Computer Science

Technical Report

MuPC: A Run Time System For
Unified Parallel C
by

Jeevan Savant

Computer Science Technical Report
CS-TR-02-03

September 2002

Michigan)[:[v/]

Houghton, MI 49931-1295

Abstract

Unified Parallel Cis an extension to the C programming language intended for parallel
programming. UPC adds a small number of parallel programming constructs to C.
These constructs enable users to write parallel programs based on a distributed shared
memory model. MuPC (MTU’s UPC), is a run time system for UPC, enabling it
to run on a wide variety of architectures including networks of workstations, Beowulf
clusters and shared memory machines.

Contents
1 Introduction

2 Background

2.1 Parallel programming languages
2.2 UPC’spredecessors o v i i v it it
221 Split-Co
222 AC .. e
2.3 UPC . . . e
2.3.1 The UPClanguage
2.3.2 Thefrontend Lo
2.3.3 The run time system
2.3.4 One-sided and Two-sided communication

MuPC Design

3.1 Using MuPC e
3.2 The MuPC system model
3.2.1 Communication thread

MuPC Components

4.1 Imitialization Lo
42 Getsand Putso oL
421 Getoperationo
4.2.2 Putoperation Lo
4.3 Synchronization Lo
4.3.1 Barrier operation Lo Lo
4.3.2 Notify/Wait operation

10
11
11
12
15
16
17

18
18
19
19

4.4 Memory Management and Locks, 29
4.4.1 Dynamic Memoryo L oL 30
442 Locks 33

4.5 Termination 39

4.6 MuPC Restrictions o o 39
4.6.1 Strict and Relaxed o000 39
46.2 wupcglobalexit 00000 40
4.6.3 Final Barrier Processing 40

Summary 41

5.1 Current state of MuPC oo oo 41

5.2 MuPC Testing 41

5.3 MuPC Porting 41

5.4 Release Information oo oo 42

1 Introduction

Parallel computing works on the principle of dividing a big task into a number of
smaller subtasks, and then executing these subtasks in parallel on multiple process-
ing elements. This is done in order to reduce execution time. Parallel computing
platforms can be classified in a variety of ways. One way to classify them is on the
basis of how different processing elements interact with each other. Two common
ways processors interact are by message passing and by using a shared address space.
In a message passing architecture, the processing elements interact with each other
by sending messages over an interconnection network (Figure 1). In a shared memory
architecture, processing elements interact with each other by sharing a single, com-
mon memory (Figure 2).

e N
Interconnection Network

N J
Local Local Local
Memory Memory Memory

Processing Processing Processing
Element Element Element

1 2 n

Figure 1: Message passing architecture.

A variety of software mechanisms support these architectures. The Message Passing
Interface (MPI)[1] is a library of functions used to do parallel computing on message
passing platforms. MPI is widely used with C and FORTRAN programming lan-
guages on a variety of message passing platforms such as networks of workstations
and Beowulf clusters. MPI can also be used on shared memory platforms. OpenMP
is a collection of compiler directives used to do parallel computing on shared memory
architectures. The OpenMP compiler directives are added to a C program to exploit
parallelism on shared memory platforms.

Both the parallel computing platforms and mechanisms used to program them have

[Shared Memory]

Processing Processing Processing
Element Element Element
1 2 L] L] [] n

Figure 2: Shared memory architecture.

some advantages and disadvantages. One main advantage of the message passing
architecture is its low cost compared to expensive custom built shared memory ma-
chines. On the other hand the programming interface for a message passing architec-
ture requires the user to concentrate on interprocessor communication thus compli-
cating the problem solving task. The shared memory programming interface provides
a global address space view of the system and thus frees the user from explicit mes-
sage passing.

The distributed shared memory (DSM) paradigm of parallel programming provides
the advantages of shared memory programming on message passing platforms. DSM
provides a global memory view of remote memory. This abstraction hides references
to remote memory and helps the user to concentrate on the actual problem to be
solved (Figure 3).

Unified Parallel C[2] is an extension to the C programming language for parallel
programming. Although UPC is based on the shared memory model for parallel
computing, UPC offers the flexibility of being able to run on distributed shared mem-
ory machines. This is done by defining a clear run time system interface. The run
time system is the interface between UPC and the hardware platform. The shared
memory constructs in UPC are translated to function calls defined by the run time
system interface. The job of the run time system is to implement the shared mem-
ory constructs of UPC in a DSM environment thus making UPC portable over large

1 1
1 l
| |
} [Interconnection Network } !
| |
1 ‘ ‘ 1
| |
l Loca Loca Local !
} Memory Memory - Memory !
| |
| |
Processing Processing Processing
Element Element Element
1 2 n

Figure 3: Distributed shared memory architecture.

number of platforms.

The important aspects of parallel programming are how the task is divided, how data
is distributed and how the execution is synchronized. In UPC the task is divided
among a group of threads. A UPC thread is often equivalent to a processor. UPC
does not deal with the details of actual process management. UPC assumes that
other software provides process management.

UPC addresses the issue of data division by providing built-in language constructs.
These language constructs enable data to be distributed among a set of threads at
compile time. This frees the user from doing explicit message passing to distribute
data at run time. UPC introduces a new type qualifier shared in order to distribute
data. A data object qualified as shared is shared among all threads. The data object
can be a scalar or a vector. In the case of a scalar, the actual data object resides
in the memory of thread 0. In the case of a vector the elements are distributed in
round robin fashion among the threads. UPC also provides an optional block size
parameter which specifies data layout in the case of vectors. A vector qualified with
a block size of Bis distributed among threads so that B elements are on thread 0,
B elements are on thread 1 and so on.

UPC also provides built-in constructs for synchronization. These constructs include
atomic synchronization such as a barrier and a split barrier consisting of notify and

wait. Additionally, UPC has library functions for shared memory allocation and
deallocation.

Compaq’s implementation of UPC defines a clear interface between UPC compiled
code and the run time system. This interface is the starting point for the design of
MuPC. The research done here focuses on the implementation of a run time system for
UPC on distributed memory platforms. This implementation uses MPI and Pthreads
libraries.

2 Background

2.1 Parallel programming languages

A large number of languages is available for parallel programming. These languages
are the result of research efforts both by commercial vendors and academic researchers.
The reason for the existence of so many languages is the wide variety of parallel
computing architectures and parallel programming paradigms. Each parallel pro-
gramming language is designed with the goal of being most efficient on a particular
parallel computing architecture using a particular programming paradigm. In this
section we briefly discuss various parallel programming paradigms and languages de-
signed to support them|3].

e Implicit and explicit parallel programming[4]: In the implicit parallel program-
ming paradigm programs are developed using a sequential programming lan-
guage and the task of making it parallel is left to the compiler. No information
is passed to the compiler explicitly about how the program should be made par-
allel. The job of the parallelizing compiler is to divide the program into blocks
and do dependency analysis among those blocks to identify which blocks can be
parallelized. Such a task is not always easy and efficient and depends on how
the sequential program is coded. Haskell[5] is a parallel programming language
that supports implicit parallel programming.

