
Computer Science Technical Report

Formalizing Ladder Logic Programs and

Timing Charts for Fault Impact Analysis

and Verification of Fault Tolerance
Ali Ebnenasir

Michigan Technological University
Computer Science Technical Report

CS-TR-23-01
January 2023

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Formalizing Ladder Logic Programs and Timing Charts for Fault

Impact Analysis and Verification of Fault Tolerance

Ali Ebnenasir

January 2023

Abstract

This paper presents a novel approach for modeling, automated analysis and verification of fault
tolerance in Ladder Logic (LL) programs for Programmable Logic Controllers (PLCs). The goal is to
provide a framework for control engineers where they can verify LL programs in the absence and in the
presence of faults in a simple-to-learn and effective formal language. To enable formal modeling of faults
and fault tolerance requirements, we first devise a method for transforming LL programs and timing
charts to formal specifications respectively in Promela and Linear Temporal Logic (LTL). Using such a
formalization, engineers can generate Promela code from LL programs and can translate the requirements
of timing charts to LTL expressions. We characterize two types of requirements for LL programs, namely
intracycle and intercycle requirements. As a result, engineers can simulate LL programs in the SPIN
model checker and verify them for intra-intercycle requirements. We also present a method for modeling
faults and analyzing the impact of faults inside each scan cycle and across several scan cycles. We
then characterize the novel notions of intracycle and intercycle fault tolerance for LL programs. We
demonstrate the proposed method in the context of an industrial Carriage Line system.

1

1 Introduction

Programmable Logic Controller (PLC) programs play a crucial role in monitoring and controlling the critical
infrastructure of our society, and it is of paramount importance to develop systematic methods for the
verification and synthesis of highly dependable PLC programs. The IEC 61131-3 standard [3] defines several
languages for PLC programming, but the most common languages include the Ladder Logic (LL) [8] and
Structured Text (ST). PLC programs have a periodic nature where in each period, a.k.a. scan cycle, they
read from input signals, execute program logic, and actuate output signals. The duration of the scan cycle
is set based on program length and logic, and it is often in the scale of tens of milliseconds (much smaller
than the fastest reaction time of the physical plant under control). In addition to their periodic nature, PLC
programs have timers and counters that span over several scan cycles, which makes it difficult to correctly
formalize their behavior and design fault tolerance functionalities. Moreover, mainstream engineers often
use timing charts to specify the requirements of PLC programs in terms of their input/output signals.
While there are many approaches for formal specification and verification of PLC programs, little work has
been performed on formalizing timing charts, modeling faults and designing fault-tolerant PLC programs.
This paper presents an approach for (i) formalizing LL programs in a small and simple subset of Promela
[1, 15]; (ii) characterizing timing chart requirements for cyclic PLC programs; (iii) specifying timing chart
requirements in Linear Temporal Logic (LTL), and (iv) modeling faults and fault tolerance concerns for LL
programs.

There are numerous methods that generate formal specification from PLC programs (either LL or ST
programs), most of which (i) use formal languages (e.g., PetriNet) that are hard to learn for mainstream
engineers; (ii) provide little to enable the formal specification of timing charts (which capture the require-
ments of PLC programs), and (iii) fail to model faults and fault tolerance concerns. For example, there are
numerous methods [14, 21, 25] for generating PetriNet specifications from PLC programs. Brinksma and
Mader [7] evaluate the verification and optimization of real-time control schedules for small size PLC pro-
grams in the SPIN and UPPAAL model checkers. Ljungkrantz et al. [19] present a method for formalization
of LL programs in terms of reusable components augmented with pre-postconditions (i.e., contracts), and
verified by the SMV model checker [23]. Kuzmin et al. [18] put forward a method for model checking of
PLC programs in SMV. Darvas et al. [10] present a model checking-based method for conformance checking
of PLC programs with respect to their specifications and alternative implementations of the same specifica-
tions. Darvas et al. [9, 20] present PLCVerif along with a set of natural language requirement patterns for
model checking of ST programs. Mao et al. [22] propose a refinement-based approach for formalizing the
requirements of PLC programs in Event-B, verifying their safety and generating ST code. Mesli-Kesraoui et
al. [24] generate timed automata from LL programs and then verify them for CTL properties in the UPPAAL
model checker. Belo Lourenço et al. [6] translate LL programs and timing charts into WhyML code and use
the Why3 environment to verify LL programs with respect to their timing charts using theorem proving.
Garcia et al. [13] present a formalization framework for the translation of hybrid programs (specified in
differential dynamic logic) to ST code and vice versa. While existing methods present a variety of formal
semantics for PLC programs, they suffer from several problems, namely (i) translating PLC programs to
formal languages that are difficult to learn for mainstream engineers; (ii) lacking a systematic method for
formalization of intra-cycle and inter-cycle properties of timing charts, and (iii) focusing on verification of
PLC programs in the absence of faults and fault tolerance aspects.

