
Computer Science Technical Report

Implementing Sort in UPC:
Performance and Optimization

Kohinoor (Lisa) Begum and Steven Seidel

Michigan Technological University
Computer Science Technical Report

CS-TR-05-06
2005

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Abstract
Unified Parallel C (UPC) is a parallel extension of ANSI C that is based on a partitioned
shared address space. It supports development of parallel applications over diverse hardware
platforms and does not require a true shared memory system. It simplifies programming by
providing the same syntax for local references as for remote references. This helps the user
focus on performance, and allows for the exploitation of locality. Our project is to implement
a generic sort function in UPC. It will help programmers focus on design, implementation and
performance of the entire application rather than work on details of sorting.

upc all sort is an implementation of a generic sort function in UPC using a bin sort algo-
rithm. Techniques applied to improve the performance of the sort function include: sampling
of data to ensure more nearly uniform bucket sizes among threads, an all-to-all exchange of
bucket sizes to minimize the amount of dynamically allocated memory, rebalancing data at
the end of the sort to ensure that each thread finishes with the same number of elements as it
started with. In this paper, we analyze and compare the performance of sequential and parallel
sort, the potential of performance improvements over sequential sort and also the bottlenecks
limiting these improvements. This sort function runs 3.9 times faster than the sequential sort
for problem sizes of at least 128K when run on 8 threads. The performance scales up with the
increasing number of threads and bigger problem sizes. It runs 6.8 times faster than sequential
sort for problem size of 512K when run on 16 threads.

Contents

1. Introduction 4

2. UPC sort function definition 4

3. Design of the sort implementation 7
3.1 Local Sort . 7

3.2 Bucketing . 7

3.3 Exchange . 9

3.4 Merge . 9

3.5 Non-local Reference and Synchronization . 10

4. Improvement and Optimization 11
4.1 Load Balancing . 11

4.2 Binary Search . 11

4.3 Exchange . 12

4.4 Merge . 12

4.5 Local references . 12

5. Performance 12
5.1 Problem Sizes . 13

5.2 Block Sizes . 18

6. Summary 21

A. Appendix 22

List of Figures

1 Different Array distributions . 5

2 Source Array . 7

3 Local Sort . 8

4 Bucketing . 8

5 Exchange . 10

6 Average Runtime with different problem sizes (func) 14

7 Minimum Runtime with different problem sizes (func) 15

8 Average Runtime with different problem sizes (hard coded comparison operator) 15

9 Minimum Runtime with different problem sizes (hard coded comparison oper-
ator) . 16

10 Runtime with different N . 16

11 Runtime with BLOCK [*] (func) . 18

12 Runtime with BLOCK 1 (func) . 19

13 Runtime with BLOCK N (func) . 20

14 Runtime with BLOCK N/2 (func) . 20

15 Runtime with BLOCK N/(THREADS+1) (func) 21

16 Runtime with BLOCK [*] (hard coded comparison operator) 22

17 Runtime with BLOCK 1 (hard coded comparison operator) 23

18 Runtime with BLOCK N (hard coded comparison operator) 23

19 Runtime with BLOCK N/2 (hard coded comparison operator) 24

20 Runtime with BLOCK N/(THREADS+1) (hard coded comparison operator) . . 24

1. Introduction

Unified Parallel C (UPC) is a parallel extension of ANSI C that is based on a partitioned
shared address space [1]. It supports development of parallel applications over diverse hard-
ware platforms and does not require a true shared memory system. Sorting is an extensively
studied problem in computer science and has numerous practical applications. Providing an
implementation of a generic sort function in UPC will help programmers focus on design, im-
plementation and performance of the entire application rather than work on details of sorting.

2. UPC sort function definition

upc all sort was first described in the UPC collective operations specifications v1.0 [2],
but it was deprecated at the most recent UPC workshop. It is not practical to implement a
generic sort function that delivers similar performance over all possible source data distribu-
tions. But it is still helpful to have an implementation that has reasonable speedup in most
common cases.

The function prototype of upc all sort is as follows:

#include <upc.h>
#include <upc_collective.h>

upc_all_sort(shared void *A, size_t elem_size, size_t nelems,
size_t blk_size,int (func)(shared void *, shared void *),
upc_flag_t sync_mode);

This function sorts nelems elements of elem size bytes starting at A. A blk size of zero
represents the indefinite array layout and a nonzero blk size represents that the array has
a blocking factor of blk size. The function func is the user-defined comparison function.
It returns an integer less than, equal to, or greater than zero if first argument is considered to
be respectively less than, equal to, or greater than the second. sync mode specifies synchro-
nization requirements at initiation and completion of the sort. upc all sort performs an in
place sort and at completion A contains the sorted elements. upc all sort does not perform
a stable sort. The reason behind this is given in section 3.4.

