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Abstract

The Kinetic PreProcessor KPP was extended to generate the building blocks needed for

the direct and adjoint sensitivity analysis of chemical kinetic systems. An overview of the

theoretical aspects of sensitivity calculations and a discussion of the KPP software tools is

presented in the companion paper.

In this work the correctness and eÆciency of the KPP generated code for direct and adjoint

sensitivity studies are analyzed through an extensive set of numerical experiments. Direct

decoupled Rosenbrock methods are shown to be cost-e�ective for providing sensitivities at low

and medium accuracies. A validation of the discrete-adjoint evaluated gradients is performed

against the �nite di�erence gradients. Consistency between the discrete and continuous

adjoint models is shown through step size reduction. The accuracy of the adjoint gradients

is measured against a reference gradient value obtained with a standard direct-decoupled

method. The accuracy is studied for both constant step size and variable step size integration

of the forward model.

Applications of the KPP-1.2 software package to direct and adjoint sensitivity studies,

variational data assimilation and parameter identi�cation are considered for the comprehen-

sive chemical mechanism SAPRC-99.

Keywords: sensitivity analysis, data assimilation, parameter identi�cation, optimiza-

tion.
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1 Introduction

Given a chemical kinetics system described by a list of chemical reactions, the Kinetic PreProcessor KPP

[9] generates the FORTRAN 77 or C code for the forward model integration and subroutines that allow

direct-decoupled/adjoint sensitivity analysis with minimal user intervention. An overview of the theoretical

aspects of sensitivity calculations and a discussion of the KPP software tools is presented in the companion

paper [26]. In this paper we present an extensive set of numerical experiments and applications of the KPP

software to sensitivity studies for chemical kinetics systems.

Our tests use the SAPRC-99 atmospheric chemistry mechanism [4, 5] which considers the gas-phase

atmospheric reactions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in urban and regional

settings. The chemical mechanism was developed at University of California, Riverside by Dr. W.P.L. Carter

for use in airshed models for predicting the e�ects of VOC and NOx emissions on tropospheric secondary

pollutants formation such as ozone (O3) and other oxidants. In our analysis we consider the condensed �xed-

parameter version of the SAPRC-99 mechanism [4] which is suitable for implementation into the Models-3

software framework. This version takes into consideration 211 reactions among 74 variable chemical species

(in addition O2, H2, CH4, and H2O concentrations are considered �xed), and is currently incorporated into

the three-dimensional regional-scale model STEM-II [2]. A list of the variable chemical species in the model

is presented in Table 3.

Hand coding of the forward model and of the direct/adjoint sensitivity models associated with the

SAPRC-99 mechanism is a diÆcult and error prone process. We selected this challenging model to illustrate

the ability of the KPP software to implement eÆcient methods for direct decoupled and adjoint sensitivity

analysis.

The paper is organized as follows. In Section 2 we present the numerical solvers available in the KPP

library for direct-decoupled and discrete/continuous adjoint sensitivity calculations. Experimental settings,

the forward model integration, and issues related to the sparse linear algebra computations are discussed.

Direct sensitivity calculations with respect to initial conditions and to reaction rate coeÆcients using Rosen-

brock solvers up to order four are presented in Section 3. The accuracy and the eÆciency of the direct-

decoupled method is analyzed. Section 4 is dedicated to adjoint sensitivity analysis. Adjoint model valida-

tion, consistency between the discrete and adjoint model, and accuracy issues are discussed. The computa-

tional expense and the eÆciency of the adjoint model are investigated. Applications are presented for time

dependent sensitivities with respect to the model state, reaction rate coeÆcients, and emissions. In Section

5 we present applications of the adjoint modeling to variational data assimilation and parameter estimation

using the initial conditions and emission rates as control variables. Concluding remarks and future research

directions are presented in Section 6.

2 Numerical Solvers

Rosenbrock methods [19] are well-suited for atmospheric chemistry applications due to their optimal stability

properties and conservation of the linear invariants of the system [25]. When the sparsity of the ODE system

is carefully exploited, Rosenbrock methods [19] can eÆciently integrate atmospheric chemistry systems. The

accuracy requirements in atmospheric transport-chemistry models are modest (1%) such that low order

methods are usually employed. For the numerical experiments we consider the second-order two-stage L-

stable solver ROS2 [31] and the third-order four-stage sti�y accurate solver RODAS3 [25]. An analysis
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Figure 1: Evolution of O3 and NO2 concentrations. The model state at the end of a 24 hours transient

interval (marked with �) provides the initial condition for a �ve days integration run.

of the ROS2 and RODAS3 integration methods plus extensive numerical experiments for chemical models

forward integration are presented by Verwer et al. [31] and Sandu et al. [25]. Both integrators use variable

step size for error control. For reference, the integration formulae are included in Appendix C. The forward,

discrete and continuous adjoint model integrations have been implemented using the KPP software tools. The

derivation of the discrete adjoint formulae follows our previous work [7]. Two other methods are included in

the KPP-1.2 numerical library: the linearly-implicit Euler method [19] (one-stage Rosenbrock) implemented

with constant step size is available in forward/adjoint mode for testing purposes only, and the fourth order

four-stage L-stable solver ROS4 [19] is available for direct decoupled sensitivity.

2.1 Experimental Settings

The dynamical model associated with the chemical mechanism is given by a system of nonlinear ordinary

di�erential equations (ODEs)
dy

dt
= f(y) +E ; (1)

where y 2 Rn is the vector of concentrations, f(y) is the chemical production/loss function, and E 2 Rn

represents the vector of emission rates (Ei = 0 if there are no emissions of species i). Throughout this paper

an upper index will specify the discrete time moment and a lower index will specify the vector component.

For example, yi is the concentration vector at time ti and yj denotes the j
th component of the vector y.

For the numerical experiments we selected a pollution scenario with urban V OC and high NOX levels

using input data and reaction rate constants from Carter [4] MD3TEST2, as follows: the model simulation

starts at local noon (ts=12:00 LT) with the concentration of all variable chemical species set to zero. Emis-

sions are prescribed at constant rates for 30 chemical species in the model as speci�ed in Table 4 (Eref
i ).

We assume a day time interval from 4:30LT (sunrise) to 19:30LT (sunset) with the photolysis reaction rates

updated every 15 min, and a constant temperature of 300ÆK. The system is integrated for 24 hours (using

RODAS3) and the resulting state y0 at t0 = ts + 24h is used as the initial state of the model for a �ve days

run. The value y0 is written to an output �le and will serve as input for all numerical experiments performed

with various integrators. The one day integration interval is used to avoid initial sti� transients and to allow

the system to equilibrate. This process is illustrated in Figure 1 for O3 and NO2 concentrations.
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2.2 Sparse Linear Algebra Computations with KPP

For an eÆcient forward/adjoint integration the sparsity of the ODE system (1) associated with the chemical

mechanism must be carefully exploited. The linear algebra computations required during the forward/adjoint

integration are eÆciently performed using KPP software. The dimension of the state vector of variable

chemical species is n = 74, but the Jacobian matrix associated with the di�erential equations system has only

839 nonzero entries out of 74�74 = 5476 revealing a sparsity of about 85%. KPP selects an optimal ordering

of the chemical species such that there are only 920 nonzero entries after the LU matrix decomposition. The

KPP ordering of the variable chemical species in the model is presented in Table 3. Since the discrete adjoint

model requires Hessian matrices evaluation, it appears that a huge amount of memory must be allocated for

Hessian storage. Taking advantage of the symmetry, the full Hessian matrices Hi = @2fi=@y
2, 1 � i � n

appear to require 74 � 74 � 37 = 202612 entries to be stored. However, KPP analysis shows that the

number of nonzero entries is NHESS = 838, which is less than 0:5% of the previous estimation. The KPP

implementation of sparse linear algebra leads to signi�cant computational savings and allows a very eÆcient

forward/adjoint integration.

