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Abstract—The focus of this paper is on the synthesis
of unidirectional symmetric ring protocols that are self-
stabilizing. Such protocols have an unbounded number
of processes and unbounded variable domains, yet they
ensure recovery to a set of legitimate states from any state.
This is a significant problem as many distributed systems
should preserve their fault tolerance properties when they
scale. While previous work addresses this problem for
constant-space protocols where domain size of variables
are fixed regardless of the ring size, this work tackles the
synthesis problem assuming that both variable domains and
the number of processes in the ring are unbounded (but
finite). We present a sufficient condition for synthesis and
develop a sound algorithm that takes a conjunctive state
predicate representing legitimate states, and generates the
parameterized actions of a protocol that is self-stabilizing to
legitimate states. We characterize the unbounded nature of
protocols as semilinear sets, and show that such characteri-
zation simplifies synthesis. The proposed method addresses
a longstanding problem because recovery is required from
any state in an unbounded state space. For the first time,
we synthesize some self-stabilizing unbounded protocols,
including a near agreement and a parity protocol.

I. INTRODUCTION

This paper investigates the problem of synthesizing
Self-Stabilizing unidirectional Symmetric ring protocols
with Unbounded number of processes and unbounded
variable domains, called SS-SymU protocols (a.k.a. un-
bounded uni-rings). A process contains a set of atomic
actions. When an action of a process is executed, it
is disabled until enabled again by the neighborning
processes; i.e., self-disabling actions. In a symmetric
ring, the actions of each process are generated from
a template process by a simple variable re-indexing.
A self-stabilizing protocol automatically recovers (in a
finite number of steps) to a set of legitimate states I
from any arbitrary state [1]; i.e., all states are initial
states. Such recovery should be achieved without the
intervention of a central authority. The significance of
this synthesis problem is multi-fold. First, while uni-

ring is a simple topology, it is of practical importance
in distributed systems where the underlying communi-
cation topology may include cyclic structures. Second,
the unboundedness of the ring size and variable do-
mains is a requirement where networks scale up and
buffer sizes grow. The elegance of many distributed
protocols/algorithms (e.g., logical clocks [2], Dijkstra’s
token passing [1], unbounded registers [3]) is due to
the assumption of unbounded variable domains and pro-
cesses, which makes it significant to develop tools that
can synthesize such protocols under the unboundedness
assumption. Third, self-stabilization is an important fault
tolerance property that enables decentralized recovery in
the presence of transient faults, which perturb the system
state without causing permanent damages. While previ-
ous work [4], [5], [6], [7], [8] addresses the verification
and synthesis of parameterized symmetric uni-rings, the
domain size of variables remains constant regardless of
the ring size. To the best of our knowledge, this paper
presents the first method for the synthesis of SS-SymU
protocols that are unbounded in terms of both the number
of processes and variable domains.

Most existing methods for the synthesis of self-
stabilizing protocols either focus on fixed-size protocols
or consider an unbounded number of processes only;
variable domains are considered bounded. For example,
specification-based methods [9] compose a pair of tem-
plate processes to reason about the global safety and
local liveness properties of parameterized synchroniza-
tion skeletons. Methods for fixed-size synthesis [10],
[11], [12], [13] consider a fixed upper bound k on
the number of processes, and generate a solution that
is correct up to k processes. To enable the synthesis
of parameterized self-stabilizing systems where solu-
tions work for an arbitrary number of n processes,
some approaches rely on parameterized synthesis [14]
where an implementation is generated for a parame-



terized specification and a parameterized architecture.
Such methods employ bounded [15] and SMT-based [11]
synthesis to show the correctness of a solution with
cutoff number of processes, where a solution exists for
a protocol with cutoff number of processes iff (if and
only if) a solution exists for the parameterized protocol
with unbounded number of processes. Other methods
[7] present cutoffs for the synthesis of self-stabilizing
protocols in symmetric networks, however, such cutoffs
can be quadratic/exponential in the bounded variable
domains depending on the structure of I. Synthesis of
parameterized systems with threshold guards [4] starts
with a sketch automaton (whose transitions have incom-
plete guard conditions capturing the number of received
messages), and complete the guards towards satisfying
program specifications. Our previous work [5] addresses
the synthesis of self-stabilizing parameterized protocols
where the local state space of the template process
remains constant.

Contributions. In contrast to most existing methods,
we propose a novel approach based on the synthesis
of semilinear sets in the unbounded local state space
of the template process of SS-SymU for conjunctive
predicates. Specifically, we start with a global state
predicate I = ∀i ∈ N :: L(xi−1, xi) where L(xi−1, xi)
denotes a local state predicate of the template process Pi
and xi is an abstraction of the local state of Pi. We then
generate a protocol that self-stabilizes to I regardless of
network size and the domain size of variables. Domain
size is of particular importance as some protocols may
not exist for specific domain sizes (e.g., Dijkstra’s token
ring [1] requires a domain size of at least N − 1 in a
ring of N processes). We utilize necessary and sufficient
conditions identified in [5], [6] for the livelock-freedom
of a solution with constant-space processes in order to
impose a structure on the unbounded transition system of
the template process. Such conditions require the exis-
tence of a value γ in the domain of xi for which L(γ, γ)
holds. Moreover, necessary and sufficient conditions for
livelock-freedom (under an unfair scheduler) require a
tree-like structure rooted at γ for the local state transition
system of the template process. While these results are
for constant-space processes, we generalize them for
unbounded domain sizes. Specifically, we show that if
the state transition system of the template process is a
semilinear set represented as an infinite tree rooted at γ,
then a solution exists. A semilinear set is the finite union
of a set of linear sets, where a linear set contains periodic
integer vectors. Based on this sufficient condition, we
develop a sound algorithm that takes L(xi−1, xi) and

generates the periodic linear sets of a semilinear set in
a way that their vectors are organized in a potentially
infinite tree rooted at γ. Each synthesized linear set
represents the unbounded structure of a protocol action.
We then use such linear sets to synthesize the parame-
terized actions of a protocol that self-stabilizes to I for
unbounded number of processes and unbounded domain
sizes. We demonstrate the proposed method using a near-
agreement and a parity protocol.
Organization. Section II provides some basic concepts.
Section III presents the proposed synthesis method.
Section IV demonstrates the application of the synthesis
method for some example protocols. Section V discusses
related work. Section VI makes concluding remarks and
discusses future research.

