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Abstract

The analysis of comprehensive chemical reactions mechanisms, parameter estimation tech-

niques, and variational chemical data assimilation applications require the development of

eÆcient sensitivity methods for chemical kinetics systems. The new release (KPP-1.2) of the

Kinetic PreProcessor KPP contains software tools that facilitate direct and adjoint sensitivity

analysis. The direct decoupled method, build using BDF formulas, has been the method of

choice for direct sensitivity studies. In this work we extend the direct decoupled approach to

Rosenbrock sti� integration methods. The need for Jacobian derivatives prevented Rosen-

brock methods to be used extensively in direct sensitivity calculations; however, the new

automatic di�erentiation and symbolic di�erentiation technologies make the computation of

these derivatives feasible. The adjoint modeling is presented as an eÆcient tool to evaluate

the sensitivity of a scalar response function with respect to the initial conditions and model

parameters. In addition, sensitivity with respect to time dependent model parameters may be

obtained through a single backward integration of the adjoint model. KPP software may be

used to completely generate the continuous and discrete adjoint models taking full advantage

of the sparsity of the chemical mechanism. Flexible direct-decoupled and adjoint sensitiv-

ity code implementations are achieved with minimal user intervention. In the companion

paper [6] we present an extensive set of numerical experiments that validate the KPP soft-

ware tools for several direct/adjoint sensitivity applications, and demonstrate the eÆciency

of KPP-generated sensitivity code implementations.

Keywords: Chemical kinetics, sensitivity analysis, direct decoupled method, adjoint

model.
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1 Introduction

The mathematical formulation of the chemical reactions mechanisms is given by a coupled system of sti�

nonlinear di�erential equations

dy

dt
= f(t; y; p) ; y

�
t0
�
= y0 ; t0 � t � tF : (1)

The solution y(t) 2 <n represents the time evolution of the concentrations of the species considered in

the chemical mechanism starting from the initial con�guration y0. Throughout this work vectors will be

represented in column format and an upper script (�)T will denote the transposition operator. The rate of

change in the concentrations y is determined by the nonlinear production/loss function f = (f1; : : : ; fn)
T ,

which depends on a vector of parameters p 2 <m. In practice the vector p may represent reaction rate

parameters, initial state of the model (y0 = p), and/or additional source/sink terms (e.g. emissions rates).

We assume that problem (1) has an unique solution y = y(t; p) once the model parameters are speci�ed.

Comprehensive atmospheric reaction mechanisms take into consideration as many as 100 chemical species

involved in hundreds of chemical reactions (see e.g. SAPRC-99, [4]), such that to eÆciently integrate the

system (1) fast and reliable numerical methods must be implemented [1, 20, 29, 30]. In addition, the

model parameters are often obtained from experimental data and their accuracy is hard to estimate. The

development and validation of chemical reactions mechanisms require a systematic sensitivity analysis to

evaluate the e�ects of parameter variations on the model solution.

The sensitivities S`(t) 2 <
n are de�ned as the derivatives of the solution with respect to the parameters

S`(t) =
@y(t)

@p`
; 1 � ` � m : (2)

A large sensitivity value S`(t) shows that the parameter p` plays an essential role in determining the model

forecast y(t), therefore one problem of interest is to evaluate the sensitivities S(t) for t0 � t � tF. Some

practical applications (e.g. data assimilation) require the sensitivity of a scalar response function g =

g
�
y(tF)

�
with respect to the model parameters

@g

@p
=

�
ST

@g

@y

�����
t=tF

: (3)

Depending on the problem at hand, an appropriate method for sensitivity evaluation must be selected.

The most popular eÆcient techniques for sensitivity studies are given by the direct-decoupled and adjoint

sensitivity methods.

Given the multitude of applications, the continuous development of new reaction mechanisms and the

frequent modi�cations of the existing ones, there is a need for software tools that facilitate the sensitivity

analysis of general chemical kinetic mechanisms. The Kinetic PreProcessor KPP [7] has been successfully

used in the forward integration of the chemical kinetics systems [29, 30, 33]. The new release (KPP-1.2)

presented in this paper implements a comprehensive set of software tools for direct and adjoint sensitivity

analysis. Given a chemical mechanism described by a list of chemical reactions, KPP generates a exible code

for the model, its forward integration and direct-decoupled/adjoint sensitivity analysis. The KPP generated

code takes full advantage of the sparsity of the chemical mechanism and various numerical methods may be

included with minimal user intervention.

The paper is organized as follows: a review of the direct decoupled sensitivity analysis and extensions to

Runge-Kutta and Rosenbrock sti� integration methods are presented in Section 2. In Section 3 we review
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the continuous and discrete adjoint sensitivity methods and address practical issues of the adjoint code

implementation for chemical kinetics systems. Further insight on the computational complexity of various

sensitivity methods as well as on the method selection is provided in Section 4. The Kinetic PreProcessor

tools that facilitate the implementation of the sensitivity methods are presented in Section 5. Tutorial

examples for building the direct-decoupled code and the adjoint code with KPP are presented in Sections 6

and 7, respectively. In Section 8 we outline the new numerical methods for sensitivity calculations available

in the KPP numerical library. A summary of the results and concluding remarks are presented in Section 9.

2 Direct Sensitivity Analysis

For the direct analysis we consider the parameters p to be constant, i.e. they do not change in time. By

di�erentiating (1) with respect to the parameters one obtains the sensitivity equations (variational equations)

dS`
dt

= J(t; y; p)S` + fp`(t; y; p) ; S`(t
0) =

@y0

@p`
; 1 � ` � m (4)

where J is the Jacobian matrix of the derivative function

J(t; y; p) =
@ [f1(t; y; p); � � � ; fn(t; y; p)]

@ [y1; � � � ; yn]
; (5)

and fp` are the derivative function partial derivatives with respect to the parameters

fp`(t; y; p) =
@ [f1(t; y; p); � � � ; fn(t; y; p)]

@p`
; 1 � ` � m : (6)

The variational equations (4) are linear. The direct method solves simultaneously the model equation (1)

together with the variational equations (4) to obtain both concentrations and sensitivities. The combined

system (1){(4) has the Jacobian

@ [f; JS1 + fp1 ; � � � ; JSm + fpm ]

@ [y; S1; � � � ; Sm]
=

0
BBBB@

J 0 � � � 0

(J S1)y + Jp1 J � � � 0
...

. . .
...

(J Sm)y + Jpm 0 � � � J

1
CCCCA ; (7)

where the component matrices are

(J S`)y =
@ (J(t; y; p) � S`)

@y
; Jp` =

@J(t; y; p)

@p`
=

@fp`(t; y; p)

@y
:

The eigenvalues of the combined Jacobian (7) are the eigenvalues of J (the Jacobian of the model equations),

with di�erent multiplicities; therefore if the model (1) is sti� the sensitivity equations (4) are also sti�. To

maintain stability, an implicit time stepping method is needed. Implicit methods solve systems of the form

(I � hJ)x = b ;

where (I�hJ) is called the prediction matrix, h is the stepsize and  a parameter determined by the method.

In the naive approach one would have to solve linear algebraic systems of dimensions m(n+ 1)�m(n+ 1)

corresponding to (7). The direct decoupled method [9] exploits the special structure of the combined Jacobian

(7); speci�cally, one only computes the LU factorization of the n� n model prediction matrix

I � hJ = P T � L � U :
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Then the m(n+ 1)�m(n+ 1) prediction matrix for the Jacobian (7)0
BBBBB@

I � hJ 0 � � � 0

�h
h
(J S1)y + Jp1

i
I � hJ � � � 0

...
. . .

...

�h
h
(J Sm)y + Jpm

i
0 � � � I � hJ

1
CCCCCA

has the LU factorization0
BBBBB@

P T � L 0 � � � 0

�h
h
(J S1)y + Jp1

i
U�1 P T � L � � � 0

...
. . .

...

�h
h
(J Sm)y + Jpm

i
U�1 0 � � � P T � L

1
CCCCCA �
0
BBBB@

U 0 � � � 0

0 U � � � 0
...

. . .
...

0 0 � � � U

1
CCCCA : (8)

2.1 Remarks

In many practical applications sensitivities of y(t) with respect to the initial values y(t0) are desired. Clearly,

we can consider the initial values to be parameters p = y(t0); the sensitivity equations (4) hold with fp` = 0

and S`(t
0) = e` (the `-th vector of the canonical basis of Rn).

