrate
our method in the context of several examples including maximal matching, agreement, two-coloring,
three-coloring and sum-not-two protocols.

1



Contents

1 Introduction 3

2 Preliminaries 4

2.1 Parameterized Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Computations and Execution Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Closure, Convergence and Self-Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Statement 5

4 Deadlock-Freedom 6

5 Livelock-Freedom 9

6 Application in Automated Addition of Convergence to Non-Stabilizing Protocols 15

6.1 Synthesis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Discussion and Related Work 19

8 Conclusion and Future Work 21



1 Introduction

Self-Stabilizing (SS) network protocols have increasingly become important as today’s complex distributed
systems are subject to different kinds of transient faults such as soft errors, loss of coordination and bad
initialization. A SS protocol converges from any network configuration/state to a set of legitimate states
when transient faults occur [1–3], i.e., convergence. Once converged, a SS protocol remains in legitimate
states as long as no faults occur; i.e., closure. Self-stabilization is also an important property in the design
of self-adaptive distributed systems. Nonetheless, the design and verification of SS systems are difficult
tasks in part due to the fact that global convergence should be achieved while each process is aware of only
its locality. (The locality of a process P includes any neighboring process whose state is readable for P .)
Another factor that complicates global convergence is interference; i.e., the actions of one process may cancel
out the effect of the actions of another process towards achieving global recovery. To facilitate the design
and verification of SS protocols, this report presents a method for the design of parameterized SS protocols
that are correct-by-construction.

There are numerous methods for the manual design and after-the-fact verification of SS protocols [4–8]
most of which provide little guidance for designers as to how a protocol should be redesigned if it fails to
meet both closure and convergence. For example, layering and modularization techniques [9–12] define a
strictly decreasing ranking function over a hierarchically-partitioned state space in order to ensure that the
local actions of processes can only decrease the ranking function, thereby converging layer by layer. Several
researchers present local checking and correction for global recovery [7,13,14], where correcting the local state
of a process does not necessarily corrupt the state of its neighbors. Constraint satisfaction methods [6] verify
the non-interference of convergence actions by checking a set of sufficient conditions on a graph representing
the dependencies of the local constraints of processes. Methods for compositional design [8] use ready-to-
use detector/corrector components along with a set of correction and corruption relations defined in the
locality of components. Distributed reset [11] propagates a wave of reset throughout the network, which is
a computationally expensive method. The aforementioned approaches require developers’ ingenuity for the
design of convergence actions and lack systematic mechanisms for redesign when a protocol fails to ensure
convergence. Moreover, most existing automated techniques [13,15–17] are based on systematic exploration
of the global state space of protocols, and the generated solutions are not provably generalizable; i.e., there
are no guarantees that if the number of processes is increased, then self-stabilization will be preserved.

This report presents a local reasoning method for the design of global convergence in parameterized
protocols with the ring topology. In a parameterized protocol, the code of each process is instantiated from
the code of a representative process by variable substitution.1 The entire reasoning in the proposed method is
performed in the local state space of the representative process. To ensure convergence to a set of legitimate
states I (specified as the conjunction of a set of local constraints), starting from any state s ∈ ¬I, every
execution of the protocol from s should eventually reach a state in I. Thus, a protocol must ensure that it
is deadlock-free in ¬I. Moreover, there must be no cycles formed by processes’ actions such that all states
of the cycle belong to ¬I; i.e., livelock-freedom. For a parameterized protocol, deadlock/livelock-freedom
properties must hold for any number of processes in the ring. To address this problem, we present necessary
and sufficient conditions specified in the local state space of the representative process for deadlock-freedom
in the global state space of the ring (with an arbitrary number of processes). Moreover, we introduce
sufficient conditions that guarantee livelock-freedom in arbitrary-sized unidirectional rings. Our sufficient
conditions are weaker than what is proposed in existing methods. For instance, as demonstrated in Section
6, it is unclear how existing methods [6, 8] can be used to design convergence for an agreement protocol.
We demonstrate our preliminary results on how the proposed approach can enable automated design of
convergence in the local state space of the representative process. We apply our necessary and sufficient
conditions throughout a methodology for the design of several parameterized SS protocols on a ring including
maximal matching, agreement, coloring and a sum-not-two protocols.
Organization. Section 2 presents preliminary concepts and definitions. Section 3 formally states the prob-
lem of designing convergence. We present a necessary and sufficient condition for deadlock-freedom in
parameterized rings in Section 4. In Section 5, we introduce the notion of a local transition graph and

1In other words, the code of one process can be obtained from the code of another process by a simple variable re-naming/re-
indexing.



illustrate how we use it to reason about non-terminating computations in unidirectional rings. We sketch a
methodology, supported by examples, for design of convergence in unidirectional rings in Section 6. Section 7
discusses the related work. We make concluding remarks and outline future work in Section 8.

2 Preliminaries

In this section, we present definitions of parameterized protocols, convergence and self-stabilization. The
definitions of convergence and self-stabilization are adapted from [1, 4, 18, 19].

2.1 Parameterized Protocols

A parameterized protocol p(K) is a triplet 〈Φp(K), Πp(K), ∆p(K)〉 where K is an integer parameter, and
Φp(K) = {v0, · · · , vM(K)−1} is a set of M(K) variables where M depends on K. Each variable vi in Φp(K)
has a finite domain Di (0 ≤ i ≤ M(K)). Πp(K) = {P0, · · · , PK−1} is a set of K similar processes. We
represent the set of similar processes by a template/representative process Pr (0 ≤ r ≤ K − 1), where
Pr = 〈Rr,Wr, δr〉 is a triplet such that Rr ⊂ Φp(K) is a subset of variables (each indexed by a function of
r) that process Pr can read. The cardinality of Rr is a constant independent of K. The locality of Pr is
the set of variables in Rr. Wr ⊂ Φp(K) is a subset of variables that process Pr can write. We assume that
Wr ⊂ Rr; i.e., Pr can only write variables that it can read.

A global state of p(K) is a valuation of every variable in Φp(K). The global state space Sp(K) is the set
of all possible global states of p(K). A global state predicate is any subset of Sp(K) specified as a Boolean
expression over variables of Φp. We say a global state predicate X holds in a global state s, denoted s ∈ X , if
and only if (iff) X evaluates to true at s. The value of variable v ∈ Φp(K) at global state s is denoted v(s).
A global transition t of p(K) is a pair of global states (s, s′): s is the source state of t and s′ is the target
state of t. Likewise, a local state slr of Pr is a valuation of the variables in Rr (0 ≤ r ≤ K − 1). The local
state space Sl

r is the set of all possible local states Pr. A local state predicate is any subset of Sl
r specified as a

Boolean expression over variables of Rr. We say a local state predicate Xr holds in a local state slr denoted,
slr ∈ Xr iff Xr evaluates to true at slr. The value of a variable v ∈ Rr at local state slr is denoted v(slr). A

local transition tl of Pr is a pair of local states (slr, s
l
r

′

) of Pr such that, ∀v ∈ (Rr −Wr) : v(s
l
r) = v(slr

′

). δr
denotes the set of local transitions of Pr (0 ≤ r ≤ K − 1).

The projection s ↓ Var of a global state s ∈ Sp(K) on a set of variables Var ∈ Φp(K) is a valuation of
every variable v ∈ Var such that v(s) = v(s ↓ Var). Likewise, we define the projection of a global transition
(s, s′) ↓ V ar as the pair ((s ↓ Var), (s′ ↓ Var)). Every local state slr of Pr is mapped to a set of global states
gK(slr) = {s ∈ Sp(K) : ∀v ∈ Rr : v(s) = v(slr)}. Likewise, every local transition tlr corresponds to a group of

global transitions gK(slr, s
l
r

′

) = {(s, s′) ∈ Sp(K)× Sp(K) : (∀v ∈ Rr : v(s) = v(slr) ∧ v(s′) = v(slr
′

)) ∧ (∀v /∈
Wr : v(s) = v(s′))}. Thus, gK(δr) represents the set of global transitions of Pr in p(K). The set of global
transitions of p(K) is the union of the set of global transitions of each process Pr, i.e.; ∆p(K) = ∪K−1

r=0 gK(δr).
Notational convention. For abbreviation, we denote universally quantified statements over K by omitting K.
For instance, we denote ∀K : p(K) converges to I(K) by p converges to I, and ∀K : s ∈ gK(slr) by s ∈ g(slr).
Protocol Representation. We use Dijkstra’s guarded commands language [20] as a shorthand for rep-
resenting the set of local transitions of Pr (i.e., δr). A guarded command (i.e., action) is of the form
L : grdr → stmtr, where L is an optional label, grdr is a Boolean expression in terms of variables in Rr;
i.e., a local predicate of Pr, and stmtr is a statement that updates variables of Wr atomically. Formally, an
action grdr → stmtr includes a set of local transitions (slr, s

l
r

′

) such that grdr holds in every local state slr
and the atomic execution of stmtr results in a local state slr

′

of Pr. An action grdr → stmtr is enabled in a
global (local) state s (respectively, slr) iff grdr holds at s (respectively, slr). The process Pr is enabled in s
(respectively, slr) iff there exists an action of Pr that is enabled at s (respectively, slr).