II. PRELIMINARIES

This section represents the definition of state predi-
cates, parameterized protocols and their representation as
locality graphs (adopted from [16], [17], [5], [6]), and
semilinear sets. Wlog, we use the term parameterized
protocol to refer to uni-ring symmetric protocols that
have both unbounded number of processes and un-
bounded variable domains. A protocol p includes N > 1
symmetric processes on a uni-ring, where the code of
each process is derived from the code of a template
process Pi by variable re-indexing. The template process
Pi has a variable xi whose domain abstracts the set of
valuations to all writable variables of Pi. The domain
of xi, denoted M = Dom(xi), can be unbounded
(but finite). Any local state of a process (a.k.a. local-
ity/neighborhood) is determined by a unique valuation
of its readable variables. We assume that any writable
variable is also readable. Network topology defines the
set of readable variables of a process. For example, in
a uni-ring consisting of N processes, each process Pi
(where i ∈ ZN , i.e., 0 ≤ i ≤ N − 1) has a predecessor
Pi−1, where subtraction is in modulo N . That is, Pi can
read the values of xi and xi−1, but can update only xi.
The global state of a protocol is defined by a snapshot
of the local states of all processes. The state space of a
protocol, denoted by Σp, is the universal set of all global
states. A state predicate is a subset of Σp. A process
acts (i.e., transitions) when it atomically updates its state
based on its locality.

We assume that processes act one at a time (i.e.,
interleaving semantics). Thus, each global transition
corresponds to the action of a single process from some
global state. An execution/computation of a protocol
is a sequence of states s0, s1, . . . , sk where there is a
transition from si to si+1 for every i ∈ Zk. The transition



function δ : Σp × Σp → Σp of the template process
captures its set of actions xi−1 = a∧xi = b −→ xi := c,
which can also be captured as triples of the form (a, b, c).
That is, δ(a, b) = c iff (if and only if) Pi has an action
xi−1 = a ∧ xi = b −→ xi := c. An action has two
components; a guard, which is a Boolean expression
in terms of readable variables and a statement that
atomically updates the state (i.e., writable variables) of
the process once the guard holds; i.e., the action is
enabled. Previous work [18] shows that assuming self-
disabling and deterministic processes simplifies synthesis
without undermining soundness and completeness. An
action (a, b, c) cannot co-exist with action (a, c, d) in a
self-disabling process for any d. A deterministic process
cannot have two actions enabled at the same time; i.e.,
an action (a, b, c) cannot co-exist with an action (a, b, d)
where d 6= c.

Definition II.1 (Action Graph). For a fixed domain size
M , we can depict the set of actions of the template
process of a symmetric uni-ring by a labeled directed
multigraph G = (V,A), called the action graph, where
each vertex v ∈ V represents a value in ZM , and
each arc (a, c) ∈ A with a label b captures an action
xi−1 = a ∧ xi = b −→ xi := c.

For example, consider the Parity protocol introduced
in [6]. Each process Pi has a variable xi ∈ Z3 (i.e.,
M = 3) and actions xi−1 = 0 ∧ xi = 1 −→ xi := 0,
xi−1 = 1 ∧ xi = 2 −→ xi := 0, and xi−1 =
2 ∧ xi = 1 −→ xi := 0. This protocol ensures that,
from any global state of a symmetric uni-ring, a state is
reached where processes agree on a common odd/even
parity. We formally specify these states as the state
predicate IPar = ∀i ∈ ZN : ((|xi−1 − xi| mod 2 = 0).
Throughout this paper, the subscript operations are mod-
ulo number of processes, and the arithmetic operations
in the state predicates, and in the guard and assign-
ment of actions are performed modulo M . Figure 7b
illustrates this protocol as an action graph containing
arcs (0, 1, 1), (1, 0, 1), (1, 2, 1), and (2, 1, 0). This is a
multigraph because of the arcs (1, 0, 1), (1, 2, 1).

Definition II.2 (Self-Stabilization and Convergence). A
protocol p is self-stabilizing [1] to a state predicate I iff
from any state in ¬I, every computation of p reaches
a state in I (i.e., convergence) and remains in I (i.e.,
closure). A state predicate I is closed in p iff there is no
transition (s, s′), where s ∈ I and s′ /∈ I. Notice that,
convergence of p to I requires that p does not reach a
deadlock, nor does it reach a livelock in ¬I. A deadlock
state is a global state where no process has any enabled

action. A livelock of a protocol p is an infinite cyclic
computation l = 〈s0, s1, · · · , s0〉, where si is a global
state, for i ≥ 0.

Definition II.3 (Locality Graph). Consider a global state
predicate I = ∀i ∈ ZN : L(xi−1, xi) for a protocol,
and a domain size M . The local predicate L(xi−1, xi)
captures a set of local states, representing an acceptable
relation between the states of each process Pi and the
states of its predecessor Pi−1. We represent L(xi−1, xi)
as a digraph G = (V,A), called the locality graph, such
that each vertex v ∈ V represents a value in ZM , and
an arc (a, b) is in A iff L(a, b) holds.

Figure 7a illustrates the locality graph of the Parity
protocol introduced in this section for the state predicate
ISN2. We have extensively studied [5], [6] the use of
locality and action graphs in reasoning about global
properties (e.g., livelocks). Our previous work [17], [5]
investigates the following synthesis problem, whereas in
Section III we solve this problem when its assumption
is lifted.

Problem II.4 (Synthesis of Symmetric Uni-Rings).

• Input: L(xi−1, xi), and the domain size M of xi.
• Output: The transition function δ (represented as an

action graph or parameterized actions) of a protocol
p such that the entire ring is self-stabilizing to I =
∀i : i ∈ ZN : L(xi−1, xi) for any ring size N ≥ 3.

• Assumption: M is fixed regardless of the ring size
N ; i.e., p has constant-space processes.

The following theorem (proved in [17], [5]) provides
the foundation of a synthesis method for parameterized
uni-rings with constant-space processes. In the rest of
this section, we present an overview of the synthesis
method of [5] since its knowledge is required for our
exposition.

Theorem II.5. There is a symmetric uni-ring protocol
p (with deterministic, self-disabling and constant-space
processes) that self-stabilizes to I = ∀i ∈ ZN :
L(xi−1, xi) for an unbounded (but finite) number of N
processes iff there is a vertex γ in the locality graph G of
L(xi−1, xi), where L(γ, γ) holds, and the action graph
of p is a directed spanning tree of G, sinking at γ as its
root [17], [5].

Algorithm 1 (introduced in [5]) takes as input the
local predicate L(xi−1, xi) and generates the set of
parameterized actions of a self-stabilizing uni-ring pro-
tocol. For example, Step 1 takes the local predicate
(|xi−1 − xi| mod 2 = 0) of IPar in Parity with domain



size 3, and initially generates its locality graph illustrated
in Figure 7a. This occurs because there is some γ for
which L(γ, γ) holds. Selecting γ as 1, Algorithm 2 gen-
erates the spanning tree of Figure 7b in Step 3 (excluding
the labels). Notice that, the output of Algorithm 2 is a
spanning tree of the locality graph of L(xi−1, xi) rooted
at γ, including a self-loop on γ. Step 4 of Algorithm 1
then includes the arc labels, where a value b becomes a
label for an arc (a, c) iff ¬L(a, b)∧(b 6= c). For example,
when labeling the arc (1, 1) in Figure 7b , a = 1, and
the algorithm looks for any value b in ZM such that
(|1 − b| mod 2) 6= 0 modulo 3. For M = 3, the values
0 and 2 are the only acceptable labels.