Conversely, when the model parameters are constant in time, p = p0 = const the problem of evaluating

the sensitivities with respect to the parameters can be reduced to computing sensitivities with respect to

initial conditions. This is done by augmenting the state vector with the parameters Y (t) =
�
yT (t); pT (t)

�T
,

and the model system (1) with the parameter equations

dY

dt
=

 
dy=dt

dp=dt

!
=

 
f(t; y; p)

0

!
; Y (t0) =

 
y(t0)

p(t0)

!
=

 
y0

p0

!
; t0 � t � tF : (9)

The Jacobian matrix is then

J(Y ) =

 
J(t; y; p) fp(t; y; p)

0(m;n) 0(m;m)

!
: (10)

The direct decoupled method was developed and is traditionally presented in the context of BDF time-

stepping schemes [9, 22, 23]. In what follows we review this approach, then we extend the direct decoupled

philosophy to Runge-Kutta and Rosenbrock integrators.

2.2 Direct-Decoupled Backward Di�erentiation Formulas

The model (4) is approximated by the k-step, order k linear multistep formula

yn+1 =

k�1X
i=0

�iy
n�i + h�f(tn+1; yn+1; p) ; h = tn+1 � tn: (11)

The formula coeÆcients �i, � are determined such that the method has order k of consistency. Relation (11)

is a nonlinear system of equations which implicitly de�nes yn+1, and which must be solved by a Newton-type

iterative scheme. Typically the solution ynfm+1g at iteration m+ 1 is computed as

[I � h�J(tn; yn; p)]
�
yn+1fm+1g � yn+1fmg

�
=

k�1X
i=0

�iy
n�i + h�f(tn+1; yn+1fmg; p)� yn+1fmg ; (12)

which requires one factorization of I � h�J and one backsubstitution per iteration.
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Discretization of the Continuous Sensitivity Equation. In this approach [9, 22, 23] one discretizes

the continuous sensitivity equation (4) with the same BDF method used for discretizing the model (11)

Sn+1` =

k�1X
i=0

�iS
n�i
` + h�J(tn+1; yn+1; p)Sn+1` + fp`(t

n+1; yn+1; p) ; 1 � ` � m (13)

Note that the system (13) is linear, therefore it admits a non-iterative solution

�
I � h�J(tn+1; yn+1; p)

�
Sn+1` =

k�1X
i=0

�iS
n�i
` + fp`(t

n+1; yn+1; p) ; 1 � ` � m : (14)

The Direct Decoupled Method solves (12) �rst for the new-time solution yn+1. The matrix I�h�J(tn+1; yn+1; p)

is computed and factorized; and the systems (14) are solved for ` = 1 through m. Note that all systems (14)

use the same matrix factorization, and this factorization is also reused in (12) for computing yn+2 during

the next time step. Therefore the solution together with m sensitivities are obtained at the cost of a single

matrix factorization per time step.

Discrete Sensitivity Equation. In this approach one considers directly the sensitivities of the numerical

solution. A discrete equation involving these entities is obtained by taking the derivative of equation (11)

with respect to p` ; it is easy to see that the process leads again to equation (13). Therefore, the numerical

solutions of the the variational equations Sn` are also the sensitivities of the numerical solution dyn=dp`.

2.3 Direct-Decoupled Runge-Kutta Methods

A general s-stage Runge-Kutta method is de�ned as [18, Section II.1]

yn+1 = yn + h

sX
i=1

bik
0
i ; h = tn+1 � tn ;

k0i = f

0
@ tn + cih; y

n + h

sX
j=1

aijk
0
j ; p

1
A ; (15)

where the coeÆcients aij , bi and ci are prescribed for the desired accuracy and stability properties. The stage

derivative values k0i are de�ned implicitly, and require solving a (set of) nonlinear system(s). Newton-type

methods solve coupled linear systems of dimension (at most) n� s.

Discretization of the Continuous Sensitivity Equation. Application of this method to the sensitivity

equation (4) gives

Sn+1` = Sn` + h
sX

i=1

bik
`
i for 1 � ` � m ;

k`i = J

0
@tn + cih; y

n + h

sX
j=1

aijk
0
j ; p

1
A
0
@Sn` + h

sX
j=1

aijk
`
j

1
A (16)

+fp`

0
@tn + cih; y

n + h

sX
j=1

aijk
0
j ; p

1
A :

The system (16) is linear and does not require an iterative procedure.

5



Discrete Sensitivity Equation. Clearly (16) can be obtained by di�erentiating (15) with respect to p`

and setting k`i = dk0i =dp`, therefore the Runge-Kutta numerical solutions of the sensitivity equations are

equal to the sensitivities of the Runge-Kutta numerical solution of the model equation.

Computational Considerations. One �rst solves (15) for concentrations, which gives all stage derivative

vectors k01 ; � � � ; k
0
s . Next one solves (16) for sensitivities; at each stage k`i is the solution of a linear system

with the matrix

Pi = I � h aii J

0
@tn + cih; y

n + h
sX

j=1

aijk
0
j ; p

1
A :

Clearly, each stage i requires the factorization of a di�erent matrix Pi (even if all aii are the same); this

factorization is then shared by all sensitivities (all `'s). Due to the repeated LU factorizations the standard

Runge-Kutta methods do not seem suitable for direct sensitivity calculations.

2.4 Direct-Decoupled Rosenbrock Methods

An s-stage Rosenbrock method [19, Section IV.7] computes the next-step solution by the formulas

yn+1 = yn +
sX

i=1

bik
0
i h = tn+1 � tn ;

�
I � hJ(tn; yn; p)

�
k0i = hf

0
@ tn + �ih; y

n +

i�1X
j=1

�ijk
0
j ; p

1
A+ hJ ( tn; yn; p )

i�1X
j=1

ijk
0
j (17)

+h2ift (t
n; yn; p) ;

where s is the number of stages, �i =
P

j �ij and i =
P

j ij . The formula coeÆcients (bi; �ij and ij) give

the order of consistency and the stability properties. For implementation purposes it is advantageous to use

the alternative formulation [19, Section IV.7]

yn+1 = yn +
sX

i=1

mik
0
i ;

�
1

h
I � J(tn; yn; p)

�
k0i = f

0
@ tn + �ih; y

n +

i�1X
j=1

aijk
0
j ; p

1
A (18)

+
i�1X
j=1

cij
h
k0j + hift (t

n; yn; p) : (19)

Discretization of the Continuous Sensitivity Equation. To apply the method (18) to the combined

sensitivity equations (1){(4) we need to make explicit use of the combined Jacobian (7). One step of the

method reads

yn+1 = yn +
sX

i=1

mik
0
i ; Sn+1` = Sn` +

sX
i=1

mik
`
i for 1 � ` � m ; (20)

�
1

h
I � J(tn; yn; p)

�
k0i = f

0
@ tn + �ih; y

n +

i�1X
j=1

aijk
0
j ; p

1
A+

i�1X
j=1

cij
h
k0j + hift (t

n; yn; p) ;
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�
1

h
I � J(tn; yn; p)

�
k`i = J

0
@ tn + �ih; y

n +

i�1X
j=1

aijk
0
j ; p

1
A
0
@Sn` +

i�1X
j=1

aijk
`
j

1
A

+fp`

0
@ tn + �ih; y

n +
i�1X
j=1

aijk
0
j ; p

1
A+

i�1X
j=1

cij
h
k`j

+

�
@J

@p`
(tn; yn; p)

�
k0i +

�
@J

@y
(tn; yn; p)� Sn`

�
k0i

+hiJt (t
n; yn; p)Sn` + hifp`;t ( t

n; yn; p )

The method requires a single n � n LU decomposition per step to obtain both the concentrations and the

sensitivities.

Discrete Sensitivity Equation. We note that the derivative of the method (18) with respect to p`

leads also to the equation (20). Consequently, the sensitivities of the numerical solution coincide with the

numerical solutions of the sensitivity equations.

Computational Considerations. Formula (20) requires the evaluation of the Hessian, i.e. the derivatives

of the Jacobian with respect to y, as well as the Jacobian derivatives with respect to the parameters; these

entities are 3-tensors. In addition, an extra Jacobian evaluation and one Jacobian-vector multiplication is

needed at each stage. The need for Jacobian derivatives prevented Rosenbrock methods to be used extensively

in direct sensitivity calculations. However, the new automatic di�erentiation and symbolic di�erentiation

technologies make the computation of these derivatives feasible.

To avoid computing the derivatives of the Jacobian we can use a W-method [19, Section IV.7], and approx-

imate the Jacobian (7) by diag(J; � � � ; J). This method gives consistent approximations of the sensitivities

of the continuous solution, but these are now di�erent than the sensitivities of the numerical solution.