2.3 Forward Model Integration

Forwardmodel integration is performed with variable step size error control using ROS2 and RODAS3 solvers.

Since reaction rates are periodically updated, at each interval dt = 15 minutes the integration is restarted

with a minimal step size Hmin = 0:001s. This may also simulate an operator splitting environment when

the chemistry module is incorporated into a 3D atmospheric transport-chemistry model. The evolution

of the concentrations during the �ve days integration from t0 is shown in Figure 21 (reference run) for

representative chemical species from the class of inorganics (O3, NO2, SO2, CO), explicit (HCHO, CCHO,

Ethene, Isoprene) and lumped (ALK4, ALK5, ARO1, ARO2) organics, and radicals (OH, HO2, RO2 R,

R2O2). The accuracy requirements were given by the absolute tolerance Atol = 1 molec=cm3 and the

relative tolerance Rtol = 10�3 for all the chemical species in the model. The results obtained with both

integrators were within the prescribed accuracy and in Figure 2 we show the relative errors between the

predicted concentrations at the end of the �ve days run when the integration is performed with ROS2 versus

RODAS3.

Since the adjoint sensitivity method requires storage of the forward trajectory, it is also of interest to

analyze the length of the forward trajectory which is given by the number of steps taken during the forward

integration. For the 5 days run, ROS2 required 9970 steps, whereas RODAS3 required only 5115. However,

per step RODAS3 is more expensive since it has four internal stages, whereas ROS2 has only two. The

distribution of the number of steps on each [t; t+ dt] interval displayed in Figure 2 shows that the sti�ness

of the system increases during the sunrise and sunset transients when a large number of steps needs to be

taken.

3 Direct Sensitivity Calculations

We computed the direct sensitivities with respect to initial values and to rate coeÆcients using ROS2, RO-

DAS3, and ROS4 integration methods. The accuracy of the results and the eÆciency of the implementation

are compared against a reference solution with the direct-decoupled, o�-the-shelf BDF code ODESSA [21],

with the tight tolerances Atol = 1:e� 8 molec/cm3, Rtol = 1:e� 8.
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Figure 2: Forward model integration using ROS2 and RODAS3 solvers: (a) ROS2 versus RODAS3 relative

di�erences in the predicted concentrations at tF = t0 + 120h; (b),(c) Statistics of the number of steps taken

in each time interval of length dt = 15 min using ROS2 and respectively, RODAS3. A larger number of steps

is required during the sti� transients at sunrise and sunset time of the day.

The time evolution of the sensitivity of ozone concentration with respect to its initial value is shown in

Figure 3 and the time evolution of the sensitivities of ozone concentration with respect to NOX initial values

in Figure 4.

Direct sensitivities of ozone concentration with respect to six rate coeÆcients are shown in Figure 5.

ODESSA uses error control for both the concentrations and the sensitivities. We note that setting the

proper values of the absolute tolerances for the sensitivities is diÆcult, since the sensitivity coeÆcients take

values spanning a wide range of magnitudes. For this reason the KPP implementation of Rosenbrock methods

only controls the concentration errors. The work-precision diagrams, i.e. the numerical errors versus the

CPU time are presented in Figure 6. The ozone concentration errors are shown in the left graphic. The

errors of ozone sensitivity at �nal time with respect to all initial concentrations, i.e.

ERR =

vuut 1

NV AR

NV ARX
i=1

�
@O3(tF)

@yi(t0)

����
numeric

� @O3(tF)

@yi(t0)

����
reference

�2

is shown in the right graphic. One notices that sensitivity coeÆcient errors are of the same order of magnitude

as concentration errors. The errors of �nal concentrations sensitivity with respect to the initial ozone

concentration, i.e.

ERR =

vuut 1

NV AR

NVARX
i=1

�
@yi(tF)

@O3(t0)

����
numeric

� @yi(tF)

@O3(t0)

����
reference

�2

are shown in the middle graphic. The results show that some sensitivities are solved inaccurately. Therefore

the concentrations-only error control strategy has to be carefully used.

The results of Figure 6 also suggest that direct decoupled Rosenbrock methods are cost-e�ective (when

compared to the BDF sparse code ODESSA) for providing sensitivities at low and medium accuracies. This

conclusion parallels the fact that Rosenbrock methods are cost-e�ective for ODE integration (for calculating

concentrations) in the low and medium accuracy range.

The computational times for the forward integration of the model, the direct decoupled sensitivity with

respect to all initial conditions and with respect to six rate coeÆcients are shown in Table 1. The ratios of
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Figure 3: The time evolution of [O3](t) direct sensitivity with respect to [O3](t
0).
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Figure 4: The time evolution of [O3](t) direct sensitivity with respect to [NOX ](t
0).
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Figure 5: The time evolution of [O3](t) direct sensitivity with respect to several rate coeÆcients.
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Method Model DDM Init. Cond. DDM Rate Coe�.

(NVAR=74) (NCOEFF=6)

Ros2 1.87 73.60 (40) 11.01 (6)

Rodas3 0.66 25.54 (39) 10.36 (15)

Ros4 1.28 78.50 (61) 11.12 (9)

Odessa 2.23 87.82 (40) 21.57 (10)

Table 1: The CPU times (in seconds, on a Pentium III, 1 GHz) for the integration of the forward model,

and the integration of the direct decoupled system for sensitivities with respect to all initial values and with

respect to six rate coeÆcients. In parentheses are shown the ratios of DDM times to model integration times.

DDM times to model integration times are sublinear (about half the number of sensitivity coeÆcients) for

sensitivity with respect to initial values. But these ratios are superlinear for the sensitivities with respect to

rate coeÆcients. This can be explained by the overheads due to the analytical calculation of function and

Jacobian derivatives with respect to the rate coeÆcients.

4 Adjoint Sensitivity Analysis

In this section we use the adjoint method to estimate the sensitivity of predicted ozone concentration at

the end of the integration interval, tF = t0 + 120h, �rst with respect to the initial conditions y0, then with

respect to the model state and emissions at intermediate instants in time t0 � t < tF. Issues related with

validation of the model linearization, consistency between the discrete adjoint and continuous adjoint model,

and accuracy of the evaluated gradients are addressed. A comparative study of the discrete (DADJ) versus

continuous (CADJ) adjoints is presented for ROS2 and RODAS3 integration methods. The computational

expense of the adjoint model is analyzed in terms of memory storage requirements and CPU time relative

to the forward model integration.

4.1 Adjoint Model Validation

Since chemical reaction systems are nonlinear, the �rst problem to address is the validity of the linearization

of the model (1). For a given response functional

g(u) = g(y(tF; u)) (2)

where u 2 Rm is a vector of model parameters, and any perturbation in the input parameters Æu, the Taylor

series of g at u gives

g(u+ Æu) = g(u) + hrg(u); Æui+ o(kÆuk) (3)

Therefore, the linear model approximation is satis�ed if

lim
�!0

g(u+ �Æu)� g(u)

�
= hrg(u); Æui; 8Æu 2 Rm (4)

For practical reasons, since chemical reactions systems are characterized by a wide range of concentrations

and roundo� errors may become signi�cant when � ! 0, we will assume that the model linearization is

satis�ed and the adjoint evaluated gradient is correct if the �nite di�erence approximation

g(u+ �iei)� g(u)

�i
� @g(u)

@ui
; 1 � i � m ; (5)
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is satisfactory for �i small enough, where ei is the i
th vector of the canonical base in Rm.

Additional issues must be addressed for the adjoint model validation. The model (1) is nonlinear such

that the adjoint model depends on the forward trajectory, which in turn depends on the parameter values.