In the explicit parallel programming paradigm the programmer explicitly spec-
ifies how the program is to be parallelized among a group of processors. An
explicit programming language has mechanisms to achieve parallelism built into
the language. Such mechanisms include constructs for message passing, synchro-
nization and process management. SR[4] is an example of an explicit parallel
programming language.

Implicit parallel programming languages are easy to use but suffer from low
efficiency. Explicit parallel programming languages enable programmers to op-
timize the program taking the architecture into consideration but they also
increase the complexity in programming.

e Shared memory and message passing parallel programming: The shared mem-
ory parallel programming paradigm is based on shared address space architec-
tures. In such architectures a collection of processors has access to a common
pool of memory which can be accessed and updated by all. OpenMP is a set
of compiler directives that can be used to specify shared memory parallelism in
FORTRAN and C/C++ programs. Since the shared memory model of parallel

7

programming saves the effort of message passing, languages often simulate the
shared memory model on distributed memory architectures. An example of
such language is AC[6]. UPC is a descendant of AC.

In the message passing parallel programming paradigm individual processors
have local memory. Data exchange takes place through explicit messages. Mes-
sage passing programming can be done both on shared and distributed memory
machines. ANSI C with MPI is an example of a message passing programming
language.

e Data parallelism and control parallelism: Data parallelism is achieved by as-
signing data elements to different processors executing the same code. A single
instruction stream then executes on all processors. Data parallel languages
provide constructs for data distribution and parallel operations. There is no
explicit message passing involved and all communication needed to achieve a
parallel operation is built-in. C*[7] is an example of a data parallel language.

Control parallelism involves execution of multiple instruction streams on dif-
ferent processors. The instruction streams can work on the same data or on
different data. An example of control parallelism is pipelining.

2.2 UPC’s predecessors

UPC belongs to the class of parallel languages based on the distributed shared memory
model. The programmer is given the view of working on a shared memory architec-
ture. Internally the compiler and run time system take care of simulating a shared
memory model irrespective of the underlying platform. In this section we discuss the
predecessors of UPC, i.e., AC and Split C. Both of these languages are extensions
to the ANSI C language[8] to support the distributed shared memory programming
model. Languages in this genre can be compared on the basis of several common
characteristics[9].

e Control model: The control model defines how control flows during execution of
a program. In the case of a sequential program the control flow starts at main()
and follows sequentially to the end of the program. In the case of a parallel
program where multiple processing elements are available for execution, there
can be a variety of control flows. One common approach is the master-worker
model where a single master controls the flow among a set of workers. The
control flow model used for languages discussed in this section is SPMD (Single
Program Multiple Data). In this model all processing elements execute the
same code but with different data sets.

e Global shared address space: Irrespective of the underlying architecture, these
languages assume the existence of a common pool of memory shared among all
processing elements involved in the computation. Mechanisms and constructs
are provided to access and update memory. The address space can store both
static and dynamic structures. Also important to note is that each processor
owns a part of the global address space and can access it as if it was local. The
actual realization of the global address space is left to the underlying run time
system. The global address space has the following characteristics.

— Pointers: Pointers in these languages are of two types. Local pointers that
point to objects in the local address space and global pointers for objects
in the global address space. These can be further classified as:

* Local pointers pointing to the local address space.

*x Local pointers pointing to the global address space.
*x Global pointers pointing to the local address space.
* Global pointers pointing to the global address space.

— Shared scalar variables: Languages supporting a global address space pro-
vide constructs to qualify a scalar to be in the global address space.

— Shared vectors/arrays: Additional syntactic features are provided to sup-
port vectors in the global address space. The general approach is to allocate
an equal number of elements on all processing elements but the user is also
given the option of trying a variety of ways in array declaration to achieve
optimal allocation strategy.

— Shared dynamic memory allocation: The general approach to do this is
each processing element allocates an equal-sized block of memory which
together become the global address space. Such memory can then be
operated on using global pointers.

e Synchronization: Synchronization mechanisms are needed to avoid race condi-
tions and deadlocks when multiple processing elements access the global mem-
ory. These mechanisms are either provided as built-in constructs or as library
functions. Commonly provided synchronization mechanisms are barriers and
locks.

e Split-phase assignment: An assignment operation involving the global address
space has two phases, the computation phase and the communication phase.
The communication phase has higher latency than the computation phase. If
such assignments are implemented sequentially there is loss of efficiency since
the processor remains idle while the remote access is taking place. The two

phases can be overlapped by providing constructs which initiate communication
and constructs that wait for its completion. Between the two constructs the
processor can do other work thus hiding the latency of remote memory accesses.

2.2.1 Split-C

Split-C is a parallel extension to C developed at UC Berkeley[9]. It provides useful
elements of shared memory, message passing and data parallel programming models
in the context of the C language. Split-C is the oldest of the three languages discussed
in this section. It is targeted for the Thinking Machines Corporation CM-5.

e Control model: The control model for Split-C is SPMD. All the processing ele-
ments execute the same code. Each element may work on the same or different
data-sets. Split-C provides variables such as PROCS and MYPROC to find the total
number of processing elements present and the individual process identification
number.

e Global address space: Each processor has access to the entire global space and
each process owns a part of it, which it can access as local.

— Pointers: Global pointers are declared with the keyword global. Pointers
can be of any type except the function type. Additionally, Split-C has a
type of pointer called as spread pointers declared with the spread keyword.
The difference between the global and the spread pointer is that a spread
pointer points to a collection of data items on a processor and an increment
makes it point to the collection of data items in next processor.

— Arrays: Split-C calls global arrays as spread arrays. They are declared by
inserting a single spreader to right of the array dimensions. For example,
X[n]::[m]; where :: is the spreader. The dimensions on the left side of
a spreader are spread across all processors. The dimensions on right side
define per processor sub-arrays.

— Dynamic memory allocation: Dynamic memory allocation and dealloca-
tion is done using library functions void *spread_all spread malloc(int
count, int object_name); and all_spread_free(void *spread sptr);

e Synchronization: Split-C provides primitives such as atomic and barrier. The
atomic primitive is used to qualify a function which is then executed atomically
on the processor which owns the global object. The particular global object is
the object on which the function acts. Split-C also provides the common barrier

10

synchronization primitive barrier. Using these primitives users can build a
variety of other synchronization operations.

e Split-phase assignment: This is the most prominent feature of Split-C from
which the name for the language is derived. The overlap in computation and
communication phases of an assignment operation in global space is done by
splitting the an assignment into two operations. A new symbol for assignment
is introduced :=. The := marks the beginning of communication, while a sync
operation is used to determine completion of communication.

2.2.2 AC

ACI6] is an extension to C, that supports the shared address space parallel program-
ming model on distributed shared memory architectures. It is targeted for Cray
Research’s T3D and T3E.

e Control model: The control model for AC is SPMD. AC provides variables such
as PROCS and MYPROC to find the total number of processing elements present
and individual process identification numbers.

e Global address space: The concept of global address space remains consistent
with the discussion in previous sections.

— Pointers: Global pointers are declared with the keyword dist. Internally
a pointer has two components, the processor number and the local address
on that processor.

— Arrays: Distributed arrays are declared in which one dimension of the
array is a multiple of PROCS.

e Synchronization: AC provides the _barrier construct for synchronization.