The upc all sort function exploits locality by using affinity. All threads view shared mem-
ory as logically partitioned into THREADS blocks. Mi is the block of shared memory that has

4

affinity to thread i. Any element in Mi is local to thread i, whereas any element in Mj is remote
to thread i, where i6=j. Remote references often take much longer than local references. Each
thread has a private address space that is only accessable by itself. Any element in private
memory of thread i is only accessable to thread i. More details about UPC can be found in the
HP UPC Programmers’ Guide [4].

In upc all sort, threads start working with their local shared elements. The layout of
source data among threads complicates the implementation and it affects the performance of
the sort. How the array is distributed among threads depends on the blocksize. It is hard to
achieve better performance for all possible array layouts. Several data layout possibilities are
presented in Figure 1.

T T T THREADS−10 1

A

B

D
C

Private Memory

MemoryShared

jik

M 0 1M M THREADS−1

Figure 1. Different Array distributions

In Figure 1, A is a uniformly distributed array that has blocksize [∗]. upc all sort will
perform well with A since all threads have an equal number of elements in their shared local
memory to work with, and the load is balanced among all threads. B is an array with more
than THREADS blocks, so it wraps around. upc all sort will perform well with B but it
has to respect the phase and wrapping of blocks to make sure it does not try to copy or access
something out of bounds. C is allocated entirely in the local shared space of only thread 0. D
is a case where only two threads have all the data. Such cases where all the data reside in one
or a couple of threads might perform poorly. Initially, threads that the source elements have
affinity to are active and others sit idle, which hampers speedup. We may be able to improve
performance by redistributing the source data before calling upc all sort. This motivates
the need for a wrapper for redistribution. We have added a new flag to the function prototype,
where the user can choose to redistribute the source data.

5

The new function prototype is:

#include <upc.h>
#include <upc_collective.h>

upc_all_sort(shared void *A, size_t elem_size, size_t nelems,
size_t blk_size,int (func)(shared void *, shared void *),
upc_flag_t sync_mode, upc_flag_t rdst);

If rdst is 1, our implementation redistributes the data among threads into a dynamically allo-
cated array with block size [∗]. The new array R is equavalent to the following declaration:

shared [ceil(nelem/THREADS) * elem size] char R[nelem*elem size];

When the sort is complete, the data are redistributed back to the original source array. Even
though this adds some overhead at the beginning and end it might improve performance by
balancing the load among all threads. The user knows how the source data is laid out and it is
his/her decision whether redistribution will help.

Implementing upc all sort as a generic sort function has several challenges, these include:

• Source Pointer: The source array to be sorted is of type shared void *shared.
The data type of the source array is unknown. This disallows the use of assignment oper-
ators for copying data. Incrementing *src by 1 does not move to the next element, but
rather to the next byte. Pointer arithmetic is required to find out the correct offsets each
time pointing to an element to make sure the pointer is not pointing to some unrealistic
address.

• User defined comparison function: upc all sort uses a user defined comparison
function for comparing elements. This function is called each time a comparison is
done.

• Blocksize: Blocksize determines the data layout of the source array. The generic sort
function has to consider all different possible block sizes and make sure that it works
correctly for each case. Especially, it has to be careful about block sizes when threads
are copying data and ensure that they do not try to copy elements bigger than the block
size at a time.

6

3. Design of the sort implementation

The generic sort function is implemented using a parallel bin sort algorithm [5]. The following
are the basic steps in upc all sort:

• Local Sort

• Bucketing

• Exchange

• Merge

3.1 Local Sort

Each thread uses a shared [] char *shared to access its local shared elements. There-
fore, it views its local shared data as a single consecutive block even if the source data are
wrapped around. Each thread sorts its local shared elements using a quicksort. Before going
to the bin sort, threads check whether all the source data have affinity to a single thread. If
all data belong to a single thread then sorting is complete and threads should return without
further execution.