We present a formal semantics for LL programs in a small and simple subset of the Promela [1, 15]
modeling language, and devise a method for formalizing intra-scan cycle and inter-scan cycle requirements
of timing charts in LTL. The proposed formalization of LL programs and formal specification of timing charts
provides a framework that readily enables the model checking of LL programs in SPIN, and sets the stage for
automated repair of PLC programs as well as algorithmic incorporation of fault tolerance functionalities in
PLC programs. Our approach can easily be extended to other PLC languages (e.g., ST) under the standard
IEC 61131-3 [3]. Based on the proposed formal semantics, we also present transformation rules that enable
automatic generation of Promela code from LL programs. To enable model checking in SPIN, one needs
to specify program properties in LTL. We identify two types of properties for PLC programs due to their
periodic nature, namely intracycle and intercycle (i.e., global) properties. . We show that LTL suffices for

2

capturing intracycle and intercycle properties specified in timing charts. Specifically, we define a precedence
relation between the signal edges in a cycle and across multiple cycles. We then use Dwyer’s specification
patterns [11] to formally specify them in LTL. We also present a method for fault modeling and the design of
fault tolerance properties in ladder logic and its Promela specifications. We demonstrate the contributions
of this paper in the context of a carriage line system, where objects are moved by a carriage to a conveyor
belt based on specific ordering and timing constraints.
Organization. Section 2 explains basics concepts of LL, timing charts and Promela. Section 3 defines a
Promela semantics for LL programs. Then, Section 4 presents a method for characterizing and formalizing
timing charts requirements. Section 5 studies the issue of modeling the environment of PLC programs.
Subsequently, Section 6 presents a novel method for modeling faults as well as characterizing intracycle and
intercycle fault tolerance. Finally, Section 7 makes concluding remarks and discusses future work.

2 Preliminaries

This section represents the basic concepts of the Ladder Logic programs (taken from [2]) in Subsection 2.1,
and the timing charts in Subsection 2.2. Subsection 2.3 presents the syntax and semantics of the Promela
modeling language [15].

2.1 Ladder Logic (LL) Programs

A PLC is composed of a microprocessor, relays, timers and counters. In an abstract sense, a PLC is a
control ladder that comprises of (i) an input ladder which receives input signals from physical environment
and provides them to the control logic; (ii) a control logic that processes input signals and determines
the output values, and (iii) the output ladder which provides the generated output signals to the physical
environment. The control logic is dictated by a PLC program specified in one of the programming languages
under the IEC 61131-3 standard [3].
Carriage Line (CL) example. The Carriage Line (CL) system of Figure 1 (taken from [2]) comprises
of a carriage, a conveyor belt and an arm that pushes goods to the conveyor belt. The CL system has a
container from where goods are moved to the carriage. Then, the carriage moves forward until it reaches in
front of the arm. The arm then pushes the object and then the carriage moves back and subsequently the
arm pushes back too. Figure 1 illustrates the components and input-output signals of the CL system. The
input signals start with an ‘X’ and the output signals start with ‘Y’.

In LL, a program (see Figure 2) includes a set of rungs,

Figure 1: Carriage Line system taken from
[2].

where each rung may include a set of contacts, timers, coun-
ters and output devices from left to right. An execution of
a ladder program starts from some initial input values (i.e.,
initial state) and goes through a sequence of time periods,
called scan cycles, where in each scan cycle rungs are checked
for execution in a top-down sequential fashion. Each rung
conducts the input signals through its logic circuit in a left-
to-right manner. The net result is that, in each scan cycle,
the program scans the input ladder, executes the control logic
of the rungs (top-down), and generates some outputs. At the
start of a cycle, input signals are latched and any input sig-
nal change during the cycle will not take effect until the next
cycle. Likewise, the generated output will actuate output
devices at the end of each cycle.

Figure 2 illustrates the LL program of the CL system. The first rung captures the logic that if the start
button (X0) is pressed, and the completion flag M2 is false, then the operation indicator (Y 70) must turn
on and remain on as long as work is not completed yet; i.e., M2 is false. After Y 70 output is activated,
if the carriage is at the backward limit (X3) and the container has some work (X1), then a pulse M1 is

3

Figure 2: The ladder program for the Carriage Line system taken from [2].

generated, which remains on for one scan cycle. The pulse M1 activates the SET instruction, which sets
Y 71 to 1; i.e., the carriage starts moving forward. When the carriage reaches the forward limit (X2), the
arm starts pushing (Y 73) and Y 71 is reset. The output Y 73 triggers the timer T0 and Y 73 remains on for
30 scan cycles. After that, the contact T0 closes, which in turn activates the push back signal Y 74 of the
arm. The actual push back starts when the arm is completely open (X4). When Y 74 and X4 are on, the
carriage move-back signal (Y 72) turns on and Y 74 is reset. When the carriage reaches the backward limit
(X3), Y 72 is reset and the completion flag M2 is set.