3 Adjoint sensitivity analysis

The adjoint method provides an eÆcient alternative to the direct decoupled method for evaluating the

sensitivity of a scalar response function with respect to the initial conditions and model parameters. Mathe-

matical foundations of the adjoint sensitivity for nonlinear dynamical systems and various classes of response

functionals are presented by Cacuci [2, 3]. The construction of the adjoint operators associated with linear

and nonlinear dynamics and applications to atmospheric modeling are described in detail by Marchuk et

al. [24, 25]. Menut et al. [21] and Vautard et al. [26] use the adjoint modeling for sensitivity studies in

atmospheric chemistry. A review of the adjoint method applied to four-dimensional variational atmospheric

chemistry data assimilation is presented in the recent work of Wang et al. [34]. In this section we review

the continuous and discrete adjoint sensitivity methods and focus on the computational and implementation

issues for chemical kinetics systems.

We will refer to the dynamical model (1) as a forward (direct) model and we assume that the solution

y = y(t; u) of the forward model is uniquely determined once the complete vector of model parameters

u =
�
(y0)

T
; pT
�T
2 Rn+m is speci�ed. For a given scalar response function

g = g
�
y(tF; u)

�
(21)
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we are interested to evaluate the sensitivities

rug =

�
@g

@y01
; : : : ;

@g

@y0n
;
@g

@p1
; : : : ;

@g

@pm

�T
2 Rn+m : (22)

In the adjoint sensitivity analysis one must distinguish between the continuous and the discrete adjoint

modeling, see Sirkes [31]. While in general the derivation of the continuous adjoint model is presented, often

in practice it is the discrete adjoint model that is implemented. This distinction is of particular importance

in the context of sti� chemical reactions systems that require sophisticated numerical integrators.

3.1 Continuous adjoint sensitivity

The continuous adjoint model is obtained from the forward model using the linearization technique. To �rst

order approximation, a perturbation in the input parameters Æu =
�
(Æy0)T ; (Æp)T

�T
leads to a perturbation

in the response functional

Æg = g(u+ Æu)� g(u) = hrug(u); Æuin+m = hryg; Æyinjt=tF (23)

where h�; �in denotes the scalar product in Rn. The time evolution of the perturbation Æy(t) is obtained by

solving the tangent linear model problem

dÆy

dt
= J(t; y; p)Æy + fp(t; y; p)Æp ; t0 � t � tF ; (24)

Æy(t0) = Æy0 : (25)

We introduce the adjoint variable �(t) 2 Rn (to be precisely de�ned later), take the scalar product of (24)

with � and integrate on [t0; tF] to obtain:

Z tF

t0
h�;

dÆy

dt
indt =

Z tF

t0
h�; J(t; y; p)Æy + fp(t; y; p)Æpindt : (26)

Integrating by parts the left side of (26), using matrix transposition on the right side, and rearranging the

terms give the equivalent formulation

h�; Æyinj
tF

t0 =

Z tF

t0
h
d�

dt
+ JT (t; y; p)�; Æyin + hf

T
p (t; y; p)�; Æpimdt : (27)

Therefore, if � is de�ned as the solution of the adjoint problem

d�

dt
= �JT (t; y; p)� (28)

�(tF) = ryg(y(t
F)) (29)

the perturbation in the response functional can be expressed from (23), (25) and (27) as

Æg = h�(t0); Æy0in +

Z tF

t0
hfTp (t; y; p)�; Æpimdt : (30)

Consequently the sensitivity values are given by

ry0g = �(t0) ; (31)

rpg =

Z tF

t0
fTp (t; y; p)�dt : (32)
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The backward integration of the adjoint problem (28)-(29) provides all the intermediate values �(t); t0 �

t � tF that are needed to evaluate the integral in the right side of (32). An equivalent expression of rpg is

obtained by introducing a new adjoint variable �(t) 2 Rm de�ned as the solution of the problem

d�

dt
= �fTp (t; y; p)� (33)

�(tF) = 0 (34)

such that

�(t0) =

Z tF

t0
fTp (t; y; p)�dt (35)

The sensitivities ry0g = �(t0) and rpg = �(t0) are then obtained by a backward integration of the coupled

adjoint system (28)-(33) with the values at time tF given by (29)-(34).

3.2 Some useful remarks

In this section we present some remarks that will prove to be useful later in our presentation when we discuss

the discrete adjoint sensitivity and the implementation of the adjoint model.

Remark 1. The adjoint model (28)-(29) must be integrated backward in time from tF to t0 to evaluate

�(t0). Since the concept of backward integration may be less intuitive, we note that the adjoint problem

may be formulated as a classical (forward time marching) initial value problem by introducing the change

of variables

� = tF + t0 � t; �(�) = �(t) (36)

Then, as t goes backward from tF to t0, � goes forward from t0 to tF and

�(t0) = �(tF); �(tF) = �(t0) (37)

After substituting in (28)-(29) and taking into account that d� = �dt, we obtain the equivalent formulation

of the adjoint model

d�(�)

d�
= JT

�
tF + t0 � �; y(tF + t0 � �); p

�
�(�) ; t0 � � � tF ; (38)

�(t0) = ryg
�
y(tF)

�
(39)

Remark 2. Modeling chemical kinetic systems requires the speci�cation of time dependent model param-

eters. For example, photolytic reaction rates are determined by the solar radiation and thermal reactions

rates depend on the temperature, therefore the reaction rates are implicitly a function of time. The adjoint

modeling may be used to evaluate the sensitivity of the response functional with respect to time dependent

model parameters. The values of �(t) represent the sensitivity of the response functional with respect to the

model state at time t,

ry(t)g = �(t) ; t0 � t � tF : (40)

Similarly, if the parameters are time-dependent p = p(t), corresponding to a perturbation Æp(t) we obtain

from (30) the time dependent sensitivity values

rp(t)g = fTp (t; y; p(t))�(t) : (41)
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Remark 3. When the model parameters are constant in time, p = p0 = const the problem of evaluating

the sensitivities rpg may be reduced to the problem of the sensitivity with respect to the initial values of

the augmented system (9). Considering the augmented Jacobian (10), the adjoint system

d

dt

 
�

�

!
= �

 
JT (t; y; p) 0(n;m)

fTp (t; y; p) 0(m;m)

! 
�

�

!
(42)

is equivalent to (28)-(33).

Remark 4. In many applications the response functional depends on the state vector value over the

integration time interval and it is expressed as

g =

Z tF

t0
ĝ
�
y(t; u)

�
dt (43)

The problem of evaluating the sensitivities rug may be reduced to a standard sensitivity problem (21)-(22)

by augmenting the state vector y with a new component yn+1 whose time evolution is governed by the

equations

dyn+1
dt

= ĝ
�
y(t; u)

�
(44)

yn+1(t
0) = 0 (45)

Therefore,

yn+1(t
F; u) =

Z tF

t0
ĝ
�
y(t; u)

�
dt (46)

and the adjoint sensitivity is applied to the augmented system (1)-(44), with the state vector Y = (yT ; yn+1)
T

and the response functional g = yn+1(t
F; u).

3.3 Discrete adjoint sensitivity

The discretization of the system (1) with a selected numerical method results in the discrete forward model.

This is used to construct the discrete adjoint model as we now explain.

The discrete forward model obtains a numerical approximation yN � y(tF) through a sequence of N

intermediate states

yi+1 = F i(yi; p) ; i = 0; : : : ; N � 1 ; (47)

where F i represents a one-step numerical integration formula which advances the solution from ti to ti+1.

This establishes an explicit relationship between the evaluated response functional g(yN) and the model

parameters.

To present a compact, yet explicit derivation of the discrete adjoint sensitivity formulae, we use Remark

3 and consider an augmented state vector Y (t) = (yT (t); pT (t))T where p(t) is the solution of the problem

(9). We rewrite the discrete equations (47) as

yi+1 = F i(Y i) ; i = 0; : : : ; N � 1 ; (48)

and attach the parameters equations

p0 = p ; pi+1 = pi ; i = 0; : : : ; N � 1 ; (49)
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which must be satis�ed by any consistent numerical method applied to (9). The sensitivity with respect to

the initial conditions Y 0 =
�
(y0)T ; (p0)T

�T
is given by 

ry0g(y
N )

rpg(y
N )

!
= rY 0g(yN) =

�
@Y N

@Y 0

�T  
ryg(y

N )

0m

!
: (50)

A successive application of the chain rule followed by transposition gives

�
@Y N

@Y 0

�T
=

�
@Y 1

@Y 0

�T �
@Y 2

@Y 1

�T
: : :

�
@Y N�1

@Y N�2

�T �
@Y N

@Y N�1

�T
; (51)

and by di�erentiating equations (48)-(49) we obtain

�
@Y i+1

@Y i

�
=

 
F i
y(y

i; pi) F i
p(y

i; pi)

0(m;n) I(m;m)

!
; i = 0; : : : ; N � 1 : (52)

Therefore, if we de�ne the adjoint variables at tN = tF

�N = ryg(y
N ) ; (53)

�N = 0m ; (54)

and evaluate the adjoint variables at ti; i = N � 1; : : : ; 1; 0 using the recursive relations 
�i

�i

!
=

�
@Y i+1

@Y i

�T  
�i+1

�i+1

!
=

 
F i
y(y

i; pi)T�i+1

F i
p(y

i; pi)T�i+1 + �i+1

!
; (55)

we obtain from (50)-(55) the sensitivities

ry0g(y
N ) = �0 ; (56)

rpg(y
N ) = �0 : (57)

3.4 Practical issues of the adjoint code implementation

When chemical transformations are considered in an atmospheric model, the complexity of the implementa-

tion and the computational cost of the adjoint model are greatly increased. Two aspects must be emphasized:

the non-linearity and the sti�ness introduced in the model by the chemical reactions. The adjoint method

relies on the linearization of the forward model and the non-linearity introduced by the chemistry may have

a direct impact on the time interval length and the qualitative aspects of the adjoint sensitivity analysis.