When variable step size integration is performed, the selected steps depend on the parameter values. For a

valid test (5) there are two alternatives:

i) perform a constant step size integration;

ii) perform a variable step size integration to evaluate g(u) and store the sequence of the steps taken.

Then evaluate g(u+ �iei) using the same sequence of steps.

Using either i) or ii) we may perform a valid test for the discrete adjointmodel which provides the sensitivity of

the numerically evaluated response functional with respect to the model parameters. Numerical validation of

the continuous adjoint model is more challenging. Since the forward model provides only approximate values

of the continuum trajectory, the test (5) for the continuous adjoint gradients can only lead to an agreement

within O(�) + O(Tol), where Tol represents the accuracy of the forward integration. Our approach for the

adjoint model validation is to use a constant step size integration to validate the discrete adjoint model, and

to show consistency between the discrete and continuous adjoint models through step size reduction. That

is, numerically we verify

h& 0 =) k(rg)DADJ � (rg)CADJk & 0 (6)

We will later use a variable step size integration when we discuss accuracy issues for the evaluated gradients.

4.1.1 Discrete Adjoint Model Validation

We consider the ozone concentration at tF = t0 +120h as the response functional, and the initial conditions

as parameters. Therefore, u = y0 and g(y0) = [O3](tF; y0). Sensitivities are evaluated for a constant step size

integration h = 60s using ROS2 and RODAS3 solvers. For each solver we compare the discrete adjoint sen-

sitivity against the �nite di�erence approximation (5). Due to the wide range of concentrations, nonlinearity

of the system and roundo� errors, �nding an optimal perturbation � for the �nite di�erence approximation

may be a diÆcult task requiring extensive trial and error experiments. We consider a perturbation in the

initial conditions of 1 part-per-trillion (ppt) for each chemical species at a time, and perform 1 + 74 runs

for the �nite di�erence approximation. For most of the chemical species an agreement of 4 to 6 signi�cant

digits is observed between the �nite di�erence and the discrete adjoint gradients, which indicates that the

adjoint gradients are properly evaluated. Sensitivity values using �nite di�erence (FD) against discrete ad-

joint (DADJ) are presented in Table 3 for all chemical species and each numerical solver. In addition, the

sensitivities obtained with the continuous adjoint model (CADJ) are also included in Table 3 for each solver.

Note that the �rst eight chemical species in Table 3 are non-reactive and therefore their sensitivity values

are zero. For some of the radical species (marked with � in Table 3), we use a perturbation of 10�3 ppt to

obtain a satisfactory �nite di�erence approximation. Only for the phenoxy radical (BZNO2 O) the �nite

di�erence approximation fails to provide reliable results. Since in our model the concentration of BZNO2 O

is about 10�16 ppt, roundo� errors play a signi�cant role in the �nite di�erence approximation.

From Table 3 it can be seen that although in general we obtained close sensitivity values with di�erent

integrators, the accuracy of the forward integration may have a signi�cant impact on the evaluated sensi-

tivities. A good agreement between the �nite di�erence approximation and the discrete adjoint evaluated

sensitivities simply implies that the adjoint model was properly implemented. No indication is provided

9
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Figure 7: ROS2 discrete versus continuous: (a) absolute and (b) relative di�erences between the continuous

and discrete gradient evaluation with constant step size h=300s (-) and h=10s (.-). (c) Evolution of the

Euclidean distance k(rg)DADJ � (rg)CADJk using h=300s, 150s, 60s, 30s, 10s.

on how accurately we estimated the true sensitivities given by the exact solution of the forward/adjoint

model. For some of the radical species and in particular, for the hydroxyl radical (OH) the discrete adjoint

sensitivities we obtained with ROS2 and RODAS3 are quite di�erent. On another hand, the continuous

adjoint method applied for each solver o�ered a consistent sensitivity estimate and we obtained an accurate

sensitivity value @[O3](tF)=@[OH ](t0) = 0:003891 with ODESSA package [21] (see also Section 4.2) using the

direct decoupled sensitivity method. In Section 2.3 we noticed that even for a modest accuracy of the model

integration, a step size as small as a few seconds may be needed during the sti� transients. Since integration

with a constant step of a few seconds may not be a practical approach, a variable step size integration with

error control is desirable. Before we discuss accuracy issues for the evaluated sensitivities, �rst we investigate

the consistency between the continuous and the discrete adjoint model.

4.1.2 Consistency Between the Discrete and Continuous Adjoint Models

Once a forward integration numerical scheme is selected, the numerical scheme for the discrete adjoint

integration is implicitly determined. Hager [18] shows that the discrete adjoint model induced by Runge-

Kutta integration schemes may be interpreted as a Runge-Kutta method (usually distinct from the forward

method) applied to the continuous adjoint model. Examples of numerical schemes which are consistent with

a (forward) equation and whose adjoint is not consistent with the adjoint equation are presented by Sei and

Symes [27]. In this section we perform a series of numerical experiments to verify the consistency between

the discrete and continuous adjoint model given by relation (6). The continuous adjoint model is integrated

backward with the same numerical method and same constant step size used in the forward integration.

Experiments are performed using ROS2 and RODAS3 integrators with a decreasing sequence of integration

steps: h=300s, 150s, 60s, 30s, and 10s. The absolute and relative di�erences between the continuous and

discrete adjoint gradients when the step size is reduced from 300s to 10s are shown for ROS2 integration in

Figure 7 (a),(b), and for RODAS3 integration in Figure 8 (a),(b). The evolution of the distance (6) using

the Euclidean norm is shown in Figure 7 (c) for ROS2 and in Figure 8 (c) for RODAS3 and indicates that

the convergence (6) is superlinear.
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4.2 Accuracy of the Adjoint Sensitivities

In this section we investigate the accuracy of the sensitivities evaluated with the continuous and discrete

adjoint models. Reference sensitivity values are obtained by simultaneous solving the ODE system (1) and

the associated �rst-order parametric sensitivity equations using ODESSA code [21] with Rtol = 10�6.

We begin our analysis by performing a �xed step size integration, h = 60s of the forward/adjoint model

using ROS2 and RODAS3 solvers and comparing the discrete and continuous adjoint sensitivities with the

reference values obtained with ODESSA. A graphical illustration of the relative di�erences of the estimated

sensitivity values is shown in Figure 9.

For most components of the state vector, the discrete adjoint approach provided a more accurate sensitiv-

ity estimate than the continuous adjoint model. However, the continuous adjoint model appears to provide

more robust estimates, whereas large variations in the accuracy estimates may be observed for the discrete

adjoint model. In particular, for some of the radical species (see e.g. TBU O; iTBU O = 22; O3P; iO3P =

58; OH; iOH = 74 in Figure 9 and also Table 3) the discrete adjoint estimate was not reliable and the

continuous adjoint approach provided accurate values.

4.2.1 Variable Step Size Integration

Variable step size numerical integration of the forward model (1) provides an estimate y(ti) of the true

solution y(ti), y(ti) = y(ti) + Æy(ti), and we may assume that the accuracy requirements of the forward

integration are such that kÆy(ti)k < Tol, where Tol is an user prescribed tolerance. Therefore, we only have

access to the approximate adjoint model

d�

dt
= �JT (t; y + Æy; p)� (7)

�(tF) = ryg(y(t
F) + Æy(tF)) (8)

which we attempt to solve numerically.