Shared Memory

Source Array A
30 19 11 99 9045 89 52 56 17 60 0 35 15 95 68 5010

my_A my_A my_A

Figure 2. Source Array

Figure 2 shows the source array A is uniformly distributed among all threads. Figure 3 shows
the source array after local sort.

3.2 Bucketing

Each thread works with its local shared elements and divides them into buckets or bins. THREADS−

1 number of elements are chosen for partitioning the range of source elements. These elements

7

Shared Memory

Source Array A
45 68

my_A my_A my_A
11 19 30 90 99 0 17 5652 60 89 10 15 35 50 95

Figure 3. Local Sort

are called splitting keys. Thread 0 chooses these splitting keys and broadcasts it to all other
threads using an array PARTITION in shared memory. Detail information about how splitting
keys are chosen is provided in section 4.1. Each thread has a copy of the splitting keys in
its local shared space. Comparing with the splitting keys, each thread maps the elements into
THREADS bins. All elements in bin i are less than all elements in bin i+1 for THREADS > i ≥ 0.
There are THREADS2 bins and each bin is denoted as bij , where thread i is the consumer of
the bin and thread j is the producer of the bin. Notice that the elements are not put into any
physical bins in this stage. Only the starting indices of each bin and the count of elements are
stored in a shared array. Threads use this array in the next step to actually exchange bins. For
instance, thread j has n elements. It logically maps the elements into THREADS different bins
and stores the associated bin count in C. Therefore, C[i][j]contains the number of elements
thread i maps for its bucket j.

Shared Memory

Source Array A
19 45 60 68

my_A my_A my_A
11 30 90 99 0 895217 56 10 15 35 50 95

PARTITION PARTITION PARTITION
30 60 60 6030 30

2 2 2 2 2 2 2 2 2C

Figure 4. Bucketing

In Figure 4, PARTITION contains the splitting keys. Each thread i works on its local shared

8

elements and using the splitting keys, it stores the count of elements of each bucket j in
C[i][j].

3.3 Exchange

All threads exchange buckets. From C, all threads know how many elements they will get
from each other. Each thread computes this total number of elements by performing a logical
transpose, and prefix on the counts stored in C. After these computations, each thread i has
the total number of elements in C[i][THREADS-1] and creates an array B of exactly that
size to hold all the bins it will recieve from other threads. In all circumstances, the number of
elements in B is twice the number of elements in A. The extra space in B is needed for use as
temporary place holders in merging bins. Each thread i performs a right shift on the ith row of
C. Now, C[i][j] contains the offset thread i has to place the bin it pulls from thread j. Then
threads pull buckets (using upc memcpy) from other threads preserving the bucket ordering.
Thread i pulls C[i][j+1] - C[i][j] elements from thread j and places it after bij−1 in
shared array B. Therefore, in array B, thread i has bi0, bi1, . . . , bij, . . . , biTHREADS−1. Threads have
to respect the phase so that they do not try to access something out of bounds. If thread i sees
C[i][j+1] - C[i][j] has zero count, it does not communicate with thread j to pull any
elements.

Exchanging of bins among threads can be done by calling upc all exchange function. The
upc all exchange function provided in the UPC collectives library requires all threads to
call the function with the same arguments values. In cases, where the bin sizes are different
it creates a problem. It requires threads to call the exchange function to exchange bins of size
equal to the largest number of elements a thread receives from all others, but this might waste
much space. We have implemented a version of the exchange function that is able to exchange
variable length of blocks of data among threads. Therefore, each thread copies the exactly
number of elements and it does not copy anything if the bucket size is zero.

In Figure 5, Each thread i knows where to place bij copied from thread j. Each thread i copies
bij from thread j.

3.4 Merge

After the exchange, each thread has THREADS bins. Each bin contains the sorted elements.
All elements in bix is smaller than elements in bjx for every i < j. It merges these sorted
subsequences preserving ascending order. Therefore, B contains nelems elements sorted. The
last step is to rebalance and copy the sorted data back to the source array. Each thread locally
computes where to place its first element and how many elements to place as consecutive

9

Shared Memory

Source Array A
19 45 60 68

my_A my_A my_A
11 30 90 99 0 895217 56 10 15 35 50 95

PARTITION PARTITION PARTITION
30 60 60 6030 30

2C

.......11 19 0 17 10 15 30 45 52 56 35 50 99 60 89 68 9590

0 2 4 0 2 4 0 4

Figure 5. Exchange

items in A. Then it copies those many elements into A using upc memcpy. It uses phase and
blocksize of A to compute this element count to make sure in upc memcpy, it does not try to
copy across thread boundaries. Using the same process, it copies all its elements back into the
source array A. The source array contains the sorted elements and each thread finishes with the
same number of elements as it started with.