Since for non-linear problems the adjoint equations depend on the forward trajectory (obtained by direct

integration of the model), in order to perform the adjoint computations the forward trajectory must be

available in reverse order. Consequently a large amount of memory must be allocated for storing the state

during the forward run.

As noticed in the previous sections in practice two strategies may be used to implement the adjoint code

and we now discuss speci�c aspects of these strategies.

The �rst approach is to derive the continuous adjoint model associated with the continuous forward model

dynamics, then to integrate the adjoint model with the numerical method of choice. In this approach the

complexity of the numerical method used during the forward integration does not interfere with the adjoint

computations and the user has the choice to select the backward integration method. Since the Jacobian

matrices J and JT have the same eigenvalues, the continuous adjoint formulation (38)-(39) presented in
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Remark 1 shows that while during the forward integration one has to solve a sti� nonlinear system of

ordinary di�erential equations (ODEs), during the adjoint integration a sti� linear system of ODEs must be

solved. Therefore, highly stable implicit methods may be implemented at a reduced computational cost as

no iterations are needed solving solving the adjoint.

Several additional issues must be considered in the continuous adjoint approach. In variational data

assimilation applications requiring the minimization of a cost functional, the agreement between the com-

puted gradient and the computed cost function is given by the accuracy of the numerical methods used

for both forward and backward integration. This may impair the performance of a minimization algorithm

since the provided gradient is not exact relative to the evaluated cost functional. From this point of view,

the continuous adjoint model approach appears to be more suitable for adjoint sensitivity studies where no

minimization process is involved. The computational errors of the forward run a�ect the adjoint compu-

tation. Therefore, solving the adjoint system with a more accurate numerical method than the one used

in the forward integration may not be of bene�t. When variable step size integration with error control is

performed, the selected adjoint step size is in general distinct from the step size selected during the forward

integration; consequently additional forward recomputations may be required.

The second method is the discrete adjoint approach, where the explicit dependence of the state vector

trajectory on the input parameters is obtained by the numerical integration of the forward model. Generating

the adjoint code from the discrete forward model has the advantage that the computed gradient is exact

relative to the computed cost function. This approach appears to be suitable for the variational data

assimilation where a minimization process must be performed since the minimization routine will receive the

exact gradient of the evaluated cost function.

When the discrete adjoint modeling is used for sensitivity studies, stability and accuracy issues must

be addressed [31]. Even when a variable step size forward integration with error control is performed, the

accuracy of the computed sensitivity is hard to evaluate. Additional issues are related with the diÆculty to

generate the adjoint code if sophisticated numerical methods are used. For complex models and numerical

methods hand generated codes are tedious to write and often subject to errors. Automatic di�erentiation

tools may facilitate the adjoint code generation, but they must be used with caution and the correctness

of the automatic generated adjoint code must be carefully veri�ed. Taking full advantage of the sparsity

of forward model during the adjoint computation may be hard to achieve. The computational cost of the

adjoint code may be increased by the additional overhead related with the storage of the intermediate stages

or variables inside the numerical method. The state of the art solvers available for di�erential equations may

be written in a form which is not optimal for the adjoint code generation such that often one has to rewrite

them in a form suitable for the adjoint compilers.

There is no general rule to decide which method should be used for the adjoint code implementation.

The performance of the adjoint code is often problem dependent and a selection can be made only after an

extensive analysis and testing for the particular problem to be solved have been performed. For atmospheric

chemistry data assimilation and sensitivity studies a discrete adjoint model was used by Fisher and Lary [14]

for a Bulirsch-Stoer integration scheme (Stoer and Bulirsch [32]) and by Elbern et al. [10] for a quasi-steady-

state-approximation (QSSA) method. A continuous adjoint chemistry model with a fourth-order Rosenbrock

solver (Hairer and Wanner [19]) for the forward/backward integration was successfully applied to 4D-Var

chemical data assimilation by Errera and Fonteyn [13] in a hybrid adjoint approach for a transport-chemistry

model (discrete adjoint for the transport integration, continuous adjoint for the chemistry integration).
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4 Forward versus Reverse

For an in depth analysis of the algorithmic di�erentiation in forward and reverse mode, including trajectory

storage strategies, we will refer to Griewank [17], Giering [16], and Rostaing [27]. To provide some insight

on the complexity of the implementation of the forward and adjoint sensitivity methods, in this section we

consider a numerical algorithm which takes as input a vector y0 = (y01 ; : : : ; y
0
p)
T 2 Rp and returns the output

y = (y1; : : : ; ym)
T 2 Rm through a sequence of intermediate steps y0 ! y1 ! : : : ! yk ! y. If we assume

that each of the vectors yi, 1 � i � k, has dimension n (extension to the general case ni is straightforward)

and denote by f : Rp ! Rm the function y0 ! y and by f i, 0 � i � k, the functions de�ned by the relations

yi ! yi+1 with the convention y = yk+1, then f0 : Rp ! Rn, f i : Rn ! Rn for 1 � i � k � 1, and

fk : Rn ! Rm. We can express f as the composition

y = f(y0) =
�
fk Æ fk�1 Æ : : : Æ f0

�
(y0) (58)

We are interested in the sensitivity of the output y = f(y0) with respect to the input y0, which is given

by the Jacobian matrix of dimension (m; p)

F = (Fij )1�i�m; 1�j�p =

 
@yi
@y0j

!
1�i�m; 1�j�p

: (59)

We assume that all functions introduced above are di�erentiable and for each 0 � i � k and denote by F i the

Jacobian matrix associated with f i. Then F 0 is a (n; p)-dimensional matrix, F i, 1 � i � k� 1, are matrices

of dimension (n; n), and F k is a (m;n)-dimensional matrix. Di�erentiating relation (58) and applying the

chain rule gives

F (y0) = F k(yk) � F k�1(yk�1) � : : : � F 1(y1) � F 0(y0) (60)

where � stands for the matrix product operation.

Two techniques can be used to evaluate the product in the right hand side of (60). The �rst one is the

forward mode where the product is evaluated in the same order as the intermediate states are computed, such

that starting from the right we �rst multiply F 1(y1) � F 0(y0), then the result is multiplied by F 2(y2), and

so on. The second technique is the reverse (backward) mode where the product is evaluated from the left,

starting with the last intermediate states and computing F k(yk) � F k�1(yk�1), then multiplying the result

by F k�2(yk�2), and so on. To perform this computations we must assume the the values yk; yk�1; : : : have

been previously stored and are readily available. Next we evaluate the number of oating point operations

(for simplicity multiplications only) required by the forward and reverse mode computations.

Forward mode: �rst multiplication F 1 � F 0 is between a (n; n) matrix and a (n; p) matrix resulting in a

(n; p) matrix. This requires n2�p multiplications. The same is true for the next k�2 matrix multiplications.

The last multiplication is between a (m;n) matrix and a (n; p) matrix which requiresm�n�pmultiplications.

The complexity of the forward mode computation is then

fwdmode = (k � 1)� n2 � p+m� n� p (61)

Reverse mode: �rst multiplication F k � F k�1 is between a (m;n) matrix and a (n; n) matrix resulting

in a (m;n) matrix. This requires n2 � m multiplications. The same is true for the next k � 2 matrix

multiplications. The last multiplication is between a (m;n) matrix and a (n; p) matrix which requires

m� n� p multiplications. The complexity of the reverse mode computation is then

revmode = (k � 1)� n2 �m+m� n� p (62)
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>From (61) and (62) it follows

revmode < fwdmode, m < p (63)

Therefore, the adjoint method is more eÆcient than the forward method in the case when the number of

output parameters is smaller than the number of input parameters. In particular, if p = n and m = 1 (e.g.

the sensitivities of a scalar cost function are computed with respect to the initial state as the set of control

parameters) the complexities of the forward and reverse modes are

fwdmode = (k � 1)� n3 + n2 ; revmode = k � n2 : (64)

For a large n the bene�ts of the adjoint method are clear.