2.2 Computations and Execution Semantics

A computation of a protocol p is a sequence σ =≪ s0, s1, · · · ≫ of global states that satisfies the following
conditions: (1) for each global transition (si, si+1) (i ≥ 0) in σ, there exists an action grdr → stmtr in some
process Pr (0 ≤ r ≤ K − 1) such that grdr holds at si and the execution of stmtr at si yields si+1, and (2)



σ is maximal in that either σ is infinite or if it is finite, then σ reaches a global state sf where no action is
enabled. In other words, a computation is generated by a nondeterministic interleaving of actions and can be
extended wherever possible. A computation prefix of a protocol p is a finite sequence σ =≪ s0, s1, · · · , sm ≫
of global states, where m ≥ 0, such that each transition (si, si+1) in σ (0 ≤ i < m) belongs to some action
grdr → stmtr in Pr for some 0 ≤ r ≤ K − 1. The projection of a protocol p on a non-empty state predicate
X , denoted as ∆p|X , is a protocol with the set of global transitions {(s0, s1) : (s0, s1)∈g(∆p) ∧ s0, s1∈X}.

2.3 Closure, Convergence and Self-Stabilization

A state predicate X is closed in an action grdr → stmtr iff executing stmtr from any state s ∈ (X ∧ grdr)
results in a state in X . We say a state predicate X is closed in a protocol p iff X is closed in every action of
p. In other words, closure [19] requires that every computation that starts in X remains in X .

Let I be a state predicate. We say that a protocol p strongly converges to I iff from any state, every
computation of p reaches a state in I. A protocol p weakly converges to I iff from any state, there exists a
computation of p that reaches a state in I. A protocol p is strongly (respectively, weakly) self-stabilizing to
a state predicate I iff (1) I is closed in p and (2) p strongly (respectively, weakly) converges to I.

I is locally conjunctive iff for every K, I(K) is a conjunction of K local state predicates LCr, where LCr

specifies a local state predicate of Pr; i.e., I(K) =
∧K−1

r=0 LCr. In this report, we assume that I is locally
conjunctive.

An enablement of Pr is a local state where Pr is enabled. A corruption (non-corruption) with respect
to I is an enablement slr of Pr such that slr /∈ LCr (respectively, slr ∈ LCr). Let I be a locally conjunctive
closed predicate for p, a process Pr in a non-corrupt local state will never corrupt its own local state.
Deadlocks and Livelocks. A global deadlock state sd has no outgoing global transitions (i.e., no process
is enabled), and no action of Pr is enabled in a local deadlock state sld of Pr. A global deadlock state
sd (respectively, sld) is legitimate iff sd ∈ I (respectively, sld ∈ LCr), otherwise sd (respectively, sld) is
illegitimate. Notice that a parameterized protocol p(K) is in a global deadlock state iff every process
Pr ∈ Πp(K) (0 ≤ i ≤ K − 1) is in a local deadlock state. A global deadlock is illegitimate iff there exists a
process Pr whose local deadlock is illegitimate.

In a finite-state parameterized protocol p(K), a livelock for a state predicate I(K) is a computation
≪ sc0, sc1, · · · , scm−1, · · · ≫ where ∀i : i ∈ N : sci+m = sci and ∀i : 0 ≤ i ≤ m − 1 : sci /∈ I(K); i.e., an
infinite repetition of a sequence of global states outside I(K).
Proposition 2.1. A protocol p strongly converges to I iff there are no global deadlock states in ¬I and no
livelocks in ∆p | ¬I.

When it is clear from the context, we shall omit the set of legitimate states I; e.g., instead of saying
‘a livelock for I(K)’, we say ‘a livelock’. Furthermore, we assume an interleaving semantics, every global
transition of L belongs to only one local transition. The sequence of local transitions of L can be obtained
by projecting every global transition of some Pi in L over Ri.

3 Problem Statement

Consider a non-stabilizing parameterized protocol p(K) with a set of global transitions ∆p(K) and a locally
conjunctive state predicate I(K) closed in p(K), for all K. Our objective is to design a revised version of
p(K), denoted pss(K), that is strongly converging to I(K), for allK. We require that the behaviors of pss(K)
from any state in I(K) remain the same as p(K), for all K. Thus, during the addition of convergence to p(K),
no states (respectively, transitions) should be added to or removed from I(K) (respectively, ∆p(K)|I(K)).
This way, the behaviors of pss(K) are exactly the same as p(K)’s starting from any state inside I(K), for
all K. Moreover, for all K, if pss(K) starts in a state outside I(K), pss(K) will provide strong convergence
to I(K).

Problem 3.1: Designing Convergence

• Input: (1) A protocol p(K) with the set of transitions ∆p(K), and (2) A non-empty locally conjunctive
state predicate I(K) such that I(K) is closed in p(K), for all K.



• Output: A protocol pss(K) with the set of transitions ∆pss
(K) such that the following constraints

are met for all K:

(1) I(K) is unchanged, (2) (∆pss
(K) 6= ∅)∧(∆pss

(K)|I(K) = ∆p(K)|I(K)), and (3) pss(K) is strongly
self-stabilizing to I(K). 2

We investigate problem 3.1 for parameterized rings. Convergence of parameterized rings is especially chal-
lenging as cyclic corruption of processes may hinder recovery, which is why some researchers consider acyclic
topologies for compositional design of self-stabilization [21].

4 Deadlock-Freedom

In this section, we address the following problem: For a parameterized protocol p with a ring topology and
a conjunctive predicate I, determine whether p(K) is deadlock-free outside I(K) for all K without exploring
the global state space of p(K). To address this problem, we define a relation between the local states of the
representative process Pr capturing the way the local states of a process are related with the local states of
its neighboring processes. Using this relation, we present a necessary and sufficient condition defined in the
local state space of Pr for global deadlock-freedom of p.
The Right Continuation Relation for Rings. Due to the locality of each process Pr, a local state sli of
process Pi restricts the allowable set of local states for each successor Pj of Pi. Pj is a successor of Pi (Pi is

a predecessor of Pj) iff Wi ∩Rj 6= ∅. A local state of slr
′

is a continuation of a local state slr iff there exists

two processes Pi and Pj such that slr
′

is a local state of Pj , s
l
r is a local state of Pi and Pj is a successor of

Pi.
In a bidirectional ring of sizeK, P(i+1)modK and P(i−1)modK are right and left successors of Pi, respectively.

As such, the right (left) continuation of a local state sli of Pi is a local state sli+1 of Pi+1 (sli−1 of Pi−1) such
that for every x ∈ Ri∩Ri+1, x(s

l
i) = x(sli+1) (respectively x ∈ Ri∩Ri−1, x(s

l
i) = x(sli−1))

2. Since all processes
are similar, sli and sli+1 are local states of the representative process Pr. Notice that for a unidirectional
ring, we can only define a right continuation relation.

Definition 4.1. A directed Right Continuation Graph (RCGp) of a ring is a pair (Vr, SR) such that:

1. Vr is a set of vertices representing local states of the representative process Pr.

2. SR = {(sl1, s
l
2) ∈ Vr × Vr : ∀x ∈ Rr ∩Rr+1 : x(s

l
1) = x(sl2) and Pr+1 is a successor of Pr}.

3. In bidirectional rings, we choose to include arcs in SR connecting to local states of only the right
successor. In fact, SR is sufficient for determining how the ring is constructed even if it is bidirectional.

Our definition of continuation relation naturally extends to network topologies other than rings. For instance,
we construct RCG of a tree from the locality of a non-root process that includes the writable variables of its
parent, itself and its children.

Example 4.1. In maximal matching over a bidirectional ring, all processes are similar. Pr has Pr+1 as a
successor and Pr−1 as a predecessor. Rr = {mr−1,mr,mr+1}, Wr = {mr}. Wr∩Rr+1 = Wr∩Rr−1 = {mr}.
Rr ∩ Rr+1 = {mr,mr+1}. Dr = {left, right, self} are values of mr meaning that Pr matches with its
predecessor, successor or none of them, respectively. We represent the right continuation relation over the
local state space of Pr in Figure 1. The set of local legitimate states LCr is defined by the Boolean expression
(mr = right ∧mr+1 = left ) ∨ (mr−1 = right ∧mr = left ) ∨ (mr−1 = left ∧mr = self ∧mr+1 = right ).