upc all sort does not perform a stable sort. It may reorder elements which are equal. For
instance, in Figure 1, B has the same element at positions i,j, and k and the upc all sort
function is called to sort B. In the bucketing step, these elements should be in bin for thread
i. Thread 1 recieves those elements in exchange step. Thread 1 pulls elements at positions i,k
from thread 0 places it in b10 and places element at j position in b11. After merge and rebalance,
all elements are sorted and ith element appears before kth element, and kth element appears
before jth element. Even though the elements are equal, they are reordered since the elements
reside in different threads.

3.5 Non-local Reference and Synchronization

All threads need to synchronize at different steps of the sort function. Synchronization is
crucial when threads access elements in remote shared refernces. All threads need to make
remote reference in time of choosing splitting keys, in the exchange step and again at the end

10

when rebalancing the data. All threads are synchronized these times by placing a barrier.

4. Improvement and Optimization

4.1 Load Balancing

Load balancing is a key factor in achieving good performance from parallel applications. If
one thread does all the work and others sit idle, the program does not show performance
improvements. Special attention has been given to balance the load among threads. In the
upc all sort function, work is divided among threads by bucketing. Threads start working
with local shared elements, partition elements into bins, exchange bins, and then work only
on bins recieved. To ensure uniform load, we have to choose splitting keys very carefully. A
naı̈ve approach is to look at the elements to sort, find the minimum and maximum and then
compute the splitting keys. This approach works fine if the data to be sorted are uniformly dis-
tributed over the min - max range but it may show poor result when the data are not uniformly
distributed.

A sample-sorting technique has the potential for performance benefits and scalability in UPC
[3]. We have applied sampling to ensure that all threads get a similar amount of work in
most cases. Each thread quicksorts its local shared elements and sends a sample of THREADS
elements to thread 0 from its local shared portion. These elements are chosen so that they
evenly partition the local shared elements. This is implemented using upc all gather.
Thread 0 sorts these samples and then chooses THREADS-1 evenly spaced splitting keys from
it. Then thread 0 broadcasts these global splitting keys to all threads so that each thread has a
copy. This sampling provides better load balance in cases of unknown or skewed distribution.

4.2 Binary Search

Each thread is responsible for mapping its elements into bins. A naı̈ve approach is to go
through the element one by one, compare each with the splitting keys and then decide which
bucket it belongs to. Each thread has n elements, and THREADS-1 splitting keys. So this
approach takes in worst-case n(THREADS−1) time units. In most cases, n is much larger than
THREADS, so the cost of bucketing using the naı̈ve approach is in O(n).

We have implemented a binary search to reduce the cost of bucketing. We take advantage of
the fact that all the data local to a single thread is sorted before bucketing. Instead of going
through the elements one by one, we search for the splitting keys one by one and decide the
bucket boundaries. Once we find the nearest value of the splitting key si we know all elements
before si belong to bi and anything later including this element belong to bj , where j is greater

11

than i. Searching for splitting keys takes (THREADS −1)O(log n) time units, so the cost is
O(log n) under the assumption that log n >THREADS.

4.3 Exchange

In this step each thread is exchanging bucket with all other threads. Here, each thread has a
bucket for itself. Instead of using upc memcpy for copying bucket from thread i’s source data
to its bin bii, the pointer to bins are casted to be local and memcpy is used. Since memcpy is
regular C function it takes less time than upc memcpy.

4.4 Merge

B is the array that holds all the concatenated buckets from all other threads preserving bucket
order. bij is the bucket thread i receives from thread j. In B, elements of bij always come before
bik for every j < k. The contents of each bucket are already sorted when it is received by a
thread. We take into account the fact these are sorted subsequences and merge them keeping
the elements in ascending order. It takes O(n logTHREADS) time.

4.5 Local references

In UPC, threads can access any part of the global shared address space, but remote references
often take longer than local references. When some element in remote shared memory is
accessed often, it increases the run time. To avoid these run time delays local references are
used whenever possible. If a thread needs to access some element in remote shared memory, it
copies that element into its own shared address space. Thus it avoids remote references most
of the time. For example, once thread 0 finds the splitting keys, it broadcasts the keys to all
threads so that each thread has a copy of the splitting keys in their own shared address space.
Therefore, in the binary search threads do not make any remote reference. Throughout the
merge, most references are local.