Algorithm 1. SynUniRing(L(xi−1, xi): state predicate,
M : domain size)

1: Check if a value γ ∈ ZM exists such that
L(γ, γ) = true.

2: If no such γ exists, then return ∅ and declare that
no solution exists.

3: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
4: Transform τ into an action graph of a protocol by

the following step:
For each arc (a, c) in τ , where a, c ∈
ZM , label (a, c) with every value b for
which L(a, b) = false and b 6= c.

5: Return the actions represented by the arcs of τ .
end

Algorithm 2. ConstructSpanningTree(L(xi−1, xi): state
predicate, M : positive integer, γ ∈ ZM )

1: Construct the locality graph G = (V,A) of
L(xi−1, xi) for domain size M .

2: Induce a subgraph G′ = (V ′, A′) that contains all
arcs of G that participate in cycles involving γ.

3: Construct a spanning tree τ rooted at γ for G′. Use
backward reachability to construct the spanning
tree.

4: For each node v ∈ G that is absent from G′,
include an arc from v to the root of τ . The
resulting graph would still be a tree, denoted τ ′.

5: Include a self-loop (γ, γ) at the root of τ ′.
6: Return τ ′.

end

Theorem II.5 explains why Algorithm 2 includes a
self-loop at the root γ (in Step 7). Moreover, the reason
why Algorithm 1 constructs a spanning tree is to ensure
deadlock and livelock-freedom. We have shown [5] that
the existence of such a spanning tree is necessary and
sufficient for convergence to I in symmetric uni-rings
with constant-space processes.

Definition II.6 (Vector). A vector of dimension d ≥ 1 of
non-negative integers is a tuple (a1, a2, · · · , ad) ∈ Nd,
where ai ∈ N for 1 ≤ i ≤ d.

Definition II.7 (Linear Set). Any non-empty subset of
Nd is linear [19] if it can be represented as a periodic
set of vectors L = {vb + Σni=1λi · pi : λi ∈ N}, vb ∈ Nd
is the base vector and {p1, · · · , pn} ⊆ Nd is a finite set
of period vectors.

For example, a singleton set L1 = {(5, 7)} is linear
(with dimension d = 2) because the base vector is (5, 7),
and there is a unique period vector (0, 0). Moreover,
the linear set L2 = {(3, 2), (4, 3), (5, 4), · · · } has a base
vector (3, 2) and a period vector p1 = (1, 1). That is,
L2 = {vb+λp1 : λ ∈ N}, where vb = (3, 2), n = 1, d =
2, p1 = (1, 1), and λ ∈ N.

Definition II.8 (Semilinear Set). A semilinear set [19] is
a finite union of some linear sets. Semilinear sets provide
a finite representation for finite and infinite subsets of
Nd.

Ginsburg and Spanier [20] show that semilinear sets
capture the sets of integers that are definable in the first-
order theory of integers with addition and order; i.e.,
Presburger arithmetic. Semilinear sets are closed under
Boolean operations [20].

III. SYNTHESIS METHOD

This section first presents a sufficient condition for the
existence of a SS-SymU protocol, and then provides a
sound algorithm for generating such protocols. We use
the Near Agreement (NA) protocol as a running example
to ease the presentation of this section.
Problem Statement. We solve Problem II.4 without its
assumption of constant-space processes. That is, pro-
cesses have unbounded (but finite) state spaces due to
the unboundedness of variable domains.
Example: Near Agreement (NA) Protocol. A node Pi in
a ring of N symmetric nodes nearly agrees with Pi−1
iff (xi−1 = xi) ∨ (xi−1 = xi + 1), where subtraction is
in modulo N and addition is done modulo M . Thus,
the entire ring should self-stabilize to INA = ∀i ∈
N :: L(xi−1, xi), where L(xi−1, xi) ≡ (xi−1 = xi) ∨
(xi−1 = xi + 1). Figure 3a illustrates the locality graph
of L(xi−1, xi) for M = 3. Our objective is to synthesize
a self-stabilizing NA protocol that is correct regardless
of the number of processes in the ring and the domain
size M .



A. Sufficient Condition for Solvability

Since Algorithm 1 is a sound and complete algorithm
for any fixed domain size M , one can enumeratively
increase the domain size and utilize Algorithm 1 to
generate a self-stabilizing protocol for each particular
M . However, such an approach would not bear fruit
for unbounded domain sizes unless we can ensure that
the structure of the spanning tree (and in turn the
action graph) that Algorithm 1 generates for M , will
be inductively preserved for M + 1 and beyond. This
is a challenge because when the domain size increases
to M + 1, the locality graph of L(xi−1, xi) may be
totally different; i.e., there will be new arcs and some
arcs may be removed. For example, observe how the
locality graphs in Figures 2a and 3a change when M is
increased from 2 to 3 for the NA protocol. To ensure
that the spanning tree’s structure would be preserved
when domain size increases, one approach is to keep
the arcs of the spanning tree τM for domain size M ,
and systematically include one more arc (a, a′) in τM to
derive another spanning tree τM+1 for the domain size
M +1. In turn, expanding the domain of xi from M +1
to M + 2 should ensure that τM+2 preserves all arcs of
τM+1 and includes an additional arc (b, b′) through some
function f such that f [(a, a′)] = (b, b′) and b = M + 1
modulo M + 2. Moreover, if f [(b, b′)] = (c, c′) when
the domain size increases to M + 3, then c− b = b− a
and c′ − b′ = b′ − a′ must hold. That is, the growth of
the spanning tree must be periodic. Moreover, the root
remains to be γ. If such conditions are met, then for any
domain size M , the conditions of Theorem II.5 hold.
Since the vertices of the spanning tree are non-negative
integers, each arc (a, b) in a tree is an integer vector. As
such, the vector (a, a′) would be the base vector of a
linear set and (b− a, b′ − a′) gives the period vector of
that linear set. Each one of the arcs in the first tree τM
for the initial domain size M would also form a finite
linear set. Therefore, the arcs of the unbounded spanning
tree would form a semilinear set.

Theorem III.1. Let I = ∀i ∈ N :: L(xi−1, xi), and
let there be a value γ for which L(γ, γ) holds starting
from some domain size M onward. If the arcs of the γ-
rooted spanning trees built for each domain size k ≥M
represent the periodic growth of a semilinear set, then
there is a symmetric uni-ring protocol that self-stabilizes
to I regardless of the ring size and domain size. (Proof
is due to Algorithm 3 and its soundness.)