2.3 UPC

UPC|2] is directly derived from AC. It is designed to do parallel programming in C
using the shared memory model. UPC gives a view of the underlying machine model
as one having a collection of threads that share a global address space. Threads in
UPC terminology are usually synonymous with processes.

11

2.3.1 The UPC language

e Control model: The control model for UPC is SPMD. The user sees the UPC
program to be a collection of threads that share a common global address space.
Additionally, each thread has its own private space and part of the global ad-
dress space which it can access as local.

e Global address space:

— Shared scalar: UPC introduces a new keyword shared to qualify data

Memory layout
Thread 0 Thread 1
Global i
Local
shared int i; shared int i;
voi d mai n(void) { void mai n(void) {
} }
Thread O Thread 1

Figure 4: A shared scalar in UPC.

objects in the global address space. A shared scalar is maintained as a
single object in global space. In Figure 4, the variable i is a shared scalar.
It is allocated in thread 0’s local memory, but all threads can access it as
local.

— Shared array: Shared arrays are vectors in global space. UPC requires
at-least one dimension of the array to be THREADS. Each thread holds an
equal share of the array in its local address space. Thus in the case of
a 1-dimensional shared array with THREADS elements each thread has one
element owned locally (Figure 5). This property is defined as affinity.
Affinity determines in which thread’s local memory a particular shared
item resides.

12

Memory layout

Thread O Thread 1
Global a[0] 1]
Loca
One el ement per thread
shared i nt a[THREADS] ; shared int a] THREADS] ;
voi d mai n(void) { void main(void) {
} }

Thread 0 Thread 1

Figure 5: Shared array with single dimension and blocksize 1.

UPC also has an optional blocksize parameter which is used in array decla-
rations. to control the distribution of data elements. The default blocksize
is 1. As shown in Figure 6 a multidimensional array with blocksize of 1
and 2 threads has an equal number of elements stored on both threads in
alternate order.

Figure 7 shows a multidimensional array with blocksize of 2 and 2 threads.
In this case both threads have a equal number of elements but the ordering
is changed.

— Shared pointer: UPC supports the following four types of pointers.

int *ptrl; /* local pointer pointing to local data */

shared int *ptr2; /% local pointer pointing to global data */
int* shared ptr3; /* shared pointer pointing to local data */
shared int *shared ptré4;/* shared pointer pointing to global data
*/

A shared pointer is internally represented by a thread number and the
local address it points to. Pointer arithmetic supports blocked and un-
blocked array distribution. Additionally, shared pointers can be cast into
local pointers but not vice versa.

13

Memory layout

Thread O Thread 1
a[0] a[1]
a[2] a[3]
Global
a[4] a[5]
a[6] a[7]
Loca
4 el enents per thread
shared int a[4][THREADS] ; shared int a[4][THREADS] ;
voi d mai n(void) { voi d mai n(void) {
} }

Thread O Thread 1

Figure 6: Shared array with multiple dimension and blocksize 1.

— Dynamic memory allocation:
UPC offers functions to allocate global memory dynamically.

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);
shared void *upc_all_alloc(size_t nblocks, size_t nbytes);
shared void *upc_local_alloc(size_t nblocks, size_t nbytes);
void free(shared void *ptr);

/* nblocks: number of blocks */
/* nbytes: number of bytes per block */

This can be done collectively by all threads or by single thread. upc_global_alloc
is a non-collective function allocating shared memory. upc_all alloc is a
collective function allocating shared memory. upc_local_alloc is a non-
collective function which allocates shared memory having affinity to the
calling thread. upc_free deallocates dynamically allocated shared mem-

14

Memory layout

Thread O Thread 1
a[0] a[2]
a[1] a[3]
Global
a[4] a[6]
a[5] a[7]
Loca
4 elements per thread and bl ocksize 2
shared [2] int a[4][THREADS]; shared [2] int a[4][THREADS];
voi d mai n(void) { voi d mai n(void) {
} }

Thread O Thread 1

Figure 7: Shared array with multiple dimension and blocksize 2.

ory.

e Synchronization:

UPC offers blocking and non-blocking types of synchronization mechanisms.

upc_barrier(); /* Blocking synchronization */
upc notify(); /* Split barrier start */
upc_wait(); /* Split barrier end */

The advantage of non-blocking synchronization is that the user can do local
work before waiting for the synchronization to complete.

2.3.2 The frontend

The first step in generating a UPC executable is to translate the UPC code to ANSI
C code. This translation is done by the frontend. The frontend is a source-to-
source translator that translates UPC constructs to calls to the run time system. For
example, each read or write access to non-local memory is translated to a call to
the get or put functions respectively. Figure 8 shows an example of UPC code in

15

Memory layout

Thread O Thread 1
Globa a0 a1]
Local b

One el emrent per thread

shared i nt a[THREADS] ; shared i nt a[THREADS] ;
voi d mai n(voi d) { voi d mai n(voi d) {
int b;
i f (MYTHREAD==0) { i f (MYTHREAD==1) {
a[1] =2 b =a[0];
} }
} }
Thread O Thread 1

b = get(sourcethread = 0, location = a[0]);
put(destination thread = 1, location = a[1], data = 2);

Figure 8: UPC to C translation example.

which references to non-local memory are translated to get and put function calls.
Compagq is providing us their UPC compiler. This compiler makes use of Edison
Design Group’s frontend to do the UPC to C translation.

2.3.3 The run time system

It is important to note that the UPC to C translation shown in Figure 8 or in other
examples elsewhere in this document is based on Compaq’s UPC compiler. UPC per
se does not dictate how the lower layers should implement UPC constructs.

The get and put functions in the translated code are one-sided communication op-
erations. The one-sided method of communication and its counterpart are explained
subsequently.

16

2.3.4 One-sided and Two-sided communication

A group of processes executing a parallel program need to exchange data and control
information. The code in Figure 8 is an example of data being exchanged between
two cooperating UPC threads. There are two basic schemes to exchange information
between a sender and a receiver.

In two-sided communication, both the sender and receiver are actively involved in
the exchange of messages. An example of this are the MPI functions MPI_Send and
MPI Recv. A MPI Recv does the job of polling on the receiver side while the MPI_Send
is used to send data by the sender. The disadvantage of this scheme is the time lost
in waiting at the receiver.

In one-sided communication, only the sender or the receiver is actively involved in
message exchange. This scheme is efficient when the receiver does not know before-
hand which sender to listen to.

17

UPC

Code
Bl EDG UPC_ UPC Intermediate Codein C
frontend compiler
MuPC RTS UPC executable code
Object Code c
>
Compiler
MPI Library

+

pthread Library

Figure 9: The big picture: mupcc.
3 MuPC Design

The goal of MuPC is to enable the execution of UPC programs on any platform that
supports MPI and Pthreads. Some examples of the target platforms include Beowulf
clusters, networks of workstations and shared memory machines such as the SUN
Enterprise.

3.1 Using MuPC

MuPC provides mupcc and mupcrun commands and the MuPC library (Figure 9).

The user requires the following software and hardware components to use MuPC.

e A UPC compiler capable of doing UPC to C translation conforming to Compaq’s
interface.

e The MPI and Pthread libraries.
e The MuPC library, and the mupcc and mupcrun scripts.

e Any hardware platform with the above software components.
The flow of events in generating a UPC executable is as follows (Figure 10).

e The front end translates UPC code into equivalent intermediate C code with
calls to the RTS.