Theoretically, in the continuous adjoint approach the system (7)-(8) may be integrated with its own

numerical method and error control. This may not be a practical approach since a dynamical selection of

the adjoint step may require frequent forward recomputations. In addition, having available a forward model

11



0 10 20 30 40 50 60 70 80
−6

−5

−4

−3

−2

−1

0

1
a. ROS2 (h=60s)

chem. spec. no.

lo
g1

0(
re

la
tiv

e 
er

ro
r)

0 10 20 30 40 50 60 70 80
−6

−5

−4

−3

−2

−1

0

1

chem. spec. no.

lo
g1

0(
re

la
tiv

e 
er

ro
r)

b. RODAS3 ( h = 60s )

Figure 9: Relative errors for the sensitivity values evaluated using the continuous (o) and discrete (.-)

adjoint methods (a) for ROS2 and (b) for RODAS3, with a constant step size h=60s. The reference solution

is obtained with ODESSA (Rtol = 10�6).
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Figure 10: Sensitivity values @[O3](tF)=@yi(t
0) obtained with ODESSA (-), discrete adjoint (+) and contin-

uous adjoint (Æ) using variable step size RODAS3 integration.

solution such that kÆy(ti)k < Tol implies that by solving (7)-(8) we may only obtain an estimate � = �+ Æ�

with kÆ�k < C � Tol, and the constant bound may be quite large. A judicious estimate of how the forward

integration errors propagate into the adjoint model is diÆcult to obtain and signi�cant insight may be gained

through a second order sensitivity analysis to evaluate @�=@y. Such analysis is beyond the goal of this paper

and we will consider a backward integration of the adjoint model (7)-(8) using the reversed sequence of steps

taken during the forward integration.

The discrete adjoint model is induced by the forward integration and may be interpreted as a numerical

method applied to the continuous adjoint model. Order reduction of the discrete adjoint for Runge-Kutta

integration methods of order three and higher is investigated by Hager [18]. Sei and Symes [27] show that

stability and consistency properties are not always preserved by the discrete adjoint model and depend on

the numerical integration method.

The forward model (1) is integrated as in Section (2.3) with the tolerances Atol = 1 molec/cm3 ,

Rtol = 10�3, using the variable step size ROS2 and RODAS3 solvers. The reference sensitivity values are

obtained with ODESSA. These values and the discrete adjoint model and the continuous adjoint model for

the RODAS3 integration are shown in Figure 10. Absolute and relative errors of the discrete and continuous

adjoint sensitivities are shown in Figure 11 for ROS2 and in Figure 12 for RODAS3. These results indicate

that for each integrator, the discrete adjoint approach provides in general more accurate sensitivity values

than the continuous adjoint approach when integration is performed using the reversed step size sequence.

4.3 Computational Expense of the Adjoint Model

The computational expense of the adjoint model is given by the memory resources that need to be allocated

for trajectory storage and the CPU time of the gradient evaluation. Intensive research is focused on devel-

oping optimal strategies for trajectory storage and checkpointing schemes [16]. Anticipating applications to

large scale transport-chemistry models in an operator splitting environment, KPP implements a two-level

checkpointing scheme for the forward trajectory storage. The integration interval [t0; tF] is uniformly divided

in subintervals of length dt : Ii! = [ti; ti+1], 1 � i � I . The interval length dt is speci�ed by the user, in our

experiments dt = 15 min. A �rst forward run from t0 to tF is used to store the model state at the end of each

interval Ii!, such that an array of dimension n � I is stored at this stage. Adjoint (backward) integration

in the interval Ii = [ti+1; ti]; i = I; 1;�1 includes a second forward integration in Ii! to store the model

13
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Figure 11: Absolute (a) and relative (b) errors in sensitivity values evaluated with the discrete (dash-dot line)

and continuous (solid line with dot) ROS2 adjoint integration with variable step size and forward integration

accuracy Rtol = 0:001. Adjoint integration is performed using the reversed sequence of steps taken during

the forward model integration. The reference sensitivities are obtained with ODESSA.

0 20 40 60 80
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log
10

chem. spec. no.

a. Absolute errors

0 20 40 60 80
−6

−5

−4

−3

−2

−1

0

chem. spec. no.

log
10

b. Relative errors

Figure 12: Absolute (a) and relative (b) errors in sensitivity values evaluated with the discrete (dash-dot line)

and continuous (solid line with dot) ROS2 adjoint integration with variable step size and forward integration

accuracy Rtol = 0:001. Adjoint integration is performed using the reversed sequence of steps taken during

the forward model integration. The reference sensitivities are obtained with ODESSA.
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state after each integration step hij in the Ii! interval. For variable step size integration the sequence of

steps taken hij needs also to be stored and the statistics shown in Figure 2 provide insight on the additional

state storage requirements during this stage. The pure adjoint (backward) integration is then performed

in the interval Ii and may require some additional forward recomputations of the internal stages of the

numerical method at each step. Therefore, the gradient evaluation requires two full forward runs and the

pure backward integration.

Griewank [17] has shown that the computational cost of the discrete adjoint code cpu(DADJ) is of the

same order as the computational cost of the forward model integration cpu(FWD) (bounded by a factor

5 if no restrictions are considered on the memory access time). Neglecting the cpu time of the forward

recomputations, for the continuous adjoint model a ratio cpu(CADJ)=cpu(FWD) � 1 is desirable using the

same numerical method in both the forward and backward integrations. The measured cpu times for pure

continuous (CADJ) and discrete (DADJ) adjoint integrations and gradient evaluation (rg) versus the cpu
time of the forward integration (FWD) are shown in Table 2 for ROS2 and RODAS3 integrators using a

constant step size forward/backward integration with h = 60s. The total cpu time required for gradient

evaluation cpu(rg) includes two forward runs, adjoint integration and the additional overhead introduced

by trajectory storage/reload. The results indicate that very eÆcient implementations for both discrete and

continuous adjoint models are obtained using KPP software.

Numerical CPU time (sec)

method FWD CADJ CADJ/FWD (rg)CADJ DADJ DADJ/FWD (rg)DADJ
RODAS3 1.6 1.9 1.2 5.3 3.7 2.3 7.1

ROS2 1.1 1.2 1.1 3.6 2.1 1.9 4.5

Table 2: CPU time (in seconds) of the forward and adjoint integration with a constant step size h=60s. The

gradient time rg includes two forward model integrations (FWD), the pure discrete (and respectively contin-

uous) adjoint integration DADJ (CADJ), and additional overhead due to trajectory save/load. Experiments

performed on a Pentium III, 930MHz.

A comparative analysis with the direct-decoupled method (Table 1) shows that the adjoint modeling

provides a much more eÆcient approach to evaluate the sensitivity of a scalar response function with respect

to a large number of input parameters.

4.4 Time Dependent Sensitivity Analysis

The adjoint method provides an eÆcient tool for time dependent sensitivity analysis. In this section the

adjoint modeling is used to evaluate the sensitivity of ozone concentration [O3] at the end of the integration

interval (tF = t0 + 120h) with respect to the model state at intermediate instants in time and emissions

over the time interval [t1; tF]; t0 � t1 < tF. Sensitivities with respect to constant and time dependent

reaction rates coeÆcients are also presented; they are obtained at minimal additional cost during the adjoint

integration. We initialize the vector �(t) 2 Rn of the adjoint variables associated with the forward model

(1) with �j(t
F) = 1 for j = O3 and zero for all other components.