B. Overview of the Synthesis Method

An implication of Theorem III.1 is that we no longer
have a finite spanning tree. Instead, we have an un-
bounded set of spanning trees τ0, τ1, · · · as the domain
size M grows. Put it another way, for an unbounded do-
main size, we have an unbounded spanning tree that has
an unbounded branching factor, or an unbounded depth
(or both). How do we formally represent such unbounded
structures to facilitate the synthesis of actions? Theorem
III.1 points us to semilinear sets. For example, Algorithm
1 generates the tree in Figure 2b for the NA protocol
and domain size 2, whose arcs represent a set of integer
vectors {(1, 1), (0, 1)}. Likewise, the trees in Figures 3b
to 5b respectively capture these three sets of integer vec-
tors: {(1, 1), (0, 1), (2, 1)}, {(1, 1), (0, 1), (2, 1), (3, 2)}
and {(1, 1), (0, 1), (2, 1), (3, 2), (4, 3)} for domain sizes
3 to 5. Notice that, the vectors (1, 1) and (0, 1) exist
in the intersection of all four sets and will be there for
larger domain sizes too. We call this set of vectors the
common core of an SS-SymU protocol, denoted C. The
remaining vectors can be generalized as the linear set
UC = {(2, 1), (3, 2), · · · } with the base vector (2, 1)
and the period vector (1, 1). We call the linear set UC
the unbounded core of the protocol. Since the common
core is finite, each vector in it can be represented as a
linear set. Thus, we first generate the linear sets of a
semilinear set that represents the unbounded spanning
tree of a protocol (Figure 1). Then, we synthesize a
parameterized action from each linear set.

C. Generating Linear Sets

This section presents an algorithm for the generation
of a semilinear set representing the unbounded spanning
tree of a protocol. This problem is divided into the formal
specifications of the common and unbounded cores of a
protocol as linear sets. A tree is acceptable as long as it
has a vertex corresponding to each value in a domain
size M and its root is a value γ ∈ ZM for which
L(γ, γ) holds. Algorithm 3 generates the linear sets of
an unbounded tree as Presburger formulas. Naturally,
we start with the domain size of 2. Steps 2 and 3 of
Algorithm 3 search for a value γ for which L(γ, γ) holds
for two consecutive odd and even domain sizes. This
search continues up to a preset upper bound B. Without
such an upper bound, the algorithm may never terminate.
Step 4 invokes Algorithm 2 for the construction of a
spanning tree for M and γ found in Step 3. The common
core C (see Step 5) then includes the integer vectors
corresponding to the arcs of the spanning tree τ built
in Step 4. After forming the common core, Algorithm



Fig. 1: Overview of the proposed synthesis method.

3 increases the domain size in Step 6. Such an increase
introduces a new value in the domain of xi, denoted
vM , which corresponds to a new vertex added to τ .
To determine how vM should be included in the tree,
Algorithm 3 identifies the set U of all vertices u for
which L(vM , u) holds. We ignore the arcs L(u, vM )
because connecting any non-leaf node to vM creates a
cycle in the tree. Moreover, connecting a leaf node l to
vM would result in two parents for l. Thus, the only
option for connecting vM to the tree is to include an
outgoing arc from vM to some other tree node. If the
set U is empty (Step 7), then vM is directly connected
to the root γ; i.e., an arc (vM , γ) is included in τ . In
this case, we consider (vM , γ) as the base vector of a
linear set and (1, 0) as the period vector. Such a linear
set captures the unbounded growth of the domain size
as new arcs connected to the root. That is, the root γ
would have an unbounded number of children. If U is
non-empty (Step 8), then a value w ∈ U is randomly
selected to be the parent of vM in the tree; i.e., the arc
(vM , w) is included in the tree. Every time the domain
size increases, the value of vM is incremented. For this
reason, the first element of the period vector must be
1. For simplicity, we consider the growth of w in an
incremental fashion too. That is, the period vector is
(1, 1) and the base vector is (vM , w). Overall, Steps 7
and 8 determine the values of the base vector (b, b′) and
the period vector (p, p′) of the unbounded core.

Algorithm 3. Gen LinearSets(L(xi−1, xi): state predi-
cate, B: positive integer)

1: M := 2.
2: If M ≥ B then declare that γ could not be found

and exit; // Upper bound reached.
3: If there is a solution for some value γ where

L(γ, γ) holds modulo M and M + 1, then go
to Step 4; otherwise, M := M +1 and go to Step
2.

4: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
5: C := Sτ where Sτ represents the set of arcs of τ

as a set of integer vectors. // The common core
detected

6: M ′ := M + 1 and let vM denote the new vertex
(i.e., value M modulo M ′) due to domain size
increase. Calculate the set U = {u | L(vM , u)
holds };

7: If U = ∅ then include arc (vM , γ) every time
the domain is increased. Set the base vector to
(vM , γ), and the period vector to (1, 0). Thus,
(b, b′) := (vM , γ), and (p, p′) := (1, 0). // Un-
bounded core UC.

8: Else select an arc (vM , w) for some value w ∈ U
as the base vector. Set the base vector to (vM , w),
and the period vector to (1, 1). Thus, (b, b′) :=
(vM , w), and (p, p′) := (1, 1). // Unbounded core
UC.

9: For each integer vector (c, d) ∈ C, return formulas
φ(xi−1)

def
= (xi−1 = c), ψ(x′i)

def
= (x′i = d), and

ψx′
i
(xi−1)

def
= d.

10: Corresponding to the unbounded core UC con-
structed in Steps 7 and 8, return formulas
φ(xi−1)

def
= (xi−1 = b+λp), ψ(xi−1, x

′
i)

def
= (x′i =

xi−1 + (b′ − b) + λ(p′ − p)), and ψx′
i
(xi−1)

def
=

(xi−1 + (b′ − b) + λ(p′ − p)), where λ ∈ N.
end

Steps 9 and 10 specify the linear sets corresponding to
the common core and the unbounded core as Presburger
formulas [20]. Each integer vector (a, b) in a linear
set actually represents an atomic action of the protocol
specified as xi−1 = a ∧ C(xi−1, xi) → xi := b,
where C(xi−1, xi) is a Boolean expression specified in
terms of xi and xi−1. Since the second element of each
vector (a, b) represents the updated value of xi, we use
the notation x′i instead of xi when formally specifying
the linear sets of a semilinear set. For example, we
specify the linear set {(0, 1)} as xi−1 = 0 ∧ x′i = 1.
Each such formula provides an incomplete sketch of an
action, which should be completed in subsequent steps
of synthesis. In general, we specify a linear set L with
the base vector (b, b′) and the period vector (p, p′) as
{(xi−1, x′i) | ∀λ ∈ N :: (xi−1 = b + λp) ∧ (x′i =
b′ + λp′)}. Since xi−1 and x′i are free variables and
λ is known to be a natural value, we eliminate the
quantifications in Steps 9 and 10 of Algorithm 3. Let
F1 = (xi−1 = b+ λp) and F2 = (x′i = b′ + λp′). Sub-



tracting F1 from F2 relates x′i with xi−1 as ψ(xi, x
′
i)

def
=

x′i = xi−1 +(b′− b)+λ(p′−p) (Step 10). Factoring out
x′i, we get ψx′

i
(xi−1)

def
= (xi−1 + (b′− b) +λ(p′−p)). In

fact, ψx′
i
(xi−1) represents the expression that should be

assigned to xi in the action corresponding to the linear
set L.
The NA protocol. Figures 2a and 2b respectively repre-
sent the locality graph and the spanning tree of NA for
M = 2. Figures 3 to 5 illustrate the locality graphs and
the spanning trees for domain sizes 3 to 5. The semilinear
set of the NA protocol can be specified as the union of
the following linear sets:

0 1

(a) Locality graph represent-
ing predicate L(xi−1, xi) in
NA.