18

mupcc Filename.c libmupc.a

where_filename.c is the UPC code file _
and libmupc.a is the run time system library.

The resulting executable a.out can be executed as
mupcrun -n n a.out

where n is the number of processors

Figure 10: Using MuPC.

e The intermediate C code is compiled and linked with the MuPC run time system
library.

e The resulting output is the UPC executable which can be executed using the
mupcrun command.

3.2 The MuPC system model

Each UPC thread in the user program is implemented as a Unix process in MuPC.
Each MuPC process is a MPI process which spawns two Pthreads. The two Pthreads
are called the communication thread and the UPC'thread. The communication thread
is the Pthread that handles the message passing. The UPC thread runs the user’s
UPC code. These two threads interact with each other using the global memory. Its
important to note the difference between UPC’s concept of “shared” memory and the
above mentioned “global” memory. The global memory is the per process memory
which the two threads in a process can access. All the MPI activity is confined to the
communication thread to achieve thread safety. Figure 11 shows the system model
described above.

3.2.1 Communication thread

The communication thread is implemented as an infinite loop servicing the outgo-
ing send requests and the incoming receive requests. The communication between
the UPC thread and the communication thread is achieved through global memory
(Figure 12). Two structures, one for the send requests and the other for the receive
requests are shared by the two threads.

The communication thread starts by posting non-blocking requests to receive data
from all the processors involved in the execution of the program. Subsequently it

19

mupcrun —-n 2 upc_hello_world

UPC
Program

/\

UPC
Init

N

User Code
Thread

MPI_Init()

Communication
Thread

MPI_Finalize()

7

UPC

UPC
Init

N

User Code
Thread

MPI_Init()

Communicatio
Thread

MPI_Finalize()

> 7

UPC
Finalize

Fi nK /

Figure 11: MuPC system model.

20

enters an infinite loop where it services the incoming and outgoing communication
requests. On receiving an incoming request, the communication thread processes it
and at the end of the processing posts a new receive request to listen from the proces-
sor with which it last communicated. Also, in order to avoid the waste of CPU cycles
by looping needlessly in the case of no communication activity, the communication
thread yields voluntarily, giving more CPU cycles to the UPC thread. The communi-
cation thread terminates after receiving finish requests from all the other processors
involved in the execution.

To issue a put/send request the UPC thread locks the send structure, fills in the
request parameters and unlocks it for the communication thread to read. The com-
munication thread periodically locks the send structure to check for any outstanding
send requests from the UPC thread. In the case of a new send request, the communi-
cation thread sends the request to the remote processor using a blocking MPI send.
There are 3 types of send requests.

e Send remote: This is a request to write to the remote processor’s memory.
MuPC implements this by sending the data to the remote processor using the
blocking MPI send function.

e Recvremote: This is a request to read data from the remote processor’s memory.
MuPC implements the remote reads using a two-phase protocol.

e Finish: This is a request to terminate execution.
To communicate the incoming receive requests to the UPC thread, the communication
thread uses the receive structure. Not all incoming receive requests are needed to be
communicated with the UPC thread. Only the data requested by the UPC thread

from remote processors needs to be communicated to the UPC thread. There are 4
types of receive requests.

e Data: This is a request to write to the local processor’s memory from the remote
processors. This is implemented by writing the data at an appropriate location.

e Recv: This is a request to read the local processor’s memory and send the
contents to the remote processor.

e Recv reply: This is a request indicating reply to the local processor’s request
to read the remote memory.

e Finish: This is a termination request from the remote processor.

21

keep_polling =n
Post n non—-blocking MPI receives
to listen from n processors

While keep_polling true
Try locking send_struct

If locked p
Outgoing Requests
Check request /I Write request TO remote processor

If Send_Remote
Send Data request to remote processor using a Blocking send
Unlock send_struct
If Recv_Remote /I Read request to remote processor
Send Recv request to remote processor using a Blocking send
Unlock send_struct
If Finish /I Request to terminate communication thread
Send Finish request to remote processor using a Blocking send
Unlock send_struct
If lock failed or no request
Check if incoming requests from remote processors /I Incoming Requests
Lock recv_struct
If Data request
Receive data and store
Unlock recv_struct
If Recv request I/ Read request FROM remote processor
Read data and send Recv_Reply request using a Blocking send
Unlock recv_struct
If Recv_Reply
Receive data and store
Unlock recv_struct
If Finish
Decrement keep_polling
Unlock recv_struct
Post a new non—-blocking MPI receive for the last processor communicated with
Yield communication thread
Done While

Il Write request FROM remote processor

I/l Receive Data FROM remote processor

/1 Process finish request FROM remote processor

Figure 12: Communication thread

22

The actual send and receive operations are explained in detail in the following sections.
The prime feature of the communication thread is, it is designed to be completely
non-blocking, with no waiting involved for the completion of a communication request
at the remote end. This might sound contradictory looking at the use of blocking
MPI sends in the communication thread, but the blocking sends in MPI do not wait
for an acknowledgment from the remote processors. The non-blocking characteristic
of the communication thread is the essence of the MuPC run time system.

23

4 MuPC Components

4.1 Initialization

The Compaq UPC run time system interface declares

int _UPCRTS_init(void) as the initialization function. This is the first function to
be called when a UPC executable is invoked. The initialization task does the job of
buffer allocation, MPT initialization and spawning of the UPC and the communication
thread. It is designed and implemented to build the system model shown in Figure
11.

4.2 Gets and Puts
4.2.1 Get operation

An attempt to read data stored in remote memory results in the invocation of the Get
operation. MuPC implements the Get operation using a two-phase protocol (Figure
13). The motivation for this protocol is to maintain the non-blocking nature of the
communication thread. Due to this the communication thread does not need to wait
for the completion of the Get operation, possibly ignoring incoming requests from the
other processors. The Get operation proceeds as follows.

e Phase 1: Making the request

— Step 1: The UPC thread builds the receive request and stores it in the
global memory. The UPC thread then waits for the “receive done” flag to
be set.

— Step 2: The communication thread occasionally checks the global memory
for outstanding UPC requests. If it detects a request, it processes it as
described in the next step.

— Step 3: The communication thread sends the receive request to the remote
Processor.

e Phase 2: Receiving the reply

— Step 4: The remote processor’s communication thread detects an incoming
receive request. It replies with the requested data.

24

Local Processor Remote Processor

UPC Thread Communication Thread Communication Thread
Get(ptr, remote) send_struct

recv_struct @

While keep_polling true
Lock send_struct
if locked
Check request

Lock send_struct

request = Recv_Remote + Recv
location = address

Unlock send_struct

While keep_polling true
Lock send_struct
if locked
Check request

Recv_Remote:
Send Recv reguest to
remote processor
Unlock send_struct

else check incoming requests @ else check incoming requests
Lock recv struct \ Lock recv_struct

Recv_Reply: o Recv:
Receive data Read Data
recv_struct.done=1 @ Send Data + Recv_Reply back
Unlock recv_struct Unlock recv_struct

Wait on recv_struct.done
return data

Figure 13: Get operation

— Step 5: The local processor’s communication thread detects a reply to the
receive request and receives the data. It then sets the receive done flag,
thus ending the UPC thread’s wait.