RCGp captures the relation with all possible local states of a successor of Pr. Let (s1, s2) ∈ SR, then Pr

is in a local state s1 when its successor Pr+1 is in a local state s2. Due to symmetry, local state spaces of
all similar processes are captured by Pr’s local state space Sr

l. We observe that any directed cycle of length
L in Figure 1 represents a possible valuation of local states to a ring of processes of size k × L (k a positive
integer). For instance, 〈rss, ssl, sls, lsl, sll, lll, llr, lrr, rrr, rrs, rsr, srs〉 represents a ring of 12.k processes in

2Addition and subtractions of indices are modulo K.



the global state 〈self, self, left, self, left, left, left, right, right, right, self, right〉k. 〈sss〉 represents a ring of
arbitrary size in a global state where mr =self (0 ≤ r ≤ n − 1) and n is an arbitrary positive integer. An
example of a global state in a ring whose size is a multiple of two is 〈rsr,srs〉 corresponding to a ring having
2× k processes in a state 〈 r,s 〉k; i.e., repeatedly concatenated k times. �

Figure 1: Continuation relation over all local states of Maximal Matching

Theorem 4.2 (Deadlock-Freedom in Parametrized Rings). A parameterized protocol p(K) over a ring
topology is deadlock-free outside I(K) for every K iff the induced subgraph3 of RCGp over local deadlocks
has no directed cycles containing a local state/vertex in ¬LCr.

Proof. ⇒: Let p(K) be a parameterized protocol that is deadlock-free outside I(K) for every K. By
contradiction, assume that RCGp has a directed cycle over its local deadlocks C = {sl0, s

l
1, · · · , s

l
n−1} and

for some 0 ≤ j ≤ n − 1, slj /∈ LCr. By definition of RCGp, s
l
i+1 is a right continuation of sli for every

0 ≤ i < n− 1 and sl0 is a right continuation of sln−1. By assigning to Pi the local state sli for 0 ≤ i ≤ n− 1,
we construct a ring R of size k×n (k is a positive integer) in which every Pi is locally deadlocked. Moreover,
for some j, Pj is in a local state slj /∈ LCr. Because I(K) is locally conjunctive, the corresponding global
state of R is a global deadlock outside I(K). This contradicts our premise.

⇐: Let the induced subgraph over local deadlocks in RCGp have no directed cycles with a local state
slj /∈ LCr. By contradiction, assume that there exists a protocol p(K) over a ring of size K that is globally

deadlocked outside I(K). It follows that every process Pi of p(K) is in a local deadlock sldi (0 ≤ i ≤ K − 1)
among which there exists a local deadlock sldj /∈ LCr. By definition of the continuation relation, RCGp

captures every possible right continuation of every local state of Pr. Hence, for every 0 ≤ i ≤ K − 1,
(sldi, s

l
di+1) ∈ RCGp. Since p(K) is a ring of local deadlocks, RCGp’s induced subgraph over local deadlocks

should have a directed cycle containing sldj , which is a contradiction.

We illustrate the application of Theorem 4.2 by the following examples.

Example 4.2 (Deadlock-Free Generalizable Maximal Matching).

We consider the following parameterized protocol for maximal-matching on a bidirectional ring. We
automatically synthesized this protocol for K = 6 using the STabilization Synthesizer tool (STSyn) [17].

3An induced subgraph G′ = (V ′, E′) of a directed graph G = (V, E) is such that V ′
⊂ V , E′ is the maximum subset of E

such that the source and target vertices of every arc in E′ are in V ′.



A1: mr−1 =left ∧mr 6= self ∧mr+1 =right → mr := self

A2: mr−1 =self ∧mr =self ∧mr+1 =self → mr := right | left

A3: mr−1 =right ∧mr =self → mr :=left
mr =self ∧mr+1 =left → mr :=right

A4: mr−1 =right ∧mr =right ∧mr+1 6= left→ mr :=left
mr−1 6=right ∧mr =left ∧mr+1 =left → mr :=right

A5: mr−1 =self ∧mr 6=left ∧mr+1 =right → mr :=left
mr−1 =left ∧mr 6=right ∧mr+1 =self → mr :=right

We model-checked this protocol for different sizes of ring (5,6,7 and 8 processes) and demonstrated its
deadlock freedom. We illustrate how the continuation relation over the protocols local deadlocks implies its
deadlock freedom for any number of processes. �

Figure 2 illustrates RCGp of Example 4.2 induced over its local deadlocks. As we can see, there are no
directed cycles that include local illegitimate states. This proves the deadlock freedom of the parametrized
maximal matching protocol in Example 4.2.

Figure 2: Continuation Relation over local deadlocks of Example 4.2

Example 4.3 (Non-generalizable Maximal Matching).

We automatically synthesized the following protocol that stabilizes only for 5 processes and has deadlocks
for rings of sizes 6. We illustrate how the right continuation relation helps us reason about global deadlocks.

B1: mr−1 =left ∧mr 6= self ∧mr+1 =right → mr := self

B2: mr−1 =right ∧mr =self ∧mr+1 =left → mr := right
mr−1 =self ∧mr =self ∧mr+1 =self → mr := right

B3: mr−1 =right ∧mr =right ∧mr+1 = left→ mr :=left
mr−1 =self ∧mr =self ∧mr+1 =right → mr :=left

B4: mr−1 =right ∧mr 6=left ∧mr+1 6= left → mr :=left
mr−1 6=right ∧mr 6=right ∧mr+1 =left → mr :=right



Figure 3 illustrates a subgraph of the RCG in Figure 1 that is induced over the local deadlocks of the
maximal matching protocol presented in Example 4.3. There are only two directed cycles having local
illegitimate deadlocks in Figure 3. Both cycles include the local state 〈left,left,self〉. The first directed cycle
has length 4:〈lls, lsr, srl, rll〉 and represents global deadlocks 〈left,self,right,left 〉k in rings whose size is a
multiple of 4. The second directed cycle has length 6:〈lls,lsr,srl,rlr,lrl,rll〉 and represents global deadlocks
〈left,self,right,left,right,left 〉k in rings whose size is a multiple of 6. We deduce that Example 4.3 is deadlock
free for ring sizes that are not multiples of 4 or 6; i.e, two-thirds of the family of rings. Moreover, resolving
the local deadlock 〈left,left,self〉 renders RCGp without cycles including local states in ¬LCr; i.e., p(K)
becomes deadlock free for any ring size K. Including a local transition whose source state is a local deadlock
sld resolves the local deadlock; i.e., sld is not anymore a local deadlock. �

Figure 3: Continuation Relation over local deadlocks of Example 4.3

5 Livelock-Freedom

In this section, we focus on the following problem: For a protocol p(K) with a ring topology and a conjunctive
predicate I(K), determine whether p(K) is livelock-free outside I(K) for all K without exploring the global
state space of p(K).

A necessary condition for strong convergence of a protocol p to I is the absence of livelocks in ¬I. A
sufficient condition for livelock-freedom is to guarantee that convergence actions are non-corrupting. How-
ever, non-corruption is not necessary for livelock-freedom. For instance, Dijkstra’s token-ring [1] converges
to a global state where only one token is in the ring despite its corrupting convergence actions. Moreover,
sometimes it is impossible to find a strongly stabilizing protocol with no corrupting convergence actions; i.e,
for some protocols, every non-corrupting livelock-free protocol has deadlocks in ¬I.

Therefore, it is necessary to weaken the sufficient condition of non-corruption while maintaining livelock-
freedom. To this end, we study livelocks in rings of arbitrary sizes. Rings are attractive in this regard
because of their susceptibility to circulating corruptions, unlike acyclic topologies. A circulating corruption
occurs when an action of a process Pi corrupts the local state of its successor Pi+1 for every process in the
ring. For simplicity, we investigate this problem for unidirectional rings under the following assumptions:

1. Every process Pi is self- terminating. As such, every sequence of local transitions of Pi terminates in
a local deadlock.

2. No process Pi has self-enabling actions. An action A: guardA → statementA is self-enabling if there
exists a global transition (sg, s

′

g) ∈ A such that sg ∈ guardA and s′g ∈ guardA. Intuitively, an action B
is self-disabling iff B disables guardB after executing statementB.

Assumption 2 is at no loss of protocol’s generality because self-enabling actions can be transformed into
self-disabling without adding neither deadlocks nor livelocks in ¬I. If Pi is self enabling, then for some
local state sli1 of Pi, there exists a sequence of local states 〈sli1, s

l
i2, · · · , s

l
ik〉 of Pi such that (slij , s

l
i(j+1)) is



a local transition of Pi (1 ≤ j ≤ k − 1) and slik is a local deadlock (Item 1 prohibits local non-terminating
computations). We substitute, every local transition (slij , s

l
i(j+1)), where 1 ≤ j ≤ k − 1, with (slij , s

l
ik). This

substitution renders Pi self disabling and preserves reachability to slik from every local state slij . Moreover,
it does not introduce new local deadlock states.