0 1

(b) A spanning tree rooted at
1.

Fig. 2: Locality graph and a spanning tree of NA for
M = 2.

0 1

2

(a) Locality graph represent-
ing predicate L(xi−1, xi) in
NA.

0 1

2

(b) A spanning tree rooted at
1.

Fig. 3: Locality graph and a spanning tree of NA for
M = 3.

• Linear set 1: The base vector is (1, 1), and the
period vector is (0, 0). That is, for the unbounded
domain M , this set would be equal to {(xi−1, x′i) |
xi−1 = (1 +λ0) = 1 and x′i = (1 +λ0) = 1 where
λ ∈ N}. Since the period vector is (0, 0), this set
includes just a single vector; i.e., {(1, 1)}. Thus, we
have φ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
= (x′i =

1) and ψx′
i
(xi−1)

def
= 1 for this linear set.

• Linear set 2: The base vector is (0, 1), and the
period vector is (0, 0). Thus, we have φ(xi−1)

def
=

(xi−1 = 0), ψ(xi−1, x
′
i)

def
= (x′i = 1) and

ψx′
i
(xi−1)

def
= 1.

0 1

3 2

(a) Locality graph represent-
ing predicate L(xi−1, xi) in
NA.

0 1

3 2

(b) A spanning tree rooted at
1.

Fig. 4: Locality graph and a spanning tree of NA for
M = 4.

0 1

4 3 2

(a) Locality graph represent-
ing predicate L(xi−1, xi) in
NA.

0 1

4 3 2

(b) A spanning tree rooted at
1.

Fig. 5: Locality graph and a spanning tree of NA for
M = 5.

• Linear set 3: Using the base vector (2, 1), and the
period vector (1, 1), this linear set is specified as
{(xi−1, x′i) | xi−1 = 2 + λ and x′i = 1 + λ where
λ ∈ N}. Step 10 gives φ(xi−1)

def
= (xi−1 = 2 + λ),

which means φ(xi−1)
def
= (xi−1 ≥ 2). Moreover,

we have ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1), and

ψx′
i
(xi−1)

def
= (xi−1 − 1).

The union of the above linear sets forms a semilinear
set that captures the unbounded spanning tree of the NA
protocol.

Theorem III.2. Algorithm 3 terminates.

Proof. Since the upper bound B is a finite value, Algo-
rithm 3 exits in Step 2 if there is no γ ∈ ZM for any M
up to B. Otherwise, Algorithm 3 jumps to Step 4, and
moves through the remaining unconditional statements
and terminates.

Theorem III.3. Algorithm 3 is sound. That is, it cor-
rectly generates a semilinear set representing an un-
bounded spanning tree rooted at γ.

Proof. We prove two cases. First, we show that the
common core C constructed in Step 5 is a finite union



of some linear sets. Due to the correctness of Algorithm
2 (shown in [5]), the structure τ generated in Step 4 is
actually a finite spanning tree for the value of M (in
Step 4). Thus, the set of arcs of τ , denoted Sτ , is a
finite set of integer vectors. Each vector (a, b) ∈ Sτ can
be considered as the base vector of a linear set with the
period vector (0, 0). That is, Sτ is a finite union of some
linear sets.

Second, we show that the union of τ and the un-
bounded core generated in Steps 7 and 8 is an unbounded
spanning tree rooted at γ. We show this by induction on
M .

• Base Case: The initial value of M , denoted Minit,
is the value of M in Step 4. The correctness of
Algorithm 2 ensures that τ generated in Step 4 is a
spanning tree of L(xi−1, xi) rooted at γ for Minit.
Moreover, as mentioned before, the common core
is a finite union of linear sets; i.e., a semilinear set.

• Inductive hypothesis: For a domain size k > Minit,
the structure built by the linear set generated in
Steps 7 and 8 is a spanning tree rooted at γ for
domain size k. Let τk denote this spanning tree.
Since k is a finite value, a reasoning similar to the
base case shows that the set of vectors of τk form
a semilinear set.

• Inductive step: We start with τk. By the hypothesis,
τk = (Vk, Ak) is a spanning tree rooted at γ for
domain size k, where Vk denotes the set of vertices
of τk and Ak represents its set of arcs. Incrementing
the domain size to k + 1, we add a new vertex uk
to Vk, where uk is actually equal to the value k
modulo k + 1. The vertex uk is connected to τk
by one of the two arcs identified in Steps 7 and
8. That is, we include either an arc (uk, γ) or an
arc (uk, w) for some value w modulo k, but not
both. The arc (uk, γ) preserves the tree structure
and connects uk to τk. The resulting structure is a
spanning tree modulo k+ 1. If we include (uk, w),
then the tree structure is preserved because 0 ≤ w ≤
k − 1; i.e., the parent of uk is a value modulo k.
This means that an existing node in τk would have
the new child uk. The process of including a new
vertex and arc does not change the root; i.e., the
root remains γ. Thus, no cycles are formed and the
resulting tree, denoted τk+1, is a connected graph
over Vk ∪ {uk} rooted at γ.
We now show that the growth of the unbounded
core is periodic. Observe that, either in Step 7 or
in Step 8, Algorithm 3 identifies the period vector
to be either (1, 0) or (1, 1). This means that every

pair of vectors (a, a′) and (b, b′) that are consecu-
tively included in the unbounded core satisfy either
(b−a = 1)∧(b′ = a′) or (b−a = 1)∧(b′−a′ = 1),
where a, a′, b, b′ are non-negative integers. Such
periodicity implies the existence of a linear set
corresponding to the unbounded core with the base
vector (b, b′) and the period vector (p, p′) identified
in Step 7 or 8.

D. Synthesizing Parameterized Actions from Linear Sets

This section presents a method for the synthesis of
parameterized actions of self-stabilizing protocols from
linear sets. Each linear set in the semilinear set represents
the structure of an individual action in a protocol with
deterministic and self-disabling process. However, such
a structure lacks details of the guard and statement of
each action. Thus, the question is: how do we synthesize
the guard of each action? and how do we synthesize
the statement of each action? The guard of each action
includes three components: (1) its structure (taken from
a linear set); (2) ¬L(xi	1, xi), and (3) the self-disabling
condition, which is the negation of the statement of the
action. Since a linear set contains integer vectors (a, b)
where a represents the value that xi−1 should have be-
fore the value of xi is updated to b, the first component of
a guard includes all values of xi−1 that make the formula
φ(xi−1) true, and the statement of the guard should
make ψ(xi−1, x

′
i) true. Moreover, an action is enabled

for all values of xi (in the current state of a process) that
make L(xi−1, xi) false, which is why ¬L(xi−1, xi) is a
part of the guard condition. The statement of the action
should make L(xi−1, xi) true. Moreover, once an action
is executed, it should disable itself; i.e., self-disabling
assumption. This means that the guard of an action
should contain the negation of the expression that holds
after the execution of the action. Thus, the third compo-
nent of a guard is ¬ψ(xi−1, xi). In the computation of
ψ(xi−1, xi), Algorithm 4 uses the values of xi−1 and xi
in the current state of process Pi, before xi is updated.
In summary, the guard of each action would be equal
to φ(xi−1) ∧ ¬L(xi−1, xi) ∧ ¬(xi = ψx′

i
(xi−1)) (see

Algorithm 4). Since x′i represents the updated value of xi
in ψ(xi−1, x

′
i), one can refactor ψ(xi−1, x

′
i) in order to

generate ψx′
i
(xi−1), which denotes ψ(xi−1, x

′
i) modulo

x′i. That is, ψx′
i
(xi−1) treats x′i as a function of xi−1.