4.4.1 Sensitivity to Model State

V OC and NOX chemistry initiated by reactions with hydroxyl (OH) and respectively, peroxy (RO2) radical

species is essential to the ozone formation process. The impact on ozone concentration [O3](tF) induced
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Figure 13: Normalized [O3](tF) sensitivity with respect to [O3](t), t0 � t � tF. Results displayed for

continuous and discrete adjoint method using ROS2 and RODAS3 solvers.

by variations in the concentrations of the chemical species in the model at intermediate instants in time

t0 � t < tF may be analyzed by evaluating the time dependent sensitivities

si(t) =
@[O3](tF)

@yi(t)
; 1 � i � n : (9)

Using the adjoint model properties (see [26, Remark 2]), we identify si(t) = �i(t) such that during the adjoint

integration to obtain sensitivity with respect to the initial state �(t0), we obtain at no additional cost the

intermediate sensitivities (9). Due to the wide range of concentrations in the chemical system, we consider

normalized sensitivity values given by the ratio

s�i (t) =
@ ln([O3](tF))

@ ln(yi(t))
=

@[O3](tF)

@yi(t)

yi(t)

[O3](tF)
=

yi(t)

[O3](tF)
�i(t) ; 1 � i � n ; (10)

which may be interpreted as the percentual change in the concentration [O3](tF) due to 1% increase in the

concentration of species i at moment t.

We obtained consistent sensitivity trajectories s�i (t); t
0 � t < tF within the prescribed accuracy range for

both continuous and discrete adjoint approach using variable stepsize (Rtol = 0.001) ROS2 and RODAS3

integration methods as shown in Figure 13 for s�O3(t).

Note that the sensitivity of ozone concentration at the end of the integration interval is large with respect

to ozone state during the previous 24h and it is rapidly diminishing as time moves backward. Therefore,

changes in ozone state during the �rst three days of the integration have little inuence on the ozone state

at the end of the �fth day. This analysis is also useful for variational data assimilation showing that the

length of the assimilation window should be restricted to 1-2 days.

In the same time the adjoint integration provided the sensitivities of ozone with respect to all chemical

species in the model. Sensitivity with respect to NOX species shown in Figure 14 reveals that increasing

NOX concentrations will consistently result in increased ozone formation and the relative impact is highly

dependent on the time of the day.

Among the explicit reactive organic product species we found that the impact of variations in the

formaldehyde (HCHO) and acetaldehyde (CCHO) concentrations may be signi�cant for the short time evo-

lution of ozone concentrations whereas the ozone relative sensitivity to ethene concentrations is about two

orders of magnitude larger than the relative sensitivity with respect to isoprene. These results are shown in

Figure 15.
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Figure 14: Normalized [O3](tF) sensitivity with respect to NOx species concentration at intermediate instants

in time t0 � t � tF.
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Figure 16: Normalized [O3](tF) sensitivity with respect to concentrations of lumped parameter species at

time t; t0 � t � tF.

Relative sensitivities with respect to lumped parameter species displayed in Figure 16 have larger values

for alkanes with high OH reactivity (ALK3, ALK4, ALK5) and aromatics (ARO1, ARO2), whereas a small

relative sensitivity is shown with respect to alkenes (OLE1, OLE2) and terpenes (TERP).

4.4.2 Sensitivity to Emissions

The impact on ozone formation of various types of emitted V OC is given by the ozone reactivities of the

V OC. The "incremental reactivity" (Carter [3]) is given by the partial derivative of ozone with respect to

the emissions of the V OC which represents the sensitivity of ozone to V OCs emissions. In this section we

study the sensitivity of ozone concentration [O3] at the end of the integration interval (tF = t0+120h) with

respect to emissions over the time interval [t1; tF]; t0 � t1 < tF. In our model emissions are speci�ed for 30

chemical species at a constant rate Ei as shown in Table 4 (Eref
i ). The total amount of V OC emitted in

the time interval [t1; tF] is given by

Ei(t1) =
Z tF

t1
Ei(t)dt = (tF � t1)Ei (11)

Using the forward model equation (1), for every emitted chemical species i we have

@fi
@Ei

= 1 (12)

such that
@[O3](tF)

@Ei

=

Z tF

t1
�i(t)dt (13)

where �(t) 2 Rn denotes the vector of adjoint variables associated with the forward model (1), initialized

with �j(t
F) = 1 if j = O3 and zero for all other components. The adjoint variables �i(t) may be interpreted

as the sensitivity of the ozone concentration [O3](tF) with respect to emission rate Ei at time t (see also [26,

Remark 2]). From (11) and (13) we obtain the sensitivities

si(E ; t1) = @[O3](tF)

@Ei(t1) =
1

tF � t1

Z tF

t1
�i(t)dt (14)
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Figure 17: Normalized [O3](tF) sensitivity with respect to NOX emissions and lumped parameter species

emissions in the time interval [t; tF]; t0 � t < tF

which may be evaluated simultaneously for all emission types using a single backward integration of the

adjoint model. The normalized values

sTi (E ; t1) = si(E ; t1) Ei(t1)
[O3](tF)

(15)

indicate the percentual change in ozone concentration corresponding to 1% uniform increase in the emissions

of species i over the time interval [t1; tF]. Normalized sensitivity values with respect to emissions of NOX

and lumped parameter species are shown in Figure 17. Sensitivity values indicate that ozone formation will

increase as NOX and alkanes emissions increase, whereas increasing emissions of aromatics, alkenes and

terpenes will inhibit ozone production.

As noted by Carter [3], the incremental reactivity values are highly dependent on the scenario considered

and we must emphasize that the results presented in this section are only valid for our particular scenario.

Extensive testing is required before general conclusions may be drawn.

4.4.3 Sensitivity to Reaction Rate CoeÆcients

In this section we use the continuous adjoint model to evaluate the sensitivity of ozone concentration [O3](tF)

with respect to reaction rate coeÆcients kj . Chemical reactions in the model are written explicitly as

rj)

nX
i=1

s�i;jyi
kj�!

nX
i=1

s+i;jyi ; 1 � j � R ; (16)

where si;j are the stoichiometric coeÆcients. We distinguish between the sensitivity with respect to thermal

reactions rate coeÆcients which in our model are maintained constant, and sensitivity with respect to the

photolytical reactions rates which are time dependent.

The sensitivity with respect to constant reaction rates kj are expressed as

sj(t
1) =

Z T

t1

�
@f

@kj

�T
� dt ; t0 � t1 � tF (17)

where
@fi
@kj

=
�
s+i;j � s�i;j

� nY
i=1

y
s�
i;j

i (18)
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Figure 18: Normalized [O3](tF) sensitivity with respect to constant reaction rate coeÆcients

and � is the vector of adjoint variables associated with the state vector y. In Figure 18 we show normalized

sensitivity values

s�j (t
1) = sj(t

1)
kj

[O3](tF)
(19)

with respect to few of the signi�cant reactions in ozone chemistry.

Remark. The sensitivity values s�j (t
0) agree within the prescribed accuracy with the sensitivity values

obtained with the direct-decoupled method (see Figure 5 at t = tF).

Sensitivity with respect to instantaneous changes in the photolysis rates at time t1 are given by

sj(t
1) =

�
@f

@kj

�T
�jt=t1 ; t0 � t1 � tF (20)

In Figure 19 we show the normalized sensitivity values (20) with respect to the photolysis rates that proved

to be most signi�cant in ozone formation.

5 Applications to Variational Data Assimilation

Adjoint modeling is an essential tool for large scale variational data assimilation applications. The variational

methods have been extensively used in data assimilation for meteorological and oceanographical models and

show promising results for atmospheric chemistry applications [11, 13, 14]. Four dimensional variational data

assimilation (4D-Var) searches for an optimal set of model parameters which minimizes the discrepancies

between the model forecast and time distributed observational data over the assimilation window. A practical

implementation of the minimization process requires a fast and accurate evaluation of the gradient of the

cost functional which may be provided by adjoint modeling. A review of the use of the adjoint method in

four dimensional atmospheric chemistry data assimilation is presented by Wang et al. [32]. Next we briey

outline the discrete 4D-Var problem formulation and we will refer to Jazwinski [20], Tarantola [30], and
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Figure 19: Normalized [O3](tF) sensitivity with respect to photolysis rate coeÆcients at time t.