Definition 5.1 (Network Topology Graph). Topologyp(K) = (Πp(K), Linksp) where Linksp = {(Pi, Pj) :
((Pi, Pj) ∈ Πp(K)×Πp(K)) and ((Pi, Pj) : Rj ∩Wi 6= ∅)}.

Topologyp(K) is a directed graph for a protocol of definite size K whose vertex set is Πp(K) and arc set
illustrating the neighborhood relation.

Lemma 5.2 (Enablement Propagation). Let C=≪ c1, · · · , ck, · · · ≫ be a computation of a protocol p.
∀k > 1 : If (∃j : Pj is enabled in ck and Pj is disabled in ck−1) then ∃i : (ck−1, ck) ∈ g(δi) and Pj is the
successor of Pi.

Proof. Pj is not enabled in ck−1 and enabled in ck means that (ck−1, ck) writes a variable x ∈ Rj . Then
x ∈ Wi of some process such that (ck−1, ck) ∈ g(δi). It follows that {x} ⊂ Wi ∩Rj , hence Pj is a successor
of Pi.

The significance of Lemma 5.2 is to illustrate that in the course of a program computation, a disabled
process is enabled only by the action of its predecessor. In other words, a process can only pass enablement
to its successor. To represent the propagation of enablement in the local state space of the representative
process Pr, we augment the RCG with the local transitions of Pr, called t-arcs. Thus, the augmented RCG
has two types of arcs: s-arcs that represent the continuation relation and t-arcs representing local transitions
of Pr. We call the new RCG, the Local Transition Graph (LTG).

Under interleaving semantics, we locally capture global computations by interleaving the local transitions
of enabled processes; i.e., t-arcs, with the transfer of control to possible local states of successor processes
represented by a sequence of s-arcs.

Definition 5.3. The Local Transition Graph (LTG) of p is a triplet LTGp = (V, T, S). V is a set of vertices
representing local states of the representative process Pr. T is the set of directed arcs representing the
local transitions/t-arcs of the representative process Pr. S captures the continuation relation; i.e., s-arcs
representing the set of right (left) s-arcs.

We construct LTGp as follows:

1. For the representative process Pr, assign a vertex in V corresponding to each local state of Pr. V
represents Sr

l.

2. In V , add a t-arc (vr, v
′

r) to T to represent a local transition of Pr.

3. For every local state/vertex in V add an s-arc (vr, v
′

r) to S if vr represents a local state of Pr and v′r
represents a possible local state of a successor of Pr.

Notice that LTGp does not depend on K since every process Pr is captured by V regardless of the number
of similar processes. Moreover, for bidirectional rings, an s-arc (vr, v

′

r) ∈ S iff (v′r, vr) ∈ S.

Example 5.1. We illustrate LTGp of Example 4.2 in Figure 4. We omitted left s-arcs for readability.

Definition 5.4 (Collision). Let p(K) be a parameterized protocol with a unidirectional ring topology and Pj

be the successor of Pi. Let s
l
i and slj be local states where Pi and Pj are both enabled, respectively. A collision

is an execution of any local transition of Pi enabled at sli.

Lemma 5.5 (Enablement Conservation in a Unidirectional Ring). Let p(K) be a protocol on a unidirectional
ring of size K. If L is a livelock of p(K), then in every global state of L, the number of enabled processes is
the same.



Figure 4: LTGp of Example 4.2

Proof. Let s be some global state of L. Assume the number of enabled processes at s is |E|. From Assump-
tion 2, every local transition of any process Pi disables Pi. Since every process in a unidirectional ring has
only one successor, a local transition of any enabled process will not increase |E|. It follows that |E| can
either stay constant or decrease. However, if an execution of a transition at s decreased |E| to |E| − 1, thus
since |E| − 1 cannot increase in subsequent transitions, s cannot be re-encountered in the computation of
L following s. Therefore, s cannot be in a livelock L. Consequently, |E| is constant in any livelock on a
unidirectional ring.

Corollary 5.6 (Absence of Collisions in Livelocks in Unidirectional Rings). If L is a livelock on a unidirec-
tional ring then for every global transition t in L, there is no collision tl such that t ∈ g(tl).

Proof. In a unidirectional ring, a collision decreases the number of enabled processes by 1. This is in
contradiction with Lemma 5.5.

Corollary 5.7 (Insensitivity to Weak Fairness). Let p(K) be a parameterized protocol on a unidirectional
ring of size K. If L is a livelock of p(K) then there is no continuously enabled process in L.

Proof. Let sg be a global state of L where every process of p(K) is enabled. Hence, any execution of any
enabled process will cause a collision. From Corollary 5.6, sg cannot be in L. It follows that in every
global state of L, there exists a disabled process. According to Lemma 5.2 and 5.5, a constant number of
enablements propagate along the arcs of the unidirectional ring. Hence, disabled local states propagate in
the opposite direction. Thus, every process in the ring will eventually be disabled.

Corollary 5.7 implies that the assumption of the existence of a weakly fair scheduler4 does not simplify
the design of livelock-freedom in unidirectional rings because no process is continuously enabled in a livelock
on a unidirectional ring.

Lemma 5.8 (Local Illegitimacy). Let p(K) be a parametrized protocol on a unidirectional ring, If p(K) has
a livelock L for some K, then for every global state of L there exists a process Pi in an illegitimate local
state.

4A weakly fair scheduler infinitely often executes any action that is continuously enabled.



Proof. Every global state of L is in ¬I. Since I is locally conjunctive, for every global state of L, there exists
LCi that evaluated to false by the local state of Pi. In other words, there exists a process Pi whose local
state is in ¬LCi.

In every global state of a livelock L, there exists an enabled process Pi and some process Pj in an
illegitimate local state: notice that we do not rule out the possibility of i = j, in this case Pi’s local state is
a corruption.

Lemma 5.8 establishes the existence of a process Pi in a local state sli /∈ LCi in every global state of L.

Lemma 5.9 (Local Corruptions). Let p be a parameterized protocol on a unidirectional ring. If p(K) has a
livelock L for some K, then for some global state of L there exists a process Pi having a corruption.

Proof. From Lemma 5.8, every global state of L has a process Pi in an illegitimate local state. Lemmas 5.2
and 5.5 establish that enabled local states propagate along a unidirectional ring without collisions. By
contradiction, assume that at every global state of L, all enabled processes are in non-corruptions. Due
to closure of I(K) in p(K), a propagation of a non-corruption in any process Pi should leave Pi in a local
legitimate deadlock. As such, eventually every process Pi will be in a legitimate state. This contradicts
Lemma 5.8. Therefore, there exists a global state of L where some Pi is in a corruption.

Lemma 5.9 helps us identify sufficient conditions for livelock freedom by studying LTGp.
To understand how livelocks represent themselves in LTG, we observe that each sequence Sch of local

transitions representing a livelock belongs to an equivalence class of sequences whose local transitions preserve
some precedence relation. Lemma 5.11 establishes our observation for a reduction based on an irreflexive
partial order. Godefroid [22] originally introduced partial order reduction to simplify automatic verification.

Definition 5.10 (Livelock Induced Precedence Relation ≺). Let the local transitions of a livelock L be
represented by a sequence of local transitions Sch=≪ t0

l, t1
l, · · · , tn−1

l ≫. We say ti
l precedes tj

l, denoted
ti
l ≺ tj

l iff

1. the execution of ti
l enables tj

l, or,

2. if tj
l executes, then it collides with ti

l enabled in Pi, or,

3. if 1 and 2 are false, then there exists tk
l in Sch such that ti

l ≺ tk
l and tk

l ≺ tj
l.

Example 5.2 (Binary Agreement). A binary agreement protocol on a unidirectional ring has the represen-
tative process Pr such that M(K) = K, Rr = {xr−1, xr}, Wr = {xr}, Dr = {0, 1} and has the following
local transitions.

t10
r : xr−1 = 0 ∧ xr = 1 → xr := 0

t01
r : xr−1 = 1 ∧ xr = 0 → xr := 1

Intuitively, Pr local transitions set xr = xr−1 whenever xr 6= xr−1. For K = 4, we examine a livelock L
such that L =≪ 1000, 1100, 0100, 0110, 0111, 0011, 1011, 1001 ≫k. We represent L by the sequence of local
transitions Sch=≪ t01

1, t10
0, t01

2, t01
3, t10

1, t01
0, t10

2, t10
3 ≫. Figure 5 illustrates the dependencies imposed

by Sch between local transitions of L. Since we have only three pairs of independent local transitions, the
precedence relation allows 8 = 23 possible precedence-preserving permutations of Sch. Two local transitions
ti
l and tj

l are independent if and only if ti
l ⊀ tj

l and tj
l ⊀ ti

l. Figure 6 depicts L and another livelock
generated by a permutation of Sch preserving the same precedence relation in Figure 5. Observe that Sch
is defined up to cyclic permutations, thus we have to fix the ”starting” local transition of all sequences in
order to decide their membership in a given precedence-preserving class of sequences.