This way, we create the assignment xi := ψx′
i
(xi−1) in

Line 2 of Algorithm 4.

Algorithm 4. Gen Actions(φ(xi−1), ψ(xi−1, x
′
i):

Presburger formula corresponding to a linear set,



L(xi−1, xi): State predicate)
1: G def

= φ(xi−1)∧¬L(xi−1, xi)∧¬(xi = ψx′
i
(xi−1))

2: A def
= (xi := ψx′

i
(xi−1))

3: Return G → A
end

1) Example: Synthesis of the Actions of the NA Pro-
tocol: We first demonstrate how we generate the action
corresponding to the linear set (1, 1). We take the output
of Algorithm 3 for this linear set (i.e., φ(xi−1)

def
=

(xi−1 = 1), ψ(xi−1, x
′
i)

def
= (x′i = 1) and ψx′

i
(xi−1)

def
= 1)

and generate its action. The components of the guard of
the first action capturing the self-loop on 1 include the
following:
• ¬L(xi−1, xi): Since L(xi−1, xi) = (xi−1 = xi) ∨

(xi−1 = xi+1), we include the constraint (xi−1 6=
xi) ∧ (xi−1 6= xi + 1) in the guard of this action.

• Linear set constraint: This linear set imposes the
constraint φ(xi−1) ≡ (xi−1 = 1) on the guard of
the action.

• Self-disabling constraint: We use ψ(xi−1, x
′
i)

def
=

(x′i = 1) to specify this constraint. To this end,
we first determine the assignment of the action
using ψx′

i
(xi−1)

def
= 1. Thus, the assignment is just

xi := 1. As a result, the self-disabling constraint is
the negation of xi = 1; i.e., xi 6= 1.

Thus, the synthesized action is (xi−1 = 1)∧ (xi−1 6=
xi)∧(xi−1 6= xi+1)∧(xi 6= 1)→ xi := 1. Likewise, the
action generated from the linear set {(0, 1)} is (xi−1 =
0)∧(xi−1 6= xi)∧(xi−1 6= xi+1)∧(xi 6= 1)→ xi := 1.

We now generate the action corresponding to the
linear set {(xi−1, x′i) | xi−1 = 2 + λ and x′i = 1 + λ
where λ ∈ N}. Corresponding to this unbounded linear
set, Algorithm 3 generates φ(xi−1)

def
= (xi−1 ≥ 2),

ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1) and ψx′

i
(xi−1)

def
=

(xi−1 − 1). Similar to the previous action, we first
synthesize the three components of the guard of this
action, and then generate its assignment.
• ¬L(xi−1, xi): This part is again (xi−1 6= xi) ∧

(xi−1 6= xi + 1) for the same reason discussed for
the first action.

• Linear set constraint: The constraint φ(xi−1) re-
quires that we include (xi−1 ≥ 2) as part of the
guard condition.

• Self-disabling constraint: Using ψx′
i
(xi−1)

def
=

(xi−1 − 1), we realize that the assignment of this
action establishes the condition (xi = xi−1 − 1).
Thus, we include the constraint (xi 6= xi−1 − 1) in
the guard, and xi := xi−1− 1 as the assignment of
this action.

Putting everything together, we get the following ac-
tion for this unbounded linear set: (xi−1 ≥ 2)∧ (xi−1 6=
xi) ∧ (xi 6= xi−1 − 1)→ xi := xi−1 − 1.
Sample executions. Consider a computation of a ring
of four processes for a domain size M = 4 (i.e.,
xi ∈ Z4) starting at the state s0 = 〈0, 2, 1, 3〉, where the
underlined values indicate the enabled processes based
on the synthesized actions. That is, processes P0, P1 and
P3 are enabled. For example, P0 is enabled because
x0 = 0 ∧ x3 = 3 and the third action is enabled.
Using a similar reasoning, one can figure out why P1

and P3 are enabled at s0. For brevity, we demonstrate a
synchronous execution of this ring, but one can extract
an asynchronous interleaving of processes that converges
to the same final state. Starting at s0, all three enabled
processes can execute, where the entire ring transitions
to the state s1 = 〈2, 1, 1, 1〉, and then reaches the
state s2 = 〈1, 1, 1, 1〉, where everyone agrees with
its predecessor. For a domain size M = 5 and an
arbitrary start state 〈0, 2, 0, 3〉, the NA protocol generates
the following computation: 〈2, 1, 1, 1〉, 〈1, 1, 1, 1〉. As
another example, consider a larger ring of five processes
and M = 5. Starting at 〈0, 4, 2, 3, 1〉, the NA protocol
will converge through the following states: 〈0, 4, 3, 1, 2〉,
〈1, 4, 3, 2, 1〉, 〈1, 1, 3, 2, 1〉, 〈1, 1, 1, 2, 1〉, 〈1, 1, 1, 1, 1〉.
Yet another example includes a case of M = 7 and
six processes in the ring. Starting at 〈6, 2, 0, 3, 6, 4〉,
the NA protocol has the following converging compu-
tation: 〈3, 5, 1, 1, 2, 5〉, 〈4, 2, 4, 1, 1, 1〉, 〈1, 3, 1, 3, 1, 1〉,
〈1, 1, 2, 1, 1, 1〉, 〈1, 1, 1, 1, 1, 1〉. Observe that, the syn-
thesized NA protocol is self-stabilizing for different ring
sizes and domain sizes.

IV. CASE STUDIES

This section presents three more case studies for the
synthesis of self-stabilizing parameterized protocols with
unbounded variables. Section IV-A presents the synthesis
of a parity protocol. Then, Section IV-B discusses the
SumNot2 protocols, and Section IV-C introduces a self-
stabilizing SumNotOdd protocol. For all examples, the
subscript operations are modulo number of processes,
and the arithmetic operations in the guard and assign-
ment of an action are performed modulo M .