Daley [8] for a complete description of the various assumptions used by the data assimilation techniques,

including the continuum formulation and a probabilistic interpretation.

Consider the set of the observations

O = fyk 2 Rnk ; 0 � k � mg (21)

which are taken at discrete moments in time tk, 0 � k � m over the analysis interval and assume that

observations are linearly related with the state

yk = Hky
k + �k : (22)

The observational operator Hk is assumed to be state independent and �k represents the total observational

error which is determined by the measurement error and the error of representativeness (Lorenc [22]). Let

u represent the vector of model parameters, and assume that the solution of the model (1) is uniquely

determined once the input vector u is speci�ed. Additional information on the model parameters may be

taken into account as a "background" estimate ub of the true parameter values. The 4D variational data

assimilation seeks to minimize the discrepancy between the model forecast and observations expressed by

the cost function

J = J b + J o =
1

2
(u� ub)TB�1(u� ub) +

1

2

mX
k=0

(Hky
k � yk)TR�1k (Hky

k � yk) : (23)

In the probabilistic approach B and Rk represent the covariance matrix of the errors in the background

estimate and respectively, observational errors at tk. Without any probabilistic interpretation, B and Rk are
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positive de�nite diagonal matrices providing appropriate weights for the least squares curve �tting process.

By expressing the state vector as a function of parameters, yk = yk(u), the 4D-Var problem is formulated

min
u
J (u) : (24)

In meteorological applications variational techniques are mostly used to �nd an optimal initial state of

the model (u = y0). In atmospheric chemistry modeling uncertainties in various model input parameters

(e.g. emission rates, boundary values) must be also considered. For an in-depth analysis of the the adjoint

parameter estimation, identi�ability issues and regularization techniques in the context of inverse modeling

we will refer to Navon [23], Tarantola [30], and Sun [29]. In the numerical experiments presented in this

section we investigate the ability of the 4D-Var technique to retrieve the initial model state and provide

accurate emission estimates using observational data information. The experiments are performed using the

ROS2 solver with variable step size (Rtol = 0.001) and a discrete adjoint model.

5.1 Data Assimilation Framework

The data assimilation procedure is set using the twin experiments method as follows:

Reference run: we start a model run at local noon ts = 12:00LT with the concentration of all variable

chemical species set to zero and the "reference" emission rates Eref
i shown in Table 4. The model state

obtained after a 24h run at t0 = ts+24h is considered as reference ("true") initial state (y0)ref of the model

for a �ve days reference run [t0; t0 + 120h].

Initial guess run: the experiment is repeated with emission rates increased by 50%, Eiguess
i = 1:5Eref

i ,

as shown in Table 4. The model state obtained after a 24h run at t0 = ts + 24h is considered as "initial

guess" model state for a �ve days forecast run using Eiguess
i as emission rates.

Observations and assimilation window: We consider a 24h assimilation window [t0; t0 + 24h]. No obser-

vations are provided for radical species (marked with � in Table 3). For all other chemical species in the

model concentrations obtained during the reference run are provided as hourly observations starting from

t0 + 1h.

Parameters: the control parameters are the concentration of variable chemical species at t0 (dimension

74) and the emission rates (dimension 30), u = (y0T ; ET )T .

Cost functional: We assume that information to the data assimilation process is provided only by the

"observations" such that no background term is included in the cost functional (23). To achieve a better

scaling and to eliminate the positivity constraint, we consider lnu as control variables and the logarithmic

form of the cost functional

J (lnu) = 1

2

24X
k=1

X
i2Ok

[(ln yki � ln yki ]
2 (25)

where Ok represents the set of components of the state vector observed at tk.

Optimization algorithm: Quasi-Newton limited memory L-BFGS [1]. The optimization proceeds until

the cost functional is reduced to 0.01% of its initial value.

5.2 Numerical Results

Using data assimilation we aim to provide an accurate estimate of the "true" initial model state (y0)ref

and emission rates Eref
i such that an improved forecast is obtained for a �ve days model run. In the data

assimilation process information provided by the observations is propagated to all the variables of the model.
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Figure 20: Evolution on a log10 scale of the normalized cost functional during the minimization process.

Chemical interactions among the model variables may allow the assimilation process to provide an improved

forecast not only for the observed components of the state vector, but also for the chemical species for which

observations are not available. Therefore, we further investigate the ability of the data assimilation to provide

an accurate estimate of the evolution of the concentrations of radical species for which no observations were

provided.

The reference run, the initial guess forecast, the assimilation results and the forecast after the assimilation

process takes place are shown in Figure 21 for various chemical species. By performing data assimilation, not

only we have obtained an accurate representation of the model state evolution in the assimilation window

[0,24] h, but also an accurate forecast was obtained for the full �ve days period. An accurate evolution of the

concentrations of the radical species was also obtained. Emission rates estimates Eassim
i displayed in Table

4 show that using the assimilation procedure the "true" emission rate values were successfully retrieved.

The evolution of the normalized cost functional (25) during the minimization process is shown in Figure

20. The convergence process is fast during the �rst 30 iterations when the cost functional is reduced to less

than 0.1% of its initial value, whereas further reduction to 0.01% requires more than 70 additional iterations.

Faster convergence may be achieved through a better scaling of the cost functional components [6] or by

using Hessian information which may be eÆciently provided by a second order adjoint model (LeDimet et

al. [10]).

6 Conclusions and Future Work

In this paper we presented an extensive set of numerical experiments and applications of the new Kinetic

PreProcessor release KPP-1.2 to direct decoupled and adjoint sensitivity analysis. Our results indicate that

KPP may be used as a exible and eÆcient tool to generate code for sensitivity studies of the chemical

reactions mechanisms. We illustrated KPP abilities by selecting a challenging test model, the state-of-

the-science gas-phase chemical mechanism SAPRC-99. For this comprehensive model implementation of

the direct decoupled sensitivity method and hand generation of the adjoint code may be a diÆcult, time

consuming, and error prone task.

Issues related with model linearization, accuracy, consistency, and computational expense of the discrete

and adjoint model were addressed. The new direct decoupled Rosenbrock methods we proposed have been

shown to be cost-e�ective for providing sensitivities at low and medium accuracies. In addition, particular
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properties of the Rosenbrock methods may be exploited for the adjoint modeling [7]. By taking full advantage

of the sparsity of the chemical mechanism, the KPP software generates eÆcient discrete and continuous

adjoint models.

The comparative study of discrete versus continuous adjoints has shown that the continuous adjoint

model o�ers more exibility, is computationally less expensive, and provides more robust results than the

discrete adjoint model. The discrete adjoint model however produces more accurate sensitivity values.

We should emphasize that the eÆciency of the KPP software relies on its particular design for chemical

kinetics systems and KPP is not a general purpose adjoint modeling tool as TAMC [15] or Odyss�ee [24].

Generating the discrete adjoint model associated with sophisticated numerical integrators is a complex task

and an eÆcient implementation requires in-depth knowledge of the numerical scheme and forward mode

computations. For this reason, the use of discrete adjoints in atmospheric chemistry applications has been

limited to explicit or low order linearly implicit numerical methods. For eÆciency, a hand generated discrete

adjoint code was often implemented [12, 11]. Currently, KPP provides discrete adjoint implementation of

the linearly implicit Euler, ROS2, and RODAS3 solvers, whereas the continuous adjoint model may be

integrated with any user selected numerical method. As our research advances, new solvers from the class

of Runge-Kutta methods will be included in discrete adjoint mode.

Adjoint modeling has various applications and few of them were illustrated in this paper: backward

and time dependent sensitivity analysis, parameter estimation, and data assimilation. Model reduction of

chemical kinetics [28] is an important �eld which we will investigate in our future work using direct/adjoint

sensitivity analysis. By providing eÆcient operations involving Hessian matrices, KPP software may be also

used to obtain second order information which may be applied to sensitivity analysis and data assimilation

[10].