Lemma 5.11 (Precedence Relation Reduction). Let p(K) be a protocol on a unidirectional ring of size
K. If p(K) has a livelock L, for some K, whose local transitions are represented by a sequence Sch=≪
t0

l, t1
l, · · · , tn−1

l ≫ then every precedence-preserving permutation of Sch represents a livelock of p(K).



Figure 5: Precedence relation for local transitions in Example 5.2

Figure 6: Two precedence-preserving livelocks for Example 5.2. The starting global state is marked by ”I”

Proof. Let Sch’ be a precedence preserving permutation of Sch obtained by swapping two arbitrary indepen-
dent local transitions ti

l and tj
l where i < j. Now consider the subsequence Middle=≪ ti+1

l, · · · , tj−1
l ≫ of

Sch, since swapping of ti
l and tj

l in Sch’ is precedence preserving, then each of ti
l and tj

l form independent
pairs with every local transition in Middle. If it is not the case, a swap of ti

l and tj
l would have violated the

precedence relation. Consequently, if tk
l ≺ tj

l then k < i, and if ti
l ≺ tk

l then j < k. The execution of Sch’
proceeds as follows. Every transition tk

l for k < i executes exactly as in Sch. Now tj
l is enabled since all

local transitions preceding it already executed, then tj
l executes as in Sch. None of the transitions in Middle

depends on ti
l nor tj

l and they execute as in Sch. tk
l (k ≥ j) execute as in Sch since all their preceding

transitions already executed. Since no local transition has been disabled due to the precedence preserving
swap, Sch’ represents a new livelock L′.

Using Lemma 5.11, we can reduce our search for livelocks in unidirectional rings to a search for a
representative livelock. We choose as representative livelock that we call a contiguous livelock. Let L be a
livelock on a unidirectional ring having |E| enablements. A contiguous livelock CL has a global state where
|E| adjacent processes are enabled as illustrated in Figure 7 (I). The subsequent global states of CL are such
that only the rightmost enablement in the segment of adjacent processes propagates while the remaining
|E|−1 enablements do not propagate. After K−|E| propagations of the rightmost enablement, a new global
state with |E| adjacent enablements is reached. Figure 7 (II, III, and IV) illustrates this scenario for K = 6
and |E| = 3. Notice that a K times repetition of the scenario in Figure 7 results in a full rotation of the



segment of adjacent enablements in an opposite direction to that of the rightmost enablement propagation.
It follows from Lemma 5.11 that p(K) has a livelock if and only if it has a contiguous livelock.

Figure 7: Sequence of enabled processes in a contiguous livelock

Lemma 5.12 demonstrates the kind of structure LTGp has when p(K) has a contiguous livelock. We call
this structure a contiguous trail of LTGp.

Lemma 5.12 (Representation of a Contiguous Livelock in LTGp). Let p be a parameterized protocol on a
unidirectional ring. If for some K, p(K) has a contiguous livelock CL with |E| enabled processes, then LTGp

has an alternating trail TR of the following format.

1. if |E| = 1, then TR is an alternating trail of a t-arc followed by an s-arc and vice versa.

2. if |E| > 1, then TR is an alternation of two types of walks: w1 and w2. w1 consists of |E| consecutive
s-arcs such that every vertex/local state in w1 has an outgoing t-arc in w2. w2 has 2(K − |E|) arcs of
an alternating walk of t-arcs and s-arcs.

We call TR a contiguous trail of LTGp.

Proof. If |E| = 1, then there exists only one enablement in the ring. An enablement propagation at a process

Pi corresponds to a t-arc (si
l, s′i

l
). Now, Pi+1, the successor of Pi, is in an enabled local state si+1

l that is a

right continuation of s′i
l
. Therefore, there exists an s-arc from s′i

l
to si+1

l. Following a similar reasoning for
every process Pi that propagates a single enablement along CL, we conclude that TR is a trail of alternating
s-arcs and t-arcs when |E| = 1.

If |E| > 1, CL consists of two types of computations. The first type of computation is such that p(K)
is in a global state sc where |E| enabled processes are adjacent. The first type of computation implies a
walk of type w1 of |E| consecutive s-arcs in TR. Moreover, every local state in w1 is an enablement that will
eventually propagate. Thus, every local state in w1 should have an outgoing t-arc participating in TR but
not in w1. The second type of computation is the rightmost enablement propagation through the execution
of K − |E| local transitions. Using a similar reasoning as in the case where |E| = 1, the second type of
computation is represented by a walk of type w2 in TR consisting of an alternating t-arc followed by an s-arc
and vice versa. As such, the length of the alternating walk w2 is 2(K − |E|). Since CL is an alternation of
both types of computations, TR is an alternation of both types of walks: w1 and w2. Moreover, every s-arc
in a walk of type w1 should reach a target local state that is a source of a t-arc in a walk of type w2 in
TR.

In a global livelock, a finite sequence of global states indefinitely repeats. A pseudo-livelock is a partial
observation of the writable variables of a process that manifests itself during a global livelock and does not
necessarily imply the existence of a livelock. For example, a local transition t02 : y = 0 ∧ x = 0 → x := 2
and a local transition t20 : y = 1∧ x = 2 → x := 0 form a psuedo-livelock; if we project each local transition
on x, we obtain the local transitions t′02 : x = 0 → x := 2 and t′20 : x = 2 → x := 0, respectively. t′02 and
t′20 form the repeating sequence of values ≪ 0, 2 ≫k for x. However, neither of {t02, t20} enables the other
because of different values of the unwritable variable y.



Definition 5.13. A pseudo-livelock of process Pi is a subset pl ⊂ δi of local transitions of Pi whose projection
on Wi forms a repetitive sequence of values for variables in Wi.

Theorem 5.14 establishes a sufficient condition for livelock freedom in unidirectional rings.

Theorem 5.14 (Sufficient Conditions for Livelock Freedom). For some K, if L is a livelock in a parame-
terized protocol p(K) on a unidirectional ring, then LTGp has a contiguous directed trail TR in LTGp such
that:

1. There exists an illegitimate local state in TR, and,

2. All t-arcs of TR form pseudo-livelocks.

Proof. From Lemma 5.11, p(K) has a livelock L iff p(K) has a contiguous livelock CL. Lemma 5.12 implies
that LTGp has a contiguous trail TR representing CL.

According to Lemma 5.9, there exists a global state in L such that some process is corrupted. Since TR

is a representation of CL on a ring, we conclude that some vertex in TR represents a local illegitimate state.
This proves Item 1.

Since L is a livelock, for every Pi, the projection of every global transition ti in L on the writable variables
of Pi; a.k.a., ti ↓ Wi, induces a repetitive sequence of values for variables in Wi . Therefore, t-arcs in TR

form a pseudo-livelock. This proves Item 2.

Note that we use the contrapositive of Theorem 5.14 to prove livelock freedom. Observe that bidirectional
rings may also include contiguous livelocks. Therefore, we can apply Theorem 5.14 on bidirectional rings to
prove contiguous livelock freedom. However, other types of livelocks may occur in bidirectional rings that
are beyond the scope of Theorem 5.14.

We demonstrate how a contiguous livelock forms a contiguous trail in LTGp. Figure 8 illustrates t-arcs
of a solution to maximal matching on a bidirectional ring due to Gouda and Acharya [23]. For readability,
we only include t-arcs participating in a livelock.

tls : mi = left ∧mi−1 = left → mi :=self
tsl : mi = self ∧mi−1 6= left → mi :=left

We include s-arcs only where necessary. This protocol has a global livelock L when K = 5 represented by
L =≪ lslsl, sslsl, sllsl, slssl, slsll, slsls, llsls, lssls, lslls, lslss ≫k. This livelock represents a single enablement
that circulates twice from P0 to P1, · · · to P4; i.e., |E| = 1. L is represented in Figure 8 by the alternating
trail TR =≪ lls, tls, lss, s-arc, ssl, tsl, sll, s-arc ≫. Moreover, tls and tsl form a pseudo-livelock; once
projected on mi, they represent the local transitions (tls ↓ Wi) : mi = left → mi := self and tsl ↓ Wi : mi =
self → mi := left, respectively. The corresponding global transitions of the projections form a livelock.