Remark. Signi�cant insight on the role played by the length k of the forward trajectory on the cost of

the adjoint implementation may be gained from this example. The �rst aspect to consider is the additional

storage requirements which is of order k � n and implies a linear dependence on the trajectory length. The

second aspect is related to the computational cost which depends linearly on k and quadratically on n such

that, for example, the e�ect of increasing the trajectory length by a factor of 100 may be comparable with

the e�ect of increasing the number of parameters by a factor of 10. For air pollution models, when explicit

methods are used to integrate the sti� chemical reaction systems the step size taken may be as small as a

few seconds. Even for a relatively small time integration window (say few hours) k may be of order 103 or

greater such that the overhead introduced by the trajectory length is signi�cant.

5 The Kinetic PreProcessor Tools

In this section we present the KPP software tools that are useful in derivative computations. A detailed

discussion of the basic KPP capabilities can be found in our previous work [7, 8]. Here we focus on the new

features introduced in the release 1.2 that allow an eÆcient sensitivity analysis of chemical kinetic systems.

5.1 Mass Action Kinetics

KPP builds simulation code for chemical systems with chemical reactions r1; � � � ; rR involving chemical

species y1; � � � ; yn. The chemical concentrations change in time according to the law of mass action kinetics,

which states that each chemical reaction rj

rj)

nX
i=1

s�i;jyi
kj
�!

nX
i=1

s+i;jyi ; 1 � j � R ; (65)

progresses at a reaction velocity !j proportional with the concentrations of the reactants

!j(t; y) = kj(t)pj(y) (molecules per time unit) ; pj(y) =

nY
i=1

y
s
�

i;j

i :

The proportionality constants kj are called rate coeÆcients. The concentration of species yi changes at a

rate given by the cumulative e�ect of all chemical reactions,

d

dt
yi =

RX
j=1

�
s+i;j � s�i;j

�
!j(t; y) ; i = 1; � � � ; n : (66)
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With the stoichiometric matrix

S =
�
s+i;j � s�i;j

�
1�i�n; 1�j�R

;

the evolution equations (66) can be rewritten as

d

dt
y = S � diag [k1(t) � � � kR(t)] � p(y) (67)

= S � ! (t; y) (68)

= f (t; y) ; (69)

where p = [p1 � � � pR]
T
is the vector of reactant products and ! = [!1 � � �!R]

T
the vector of reaction velocities.

KPP builds simulation code by symbolically forming the vector of reaction velocities ! and computing

explicitly the product of the stoichiometric matrix with this vector.

5.2 An Example

We consider an example from stratospheric chemistry. This is a very simple Chapman-like mechanism, and

we use it with the purpose of illustrating the KPP capabilities. However the software tools are general and

can be applied to virtually any kinetic mechanism.

The species that interact are described below in KPP syntax. Some of the are \variable", meaning that

their concentrations change according to the law of mass action kinetics; and some are \�xed", with the

concentrations determined by physical and not chemical factors. For each species its atomic composition is

given (unless the user chooses to ignore it). Comments are enclosed between curly brackets.

#INCLUDE atoms

#DEFVAR

O = O; { Oxygen atomic ground state }

O1D = O; { Oxygen atomic excited state }

O3 = O + O + O; { Ozone }

NO = N + O; { Nitric oxide }

NO2 = N + O + O; { Nitrogen dioxide }

#DEFFIX

M = ignore; { Generic atmospheric molecule }

O2 = O + O; { Molecular oxygen }

The chemical kinetic mechanism described in the KPP language is shown below. Each reaction is followed

by its rate coeÆcient. SUN is the normalized sunlight intensity, equal to one at noon and zero at midnight.

#EQUATIONS { Small Stratospheric Mechanism }

{1.} O2 + hv = 2O : 2.643E-10 * SUN*SUN*SUN;

{2.} O + O2 = O3 : 8.018E-17;

{3.} O3 + hv = O + O2 : 6.120E-04 * SUN;

{4.} O + O3 = 2O2 : 1.576E-15;

{5.} O3 + hv = O1D + O2 : 1.070E-03 * SUN*SUN;

{6.} O1D + M = O + M : 7.110E-11;

{7.} O1D + O3 = 2O2 : 1.200E-10;

{8.} NO + O3 = NO2 + O2 : 6.062E-15;
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{9.} NO2 + O = NO + O2 : 1.069E-11;

{10.} NO2 + hv = NO + O : 1.289E-02 * SUN;

5.3 The derivative function

KPP orders the variable species such that the sparsity pattern of the Jacobian is maintained after an LU

decomposition. For our example there are �ve variable species (NVAR=5) ordered as

I_O1D = 1, I_O = 2, I_O3 = 3, I_NO = 4, I_NO2 = 5,

and two �xed species (NFIX=2)

I_M = 1, I_O2 = 2.

Note that KPP also considers radical species, but these are not present in this example (NRAD=0).

The resulting ODE system has dimension 5. The concentrations of �xed species are parameters in the

derivative function. KPP computes the vector A of reaction rates and from this the vector A VAR of

component time derivatives. Below is the Fortran code for the derivative function as generated by KPP.

The arguments V, R, and F stand for the concentrations of variable, radical and �xed species; and RCT is the

vector of rate coeÆcients.

SUBROUTINE FunVar ( V, R, F, RCT, A_VAR )

INCLUDE 'small.h'

REAL*8 V(NVAR), R(NRAD), F(NFIX), A_VAR(NVAR)

REAL*8 RCT(NREACT), A(NREACT)

C Computation of equation rates

A(1) = RCT(1)*F(2)

A(2) = 8.018e-17*V(2)*F(2)

A(3) = RCT(3)*V(3)

A(4) = 1.576e-15*V(2)*V(3)

A(5) = RCT(5)*V(3)

A(6) = 7.11e-11*V(1)*F(1)

A(7) = 1.2e-10*V(1)*V(3)

A(8) = 6.062e-15*V(3)*V(4)

A(9) = 1.069e-11*V(2)*V(5)

A(10) = RCT(10)*V(5)

C Aggregate function

A_VAR(1) = A(5)-A(6)-A(7)

A_VAR(2) = 2*A(1)-A(2)+A(3)-A(4)+A(6)-A(9)+A(10)

A_VAR(3) = A(2)-A(3)-A(4)-A(5)-A(7)-A(8)

A_VAR(4) = -A(8)+A(9)+A(10)

A_VAR(5) = A(8)-A(9)-A(10)

END

5.4 The Jacobian

The Jacobian of the derivative function (5) is also automatically constructed by KPP; the KPP command

uses several options
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Figure 1: The sparsity pattern of the Jacobian for the small stratospheric system.

#JACOBIAN [ OFF | ON | SPARSE ]

The option OFF inhibits the generation of the Jacobian subroutine; the option ON generates the Jacobian as

a full, square (NVAR�NVAR) matrix, while the option SPARSE generates the Jacobian in the sparse format.

For our small stratospheric example the sparsity pattern of the Jacobian is shown in Figure 1. For this

example the Jacobian is almost full (19 out of 25 entries are nonzero). However, accounting for sparsity is

important for large chemical systems, where only a small fraction of the entries in the Jacobian are nonzero

(typically 10% or less). By accounting for the sparsity one can obtain very eÆcient linear algebra solvers,

etc.

The default sparse representation format is compressed on rows. KPP accounts for the �ll-in due to the

LU decomposition; the total number of nonzeros NZ reects that. JACSP stores the NZ nonzero elements

of the Jacobian in row order; each row i starts at position CROW (i), and CROW (N + 1) = NZ + 1. The

column position of element k (1 � k � NZ) is ICOL(k), and the position of the diagonal element i is

DIAG(i). For the small stratospheric example the structure of Figure 1 leads to the following Jacobian

sparse data structure

LU_ICOL_V = [ 1,3,1,2,3,5,1,2,3,4,5,2,3,4,5,2,3,4,5 ]

LU_CROW_V = [ 1,3,7,12,16,20 ]

LU_DIAG_V = [ 1,4,9,14,19,20 ]

To numerically solve for the chemical concentrations one must employ an implicit timestepping technique,

as the system is usually sti�. Implicit integrators solve systems of the form

( I � h  J ) x = b

where h is the step size,  a method-dependent parameter, J the Jacobian, and I � hJ the \prediction"

matrix, whose sparsity structure is given by the sparsity structure of J . KPP generates the following sparse

linear algebra subroutines.