5. Performance

The upc all sort function has been tested on on a Linux Myrinet cluster using MuPC
compiler and on the HP SC40 Alpha Server using HP’s UPC compiler with various block sizes,
problem sizes, numbers of threads, and with and without redistribution. The HP server has
eight four-processor nodes and uses a Quadric interconnect. Two versions of upc all sort
are tested: using func, the user-defined comparison function, and using hard coded integer

12

comparison operator. Performance is measured by the run time of the sort. Measurements
plotted in following graphs are averages of the maximum runtime of all threads on the HP
server over 50 runs.1

Performance of upc all sort is described in the following two divisions:

5.1 Problem Sizes

upc all sort is tested with various problem sizes. For each problem size, the runtime of
upc all sort is compared with that of a sequential sort. Thread 0 performs a quicksort on N
local shared elements. That measurement is used as the baseline cost of a sequential sort. The
runtime of upc all sort using the function func is compared with that of sequential sort
using the same comparison function. Similarly, the runtime of upc all sort using a hard
coded comparison is compared with sequential sort using hard coded comparison. Thus we
have produced two sets of graphs for different problem sizes. In both sets, sequential sort and
upc all sort is given the src pointer as shared void * and inside the sort this shared
pointer is casted to a pointer to local. It improves the runtime in both sequential and parallel
sort significantly. In upc all sort, the steps of local sort and merge is performed by using
assignment operators in place of memcpy. But it does not improve performance significantly.
These tests were run on N elements with block size [*]. Redistribution of data does not
improve performance in cases of blk size [*]. Therefore, the measurements presented in
these graphs report the runtime without redistribution.

Sequential sort with a hard coded comparison operator takes less time than sort with the user
function func, since making a call to a function for each comparison is time consuming. The
runtime of upc all sort includes the time spent on sorting and a fixed overhead. This over-
head comes from local computation, and communication and synchronization among threads.
This overhead is fixed over any type of comparison method used. Therefore, sort with hard
coded comparison achieves better performance than sort with user-defined function. This pat-
tern can be followed throughout the figures in this section.

The upc all sort function is tested with problem sizes of 32K and larger. The runtime of
sequential sort is similar to the runtime of the upc all sort function when run on 1 thread.
Figure 6 shows the average of maximum runtimes of all threads sorting 32K elements with the
function func. It shows performance improvement by a factor of 3 over sequential sort, when
running on at least 8 threads. For larger problem size, the performance scales up, since the
fixed overheard hides in the time we gain by dividing large number of elements. The runtime

1Runtime we obtained on Lionel is higher than the runtime on HP since MuPC on lionel adds a layer of
translating upc function calls to MPI function calls where as on HP no layer is added. To show speed up we
present data from HP here.

13

of our sort function is 4 times faster than base runtime with problem size 512K when run on
8 threads. Also, the performance scales up as the number of threads increases. As seen in
Figure 6, upc all sort has a factor of 6.8 performance improvement over sequential with
problem size 512K when run on 16 threads. Figure 7 shows result from the same test runs

32768

65536

131072

262144

524288

1.04858e+06

2.09715e+06

4.1943e+06

1 2 4 8 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with various Problem sizes, BLOCK=*

Bin,N=32K
Bin, N=64K
Bin N=128K

Bin, N=256K
Bin,N=512K

Figure 6. Average Runtime with different problem sizes (func)

plotting the minimum of maximum run times of all threads. The time variation between these
two figures is not noticable. 2

The sequential sort with hard coded comparison operator runs faster and, as mentioned above,
the performance improvement of upc all sort is smaller in this case. As in Figure 8,
upc all sort has the same execution time as sequential sort when run on 16 threads for
512K. Figure 9, shows the minimum of maximum runtimes among threads. Figure 7 shows
that upc all sort does not scale up to show any speed up for any probem size. This speed
up is limited by the overhead in the upc all sort function.

upc all sort (with the function func) improves performance by a factor of 3 over sequen-
tial sort with large problem sizes. Figure 10 shows the speed up for various problem sizes. All
scale up to a speed up between 3 to 6.8 for bigger problem sizes when run on 8 or 16 threads.