In Section 6, we demonstrate an agreement protocol with a livelock circulating more than one enablement
(|E| > 1).

6 Application in Automated Addition of Convergence to Non-

Stabilizing Protocols

This section presents an outline for a method that synthesizes global convergence for parameterized protocols
in the local state space of the representative process (without exploring the global state). Previous work on
automated design of convergence [16,17,24] mainly explores the global state space of a protocol to synthesize
recovery from any illegitimate state. Moreover, existing work addresses the synthesis of convergence for
protocols with a fix number of processes; i.e., synthesized solutions are not generalizable. Thus, the proposed
method in this section enables a significant improvement in the time/space complexity of automated design
of convergence.



Figure 8: LTGp of a matching solution adapted from Gouda and Acharya [23].

6.1 Synthesis Methodology

Given a parameterized protocol p over a ring whose representative process is Pr and whose set of legitimate
states is defined by LCr, we construct LTGp as in Section 5.

1. Identify the subset DL
l ⊂ Sr

l of local deadlocks of Pr. Form the induced subgraph of RCGp over DL
l.

3-coloring example. Since the input protocol p for 3-coloring is empty, we have DL
l = Sr

l (Figure 9)�.

2. Identify a subset Resolve ⊂ ¬LCr ∩ DL
l of local deadlocks that should be resolved by local t-arcs

in the revised protocol pss. As such, RCGpss
is the induced subgraph of RCGp over DL

l− Resolve
should represent a deadlock free protocol for every K. By Theorem 4.2, RCGpss

has no directed cycles
through any local deadlock in LCr iff pss(K) has no deadlocks for every K. As such, Resolve captures
a minimal subset of local deadlocks of p that should be resolved in pss. One way to compute Resolve
is as a minimal feedback subset5 of RCGp restricted to be a subset of ¬LCi. Therefore, all minimal
feedback subsets that are subsets of ¬LCr are possible candidates for Resolve.

3-coloring example. A parameterized 3-coloring protocol over a unidirectional ring is defined by a process
Pr, a set of variables Φp(K) = {c0, · · · , cK−1} such that cr takes values from a domain Dr = {0, 1, 2}.
A local legitimate state of Pr is such that Pr ’s color is different from its predecessor’s; i.e., LCr = (cr 6=
cr−1). In Figure 9, the set of illegitimate local states identified by uncolored vertices is {00, 11, 22}.
Since every illegitimate local state has a self-loop, Resolve= {00, 11, 22}. We denote a possible local
transition of Pr by tij where i, j ∈ Dr, such that tij : cr−1 = cr = i → cr := j. �

3. Identify Candidatesr as the set of all possible candidate local transitions tr
l of Pr that resolve every

local deadlock in Resolve. tr
l = (s0

l, s′0
l
) ∈ Candidatesr is a local transition of Pr such that s0

l ∈

Resolve and s′0
l
/∈ Resolve. As such, we guarantee that all actions are self-disabling as in Assumption 2

of Section 5.

3-coloring example. The set of candidate local transitions in Figure 9 that resolve all local deadlocks in
Resolve is {t01, t02, t10, t12, t20, t21}. �

4. Identify a subset of Non-Pseudo-Livelocks (NPL) of Candidatesr such that:

(a) Local transitions in NPL do not form pseudo-livelocks.

5A feedback subset FS of a directed graph G is a subset of vertices of G such that, when omitted from the G, induces a
subgraph of G with no directed cycles. FS is minimal when it has no subset that is a feedback set.



(b) Local transitions in NPL resolve every local deadlock in Resolve.

If such NPL exists, declare success (Theorem 5.14).

3-coloring example It is sufficient to include only one local transition originating at every local deadlock
to resolve it. For example, it is sufficient to include either t01 or t02, but not both, to resolve the local
deadlock 00. Every local deadlock in Resolve is the source state of two possible local transitions in
Candidatesr . As such, 23 possible subsets of Candidatesr render 3-coloring deadlock free for any K.
These subsets are {{t01, t12, t20}, {t01, t12, t21}, {t01, t10, t20}, {t01, t10, t21}, {t02, t12, t20}, {t02, t12,
t21}, {t02,t10,t20}, {t02, t10, t21}}. However, every subset has a pseudo-livelock. For example, local
transitions {t01, t12, t20}, when projected on Wr, form the pseudo-livelock ≪ 0, 1, 2 ≫k. Likewise, any
two local transitions tij , tji form a pseudo-livelock. �

5. Identify a subset of Pseudo-Livelocks (PL) of Candidatesr such that:

(a) Local transitions in PL resolve every local deadlock in Resolve.

(b) Local transitions in PL have subsets forming pseudo-livelocks. Otherwise, local transitions in PL
would have been in NPL and we should not have reached the current step.

(c) Each pseudo-livelock in PL is not forming a contiguous trail TR in LTGp as in Lemma 5.12.

If such PL exists, there are no pseudo-livelocks in PL whose t-arcs form contiguous trails. Consequently,
we can conclude from Theorem 5.14 that pss is livelock free for every size of the ring. Otherwise, declare
failure.

3-coloring example. Every subset of t-arcs forming a pseudo-livelock corresponds to a contiguous live-
lock. For example, in Figure 9, {t01, t12, t20} forms a pseudo-livelock and creates the contiguous trail
TR = {00, 01, 11, 12, 22, 20} that includes illegitimate local states. The sufficient conditions for livelock
freedom in the contrapositive of Theorem 5.14 are not satisfied. Therefore, we declare failure. �

Figure 9: LTGp of 3-coloring example

6.2 Further Examples

In this subsection, we apply our proposed methodology to design three protocols: binary agreement, two-
coloring and sum-not-two protocols. In the latter example, we illustrate how the conditions of Theorem 5.14
are sufficient but unnecessary, however, they are weak enough to provide a converging solution on a symmetric
unidirectional ring.
Agreement example. We investigate a parameterized binary agreement protocol as in Example 5.2. A
local legitimate state is such that xr = xr−1; i.e., the protocol stabilizes when all variable values are equal.

Figure 10 represents LTGp of the parametrized agreement protocol. t01 and t10 are local transitions
resolving illegitimate local states. t01 : (xr < xr−1) → xr := xr−1 or t10 : (xr−1 < xr) → xr := xr−1).

In Figure 10, the local illegitimate states are DL
l = {10, 01}, however, it is sufficient to resolve either

of them to obtain a continuation relation that has no directed cycles passing by illegitimate deadlocks.
Therefore, Resolve= {01} or Resolve= {10}. As such, including either t01 or t10 (but not both!) renders



the protocol deadlock free. Since including just one of the candidate local transitions does not form pseudo-
livelocks, both solutions are livelock free. Hence follows convergence.

If we unnecessarily include both t01 and t10 that form a pseudo-livelock, we observe TR =≪ 01, t10, 00, s,
01, s, 10, t01, 11, s, 10, s, 01 ≫ as an alternating trail satisfying the implications of Lemma 5.12. Moreover,
t01 and t10 form a pseudo-livelock. Hence, including both t01 and t10 does not satisfy the sufficient conditions
of the contrapositive of Theorem 5.14.

Notice that if we apply constraint satisfaction for cyclic constraint graphs as described in reference [6],
there is no way to differentiate between the case where only one of the convergence actions {t01, t10} is
included in pss, and the case where we include both convergence actions in pss. In fact, both constraint
graphs are the same since the set of legitimate states does not change. Moreover, our methodology computes
a possibly strict subset of local deadlocks outside LCr and still guarantees deadlock freedom for every K. �

Figure 10: RCGp and LTGp of Agreement Example

Two-coloring example. For a 2-coloring protocol whose RCG and LTG are represented in Figure 11,
Rr = {cr−1, cr} and Wr = {cr}. Dr = {0, 1} and LCr = cr 6= cr−1. A legitimate local state is such that a
process and its predecessor should have different colors.

Unlike deadlock states in agreement, 2-coloring requires the resolution of both illegitimate local deadlocks
DL

l =Resolve= {00, 11} because they have self-loops of s-arcs6. However, the resolution of both local
deadlocks results in a directed trail TR as in Lemma 5.12 ≪ 00, t01, 01, s, 11, t10, 10, s, 00 ≫ and not
satisfying the sufficient conditions in the contrapositive of Theorem 5.14. As such, we cannot conclude
livelock freedom of 2-coloring for arbitrary K. In fact, 2-coloring self-stabilizing protocols are impossible
in unidirectional rings [25], however our lack of necessary conditions for livelock freedom prevents us from
deducing any impossibility results. �

Figure 11: LTGp of the Two Coloring Example

Sum-not-two example. We present a hypothetical example to illustrate the interplay between having a
trail, having pseudo-livelocks and having both. The Sum-Not-Two protocol on a unidirectional ring is such
that Pr reads xr−1 and xr and writes xr. For simplicity of presentation, we restrict our example such that
xr takes values in {0, 1, 2}. A local legitimate state is such that xr + xr−1 6= 2. The input protocol p is
empty.