SUBROUTINE KppDecomp(N,P,IER)

performs an in-place, non-pivoting, sparse LU decomposition of the prediction matrix P. Since the sparsity

structure accounts for �ll-in, all elements of the full LU decomposition are actually stored. The output

argument IER returns a value that is nonzero if singularity is detected.
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SUBROUTINE KppSolve(P,X)

uses the in-place LU factorization P as computed by KppDecomp; it performs sparse backward and forward

substitutions; at input X contains the system right-hand-side vector, and at output it contains the solution.

Similarly, the subroutine

SUBROUTINE KppSolveTR ( P, b, X )

solves the linear system P TX = b with the transposed coeÆcient matrix, and uses the same LU factorization

as KppSolve. The sparse linear algebra subroutines KppDecomp and KppSolve are extremely eÆcient, as

shown in [28].

Two other KPP-generated subroutines are useful for direct and adjoint sensitivity analysis.

SUBROUTINE JacVar_SP_Vec ( JVS, U, V )

computes the Jacobian times vector product (V  � JV S � U). The Jacobian JV S is in sparse format and

a sparse multiplication with no indirect addressing is performed. Similarly, the subroutine

SUBROUTINE JacVarTR_SP_Vec ( JVS, U, V )

computes the sparse Jacobian transposed times vector product without indirect addressing (V  � JV ST �U).

5.5 The Stoichiometric Formulation

KPP can generate the elements of the derivative function and the Jacobian in the stoichiometric formulation

(67); this means that the product between the stoichiometric matrix, rate coeÆcients, and reactant products

is not explicitly performed. The option that controls the code generation is

#STOICMAT [ OFF | ON ]

The ON value of the switch instructs KPP to generate code for the stoichiometric matrix, the vector of

reactant products in each reaction, and the partial derivative of the time derivative function with respect to

rate coeÆcients. These elements are discussed below.

The stoichiometric matrix is usually very sparse; for our example the matrix has 22 nonzero entries out

of 50 entries. The total number of nonzero entries in the stoichiometric matrix is a constant

PARAMETER ( NSTOICM = 22 )

KPP produces the stoichiometric matrix in sparse, column-compressed format. Elements are stored in

columnwise order in the one-dimensional vector of values STOICM(1:NSTOICM); their row indices are stored in

IROW STOICM(1:NSTOICM); the vector CCOL STOICM(1:NVAR+1) contains pointers to the start of each column;

for example column j starts in the sparse vector at position CCOL STOICM(j) and ends at CCOL STOICM(j +

1)� 1. The last value CCOL STOICM(NVAR+1)=NSTOICM+1 is not necessary but simpli�es the future handling

of sparse data structures. For our example we have

STOICM = [ 2.,-1.,1.,1.,1.,-1.,-1.,1.,-1.,-1.,1.,-1.,

-1.,-1.,-1.,1.,-1.,1.,-1.,1.,1.,-1. ]

IROW_STOICM = [ 2,2,3,2,3,2,3,1,3,1,2,1,3,3,4,5,2,4,5,2,4,5 ]

CCOL_STOICM = [ 1,2,4,6,8,10,12,14,17,20,23 ]
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The following subroutine computes the reactant products for each reaction; i.e. A RPROD is the vector

p(y) in the formulation (67).

SUBROUTINE ReactantProd ( V, R, F, A_RPROD )

In the stoichiometric formulation (67) the Jacobian is

J (t; y) =
@f(t; y)

@y
= S � diag [k1(t) � � � kR(t)] �

@p(y)

@y
= S � diag [k1(t) � � � kR(t)] � J

RP(y) : (70)

The following subroutine computes the Jacobian of reactant products vector; i.e. JV RPROD is the matrix

JRP = @p(y)=@y above.

SUBROUTINE JacVarReactantProd ( V, R, F, JV_RPROD )

The matrix JV RPROD is of course sparse and is computed and stored in row compressed sparse format. The

number of nonzeros is stored in the parameter NJVRP, the column indices in the vector ICOL JVRP and the

beginning of each row in CROW JVRP; for our example

PARAMETER ( NJVRP = 13 )

CROW_JVRP = [1,1,2,3,5,6,7,9,11,13,14]

ICOL_JVRP = [2,3,2,3,3,1,1,3,3,4,2,5,4]

5.6 The Derivatives with respect to Reaction CoeÆcients

The stoichiometric formulation allows a direct computation of the derivatives with respect to rate coeÆcients.

>From (67) one sees that the partial derivative of the time derivative function with respect to a reaction

coeÆcient is given by the corresponding column in the stoichiometric matrix times the corresponding entry

in the vector of reactant products

f (t; y) = S � diag [k1(t) � � � kR(t)] � p(y) )
@f1:NVAR
@kj

= S1:NVAR;j � pj(y) :

The following subroutine computes the partial derivative of the time derivative function with respect to a

set of reaction coeÆcients; this is more eÆcient than computing each derivative separately.

SUBROUTINE dFunVar_dRcoeff( V, R, F, NCOEFF, JCOEFF, DFDR )

A total of NCOEFF derivatives are taken with respect to reaction coeÆcients JCOEFF(1) through JCOEFF(NCOEFF).

JCOEFF therefore is a vector of integers containing the indices of reaction coeÆcients with respect to which

we di�erentiate. The subroutine returns the NVAR�NCOEFFmatrix DFDR; each column of this matrix contains

the derivative of the function with respect to one rate coeÆcient. Speci�cally,

DFDR1:NVAR;j =
@f1:NVAR

@kJCOEFF(j)
; 1 � j � NCOEFF :

The partial derivative of the Jacobian with respect to the rate coeÆcient kj can be obtained from (70)

as the external product of column j of the stoichiometric matrix with row j of JRP

@J1:NVAR;1:NVAR
@kj

= S1:NVAR;j � J
RP
j;1:NVAR :

In practice one needs the product of this Jacobian partial derivative with a user vector, i.e.

@J1:NVAR;1:NVAR
@kj

� U1:NVAR = S1:NVAR;j �
�
JRPj;1:NVAR � U1:NVAR

�
:

This is computed by the KPP-generated subroutine
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Figure 2: The Hessian of the small stratospheric system.

SUBROUTINE dJacVar_dRcoeff( V, R, F, U, NCOEFF, JCOEFF, DJDR )

U is the user-supplied vector. A total of NCOEFF derivatives are taken with respect to reaction coeÆcients

JCOEFF(1) through JCOEFF(NCOEFF). The subroutine returns the NVAR�NCOEFF matrix DJDR; each column

of this matrix contains the derivative of the Jacobian with respect to one rate coeÆcient times the user

vector. Speci�cally,

DJDR1:NVAR;j =
@J1:NVAR;1:NVAR
@kJCOEFF(j)

� U1:NVAR ; 1 � j � NCOEFF :

5.7 The Hessian

The Hessian contains second order derivatives of the time derivative functions. More exactly, the Hessian is

a 3-tensor such that

Hi;j;k (t; y; p) =
@2fi (t; y1; � � � ; yn; p1; � � � ; pm)

@yj @yk
; 1 � i; j; k � n : (71)

For each component i there is a Hessian matrix Hi;:;:; Figure 2 depicts the Hessians of the time derivative

functions for all components of the small stratospheric system. Since the time derivative function is smooth

these Hessian matrices are symmetric

Hi;j;k (t; y; p) =
@2fi (t; y; p)

@yj @yk
=

@2fi (t; y; p)

@yk @yj
= Hi;k;j (t; y; p) : (72)

An alternative way to look at the Hessian is to consider the 3-tensor as the derivative of the Jacobian

(5) with respect to individual species concentrations

Hi;j;k =
@Ji;j (t; y1; � � � ; yn; p)

@yk
; Ji;j =

dfi (t; y; p)

dyj
; 1 � i; j; k � n : (73)

The Hessian of the small stratospheric example is represented in Figure 3 as the derivative of the Jacobian

Clearly, the Hessian is a very sparse tensor. KPP computes the number of nonzero Hessian entries (and

saves this in the variable NHESS). The Hessian itself is represented in coordinate sparse format; the real

vector HESS holds the values, and the integer vectors IHESS I , IHESS J , IHESS K, the indices of

nonzero entries

HESS = [ 1, 2, ..., NHESS ]

IHESS_I = [ 1, 2, ..., NHESS ]

IHESS_J = [ 1, 2, ..., NHESS ]

IHESS_K = [ 1, 2, ..., NHESS ]
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Figure 3: The Hessian of the small stratospheric system seen as derivatives of the Jacobian.

such that the nonzero Hessian entries are stored as

Hi;j;k = HESS(m) ; i = IHESS I(m) ; j = IHESS J(m) ; k = IHESS K(m) ;

for Hi;j;k 6= 0 and 1 � m � NHESS :

The sparsity coordinate vectors IHESS fI; J;Kg are computed by KPP and initialized statically; these

vectors are constant as the sparsity pattern of the Hessian do not change during the computation.