A. The Parity Protocol

This section demonstrates the synthesis of a Parity
protocol, where processes in the uni-ring should con-
verge to an agreed-upon parity starting from any arbi-
trary state. Formally, the entire ring should self-stabilize
to states where ∀i : i ∈ N : (|xi−1 − xi| mod 2) = 0
holds. (Notice that, |xi−1 − xi| =max(xi−1 − xi, xi −



xi−1).) Figures 6 to 9 illustrate how the spanning tree of
Parity grows as the domain size increases. The common
core is {(0, 0), (1, 0)}. We synthesize an action corre-
sponding to each linear set.
• Linear set 1: The self-loop on 0 can be repre-

sented as a linear set with the base vector (0, 0)
and the period vector (0, 0). Algorithm 3 outputs
φ(xi−1)

def
= (xi−1 = 0), ψ(xi−1, x

′
i)

def
= (x′i = 0),

and ψx′
i
(xi−1)

def
= 0. Thus, the assignment of the ac-

tion is xi := 0, and the requirement of having self-
disabling actions would be xi 6= 0. The constraint
¬L(xi−1, xi) provides (|xi−1 − xi| mod 2) 6= 0.
Thus, the synthesized action is (xi−1 = 0) ∧
((|xi−1 − xi| mod 2) 6= 0) ∧ (xi 6= 0)→ xi := 0.

• Linear set 2: The base vector of this linear set is
(1, 0) and its period vector is (0, 0). As a result, we
have φ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
= (x′i =

0), and ψx′
i
(xi−1)

def
= 0. The assignment of the

action is xi := 0, which leads to the self-disabling
constraint xi 6= 0. The constraint ¬L(xi−1, xi)
provides ((|xi−1 − xi| mod 2) 6= 0). Thus, the
synthesized action is (xi−1 = 1) ∧ ((|xi−1 −
xi| mod 2) 6= 0) ∧ (xi 6= 0)→ xi := 0.

• Linear set 3: Using the base vector (2, 0) and the
period vector (1, 1), this linear set contains integer
vectors S3 = {(xi−1, x′i) | (xi−1 = 2 + λ) ∧
(x′i = λ) where λ ∈ N}. Algorithm 3 gives us
φ(xi−1)

def
= (xi−1 = 2 + λ), which can be written

as φ(xi−1)
def
= (xi−1 ≥ 2). Algorithm 3 also outputs

ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 2), and ψx′

i
(xi−1)

def
=

(xi−1 − 2). The assignment of the action is ob-
tained from ψx′

i
(xi−1)

def
= (xi−1 − 2), leading to

xi := xi−1−2. Thus, the synthesized action for this
linear set is (xi−1 ≥ 2) ∧ ((|xi−1 − xi| mod 2) 6=
0) ∧ (xi 6= xi−1 − 2)→ xi := xi−1 − 2.

0 1

(a) Locality graph
representing predicate
(xi−1 − xi) mod 2 = 0 in
the Parity protocol.

0 1

(b) A spanning tree rooted at
1.

Fig. 6: Locality graph and a spanning tree of the Parity
protocol for domain size 2.

B. SumNot2 Protocol
The SumNot2 protocol is a simple but non-trivial

protocol to synthesize, initially introduced in [21]. To

0 1

2

(a) Locality graph
representing predicate
(xi−1 − xi) mod 2 = 0 in
the Parity protocol.

0 1

2

1

2

1

(b) A spanning tree rooted at
1.

Fig. 7: Locality graph and a spanning tree of the Parity
protocol for domain size 3.
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(a) Locality graph
representing predicate
(xi−1 − xi) mod 2 = 0 in
the Parity protocol.

0 1

2 3

(b) A spanning tree rooted at
1.

Fig. 8: Locality graph and a spanning tree of the Parity
protocol for domain size 4.

illustrate the intricacies of synthesizing unbounded pro-
tocols, we use the SumNot2 protocol. Starting from any
arbitrary state, the entire ring should self-stabilize to
states where ISN2 = ∀i ∈ N :: (xi−1 + xi) 6= 2 holds.
We follow Algorithm 3 to synthesize the semilinear
set of SumNot2 and then generate its parameterized
actions. Figures 10 to 13 illustrate the locality graphs
and spanning trees for domain sizes 2 to 5. These figures
show how the unbounded spanning tree grows when M
is increased. The common core of SumNot2 contains the
arcs of the tree in Figure 10b; i.e., {(0, 0), (1, 0)}. We
now specify the linear sets corresponding to the growth
of the spanning tree for unbounded domains.

• Linear set 1: The self-loop on 0 can be represented
as a linear set with the base vector (0, 0) and the
period vector (0, 0). This set can be specified as
formulas φ(xi−1)

def
= (xi−1 = 0) and ψ(xi−1, x

′
i)

def
=

(x′i = 0), which results in ψx′
i
(xi−1)

def
= 0. Notice

that, ψ(xi−1, x
′
i)

def
= (x′i = 0) means that xi

should be updated to 0 by this action. Thus, the
assignment of this action would be xi := 0. The



0 1

2 34

Fig. 9: A spanning tree of the Parity protocol for domain
size 5.

guard of the action corresponding to this linear
set includes three constraints, namely the constraint
imposed by this linear set (i.e., φ(xi−1)), the con-
straint ¬L(xi−1, xi) and the self-disabling con-
straint (xi 6= 0). We also know that ¬L(xi−1, xi) ≡
(xi−1 +xi = 2). As a result, the synthesized action
is (xi−1 = 0)∧(xi−1+xi = 2)∧(xi 6= 0)→ xi :=
0.

• Linear set 2: The base vector is (1, 0) and the period
vector is (0, 0). The formulas φ(xi−1)

def
= (xi−1 =

1) and ψ(xi−1, x
′
i)

def
= (x′i = 0) represent this

linear set. Thus, we have ψx′
i
(xi−1)

def
= 0. A similar

reasoning to that of the previous case would give
us the action (xi−1 = 1)∧ (xi−1 +xi = 2)∧ (xi 6=
0)→ xi := 0.

• Linear set 3: The base vector is (2, 1) and the period
vector is (1, 1). This linear set is a periodic set of
integer vectors {(xi−1, x′i) | (xi−1 = 2 + λ) ∧
(x′i = 1 + λ) where λ ∈ N}. Thus, Algorithm
3 returns φ(xi−1)

def
= (xi−1 = 2 + λ), which

can be represented as φ(xi−1)
def
= (xi−1 ≥ 2).

Moreover, we have ψ(xi−1, x
′
i)

def
= (x′i = 1 + λ),

which means ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1), and

ψx′
i
(xi−1)

def
= (xi−1 − 1). Thus, the assignment of

the action is xi := xi−1 − 1, and the self-disabling
constraint would be xi 6= xi−1 − 1. Thus, we get
the action: (xi−1 ≥ 2) ∧ (xi−1 + xi = 2) ∧ (xi 6=
xi−1 − 1)→ xi := xi−1 − 1.

0 1

(a) Locality graph represent-
ing predicate (xi−1+xi) 6= 2
in the SumNotTwo protocol.

0 1

(b) A spanning tree rooted at
0.

Fig. 10: Locality graph and a spanning tree of the
SumNotTwo protocol for domain size 3.
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(a) Locality graph represent-
ing predicate (xi−1+xi) 6= 2
in the SumNotTwo protocol.
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(b) A spanning tree rooted at
1.