Since p is empty, the set of local deadlocks outside LCr is ¬LCr = {20, 11, 02}. For a deadlock free
protocol, no proper subset of ¬LCr can be resolved to render pss deadlock free for every K. Thus, Resolve=
{20, 11, 02}.

Figure 12 illustrates LTGp of Sum-Not-Two protocol with all candidate t-arcs included. Every local
deadlock has two possible t-arcs that resolve it and hence, we have 23 possibilities for Candidatesr . The

6Recall that for deadlocks-freedom, we make sure that there are no directed cycles over local deadlocks in RCG that include
illegitimate local states.



following two possibilities form pseudo-livelocks and each of them participate in a trail: {{t21, t10, t02}, {t01,
t12, t20}}. For example, the first possibility participates in the trail: TR =≪ 02, t21, 01, s, 11, s, 11, t10,
10, s, 02, s, 20, t20, 22, s, 20, s ≫. This possibility forms a pseudo-livelock and participates in a trail TR as
implied by Lemma 5.12. Hence, sufficient conditions of the contrapositive of Theorem 5.14 are not satisfied
by the first possible set of candidates and we cannot include this set.

In fact, if we examine TR, it should represent a contiguous livelock L having |E| = 2 and only one
propagation of enablement; i.e., K − |E| = 1. Hence, TR is possibly representing a livelock in a ring where
K = 3. However, if we try to reconstruct the global livelock of a ring of three processes using TR, we fail!
In other words, TR does not represent a real livelock and due to the lack of necessity, we could not include
{t21, t10, t02} in pss.

None of the remaining candidate subsets of t-arcs forms a trail whose t-arcs are pseudo-livelocks. For
example, let Candidatesr = {t21, t12, t01}. Here, t21 and t12 form a pseudo-livelock, however, there is no trail
where they solely participate and has the properties implied in Lemma 5.12. Moreover, there is a trail that
includes all the three t-arcs together, but since, together, they do not form a pseudo-livelock, conditions of
the contrapositive of Theorem 5.14 remain satisfied. As such, including {t21, t12, t01} in pss renders Sum-
Not-Two converging. The following action captures Candidatesr : (xr+xr−1 = 2)∧(xr 6= 2) → xr := (xr+1)
mod 3, (xr + xr−1 = 2) ∧ (xr = 2) → xr := (xr − 1) mod 3.

To prove convergence of our proposed solution using constraint satisfaction, we must ingenuously identify
a partitioning of the protocols actions. We argue that our methodology bypasses constraint satisfaction in
this respect as we directly design/verify convergence through local state space exploration. �

Figure 12: LTGp of the Sum-Not-Two example including every candidate t-arc. To the right, we demonstrate
a s-cycle for each individual local deadlock that we resolved.

7 Discussion and Related Work

In this section, we discuss related work regarding reasoning in local vs. global state space, support for
revision when verification fails and automated design of convergence.
Design of convergence. While there are several methods for compositional and local reasoning about
self-stabilization [5–7,9,21], the proposed approach in this report enables a systematic method for designing
parameterized SS rings that are correct by construction. For example, Varghese [7] presents a method for
proving the correctness of convergence in systems that are composed of components that converge inde-
pendently. Dolev and Herman [21] introduce a technique for the composition of synchronous processes in
acyclic networks towards generating scalable systems that converge fast. Arora et al. [6] present a set of
sufficient conditions for the verification of convergence in parameterized systems. The method of [8] provides
a scalable approach for compositional design of SS protocols using a correction and a corruption relation
that define how components could corrupt each other and how the correction of a component depends upon
the correction of other components. By contrast, the proposed approach of this report is more fine-grained
in that it generates the required transitions for detection and correction.

Most existing automated methods [16, 17, 26, 27] explore the global state space of protocols with a fixed
number of processes in order to synthesize recovery functionalities. For example, Kulkarni and Arora [26]
present algorithms for adding recovery from a set of states reachable in the presence of faults, called a



fault-span, to the set of legitimate states. Bonakdarpour and Kulkarni [27] demonstrate the hardness of
algorithmic design of progress properties for distributed systems and propose a heuristic for automated
design. Abujarad and Kulkarni [16] present heuristics for automated exploration of the global state space
of acyclic networks towards synthesizing convergence. None of the aforementioned methods addresses the
design of convergence for parameterized rings in the local state space.
Verification using cutoff sizes. In the area of automatic verification of parameterized systems, Emerson
and Kahlon [28, 29] derive cutoff sizes for parameterized rings; they reduce parameterized verification of
temporal logic properties defined over pairs of processes to finite model checking. They extend their cutoff
theorems to arbitrary protocols whose guards are conjunctive/disjunctive to verify properties including
pairs of processes [30]. Emerson and Namjoshi [31] extend their approach to rings whose computations
eventually terminate in a finite number of steps. Their cutoff bound depends on the length of the terminating
computation and the size of the local state spaces. Moreover, they can only verify conjunctive properties
defined at most over pairs of components.

Our methodology emphasizes automatic verification of convergence in local state space which is less
computationally intensive than verification for every K smaller than or equal to the cutoff. Moreover, our
contribution is not restricted to terminating computations. We could have applied Emerson’s approach
to verify strong convergence in unidirectional rings of terminating protocols, however, we sought a method
where we can simultaneously design and verify convergence in a local state space; it is unclear how a protocol
should be revised if its verification for a property fails.
Verification by abstraction. A considerable amount of work adopt abstraction to handle the infinite num-
ber of states in parameterized verification. Network invariants are introduced by Wolper and Lavinfosse [32]
to capture all possible behaviors of an arbitrary number of processes in the network. A property satisfied by
a network invariant is satisfied by any instance of the network but not necessarily the converse; abstraction
is hence necessarily incomplete. Kurshan and McMillan [33] demonstrate a general abstraction rule based
on composition and induction over a sequence of processes. The generality of their approach is due to the
abstract properties of their composition operators and partial order relations on processes. Kesten et al. [34]
present yet another induction method using network invariants with a proof rule based on an abstraction
relation and composition of processes.

The main drawback of abstraction methods with respect to convergence synthesis is their dependence on
human ingenuity for generating abstractions; every protocol requires a different abstract network invariant
that, in general, cannot be automatically computed. To overcome this drawback, Pnueli et al. [35] demon-
strate a method where conjunctive sets of reachable states can be automatically deduced. They project the
set of reachable states, for a specific network size, over a subset of ”variables of interest” in some conjunct.
Their method generalizes the projected conjunct for every process in the network. They provide a cutoff
theorem, thereby reducing verification of an arbitrary-sized network to a finite number of protocol instances.
Despite the inherent incompleteness of this method, it has proved that it is of practical values in automated
verification of safety properties. A similar approach for verifying response properties by Fang et al. [36] ab-
stracts out decreasing ranking functions for an arbitrary protocol instance. They generalize the convergence
stairs likewise while using a cutoff theorems proper to response properties.

Namjoshi [37] illustrates that the cutoff method for verification of parameterized systems is complete for
safety properties. That is, there always exists a maximum size for the number of symmetric processes that
captures all the ”behaviors of interest” in the network with respect to a given safety property. Furthermore,
he provides a modification to the method by Pnueli et al. [35] to accommodate his completeness result.
Network grammars. Shtadler and Grumberg [38] introduce network grammars as a means to representing
global states of arbitrary-sized networks of linear or ring topologies, as words generated by network grammars.
For verification purposes, they compute an equivalent network invariant to the network grammar and apply
finite state verification on the equivalent model/abstraction. As an extension, Clarke et al. [39] relax the
equivalence relation between the model and its network invariant to a pre-order relation such that the
network invariant abstracts out the grammar; this relaxation increases the possibility of finding an invariant
at the cost of completeness. Kesten et al. [40] restrict network grammars to regular languages; however their
approach extends verification to tree-like topologies by capturing their global states as accepted trees by a
tree-automaton. Moreover, they represent reachable sets of states by finite automata, thereby reducing the
verification of safety properties to automata-theoretic product and emptiness problems.



A follow-up of the aforementioned approaches generated a plethora of publications in what is now
called regular model checking. Jonnson and Nilsson [41] describe how to derive a finite state transducer
representing the transitive closure of the network’s transition relation. A finite state transducer is a finite
state automaton augmented with a function that maps the set of input alphabet to the set of output symbols.
Subsequently, they illustrate how to verify safety properties using their derived transitive closure automaton.
Bouajjani et al. [42] demonstrate different techniques to compute finite state transducers representing the
set of reachable states and the transitive closure relation of a parameterized protocol, respectively. They
illustrate how to make use of the transitive closure relation to verify liveness properties. Abdulla et al. [43]
introduce an abstraction on regular model checking by assuming a preorder relation between words repre-
senting states. This relation eliminates transducers in verification of safety properties, thereby simplifying
the computationally demanding automata-theoretic operations required by regular model checking. Due to
the extensive literature on regular model checking, we direct the reader to a survey by Abdulla et al. [44].