Note that due to the symmetry relation (72) it is enough to store only the upper part of each component's

Hessian matrix; the sparse structures for the Hessian store only those entries Hi;j;k for which j � k.

The subroutine

SUBROUTINE HessVar ( V, R, F, HESS )

Computes the Hessian (in coordinate sparse format) given the concentrations of the variable species V . Note

that only the entries Hi;j;k with j � k are computed and stored.

The subroutine

SUBROUTINE HessVar_Vec ( HESS, U1, U2, HU )

computes the Hessian times user vectors product

HU  � (HESS � U2) � U1

which is a vector result. The vector HU can be regarded as the derivative of Jacobian-vector product times

vector

HU  �
@ (J(y) � U1)

@y
� U2 :

Similarly, the subroutine

SUBROUTINE HessVarTR_Vec ( HESS, U1, U2, HTU )

computes the Hessian transposed times user vectors product (which equals the derivative of Jacobian

transposed-vector product times vector)

HTU  � (HESS � U2)T � U1 =
@
�
JT (y) � U1

�
@y

� U2 :

21



6 Building Direct-Decoupled Code with KPP

In this section we present a tutorial example for the direct-decoupled code implementation in the KPP

framework. For simplicity, we consider the problem of evaluating the sensitivities S`(t) 2 R
n of the model

state (concentrations) at time moments t, t0 � t < tF, with respect to the concentration of a species ` at a

previous time instance t0

S`(t) =
@[y1(t); � � � ; yn(t)]

@y`(t0)
; ` = 1; : : : ; n : (74)

Thet forward numerical integration, yi ! yi+1, is performed using the �rst order linearly implicit Euler

method [18] �
J(ti; yi)�

1

h
I

� �
yi � yi+1

�
= f

�
ti; yi

�
; i = 0; : : : ; N � 1 ; (75)

with a constant step size h; the �nal time is reached for tN = Nh = tF. The implementation of one forward

integration step using KPP generated routines is

SUBROUTINE LEULER(n,y,h,t)

....

C -- compute the function, Jacobian

CALL FunVar (n,t,y,fval)

CALL JacVar_SP (n,t,y,jac)

C -- compute J-(1/h)*I and factorize it

jac(lu_diag_v(1:n)) = jac(lu_diag_v(1:n)) -1.0d0/h

CALL KppDecomp (n, jac, ier)

C -- solve: [y^{i}-y^{i+1}] = ( J - (1/h)*I )**(-1) * fval

CALL KppSolve (jac, fval)

C -- update next step solution: y^{i+1} = y^{i} - [y^{i}-y^{i+1}]

y(1:n) = y(1:n) - fval(1:n)

END

To calculate sensitivities with respect to initial values we follow the formulas (20) in the one stage, au-

tonomous form. The Hessian is denoted by H = @J=@y.

yi+1 = yi � k0 ; Si+1` = Si` � k` for 1 � ` � m ;�
J(ti; yi)�

1

h
I

�
k0 = f(ti; yi)�

J(ti; yi)�
1

h
I

�
k` = J

�
ti; yi

�
Si` +

�
H(ti; yi)� Si`

�
k0i for 1 � ` � m :

For an implementation of the direct-decoupled method we consider a state vector y(n + nm) for both

the concentrations and the sensitivities; the concentrations are stored in y(1; � � � ; n) and the sensitivities

S`(1; � � � ; n) in y(`n+1; � � � ; `n+ n) for all 1 � ` � m. The direct decoupled step is implemented as follows.

SUBROUTINE DDM_LEULER(n,m,y,h,t)

....

C -- compute the function, Jacobian, Hessian

CALL Fun ( n, T, y, fval )

CALL JacVar_SP ( n, T, y, jac )
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CALL HessVar ( n, T, y, hess )

C -- compute J-(1/h)*I and factorize it

ajac(1:lu_nonzero_v) = jac(1:lu_nonzero_v)

ajac(lu_diag_v(1:n)) = ajac(lu_diag_v(1:n)) - 1.0d0/H

CALL KppDecomp (n, ajac, ier)

C -- for the concentrations: compute [fval(1:n) = y^{i}-y^{i+1}]

CALL KppSolve (ajac, fval) ! for the concentrations

C -- for each sensitivity coefficient l:

C -- compute [fval(l*n+1:(l+1)*n) = y^{i}-y^{i+1}]

DO l=1,m

CALL JacVar_SP_Vec( jac,y(l*n+1),fval(l*n+1) )

CALL HessVar_Vec ( hess,y(l*n+1),fval(1),hval )

fval(l*n+1:(l+1)*n) = fval(l*n+1:(l+1)*n) + hval(1:n)

CALL KppSolve (ajac, fval(l*n+1))

END DO

C -- update next step solution: y^{i+1} = y^{i} - [y^{i}-y^{i+1}]

y(1:n*(m+1)) = y(1:n*(m+1)) - fval(1:n*(m+1))

T = T + H

END

Note that an implementation of the direct decoupled code for computing sensitivities with respect to rate

coeÆcients can be easily obtained following the same pattern and using the KPP-generated subroutines for

the function and Jacobian derivatives with respect to the rate coeÆcients.

7 Building Adjoint Code with KPP

First applications of the KPP software tools to the adjoint code generation for chemical kinetics systems

were presented by Daescu et al. [5] who reported a superior performance over the adjoint code generated

with the general purpose adjoint compiler TAMC (Giering [15]) for a two-stage Rosenbrock method. In this

section we present a tutorial example for the continuous and discrete adjoint code implementation in the

KPP framework. For simplicity, we consider the problem of evaluating the sensitivities S(t) 2 Rn of the

concentration of the jth chemical species in the model at a �xed instant in time tF > t0 with respect to the

model state at previous instants in time, t0 � t < tF

S(t) =

�
@yj(t

F)

@y1(t)
; � � � ;

@yj(t
F)

@yn(t)

�T
; (76)

with the linearly implicit Euler method (75).

7.1 Continuous adjoint implementation

The continuous adjoint system (28)-(29) is initialized with �N = �(tF) = ej , where ej is the j
th vector of

the canonical base in Rn. One step of the backward integration, �i+1 ! �i, using the linearly implicit Euler

method is written (use (28) and (75) with h �h)�
JT (ti+1; yi+1)�

1

h
I

�
(�i+1 � �i) = JT (ti+1; yi+1)�i+1 (77)
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and after rearranging we obtain

�
J(ti+1; yi+1)�

1

h
I

�T
�i = �

1

h
�i+1 (78)

As we noticed in the previous section, since the adjoint problem is linear, fully implicit methods may be

implemented at the same computational cost as linearly implicit methods. If the backward integration is

performed with the implicit Euler method then

�
J(ti; yi)�

1

h
I

�T
�i = �

1

h
�i+1 (79)

with the only di�erence from (77) being that the Jacobian matrix in (79) is now evaluated at (ti; yi). The

implementation of the continuous backward integration step using the KPP generated routines is outlined

below. On input ady = �i+1, on output ady = �i. For the linearly implicit Euler method we input the time

and state variables t = ti+1; y = yi+1, whereas for the implicit Euler method the input is t = ti; y = yi.

SUBROUTINE CAD_LEULER(n,y,ady,h,t)

....

C -- compute J-(1/h)*I and factorize it

CALL JacVar_SP (n,t,y,jac)

jac(lu_diag_v(1:n)) = jac(lu_diag_v(1:n)) -1.0d0/h

CALL KppDecomp (n, jac, ier)

C -- compute: ( J-(1/h)*I )**(-1) * ( -(1/h)*ady )

f(1:n) = (-1.0d0/h)*ady(1:n)

CALL KppSolveTR(jac,f,ady)

END

Remark 5. An analysis of the forward (75) and backward (78) integrations shows that the forward

integration requires an additional function evaluation. Since cpu(KppSolve) � cpu(KppSolveTR), it follows

that per integration step, the continuous adjoint model integration using the (linearly) implicit Euler method

is more economical than the forward model integration. However, for higher order methods the continuous

adjoint integration is in general more expensive per step than the forward integration with the same numerical

method. An adjoint function evaluation requires the product JT� which is in general more expensive than

evaluating f . In addition, forward recomputations may be required during the adjoint integration.