4.2.2 Put operation
The Put operation is simpler than the Get operation. Writes to remote memory result
in the invocation of the Put operation (Figure 14).

The UPC thread builds the send request and stores it in global memory. The com-
munication thread detects the request and sends the data to the remote processor.
Meanwhile, the UPC thread continues the execution without waiting for the comple-
tion of the Put.

4.3 Synchronization

UPC provides two types of barrier constructs: a typical barrier and a “split” barrier.
UPC_barrier is a blocking synchronization construct. A call to the UPC_barrier

25

Local Processor

Remote Processor

UPC Thread

Put(ptr, remote)

Lock send_struct

request = Send_Remote

location = address

Unlock send_struct

Local Processor

Communication Thread

@

While keep_polling true
Lock send_struct
if locked
Check request

send_struct
recv_struct

Send_Remote:
Send Data request to
remote processor
Unlock send_struct

Figure 14: Put operation

Communication Thread

While keep_polling true

Lock send_struct
if locked
Check request

@ else check incoming requests
\ Lock recv_struct

Data:
Write Data
Unlock recv_struct

Remote Processor

UPC Thread !

Barrierjl_done =n-1
send._struct

@

Lock send_struct
request = Barrier
Unlock send_struct
decrement Barrier_done
Wait on Barrier_done

Communication Thread

@

While keep_polling true
Lock send_struct

if locked

Check request

@

Lock send_stru

Barrier:

Send Barrier request tj
remote processor
Unlock send_struct

else check incoming requests
Lock recv_struct

Barrier: \

decrement Barrier_done
Unlock recv_struct

®

Figure 15: Barrier

26

UPC Thread

request = Barrier
Unlock send_struct

decrement Barrier_done
Wait on Barrier_done

! Communication Thread
Barrier.done =n -
send:_struct

While keep_polling true
Lock send_struct
if locked

Check request

Barrier:

Send Barrier request to
remote processor
Unlock send_struct

else check incoming requests
Lock recv_struct

Barrier:
decrement Barrier_done
Unlock recv_struct

operation

blocks until all the other processors executing the program also call UPC_barrier.
The “split” barrier is a sequence of two constructs, UPC_notify and UPC_wait. The
Notify construct announces a processor’s intent to synchronize with other processors.
The Wait construct blocks until all the other processors have called Notify in their
corresponding Notify-Wait sequence. The two-step synchronization procedure is de-
signed to improve efficiency by allowing local work to be done between the Notify
and the Wait constructs.

4.3.1 Barrier operation

MuPC implements the UPC_barrier operation using an all-to-all token exchange pro-
tocol (Figure 15). Each processor initializes a variable with a value equal to the total
number of UPC threads(processors) - 1. Whenever the UPC code calls UPC_barrier,
the run time system sends a barrier request to all the processors involved in the com-
putation. On the receipt of a barrier request at the remote processor, the run time
system decrements the value of a barrier variable by one. The UPC thread at the
local processor waits until the value of the barrier variable is not equal to one ¢.e.,
until all the other processors encounter their barriers. Once this is achieved the wait
completes and the UPC threads on all the processors can continue their execution.

e Step 1: The UPC thread on the local processor calls the barrier. The barrier
function builds the barrier request and stores it memory. The barrier function
sends this barrier request to all the processors. The barrier variable is initialized
to the number of processors. The UPC thread waits until this barrier variable
value is not equal to zero.

e Step 2: The communication thread detects a request from the UPC thread and
sends the barrier request to all the remote threads.

e Step 3: The remote processor’s communication thread detects an incoming
barrier request and decrements its barrier variable by one.

e Step 4: The remote processor’s UPC thread hits its own barrier function call.
It repeats the same procedure in step 1.

e Step 5: Same as step 2.

e Step 6: Same as step 3.

As a result, by the time the barrier variables on all the processors are zero, the user
code on all the processors have hit their barriers, thus achieving synchronization.

27

Local Processor Remote Processor

UPC Thread : Communication Thread UPC Thread : Communication Thread
notify_var = size - 1 notify_var = size - 1

wait_var = size - 1 wait_var = size - 1

send,_struct .2 - send_istruct-—-~"""

o
I

@ / i While keep_polling true @ © While keep_polling true |
/1 Lock send_struct ! Lock send struct ;
Notify ! iflocked Notify I Uiflocked ;
Wait until all aitsin 1 Check request Wait until all wajts in ! Check request !
previous synghornization! previous synchgrnization | i
are done. i | are done. ; | /
If all waits/in previous ‘ Notify: If all waits i/ previopis ‘ Notify: {
synchronization pHase Send Notify request tf ! synchronization phase Send Notify request to /
are not of/ same vajue, ! remote processor ! are not of J ! remote processor
return erfor. i 3 Unlock send_struct Unlock send_struct
sync all gets & puts | . i . i
valait vare n — f ! Wait:) y’ Wait:) i
- | ! Send Wait request to Send Wait request e
Lock sen SUUC‘Q i remote processor _remote processor
fori=0ton-1 Unlock send_struct @ " Unlock send_struct

request = Notify
Unlock send_stfuct .

Wait : @ 3 . . Wi

Wait until all fotifiesin | ©'s¢ check incoming reques(s Waituntil all-ntifies

. P Lock recv_struct IR - .

previous synchornization: previous-synchgrnization

else check incoming requests
Lock recv_struct

are done. ! ‘ Notify: are.done. Notify:

{ ! decrement notify_var o T ! decrement notify_var
If all notifies in previous ! Unlock recv struct @ -~ If all notifies in previous Unlock recv struct
synchronization phase | - = synchronization phasé™._ ! -
are not of same value, ‘ Wait: P are not of same value, ‘ N Wait:
return error. | decrement wait_var return error. ! "~ decrement wait_var
sync all gets & puts Unlock recv_struct sync all gets & Unlock recv_struct
notify_var =n -1 3 notify_var = ni-1 3
Lock send_sthuct Lock send_struct ‘
fori=0ton-1 fori=0ton-1

request = Wait 1 request = Wait
Unlock send struct ' Unlock send struct

Figure 16: Notify operation

4.3.2 Notify/Wait operation

MuPC’s algorithm for implementing the Notify/Wait operation is shown in Figure
16.

e Step 1: The upc_notify routine is called with value n. Calling upc_notify marks
the beginning of a new synchronization phase. Inside the routine, MuPC first
checks if any upc_waits from the previous synchronization phase are pending. If
yes, then MuPC blocks in upc_notify until all previous upc_waits are complete.
Once all pending waits are complete, MuPC checks if all the previous waits
had the same value. If no, then MuPC returns an error. Following these two
checks MuPC calls _-UPCRTS_GetAllSync and _UPCRTS_PutAllSync (which
are noop’s for MuPC). After this MuPC builds a “NOTIFY” request to be
broadcast to all remote processors.

28

Step 2: The communication thread on the local processor occasionally checks
the global memory for outstanding requests from the main thread. In this case
it finds a “NOTIFY” request.