An eÆcient implementation of the chemistry module into comprehensive 3D transport-chemistry models

is essential as computations involving chemical transformations may require as much as 90% of the total cpu

time. Applications of adjoint modeling to atmospheric chemistry represent a new research direction which

is growing at a fast peace and the KPP software tools can be used to facilitate the eÆcient forward/adjoint

model integration.
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A Comparison of Di�erent Methods for Gradient Computation

Table 3 shows the gradients @O3(tF)=@y0i evaluated using �nite di�erences (FD), discrete adjoints (DADJ)

and continuous adjoints of RODAS3 and ROS2 solvers with h=60s. Chemical species in the model are listed

in KPP selected order. Non-reactive species in the model are marked with y and radicals are marked with �.
A perturbation � = 1ppt was used in the �nite di�erence approximation. For chemical species marked with
� we used � = 0:001ppt.

KPP Chemical RODAS3 ROS2

No. species FD DADJ CADJ FD DADJ CADJ

1y H2SO4 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

2y HCOOH 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

3y CCO OH 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

4y RCO OH 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

5y CCO OOH 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

6y RCO OOH 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

7y XN 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

8y XC 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

9 SO2 0.13782E-02 0.13782E-02 0.13914E-02 0.13779E-02 0.13779E-02 0.13808E-02

10� O1D 0.39652E-02 0.39653E-02 0.39626E-02 0.39710E-02 0.39710E-02 0.39663E-02

11 ALK1 0.95137E-02 0.95138E-02 0.95762E-02 0.95135E-02 0.95136E-02 0.95512E-02

12 BACL 0.38263E-01 0.38264E-01 0.38252E-01 0.38265E-01 0.38265E-01 0.38234E-01

13 PAN 0.19317E+00 0.19317E+00 0.19292E+00 0.19317E+00 0.19317E+00 0.19299E+00

14 PAN2 0.21875E+00 0.21875E+00 0.21854E+00 0.21875E+00 0.21875E+00 0.21860E+00

15 PBZN -0.12949E+00 -0.12949E+00 -0.12919E+00 -0.12949E+00 -0.12949E+00 -0.12929E+00

16 MA PAN 0.21605E+00 0.21605E+00 0.21581E+00 0.21605E+00 0.21605E+00 0.21588E+00

17 H2O2 0.47951E-02 0.47951E-02 0.47927E-02 0.47951E-02 0.47951E-02 0.47909E-02

18 N2O5 0.34423E+00 0.34424E+00 0.34373E+00 0.34423E+00 0.34423E+00 0.34390E+00

19 HONO 0.17247E+00 0.17247E+00 0.17221E+00 0.17248E+00 0.17248E+00 0.17231E+00

20 ALK2 0.16202E-01 0.16202E-01 0.16297E-01 0.16202E-01 0.16202E-01 0.16254E-01

21 ALK3 0.31035E-01 0.31035E-01 0.31226E-01 0.31034E-01 0.31034E-01 0.31143E-01

22�� TBU O 0.74430E-01 0.74434E-01 0.17916E-01 0.58709E-01 0.58702E-01 0.17881E-01

23 ALK5 0.54248E-01 0.54248E-01 0.54530E-01 0.54247E-01 0.54247E-01 0.54419E-01

24 ARO2 0.17430E-02 0.17433E-02 0.20331E-02 0.17424E-02 0.17427E-02 0.19140E-02

25 HNO4 0.17847E+00 0.17847E+00 0.17822E+00 0.17848E+00 0.17848E+00 0.17831E+00

26 COOH 0.68350E-02 0.68350E-02 0.68520E-02 0.68345E-02 0.68345E-02 0.68367E-02

27� HOCOO 0.13174E-01 0.13171E-01 0.13111E-01 0.13159E-01 0.13157E-01 0.13109E-01

28�� BZNO2 O -0.59814E+00 -0.17698E+00 -0.17093E+00 -0.33906E+00 -0.19449E+00 -0.17102E+00

29 MEOH 0.60444E-03 0.60445E-03 0.63238E-03 0.60379E-03 0.60380E-03 0.60682E-03

30 ALK4 0.46236E-01 0.46237E-01 0.46447E-01 0.46236E-01 0.46236E-01 0.46357E-01

31 ARO1 -0.40153E-01 -0.40152E-01 -0.39826E-01 -0.40155E-01 -0.40154E-01 -0.39965E-01

32 DCB2 0.56868E-01 0.56868E-01 0.56921E-01 0.56871E-01 0.56871E-01 0.56885E-01

33 DCB3 0.55593E-01 0.55592E-01 0.55642E-01 0.55603E-01 0.55602E-01 0.55618E-01

34 CRES -0.27493E+00 -0.27494E+00 -0.27433E+00 -0.27493E+00 -0.27494E+00 -0.27458E+00

35 DCB1 0.56370E-01 0.56370E-01 0.56510E-01 0.56372E-01 0.56372E-01 0.56456E-01

36 NPHE -0.16736E+00 -0.16736E+00 -0.16700E+00 -0.16736E+00 -0.16736E+00 -0.16714E+00

37 ROOH 0.50228E-01 0.50228E-01 0.50325E-01 0.50228E-01 0.50228E-01 0.50284E-01

Table 3: Finite di�erence (FD), discrete adjoint (DADJ) and continuous adjoint (CADJ) evaluated gradients

@O3(tF)=@y0i using RODAS3 and ROS2 solvers with h=60s.
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KPP Chemical RODAS3 ROS2