Fig. 11: Locality graph and a spanning tree of the
SumNotTwo protocol for domain size 3.
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(a) Locality graph represent-
ing predicate (xi−1+xi) 6= 2
in the SumNotTwo protocol.
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2 3

(b) A spanning tree rooted at
1.

Fig. 12: Locality graph and a spanning tree of the
SumNotTwo protocol for domain size 4.

C. SumNotOdd Protocol

A more general form of SumNot2 includes the two
protocols SumNotOdd and SumNotEven. In this section,
we synthesize a self-stabilizing SumNotOdd protocol on
unbounded uni-rings. The self-stabilization of SumNo-
tOdd requires that reovery is achieved to ISNO = ∀i ∈
N :: (xi−1 + xi) mod 2 = 0 from any state in the
unbounded state space of SumNotOdd. Steps 2 and 3
result in γ = 1. Figure 14 illustrates the locality graph
and the spanning tree τ generated in Step 4. Increasing
the domain size to M = 3, we get the locality graph and
the spanning tree in Figure 15. Thus, the common core
is {(0, 1), (1, 1)}. Moreover, since (2, 1) is included as
the base vector in Step 8 of Algorithm 3 (see Figure 15),
the period vector is set to (1, 1).

We now synthesize the action corresponding to each
linear set.
• Linear set 1: Similar to previous case studies, the

self-loop on 1 can be represented as a linear set
with the base vector (1, 1) and the period vector
(0, 0). Considering that ¬L(xi−1, xi) is (xi−1 +
xi) mod 2 6= 0, we get the following action for
this linear set: (xi−1 = 1) ∧ ((xi−1 + xi) mod 2 6=
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2 3 4

Fig. 13: A spanning tree of the SumNotTwo protocol for
domain size 5.

0 1

(a) Locality graph
representing predicate
(xi−1 + xi) mod 2 = 0 in
the SumNotOdd protocol.

0 1

(b) A spanning tree rooted at
1.

Fig. 14: Locality graph and a spanning tree of the
SumNotOdd protocol for domain size 2.

0) ∧ (xi 6= 1)→ xi := 1.
• Linear set 2: The base vector is (0, 1) and the period

vector is (0, 0) would give us the action (xi−1 =
0)∧((xi−1+xi) mod 2 6= 0)∧(xi 6= 1)→ xi := 1.

• Linear set 3: This linear set captures the unbounded
core of the protocol with the base vector (2, 1) and
the period vector (1, 1). Thus, we specify this linear
set as {(xi−1, x′i) | (xi−1 = 2 + λ) ∧ (x′i = 1 + λ)
where λ ∈ N}. Step 10 of Algorithm 3 gives us
φ(xi−1)

def
= (xi−1 = 2+λ); i.e., φ(xi−1)

def
= (xi−1 ≥

2). Further, we get ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1)

and ψx′
i
(xi−1)

def
= (xi−1− 1). Thus, the synthesized

action for this linear set is (xi−1 ≥ 2) ∧ ((xi−1 +
xi) mod 2 6= 0)∧(xi 6= xi−1−1)→ xi := xi−1−1.

V. RELATED WORK

This section discusses the state-of-the-art in the ver-
ification and synthesis of parameterized systems, espe-
cially unbounded and infinite-state systems. For exam-
ple, predicate abstraction [22], [23] enables a method for
creating a finite-state representation of infinite-state sys-
tems where safety properties can be verified. Constraint
language programming [24] enables the verification of
safety properties of concurrent systems with unbounded
data. Approaches for reachability analysis of generalized
Petri nets [25], [26] apply over-approximation towards
generating a finite model, and then develop an efficient
semi-decision procedure for forward reachability analy-
sis. Counter abstraction [27] utilizes integer counters to
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(a) Locality graph
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Fig. 15: Locality graph and a spanning tree of the
SumNotOdd protocol for domain size 3.
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Fig. 16: Locality graph and a spanning tree of the
SumNotOdd protocol for domain size 4.

count the number of processes in a specific state, but
such abstractions are too coarse for the design of self-
stabilizing protocols where recovery must be ensured
from every concrete state. Environment abstraction [28]
extends counter abstraction in order to model the abstract
state and the environment of each process. Invisible
invariants [29], [30] infer an invariant of a parameter-
ized system by examining a few small instantiations of
protocols. Indexed predicates [31] provide a method for
the generation and verification of invariant predicates
specified in terms of the process indices in infinite-state
systems. The aforementioned methods mostly aim at
the verification of safety and local liveness properties,
and it is unclear how they can synthesize self-stabilizing
unbounded protocols.

Most methods for the synthesis of parameterized un-
bounded systems provide little results for the synthesis
of unbounded self-stabilizing protocols, where a global
liveness property (i.e., convergence) must be met from
any state in an unbounded state space. For example,



synthesis of Petri nets [32], [33], [34] mainly focuses
on the transformation of behavioral specifications in the
form of labeled transition systems to Petri nets. UCLID5
[35], [36] provides a framework for modular verification
and synthesis of the artifacts (e.g., invariants, assume-
guarantee conditions) that are used during verification.
Syntax-Guided Synthesis (SyGus) [37] generates the
implementation of a set of functions (each adhering to
a grammar) in the specification of a system for a back-
ground logic theory. It is unclear how one can use SyGus
to synthesize the actions of SS-SymU protocols which
must interact asynchronously to ensure convergence in
a specific topology. Moreover, methods that combine
SyGus with reactive synthesis are mostly applied to
centralized systems [38]. Oracle-Guided Inductive Syn-
thesis (OGIS) [39], [40], [41] is based on iterative query-
response interactions between a learner and a teacher
towards synthesizing a system that adheres to formal
specifications. Utilizing OGIS in the synthesis of self-
stabilizing unbounded systems may not converge to a
solution that must recover from any state rather than
recovery from a proper set of initial states. While the
existing synthesis methods inspire our work, the novelty
of our approach mainly lies in the characterization of
unbounded actions as semilinear sets for the synthesis
of SS-SymU.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated the problem of synthesizing
self-stabilizing symmetric protocols (SS-SymU) on uni-
rings, where a ring can have an unbounded number
of processes and processes have unbounded variables.
While previous research [5] has addressed this prob-
lem for rings of unbounded size, we are not aware
of any work that synthesizes self-stabilizing protocols
having unbounded variables too. We first showed that
the ability to represent unbounded actions of a proto-
col as semilinear sets is sufficient for synthesis. This
reduces the synthesis of SS-SymU to the synthesis of
semilinear sets. Then, we presented a sound algorithm
that generates a semilinear set for a protocol from which
the parameterized actions of the protocol are derived.
We demonstrated how our algorithm can generate SS-
SymU protocols (e.g., near agreement and parity on
unbounded uni-rings) that were previously infeasible.
We are currently implementing the proposed method
as a synthesizer and are investigating the feasibility of
synthesis for more complicated protocols and topologies.
We would also like to know how semilinear sets can be
utilized for the verification and synthesis of unbounded

protocols that satisfy general temporal properties (instead
of just self-stabilization).
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