Step 3: The communication thread extracts the remote processor number from
the request. Then it sends the request to the remote processor via MPI Isend
call. The communication thread on the remote processor receives the “NO-
TIFY” request and processes it by decrementing the notify_var variable which
is set to value size - 1, for every new synchronization phase.

Step 4, 5 and 6: These steps are same as Steps 1, 2 and 3. They occur when
upc_notify is called on the remote processor.

Step 7: The upc_wait routine is called with value n. MuPC first checks if
any upc_notifies from the current synchronization phase are pending. If yes,
then MuPC blocks in upc_wait until all previous upc_notifies are complete.
Once all pending notifies are complete, MuPC checks if all the previous notifies
had the same value. If no, then MuPC returns an error. Following these two
checks MuPC calls _-UPCRTS_GetAllSync and _UPCRTS_PutAllSync (which
are noop’s for MuPC). After this MuPC builds a “WAIT” request to be broad-
cast to all remote processors.

e Step 8: The communication thread on the local processor occasionally checks
the global memory for outstanding requests from the main thread. In this case
it finds a “WAIT” request.

e Step 9: The communication thread extracts the remote processor number from
the request. Then it sends the request to the remote processor via an MPI Isend
call. The communication thread on the remote processor receives the “WAIT”
request and processes it by decrementing the wait_var variable which is set to
value size - 1, for every new synchronization phase inside upc_notify.

e Step 10, 11 and 12: These steps are same as Steps 7, 8 and 9. They occur when
upc_notify is called on the remote processor.

4.4 Memory Management and Locks

The Compaq UPC run time system interface declares a set of functions for dynamic
memory allocation and functions for locking and unlocking the memory.

29

4.4.1 Dynamic Memory

UPC declares three functions for dynamic memory allocation and a function to free
memory.

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);
shared void *upc_all_alloc(size_t nblocks, size_t nbytes);
shared void *upc_local_alloc(size_t nblocks, size_t nbytes);
void upc_free(shared void *);

The three allocation functions return a shared pointer. Internally a shared pointer is
implemented as a structure with 3 fields:

va - Virtual Address

th - Thread Number

ph - Phase

The main requirement for dynamic memory allocation is “A block of memory allo-
cated across threads should start at the same va(virtual address)”.

This requirement guides the design of dynamic memory allocation in MuPC. The
approach taken by MuPC is simple. At initialization MuPC reserves a pool of memory
on all threads to serve UPC dynamic memory allocation requests. The default size of
this pool is 8 MB. The constant that sets this value is MEM_BLOCK. Any memory
allocation request made by any UPC thread via upc_global_alloc or upc_all_alloc is
routed through thread 0. Thread 0 maintains a variable base_va which points to the
first free location in the pool. upc_local_alloc is implemented using malloc and is done
locally on the calling thread. upc_free is a noop for MuPC.

upc_global _alloc
upc_global_alloc is a non-collective operation, i.e. any thread can call it independently
and allocate memory across all threads. Assume a UPC application with 2 threads
numbered 0 and 1 as shown in Figure 17. Thread 1 calls upc_global_alloc. The
sequence of events that occurs is:

e Step 1: upc_global_alloc is called on thread 1.

e Step 2: the request goes to MuPC RTS on thread 1.

e Step 3: MuPC RTS on thread 1 posts a request to thread 0 to allocate memory.

30

Local Processor Remote Processor

Thread 0 Thread 1
UPC Thread Communication Thread UPC Thread Communication Thread
send struct @ send,_struct
base_ va |
iWhiIe keep_polling true upc_global_alloc i While k olling true
' Lock send_struct Lock send_struct ! Lock send_§ruct
1if locked request = Global_Alloc if locked
 Check request unlock send_struct 1 Check requ @
Global_Alloc: : Global_Alloc:
| @ Send Global _Alloc request
i to thread 0
unlock send_struct
! else check incoming requests ! else check incoming requests
' Lock recv_struct ! Lock recv_struct
Globa Alloc: / @ i Global_Alloc:
increment base va / va = address returned by thread 0
return old base_va— | ! unlock recv_struct
unlock recv_struct |

Figure 17: Global Alloc operation

e Step 4: MuPC RTS on thread 0 increments the base_va value by the amount
of memory requested and returns the old base_va value. Thread 0 also checks
if requested value does not exceed the available memory, determined by the
MEM_BLOCK constant.

e Step 5: MuPC RTS on thread 1 sets va equal to the address returned from
thread 0 and it sets, th = 0 and ph =0.

e Step 6: upc_global_alloc returns.

upc_all_alloc

upc_all_alloc is a collective operation, i.e. all threads must call it and there is implied
synchronization. Memory is allocated across all threads. The sequence of events that
occurs is (Figure 18).

e Step 1: Assume upc_all_alloc is called first on thread 1 and then on thread 0.

e Step 2: MuPC RTS on thread 1 posts an all_alloc request across all threads.
upc_all_alloc blocks until it has heard all_alloc requests from all other threads

31

Local Processor

Remote Processor

Thread 0
UPC Thread ‘ Communication Thread
end_lrstruct
base! va
all_alloc_yar =size 1
upc_all_alloc : While keep_polling true
Lock send_struct i Lock send_strust

request = All_Alloc | if locked
unlock send_struct : Check request @
wait until ! All_Alloc:

all_alloc_var >0 -
- - increment base_va

return old base_v
unlock send_struet\
else check incoming requests
Lock recv_struct
All_Alloc: —

decrement all_alloc_var
unlock recv_struct

Thread 1
UPC Thread ‘ Communication Thread
@ sendi_struct

aII_aIIoc_lrvar =size

upc_all_alloc !
Lock send_struct !
request = All_Alloc |
unlock send_struct !
|

|

While keep_polling true
Lock send_struct

if locked
Check reques!

wait until

|
|

i All_Alloc:
all_alloc_var >0 ! =

Send All_Alloc request
to thread 0
unlock send_struct

else check incoming requests
Lock recv_struct
All_Alloc:
decrement all_alloc_var
unlock recv_struct

All_Alloc_Reply:

decrement all_alloc_var

va = address returned by thread 0
unlock recv struct

Figure 18: All Alloc operation

and thread 0 has returned a valid va. The MuPC RTS uses a variable all _alloc_var
= THREADS - 1 to keep track of the number of all_alloc requests it has heard.

Step 3: MuPC RTS on thread 0 gets the all_alloc request from thread 1 and it

decrements its all_alloc_var. Subsequently, when the user code on thread 0 calls
its upc_all_alloc function, MuPC RTS on thread 0 posts an all_alloc request to

all threads along with the va.

Step 4: Once MuPC RTS on each thread has heard all_alloc_var all_alloc re-

quests and has a valid va, each of them sets va equal to the address returned
from thread 0 and sets, th = 0 and ph =0.

e Step 5: upc_all_alloc returns.

upc_local_alloc

upc_local_alloc is a non-collective operation. MuPC implements local alloc using the
malloc() function. The shared pointer fields are set to the following values: va =
value returned by malloc, th = calling thread number and ph = 0 (Figure 19).

upc_free

32

upc_free is a noop for MuPC.