No. species FD DADJ CADJ FD DADJ CADJ

38 BALD -0.23158E+00 -0.23158E+00 -0.23114E+00 -0.23158E+00 -0.23158E+00 -0.23128E+00

39 PHEN -0.23380E+00 -0.23381E+00 -0.23328E+00 -0.23380E+00 -0.23381E+00 -0.23350E+00

40 CO 0.11600E-02 0.11600E-02 0.11622E-02 0.11599E-02 0.11599E-02 0.11579E-02

41 MGLY 0.22371E-01 0.22371E-01 0.22375E-01 0.22371E-01 0.22372E-01 0.22358E-01

42 ACET 0.37252E-02 0.37252E-02 0.37579E-02 0.37255E-02 0.37255E-02 0.37392E-02

43 HNO3 0.18192E+00 0.18192E+00 0.18180E+00 0.18192E+00 0.18192E+00 0.18182E+00

44 ETHENE 0.22913E-01 0.22913E-01 0.22979E-01 0.22912E-01 0.22912E-01 0.22947E-01

45 GLY 0.16976E-01 0.16976E-01 0.16985E-01 0.16975E-01 0.16975E-01 0.16971E-01

46� BZ O -0.33741E+00 -0.33742E+00 -0.33763E+00 -0.33759E+00 -0.33761E+00 -0.33787E+00

47 ISOPRENE 0.48924E-01 0.48925E-01 0.49140E-01 0.48929E-01 0.48929E-01 0.49060E-01

48� R2O2 0.29810E-02 0.29821E-02 0.29958E-02 0.29740E-02 0.29744E-02 0.29939E-02

49 TERP 0.21421E-01 0.21420E-01 0.21670E-01 0.21434E-01 0.21432E-01 0.21595E-01

50 METHACRO 0.42481E-01 0.42481E-01 0.42591E-01 0.42481E-01 0.42481E-01 0.42540E-01

51 OLE1 0.46460E-01 0.46460E-01 0.46606E-01 0.46461E-01 0.46461E-01 0.46547E-01

52 ISOPROD 0.53388E-01 0.53388E-01 0.53549E-01 0.53389E-01 0.53389E-01 0.53481E-01

53 OLE2 0.25213E-01 0.25213E-01 0.25340E-01 0.25215E-01 0.25215E-01 0.25286E-01

54 MVK 0.47508E-01 0.47508E-01 0.47585E-01 0.47508E-01 0.47509E-01 0.47540E-01

55 CCHO 0.15508E-01 0.15508E-01 0.15530E-01 0.15509E-01 0.15509E-01 0.15513E-01

56 HCHO 0.58214E-02 0.58214E-02 0.58295E-02 0.58211E-02 0.58211E-02 0.58217E-02

57 RNO3 0.15063E+00 0.15063E+00 0.15074E+00 0.15063E+00 0.15063E+00 0.15069E+00

58�� O3P 0.78351E-02 0.78358E-02 0.33817E-02 0.66128E-02 0.66127E-02 0.33817E-02

59 RCHO 0.41519E-01 0.41519E-01 0.41589E-01 0.41520E-01 0.41520E-01 0.41555E-01

60 MEK 0.33771E-01 0.33771E-01 0.33925E-01 0.33771E-01 0.33771E-01 0.33856E-01

61 PROD2 0.63755E-01 0.63755E-01 0.63953E-01 0.63754E-01 0.63755E-01 0.63871E-01

62 O3 0.33846E-02 0.33846E-02 0.33820E-02 0.33845E-02 0.33845E-02 0.33820E-02

63�� HO2 0.72890E-02 0.72897E-02 0.72830E-02 0.72946E-02 0.72939E-02 0.72881E-02

64�� RO2 N -0.44712E-02 -0.44706E-02 -0.42890E-02 -0.42812E-02 -0.42823E-02 -0.43715E-02

65�� MA RCO3 0.42230E-01 0.42230E-01 0.42726E-01 0.42313E-01 0.42313E-01 0.42711E-01

66� C O2 0.14321E-01 0.14331E-01 0.14347E-01 0.14283E-01 0.14286E-01 0.14331E-01

67�� BZCO O2 -0.29611E+00 -0.29611E+00 -0.29996E+00 -0.29701E+00 -0.29702E+00 -0.30014E+00

68� RO2 R 0.16698E-01 0.16644E-01 0.16608E-01 0.16755E-01 0.16727E-01 0.16619E-01

69 NO 0.16740E+00 0.16740E+00 0.16715E+00 0.16740E+00 0.16740E+00 0.16724E+00

70 NO2 0.17118E+00 0.17118E+00 0.17093E+00 0.17118E+00 0.17118E+00 0.17102E+00

71 NO3 0.17286E+00 0.17284E+00 0.17273E+00 0.17287E+00 0.17286E+00 0.17282E+00

72�� CCO O2 0.20829E-01 0.20830E-01 0.21189E-01 0.20893E-01 0.20893E-01 0.21177E-01

73�� RCO O2 0.45071E-01 0.45072E-01 0.45693E-01 0.45181E-01 0.45181E-01 0.45668E-01

74�� OH -0.63646E-03 -0.63446E-03 0.38750E-02 0.67029E-03 0.67080E-03 0.38888E-02

Table 3: (continued) Finite di�erence (FD), discrete adjoint (DADJ) and continuous adjoint (CADJ) eval-

uated gradients @O3(tF)=@y0i using RODAS3 and ROS2 solvers with h=60s.
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B Emissions

Chemical Emission Rate (ppm/min)

species E
ref
i E

iguess
i

��(Eref
i

�Eiguess
i

)=Eref
i

�� E
assim
i

��(Eref
i

�Eassim
i )=Eref

i

��
NO 6.944E-05 10.416E-05 0.5 6.934E-05 0.00130

NO2 3.472E-05 5.208E-05 0.5 3.474E-05 0.00071

HONO 6.944E-07 1.041E-06 0.5 6.947E-07 0.00053

SO2 3.472E-05 5.208E-05 0.5 3.462E-05 0.00260

ETHENE 1.312E-05 1.968E-05 0.5 1.315E-05 0.00238

ISOPRENE 3.007E-07 4.510E-07 0.5 3.007E-07 0.00019

TERP 5.694E-07 8.541E-07 0.5 5.693E-07 0.00005

MEOH 4.089E-06 6.134E-06 0.5 4.087E-06 0.00060

HCHO 7.786E-06 1.168E-05 0.5 7.869E-06 0.01059

CCHO 1.608E-06 2.412E-06 0.5 1.856E-06 0.15447

RCHO 1.195E-06 1.793E-06 0.5 1.301E-06 0.08800

GLY 8.431E-08 1.264E-07 0.5 9.072E-08 0.07612

MGLY 5.815E-08 8.722E-08 0.5 6.497E-08 0.11743

METHACRO 9.008E-07 1.351E-06 0.5 9.012E-07 0.00044

ISOPROD 6.201E-08 9.302E-08 0.5 6.153E-08 0.00780

BALD 5.217E-08 7.825E-08 0.5 5.356E-08 0.02666

ACET 3.522E-06 5.283E-06 0.5 3.697E-06 0.04974

MEK 2.264E-06 3.397E-06 0.5 2.372E-06 0.04753

PROD2 1.340E-06 2.010E-06 0.5 1.352E-06 0.00946

PHEN 4.206E-07 6.310E-07 0.5 4.207E-07 0.00016

CRES 3.888E-07 5.832E-07 0.5 3.870E-07 0.00452

ALK1 8.103E-06 1.215E-05 0.5 8.179E-06 0.00938

ALK2 1.306E-05 1.959E-05 0.5 1.306E-05 0.00049

ALK3 3.259E-05 4.888E-05 0.5 3.254E-05 0.00126

ALK4 2.893E-05 4.340E-05 0.5 2.889E-05 0.00165

ALK5 2.123E-05 3.185E-05 0.5 2.123E-05 0.00033

ARO1 8.185E-06 1.227E-05 0.5 8.201E-06 0.00202

ARO2 6.070E-06 9.106E-06 0.5 6.069E-06 0.00021

OLE1 7.209E-06 1.081E-05 0.5 7.197E-06 0.00165

OLE2 5.538E-06 8.307E-06 0.5 5.535E-06 0.00048

Table 4: Reference (Eref
i ), initial guess (Eiguess

i ), and data assimilation (Eassim
i ) estimated emission rates.
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C Rosenbrock Solvers

Consider the autonomous initial value problem

_y = f(y) ; y(t0) = y0:

An s-stage Rosenbrock method (Hairer et al., 1991) provides a numerical time discretization of the initial

value problem using the formulas

yn+1 = yn +

sX
i=1

biki; (26)

ki = hf(yn +

i�1X
j=1

�ijkj) + hJ

iX
j=1

ijkj ; (27)

Di�erent Rosenbrock methods are de�ned by their coeÆcients �ij , ij , and bi. A di�erent set of weights ~bi

is sometimes used to compute a secondary solution ~y, such that the di�erence yn+1� ~yn+1 o�ers an estimate

of the numerical error.

Ros-2 is a 2-stage, order 2 method with coeÆcients:

(�ij) =

 
0

1 0

!
; (ij) =

 
1 +

p
2=2

1 1 +
p
2=2

!
; (bi) =

�
1=2 1=2

�
:

Rodas-3 is a 4-stage, order 3 embedded pair with coeÆcients:

(�ij) =

0
BBBB@

0

0 0

1 0 0

3=4 �1=4 1=2 0

1
CCCCA ; (ij) =

0
BBBB@

1=2

1 1=2

�1=4 �1=4 1=2

1=12 1=12 �2=3 1=2

1
CCCCA ;

and weights

(bi) =
�
5=6 �1=6 �1=6 1=2

�
; (~bi) =

�
3=4 �1=4 1=2 0

�
:
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