7.2 Discrete adjoint implementation

The discrete adjoint code is implemented according to the formulae (48) and (55). Di�erentiating (75) with

respect to yi we obtain
@

@yi
[J i(yi � yi+1)] +

�
J i �

1

h
I

��
I �

@yi+1

@yi

�
= J i (80)

where J i = J(ti; yi) and the notation yi+1; yi is used to express the fact that these terms are treated as

constants (given by their numerical value) during the di�erentiation of the �rst term in (80). From (80) we

obtain explicitly

@yi+1

@yi
= I �

�
J i �

1

h
I

��1�
J i +

@

@yi
[J i(yi+1 � yi)]

�
(81)
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such that from (55) and (81) it results

�i =

�
@yi+1

@yi

�T
�i+1 = �i+1 �

�
J i +

@

@yi
[J i(yi+1 � yi)]

�T �
J i �

1

h
I

��T
�i+1 (82)

Equation (82) represents the discrete adjoint integration step associated with the linearly implicit Euler

forward integration. After introducing two new variables k and z

k = yi+1 � yi (83)�
J i �

1

h
I

�T
z = �i+1 (84)

equation (82) becomes

�i = �i+1 � (J i)T z �

�
@

@yi
[J ik]

�T
z (85)

The careful reader will notice that there is no need to evaluate the product (J i)T z in the right side of (85).

From (84) we have

(J i)T z = �i+1 +
1

h
z (86)

such that (85) may be simpli�ed to

�i = �
1

h
z �

�
@

@yi
[J ik]

�T
z (87)

To evaluate the right hand side term in (87), one issue which must be addressed is the presence of the second

order derivatives and we emphasize that in general the matrix @[J ik]=@yi is not symmetric. However, for

any vector z 2 Rn the matrix @((J i)T z)=@yi is symmetric since

@((J i)T z)

@yi
=

nX
`=1

H i
`z` ; H i

` =
@2f`
@y2

����
t=ti;y=yi

; (88)

where H i
` is the Hessian matrix of the `-th component of the rate function f` : R

n ! R evaluated at yi.

Therefore the following property holds

�
@

@yi
[J ik]

�T
z =

�
@

@yi
�
(J i)T z

��
k ; 8z; k 2 Rn : (89)

A proof of the properties (88) and (89) is presented by Daescu et al. (2000). The right hand side term in

equation (89) is now eÆciently evaluated through a call to the KPP generated routine HessVarTR Vec taking

full advantage of the Hessian sparsity. Using (83)-(89), the KPP implementation of the discrete adjoint step

(82) is

SUBROUTINE DAD_LEULER(n,y,ynext,ady,h,t)

....

C -- compute J-(1/h)*I and factorize it

CALL JacVar_SP (n,t,y,jac)

jac(lu_diag_v(1:n)) = jac(lu_diag_v(1:n)) -1.0d0/h

CALL KppDecomp (n, jac, ier)

C -- compute k

k(1:n) = ynext(1:n)-y(1:n)
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C -- compute z

CALL KppSolveTR (jac,ady,z)

C -- compute Hessian and (hess^T x z)*k

CALL HessVar ( y, hess )

CALL HessVarTR_Vec ( hess, z, k, ady1 )

C -- update adjoints

ady(1:n) = -z(1:n)/h - ady1(1:n)

END

On input ady = �i+1; y = yi; ynext = yi+1; t = ti, on output ady = �i.

Remark 6. If the chemical mechanism involves only reactions up to second order, then the Hessian

matrices Hl in (88) are state independent. Since in general the reaction rates are periodically updated (e.g.

every 10 min.), there is no need to evaluate the Hessian matrix (CALL HessVar) at each integration step.

Instead, by periodically updating the Hessian matrix signi�cant computational savings may be achieved.

Remark 7. By comparison of (82) with (78)-(79) it can be seen that discrete adjoint model is a more

demanding computational process and its eÆcient implementation is not a trivial task. For this reason,

the use of discrete adjoints in atmospheric chemistry applications has been limited to explicit or low order

linearly implicit numerical methods (Fisher and Lary [14], Elbern et al. [10, 11, 12], Daescu et al. [5]).

Remark 8. For linear dynamics J = J(t), the expression involving second order derivatives in (87) is

identically zero, such that the discrete adjoint equation simpli�es to

�i = �
1

h
z =

�
J i �

1

h
I

��T
(�

1

h
�i+1) (90)

which is equivalent to (79). Therefore, the discrete adjoint model induced by the forward integration with

the linearly implicit Euler method is equivalent with the backward integration of the continuous adjoint

model using the implicit Euler method.

8 The KPP Numerical Library

The KPP numerical library is extended with a set of numerical integrators and drivers for direct decoupled

and for adjoint sensitivity computations.

Several Rosenbrock methods are implemented for direct decoupled sensitivity analysis, namely Ros1,

Ros2, Ros3, Rodas3, and Ros4. The implementations distinguish between sensitivities with respect to initial

values and sensitivities with respect to parameters for eÆciency. In addition, the o�-the-shelf BDF direct-

decoupled integrator Odessa [22] is available in the library; this modi�ed version of Odessa uses the KPP

sparse linear algebra routines.

Drivers are present for the general computation of sensitivities with respect to all initial values (gen-

eral ddm ic) and with respect to several (user-de�ned) rate coeÆcients (general ddm rc). Note that KPP

produces the building blocks for the simulation and also for the sensitivity calculations; it also provides

application programming templates. Some minimal programming may be required from the users in order

to construct their own application from the KPP building blocks.

The continuous adjoint model can be easily constructed using KPP-generated routines and is integrated

with any user selected numerical method. The discrete adjoint models associated with the Ros1, Ros2, and

Rodas3 integrators are provided for variable step size integration. Drivers for adjoint sensitivity and data

assimilation applications are also included.
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9 Conclusions and Future Work

The analysis of comprehensive chemical reactions mechanisms, parameter estimation techniques, and vari-

ational chemical data assimilation applications require the development of eÆcient sensitivity methods for

chemical kinetics systems. Popular methods for chemical sensitivity analysis include the direct decoupled

method and automatic di�erentiation.

In this paper we review the theory of the direct and the adjoint methods for sensitivity analysis in

the context of chemical kinetic simulations. The direct method integrates the model and its sensitivity

equations simultaneously and can eÆciently evaluate the sensitivities of all concentrations with respect to

one initial condition or model parameter. An eÆcient numerical implementation is the direct decoupled

method, traditionally formulated using BDF formulas. We extended the direct decoupled approach to

Runge-Kutta and Rosenbrock sti� integration methods. The adjoint method integrates the adjoint of the

tangent linear model backwards in time and can eÆciently evaluate the sensitivities of a scalar response

function with respect to the initial conditions and model parameters. Sensitivities with respect to time

dependent model parameters may be obtained through a single backward integration of the adjoint model.

The Kinetic PreProcessor KPP developed by the authors is a symbolic engine that translates a given

chemical mechanism into Fortran or C kinetic simulation code. EÆciency is obtained by carefully exploiting

the sparsity structure of the Jacobian. A comprehensive suite of sti� numerical integrators is also provided.

The second part of this paper presents the comprehensive set of software tools for sensitivity analysis

that were developed and implemented in the new release of the Kinetic PreProcessor (KPP-1.2). KPP was

extended to symbolically generate code for the stoichiometric formulation of kinetic systems; for a direct

sparse multiplication of Jacobian transposed times vector; for the solution of linear systems involving the

transposed Jacobian; for the derivatives of rate function and its Jacobian with respect to reaction coeÆcients;

for the Hessian, i.e. the derivatives of the Jacobian with respect to the concentrations; and for the sparse

tensor product of Hessian with user de�ned vectors. The Hessian and the derivatives with respect to rate

coeÆcients are sparse entities; KPP analyzes their sparsity and produces simulation code together with

eÆcient sparse data structures.

The use of these software tools to build sensitivity simulation code is outlined, following the theoretical

overview of direct and adjoint sensitivity analysis. Direct-decoupled code is constructed in a straightforward

way; BDF and Runge-Kutta direct decoupled integrators, as well as speci�c drivers are included in the KPP

numerical library. The need for Jacobian derivatives prevented Rosenbrock methods to be used extensively in

direct sensitivity calculations; however, the proposed symbolic di�erentiation technology makes the compu-

tation of these derivatives feasible. The continuous and discrete adjoint models are completely generated by

the KPP software taking full advantage of the sparsity of the chemical mechanism. Flexible direct-decoupled

and adjoint sensitivity code implementations are achieved, and various numerical integration methods can

be employed with minimal user intervention.

In the companion paper [6] we present an extensive set of numerical experiments and demonstrate the

eÆciency of the KPP software as a tool for direct/adjoint sensitivity applications. These applications include

direct decoupled and adjoint sensitivity calculations with respect to initial conditions and rate coeÆcients;

time-dependent sensitivity analysis; variational data assimilation and parameters estimation.
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