4.4.2 Locks

UPC provides the following lock functions

shared void * upc_global lock alloc(void);
shared void * upc_all_lock_alloc(void);
void upc_lock_init(shared void *);

void upc_unlock(shared void *);

void upc_lock(shared void *);

int upc_lock_attempt (shared void *);

The two lock allocation functions return a shared pointer to an object of type upc_lock_t.
An important distinction between the memory allocation functions and lock allocation
functions is that memory is allocated only on thread 0 in the case of lock allocation
functions.

MuPC makes use of Pthread mutexes to implement locks. The upc_lock_init function
is used to initialize Pthread mutexes on thread 0.

upc_lock and upc_unlock are implemented using Pthread lock and unlock routines on
thread 0. upc_lock_attempt is the non-blocking version of upc_lock

upc_global lock_alloc

upc_global lock_alloc is a non-collective operation (Figure 19). Its operation is similar
to upc_global alloc. Assume a UPC application has 2 threads numbered 0 and 1.
Thread 1 calls upc_global lock_alloc. The sequence of events that occurs is:

e Step 1: Thread 1 calls upc_global_lock_alloc.

Step 2: MuPC RTS on thread 1 posts a global lock_alloc request to thread 0.

Step 3: MuPC RTS on thread 0 updates the base_va by the size of upc_lock_t
and returns the old base_va.

Step 4: MuPC RTS on thread 1 receives the base_va from thread 0 and sets va
= base_va, th = 0 and ph = 0.

Step 5: upc_global_lock_alloc returns.

33

Local Processor Remote Processor
Thread 0 Thread 1
UPC Thread Communication Thread UPC Thread 1 Communication Thread
send_struct @ send_struct

base va
7
|

| While keep_polling true
' Lock send_struct

1if locked

! Check request

Global_Lock_Alloc:

! else check incoming requests

' Lock recv_struct
Global_ Lock Atios |
increment base_va
return old base va—" |
unlock recv_struct

upc_global_lock_alloc While ki
Lock send_struct Lock send_gtruct
req = Global_Lock_Alloc if locked
unlock send_struct | Check requ

Global_Lock_Alloc:
Send Global_Lock_Alloc request
to thread O
unlock send_struct

©

' elsecheck incoming requests
' Lock recv_struct
@ ‘ Global_Lock_Alloc:
/ va = address returned by thread 0
! unlock recv_struct

Figure 19: Global Lock Alloc operation

upc_all_lock_alloc

upc_all lock alloc is a collective operation (Figure 20). The sequence of events that

occurs is:

Step 2: MuPC RTS on thread

Step 1: Thread 1 calls upc_all lock_alloc.

1 posts a all lock_alloc request across all threads.

upc_all lock_alloc blocks until it has heard all_lock_alloc requests from all other
threads and thread 0 has returned a valid va. The MuPC RTS uses a variable
all_lock_alloc_.var = THREADS - 1 to keep track of the number of all lock_alloc

requests it has heard.

Step 3: MuPC RTS on thread 0 gets the all_lock_alloc request from thread 1

and it decrements its all lock_alloc_var. Subsequently, when the user code on
thread 0 calls its upc_all_lock_alloc function, MuPC RTS on thread 0 posts an
all lock_alloc request to all threads along with va.

requests and has a valid va, ea

Step 4: Once MuPC RTS on each thread has heard “all_lock_alloc_var” all_lock_alloc

ch of them sets va equal to the base_va returned

from thread 0 and it sets, th = 0 and ph =0.

34

Local Processor
Thread 0

Remote Processor
Thread 1

UPC Thread ' Communication Thread

@ end_lrstruct
base! va
al I_Iock_all¢c_var =si

upc_all_lock_alloc
Lock send_struct i Lock send_strugt
request = All_Lock_Alloc | if locked
unlock send_struct | Check request

wait until

all_lock_alloc_var >0 All_Lock_Alldt:

increment base_va
return old base_v:
unlock send_strut&
else check incoming requests
Lock recv_struct
AII_Lock_AIIoe./

decrement all_lock_allog
unlock recv_struct

Figure 20: All Lock Alloc

e Step 5: upc_all lock_alloc returns.

upc_lock_init

upc_lock_init is a non-collective operation (Figure 21). This function initializes a lock
allocated by any of the UPC lock allocation functions. It is mandatory to initialize

UPC Thread !

' Communication Thread
aII_Iock_aIIgbc_var =sl

sendLstruct
upc_all_lock_alloc ! While keep_polling true
Lock send_struct Lock send Struct
request = All_Lock_AIlOC if jocked
unlock send_struct Check reques

wait until
all_alloc_var >0

All_Lock_Alloc:

Send All_Lock_Alloc request
to thread 0

unlock send_struct

®

3 else check incoming requests

| Lock recv_struct

! All_Lock_Alloc:

| decrement all_lock_alloc_var

! unlock recv_struct

1 All_Lock_Alloc_Reply:
decrement all_lock_alloc_var

va = address returned by thread 0
unlock recv struct

operation

each lock before using it for the first time under MuPC.

case it returns immediately.

initialization function.

is complete.

Step 1: Thread 1 calls upc_lock_init.
Step 2: MuPC RTS on thread 1 posts a lock_init request to thread O.

Step 3: MuPC RTS on thread 0 checks if the lock is already initialized, in which

Step 4: If the lock is not initialized it is initialized using the Pthread lock

Step 5: Once the lock is initialized thread 0 tells thread 1 that lock initialization

35

Local Processor Remote Processor

Thread 0 Thread 1
UPC Thread ‘ Communication Thread UPC Thread ‘ Communication Thread
send istruct @

3 While keep_polling true lock_init

' Lock send_struct Lock send_struct

+if locked req = Lock_Init

1 Check request unlock send_struct

Lock_Init: i Lock_Init:
@ Send Lock_Init request
| to thread O
unlock send_struct
1 else check incoming requests 1 elsecheck incoming requests

' Lock recv_struct Lock recv_struct

- / ‘ Lock_Init:
ﬁ?ﬁiﬂf{ initialized M unlock recv_struct
e !

initialize and return
elsereturn error
unlock recv struct

Figure 21: Lock Init operation
e Step 6: upc_lock_init returns.

upc_lock

upc_lock is used to lock a lock allocated by a UPC lock allocation routine (Figure
22).

e Step 1: Thread 1 calls upc_lock.
e Step 2: MuPC RTS on thread 1 posts a lock request to thread 0.

e Step 3: If lock is free, MuPC RTS on thread 0 locks the lock using the Pthread
lock function and returns success to thread 1. If the lock is already locked then
thread 0 returns failure to thread 1.

e Step 4: MuPC RTS on thread 1 returns status to the upc_lock function. If
status is success then the upc_lock function returns. In case of failure, the
upc_lock function blocks on a variable that indicates a change in the status of
the lock. (This variable is modified whenever any thread unlocks some lock,
thus upc_lock detects the status change and tries to lock again, repeating the
above cycle.)