2Since the time variation between minimum and average of the maximum runtimes are not significant, it can be
said that the maximum of the maximum runtimes are also close to average of the maximum runtimes. Therefore,
the maximum of these runtimes are not presented in a seperate graph here.

14

32768

65536

131072

262144

524288

1.04858e+06

2.09715e+06

4.1943e+06

1 2 4 8 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with various Problem sizes, BLOCK=*

Bin,N=32K
Bin, N=64K
Bin N=128K

Bin, N=256K
Bin,N=512K

Figure 7. Minimum Runtime with different problem sizes (func)

8192

16384

32768

65536

131072

262144

524288

1.04858e+06

1 2 4 8 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with various Problem sizes, BLOCK=*

Bin,N=32K
Bin, N=64K
Bin N=128K

Bin, N=256K
Bin,N=512K

Figure 8. Average Runtime with different problem sizes (hard coded comparison operator)

15

8192

16384

32768

65536

131072

262144

524288

1.04858e+06

1 2 4 8 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with various Problem sizes, BLOCK=*

Bin,N=32K
Bin, N=64K
Bin N=128K
Bin, N=256K
Bin,N=512K

Figure 9. Minimum Runtime with different problem sizes (hard coded comparison operator)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

THREADS

Speedup with various Problem sizes, BLOCK=*

Bin,N=32K
Bin, N=64K

Bin N=128K
Bin, N=256K
Bin,N=512K

Figure 10. Runtime with different N

16

For further improvement, future work may include modifying in rebalance step. Currently
in the rebalance each thread i may use more than one upc memcpy to place back data to
thread j if the data to be sent to j are not consecutive elements on thread i. This may happen
when the source data wraps around threads. For example, this occurs when the source array
is like B as described in section 2 (see Figure 1). Shuffling the elements at thread i so that all
elements destined for thread j are contiguous and using a single upc memcpy may improve
the performance.

17

5.2 Block Sizes

The layout of the source data among threads affects the performance of upc all sort. If
one or several threads calling the sort function have zero elements in its local shared portion,
the runtime increases. In such cases, redistributing the data may improve the performance.
We have tested upc all sort with various blocksizes and observed when it helps to redis-
tribute the source data. The graphs presented here are runtimes with the problem size fixed
at 128K and various blocksizes. They show runtimes both with and without redistribution.
These are performance measurements from upc all sort using the function func. Graphs
showing the performance measurements from test runs with upc all sort using hard coded
comparison operator are given in the appendix A.

Figure 11 shows the runtimes for blocksize [*]. The sort wrapper redistributes source data
into a new array that has block size [*]. In this case the redistribution does not improve the
runtime. Furthermore, it adds a slight overhead on top of the regular sorting time. Therefore,
redistributing a large array that has blocksize [*] is not recommended.

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=*

Without rdst
With rdst

Figure 11. Runtime with BLOCK [*] (func)

In the array with blocksize 1, all threads have the same number of elements (plus or minus one)
than others but the local shared elements are not contiguous. Redistribution of the data does
not change the number of local shared elements in each thread. It places the local shared data
in a contiguous block and also has to distribute sorted elements back to the source array after

18

sorting is complete. Here, the overhead of redistributing data and distributing it back is too high
to get any performance benefit over sorting without redistribution. The overhead in distributing
the data into the source array is higher than for blocksize [*]. This is why in Figure 12, the
function with redistribution has higher runtime than function without redistribution, whereas
no difference is noticed in Figure 11.

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 2 4 6 8 10 12 14 16

Tim
e (M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=1

Without rdst
With rdst

Figure 12. Runtime with BLOCK 1 (func)

When all source elements have affinity to a single thread, upc all sort behaves poorly if
the redistribution option is not chosen. In this case only a single thread performs the sequential
sort, but it has to synchronize with all other threads before returning from the sort function. This
makes the upc all sort runtimes slower than the sequential run time. Figure 13 shows the
run time with block size N, that is, all the data is in a single block on thread 0.

The runtime of sorting without redistribution does not decrease as the number of threads in-
creases because only a single thread is working and others sit idle. Sorting with redistribution
reduces the runtimes dramatically as the number of threads increases. The same behavior is ob-
served in Figure 14, when all the data has affinity to a small number of threads. Redistribution
helps even when only one thread has no elements and the other threads each have a large num-
ber of elements. For problem sizes of at least 64K redistribution of the source data improves
performance over sorting without redistribution of data. In Figure 15, this performance dif-
ference between with and without redistribution is not as big as seen in Figure 13, where the
blocksize is N.