In contrast to the above approaches, our methodology reasons about a variety of possible solutions for
a given conjunctive set of legitimate states closed in an input protocol. We investigate generalization in
local state spaces, thereby enabling a method that combines design and verification instead of conceiving
them as separate tasks. Thus, our approach differs from automated abstraction techniques like Fang et al.’s
decreasing ranking functions [36], or any of the aforementioned regular model checking techniques.

8 Conclusion and Future Work

This report proposed a method for local reasoning about global convergence of parameterized network proto-
cols with the ring topology. In such protocols, the code of each process is instantiated from the parameterized
code of a representative/template process by variable substitution. Parameterized ring protocols have im-
portant applications as they can be used to construct more complicated topologies where multiple rings are
intertwined (e.g., multi-ring token passing [17], scalable group communication [45]). Global convergence to
a set of legitimate states I requires both deadlock-freedom and livelock-freedom in ¬I. While most existing
design methods enable the design of convergence by reasoning in the global state space of a protocol, this
report takes a different approach of reasoning in the local state space of the representative process to ensure
global convergence. Specifically, we presented necessary and sufficient conditions for deadlock-freedom, and
sufficient conditions for livelock-freedom in parameterized unidirectional rings. We illustrated our approach
in the context of a maximal matching protocol. We sketched a methodology for design of convergence in local
state space and applied it on several examples including agreement, 2-coloring, 3-coloring and sum-not-two
examples.

We would like to extend this work in several directions. First, we plan to investigate local reasoning
for global convergence of parameterized protocols with topologies other than rings (e.g., tree, mesh, etc.).
Second, we are currently investigating sufficient conditions for bidirectional rings. Third, another interesting
problem is automation. According to our proposed design methodology, we will design synthesis algorithms
that can automate the generation of the LTG graphs and can revise the graphs so they meet our conditions
for deadlock/livelock-freedom. Such a synthesis in local state space is a significant paradigm shift with
respect to previous work on automated design of convergence in global state [16, 17, 26], which could result
in producing software tools that are substantially more efficient in automated design of parameterized self-
stabilizing protocols.

References

[1] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974.

[2] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.

[3] S. Dolev. Self-Stabilization. MIT Press, 2000.



[4] M. Gouda. The triumph and tribulation of system stabilization. In Jean-Michel Helary and Michel
Raynal, editors, Distributed Algorithms, (9th WDAG’95), volume 972 of Lecture Notes in Computer
Science (LNCS), pages 1–18. Springer-Verlag, Le Mont-Saint-Michel, France, September 1995.

[5] Ted Herman. Adaptivity Through Distributed Convergence. PhD thesis, University of Texas - Austin,
TX, USA, 1991.

[6] A. Arora, M. Gouda, and G. Varghese. Constraint satisfaction as a basis for designing nonmasking
fault-tolerant systems. Journal of High Speed Networks, 5(3):293–306, 1996. A preliminary version
appeared at ICDCS’94.

[7] G. Varghese. Compositional proofs of self-stabilizing protocols. In Proceedings of the Third Workshop
on Self-Stabilizing Systems, pages 80–94, 1997.

[8] W. Leal and A. Arora. Scalable self-stabilization via composition. In IEEE International Conference
on Distributed Computing Systems, pages 12–21, 2004.

[9] Mohamed G. Gouda and Ted Herman. Adaptive programming. IEEE Transactions on Software Engi-
neering, 17(9):911–921, 1991.

[10] F. Stomp. Structured design of self-stabilizing programs. In Proceedings of the 2nd Israel Symposium
on Theory and Computing Systems, pages 167–176, 1993.

[11] Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Transactions on Computers, 43(9):1026–
1038, 1994.

[12] M. Gouda. Multiphase stabilization. IEEE Transactions on Software Engineering, 28(2):201–208, 2002.

[13] G. Varghese. Self-stabilization by local checking and correction. PhD thesis, MIT/LCS/TR-583, 1993.

[14] Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its application to self-
stabilization. Theoretical Computer Science, 186(1-2):199–229, 1997.

[15] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In
Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, pages 268–277,
1991.

[16] Fuad Abujarad and Sandeep S. Kulkarni. Automated constraint-based addition of nonmasking and
stabilizing fault-tolerance. Journal of Theoretical Computer Science, 258(2):3–15, 2011. In Press.

[17] Ali Ebnenasir and Aly Farahat. A lightweight method for automated design of convergence. In Pro-
ceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
219–230, 2011.

[18] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering, 19(11):1015–1027, 1993.

[19] M. Gouda. The theory of weak stabilization. In 5th International Workshop on Self-Stabilizing Systems,
volume 2194 of Lecture Notes in Computer Science, pages 114–123, 2001.

[20] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.

[21] S. Dolev and T. Herman. Parallel composition of stabilizing algorithms. In 19th IEEE International
Conference on Distributed Computing Systems (ICDCS), Workshop on Self-Stabilizing Systems, pages
25–32, June 1999.

[22] P. Godefroid. Using partial orders to improve automatic verification methods. In Computer-Aided
Verification, pages 176–185. Springer, 1991.



[23] Mohamed G. Gouda and Hrishikesh B. Acharya. Nash equilibria in stabilizing systems. In 11th In-
ternational Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 311–324,
2009.

[24] B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in automated synthesis of dis-
tributed programs with large state space. In Proceedings of the 27th International Conference on Dis-
tributed Computing Systems, pages 3–10, Washington, DC, USA, June 2007. IEEE Computer Society.

[25] S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algorithms via systematic
randomization. In Proceedings of the International Workshop on Parallel Processing, pages 668–673.
Citeseer, 1994.

[26] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 82–93, London, UK, 2000. Springer-Verlag.

[27] Borzoo Bonakdarpour and Sandeep S. Kulkarni. Revising distributed UNITY programs is NP-complete.
In 12th International Conference on Principles of Distributed Systems (OPODIS), pages 408–427, 2008.

[28] E. Emerson and V. Kahlon. Model checking large-scale and parameterized resource allocation systems.
Tools and Algorithms for the Construction and Analysis of Systems, pages 55–69, 2002.

[29] E.A. Emerson and V. Kahlon. Parameterized model checking of ring-based message passing systems.
In Computer Science Logic, pages 325–339. Springer, 2004.

[30] E. Emerson and V. Kahlon. Reducing model checking of the many to the few. Automated Deduction-
CADE-17, pages 236–254, 2000.

[31] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In conference record of the ACM symposium
on principles of programming languages, volume 22, pages 85–94. Association of Computer Machinery,
1995.

[32] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants. In
Automatic Verification Methods for Finite State Systems, pages 68–80. Springer, 1990.

[33] R.P. Kurshan and K. McMillan. A structural induction theorem for processes. In Proceedings of the
eighth annual ACM Symposium on Principles of distributed computing, pages 239–247. ACM, 1989.

[34] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action*. CONCUR 2002Concur-
rency Theory, pages 217–264, 2002.

[35] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants. Tools and
Algorithms for the Construction and Analysis of Systems, pages 82–97, 2001.

[36] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In Verification, Model
Checking, and Abstract Interpretation, pages 109–132. Springer, 2004.

[37] K. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In Verification,
Model Checking, and Abstract Interpretation, pages 299–313. Springer, 2007.

[38] Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and automatic verification.
In Automatic Verification Methods for Finite State Systems, pages 151–165. Springer, 1990.

[39] E. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstraction and regular
languages. CONCUR’95: Concurrency Theory, pages 395–407, 1995.

[40] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich asser-
tional languages. In Computer Aided Verification, pages 424–435. Springer, 1997.

[41] B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying infinite-state systems.
Tools and Algorithms for the Construction and Analysis of Systems, pages 220–235, 2000.



[42] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In Computer Aided
Verification, pages 403–418. Springer, 2000.

[43] P. Abdulla, G. Delzanno, N. Henda, and A. Rezine. Regular model checking without transducers (on
efficient verification of parameterized systems). Tools and Algorithms for the Construction and Analysis
of Systems, pages 721–736, 2007.

[44] P.A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking. CONCUR
2004–Concurrency Theory, pages 35–48, 2004.

[45] William Yurcik. Survivable ATM group communications using disjoint meshes, trees, and rings. In
Networked Group Communication, volume 1736 of Lecture Notes in Computer Science, pages 235–243.
Springer, 1999.