36

Local Processor Remote Processor

Thread O Thread 1
UPC Thread : Communication Thread UPC Thread : Communication Thread
send_struct Cl)/vsend_struct
EWhiIe keep_polling true lock ‘ i
' Lock send_struct Lock send_struct ‘
1if locked req = Lock
1 Check request unlock send_struct

Wait until reply receive
if success return

elsewalt until change |
lock status i

Lock:

to thread O
nlock send_struct

3 else check incoming requests
' Lock recv_struct

Lock: — ﬂ check incomihg requests
if lock is not locked Lock recv_struct
/

lock and return success 1 !_ock:
elsereturn failure | if success return success
unlock recv_struct elsereturn falure

unlock recv struct

Figure 22: Lock operation
e Step 5: upc_lock returns error if the lock is not initialized.

upc_unlock
upc_unlock is used to unlock a lock allocated by an UPC lock allocation routine
(Figure 23).

e Step 1: Thread 1 calls upc_unlock.
e Step 2: MuPC RTS on thread 1 posts an unlock request to thread 0.

e Step 3: MuPC RTS on thread 0 receives the unlock request and checks if the
requesting thread owns the lock. If the thread does not own the lock, then an
error is returned.

e Step 4: If the requesting thread owns the lock then MuPC RTS on thread 0
unlocks the lock using the Pthread unlock function and tells thread 1 about
successful unlocking.

e Step 5: MuPC RTS on thread 1 reports status to the upc_unlock function.

37

Local Processor Remote Processor

Thread O Thread 1
UPC Thread 1 Communication Thread UPC Thread 1 Communication Thread
send struct @ send,_struct

3 While keep_polling true unlock ‘ While ki olling true

' Lock send_struct Lock send_struct ! Lock send_§ruct

1if locked req = Unlock . if locked

 Check request unlock send_struct 1 Check requ @

i Wait until unlocked

broadcast req = unlocked
Unlock: unlocked | Unlock:

@ Send Unlock request
| to thread O

unlock send_struct

! else check incoming requests
1 Lock recv_struct

Unlock: — W check incoming requests
if lock owned by can} ! Lock recv_struct
unlock and return | Unlock:

else return error ‘ unlock recv_struct
unlock recv struct

Figure 23: Lock unlock operation

e Step 6: The upc_unlock function then posts a lock_unlocked message to all
threads so that all threads waiting to lock some lock can retry to lock.

e Step 7: upc_unlock returns.

upc_lock_attempt

upc_lock_attempt is the non-blocking version of upc_lock function (Figure 24).

e Step 1: Thread 1 calls upc_lock_attempt.

e Step 2: MuPC RTS on thread 1 posts a try_lock request to thread 0.

Step 3: If the lock is free, MuPC RTS on thread 0 locks the lock using the
Pthread lock function and returns success to thread 1. If the lock is already
locked then thread O returns failure to thread 1.

Step 4: upc_lock_attempt returns.

Step 5: upc_lock_attempt would return in error if the lock is not initialized.

38

Local Processor Remote Processor

Thread O Thread 1
UPC Thread 3 Communication Thread UPC Thread 3 Communication Thread
send_struct CD/wd_struct
EWhiIekeepJJoIIing true lock While ki Iling true
rLock send_struct Lock send_struct i Lock send_truct
1if locked req = Lock_Attempt | if locked
1 Check request unlock send_struct ~ : Check requ

Wait until reply ri
if successreturn
elsereturn failure

Lock:

Send Lock_Attempt request
to thread O

nlock send_struct

Lock_Attempt:

else check incoming requests
Lock recv_struct

Lock_Attempt:
if lock is not locked Lock recv_struct
lock and return success Lock_Attempt:
else return failure I if success return success

unlock recv_struct elsereturn failure
- unlock recv struct

Figure 24: Lock attempt operation

4.5 Termination

The Compaq UPC run time system interface declares
int _UPCRTS_fini(void) as the termination function. This function does the job of
memory deallocation and MPI finalization.

4.6 MuPC Restrictions
4.6.1 Strict and Relaxed

MuPC currently does not support the relaxed consistency model. All operations in
MuPC are strict. All operations in MuPC are blocking by design. This means that
any reference to remote memory is completed before next one starts, thus making all
references strict. Its important to note that this design is in conformance to the UPC
standard.

39

4.6.2 upc_global_exit

MuPC currently does not support the upc_global exit library function. It is a multi
exit function. The calling thread causes all threads to exit, which would start their
final barrier processing. The reason MuPC does not support this function is because
this function is not part of the UPC standard. Also it is not a significant language
feature.

4.6.3 Final Barrier Processing

MuPC does not support final barrier processing. A final barrier matches all other
barriers and blocks until all other threads reach their final barrier. Lack of support
for final barrier processing is due to the absence of final barrier processing in the UPC
standard.

40

5 Summary

5.1 Current state of MuPC

UPC offers itself as a simple yet powerful parallel programming language. The success
of UPC depends on its availability across a wide variety of platforms. Compaq’s run
time system interface is designed with the goal of portability. MuPC adopts the same
goal and has based its design and implementation around publicly available libraries
for MPI and Pthreads. We have successfully implemented MuPC conforming to
Compagq’s run time system interface. The system has been tested successfully on the
Compagq Alpha platform.

5.2 MuPC Testing

In this section we briefly describe the testing effort done for MuPC. MuPC testing
was carried out as an independent project by a Michigan Tech graduate student Kian
Giap Lee. MuPC testing was carried out in three phases.

e Unit testing: This involves testing individual MuPC functions.

e Functional testing: This involves testing to see if MuPC implements all the
UPC constructs correctly. This was done by testing MuPC with the George
Washington University test suite.

e Integration testing: This involves stress and volume testing MuPC. Volume
testing implies, finding out the upper limit on datasets and number of threads
MuPC can support.

5.3 MuPC Porting

One of the design goals of MuPC was to port it across a variety of platforms. As
mentioned previously MuPC has been successfully implemented and tested on Alpha
platforms. Currently we are testing MuPC on Sun and Beowulf clusters.

41

5.4 Release Information

MuPC is developed as an open source project. MuPC’s source code and design
documentation are available at www.upc.mtu.edu

42

References

1]

2]

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI-The Complete Reference. The MIT Press, 1999.

William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene
Brooks, and Karen Warren. Introduction to UPC and Language Reference. CCS-
TR~99-157, May 13 1999.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to parallel computing:Deisgn and analysis of algorithms. Benjamin/Cummings
Publishing House, Inc., Redwood city, California, November 1993.

Vincent W. Freeh. A comparision of Implict and Explicit parallel programming.
Journal of Parallel and Distributed Computing, (34(1):50-65), April 1996.

Mark P. Jones and Paul Hudak. Implicit and explicit parallel programming in
Haskell. Technical Report YALEU/DCS/RR-982, Department of Computer Sci-
ence, Yale University, 1993.

William W. Carlson and Jesse M. Draper. Distributed Data Access in AC. In Fifth
ACM Sigplan Symposium on Principles and Practices of Parallel Programming,
pages 39-47, 1995.

Guy L. Steele Jr. and J. Rose. C*: An Extended C Language for Data Parallel
Programming. In Proceedings of the Second International Conference on Super-
computing, volume 2, pages 2-16, May 1987.

ANSI-Programming languages-C. ISO/SEC 9899, May 2000.

David Culler, Andrea Dusseau, Seth Copen Goldstien, Arvind Krishnamurthy,
Steven Lumetta, Thirsten von Eicken, and Katherine Yelick. Parallel program-
ming in Split-C. In Proceedings of Supercomputing 93, pages 262-273, November
15-19 1993.

43