19

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N

Without rdst
With rdst

Figure 13. Runtime with BLOCK N (func)

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N/2

Without rdst
With rdst

Figure 14. Runtime with BLOCK N/2 (func)

20

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N/(THREADS+1)

Without rdst
With rdst

Figure 15. Runtime with BLOCK N/(THREADS+1) (func)

6. Summary

The upc all sort function is an implementation of a generic sort in UPC using a parallel
bin sort algorithm. It works in 5 major steps: local sort, bucketize, exchange, merge and
rebalance. In each of the steps, locality of source elements is exploited heavily. When a thread
needs to access remote elements, it copies those elements to its local shared memory using
upc memcpy. This reduces the extra time otherwise needed for multiple remote references.
To reduce execution time, threads use local pointers and regular memcpy in the local sort and
merge operations.

This sort function runs 3.9 times faster than the sequential sort for problem sizes of at least
128K with block size [*] when run on 8 threads. As the problem sizes and number of threads
increases, greater performance is achieved. This sort function runs 6.8 times faster than sequen-
tial sort for problem size of 512K when run on 16 threads. But the speed up of this function
is 3.2 , not as high as 6.8, for problem sizes 32K when run on 16 threads. The communication
and synchronization overhead in the sort function is responsible for this limitation. The dis-
tribution of the source data among threads affects the performance of upc all sort. When
any thread calling this function has no local shared elements the upc all sort function
performs poorly. This performance is improved by choosing the redistribution option.

21

A. Appendix

Runtime with various block sizes
Figure 16 shows the runtime is same both with and without redistribution for blocksize [*].

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=*

Without rdst
With rdst

Figure 16. Runtime with BLOCK [*] (hard coded comparison operator)

Figure 17 shows that sorting with redistribution has higher runtime than sorting without re-
distribution when blocksize is 1. This higher runtime is from the overhead in distribution and
reblancing steps.

Figure 18 shows sorting with redistribution has higher runtime than sorting without redistribu-
tion for blocksize N. The reason behind this is the overhead in redistribution is still higher than
the performance gain for this particular problem size.

Figure 19 shows similar behavior since all the data has affinity to couple of threads.

In Figure 20, the performance with redistribution is simliar with the performance without re-
distribution as seen in Figure 18, where block size is N.

22

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=1

Without rdst
With rdst

Figure 17. Runtime with BLOCK 1 (hard coded comparison operator)

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N

Without rdst
With rdst

Figure 18. Runtime with BLOCK N (hard coded comparison operator)

23

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N/2

Without rdst
With rdst

Figure 19. Runtime with BLOCK N/2 (hard coded comparison operator)

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 2 4 6 8 10 12 14 16

TIM
E(M

icro
sec

ond
s)

THREADS

Run time with Fixed Problem size,N = 128k, BLOCK=N/(THREADS+1)

Without rdst
With rdst

Figure 20. Runtime with BLOCK N/(THREADS+1) (hard coded comparison operator)

24

References

[1] T. El-Ghazawi, W. Carlson and J. Draper, UPC Language Specification V1.1.1, Technical
Report, George Washington University and IDA Center for Computing Sciences, October
7, 2003,<http://www.gwu.edu/˜upc/docs/upc spec 1.1.1.pdf>, March 16, 2005.

[2] E. Weibel, D. Greenberg and S. Seidel, UPC Collective Operations Specifications V1.0,
Technical Report, George Washington University and IDA Center for Computing Sci-
ences, December 12, 2003,<http://www.gwu.edu/˜upc/docs/UPC Coll Spec V1.0.pdf>,
March 16, 2005.

[3] R. Brightwell, J. Brown, Q. Stout and Z. Wen, Experiences implementing sorting al-
gorithms in Unified Parallel C, Sandia National Laboratories, Symposium of the 5-th
Workshop on Unified Parallel C. Washington D.C., September 2004.

[4] HP UPC Unified Parallel C (UPC) Programmers’ guide, Hewlett-Packard Company, July
2004, <http://h30097.www3.hp.com/upc/upcus.pdf>, March 16, 2005.

[5] S. Seidel, and W. George, Binsorting on Hypercubes with d-Port Communication, in
proceedings of the third conference on Hypercube computers and applications, Vol 2,
p1455-1461, January 1989.

25