2.2 Timing Charts Requirements

The requirements of PLC programs are often specified as timing charts, especially in industry. As such, any
method that is aimed at practical use by engineers must provide the means for systematic formalization of
timing charts. A timing chart specifies how output signals are (de)activated depending on the changes in
input signals, called signal edges. For example, in Figure 3 the rising edge of X0 represents that the start
button is pressed and this change should result in a rising edge of Y 70; i.e., indicator turns on.

One can say that the rising edge of X0 precedes the rising

Figure 3: The timing chart of the Car-
riage Line system taken from [2].

edge of Y 70. Such precedence relations are required either in a
scan cycle, called intracycle requirements/properties, or across
several scan cycles, called intercycle requirements. For example,
the precedence of X0 with respect to Y 70 is intracycle, whereas
the precedence of the rising edge of X1 and the rising edge of X2
is intercycle. Intuitively, once the work reaches the forward limit,
i.e., rising edge of X2, that work has already been offloaded on
the carriage from the container; i.e., rising edge of X1. Another
class of requirements specified in timing charts includes fixed-
duration sequences of scan cycles [6], which capture the delay
periods of timers. For example, in the CL system, once a piece
of work reaches the forward limit, it takes 3 seconds for the arm to push it to the conveyor belt. This period
of 3 seconds contains 30 scan cycles for a scan cycle of 100msec.

A timing chart captures the requirements of an LL program in terms of a sequence of events and observable
states. An events is either a change in some input signal or a time out generated by some timer. Events
may cause a change in some output signals [6]. To model the rising and falling edges of signals, we consider
a signal/variable Vo for every signal V , where Vo stores the value of V in the previous scan cycle. This
way, we have a Xo (respectively, Yo) signal for every input signal X (respectively, output signal Y). An

4

observable state is a snapshot of the values of all input and output signals. The occurrence of each scan
cycle may change the state of the program as it latches new inputs and sends out new outputs in one atomic
step. Since the implementation of an LL program may contain internal devices (e.g., relays) or memory
bits, the internal state of a program is actually a snapshot of all input-output signals and internal variables.
For example, the program of Figure 2 includes two relays M1 and M2 as well as a timer, which are hidden
from the viewpoint of an external observer. The timing chart specification of a program is in fact a sequence
s0, e0, s1, e1, · · · of alternating events ei and observable states si, for i ≥ 0. As such, there is a one-to-one
correspondence between each scan cycle and an observable state.

2.3 Promela and Linear Temporal Logic (LTL)

Process Meta Language (Promela) [1] is the modeling language of SPIN [15], which is a state-of-the-art model
checker. The syntax of Promela is a variant of the C programming language. A Promela model comprises
(1) a set of variables, (2) a set of (concurrent) processes modeled by a predefined type, called proctype, and
(3) a set of asynchronous and synchronous channels for inter-process communications. The semantics of
Promela is based on an operational model that defines how the actions of processes are interleaved. An
action (a.k.a guarded command) is of the form grd→ stmt, where the guard grd is a Boolean expression in
terms of program variables and the statement stmt updates program variables. When the guard grd holds
(i.e., the action is enabled), the statement stmt can be executed, which accordingly updates some variables.
Actions can be atomic or non-atomic, where an atomic action (denoted by atomic {}) ensures that the guard
evaluation and the execution of the statement is uninterrupted.

The requirements of a program are specified in terms of LTL expressions in the SPIN model checker [15].
The basic temporal operators include ‘always’, ‘eventually’, ‘next’ and ‘until’ respectively denoted by □,♢, X
and U . Each temporal operator is defined over a sequence of states τ = s0, s1, · · · and an LTL property Φ
holds for τ if and only if (iff) Φ holds at s0. For propositions ϕ and ψ (defined in terms of program variables)
(i) □ϕ means that ϕ holds in all states of τ ; (ii) ♢ϕ stipulates that ϕ holds in some state sj of τ , for some
j ≥ 0; (iii) Xϕ states that ϕ holds in s1, and (iv) ψUϕ holds at s0 iff there is some state sj where ϕ holds
and ψ holds in all states from s0 up to sj , for j ≥ 0.

3 Defining Promela Semantics of LL Programs

This section presents a method for formalizing LL programs in Promela. We first devise a Promela model
that formalizes the cyclic/periodic nature of PLC programs (Subsection 3.1). Then, we present a method
for transforming basic constructs of LL programs to Promela 3.2.
Challenges. Since our overarching goal is to devise a framework for control engineer where they can verify
and synthesize fault tolerance in PLC programs, we consider a set of criteria for the intermediate formal
semantics of LL programs.

• Amenable to automated repair/redesign: The incorporation of fault tolerance concern into an existing
program is a special case of program repair where fault tolerance aspects must be captured while
preserving functional concerns. As such, the formal semantics must be simple and have an efficient
decision procedures.

• Simplicity: To the extent possible, we would like the formal semantics to benefit from a small syntactic
footprint and a simple semantics that is easily understandable for control engineers.

• Expressiveness for fault modeling: The formal semantics of PLC programs should be sufficiently ex-
pressive for capturing different types of faults (e.g., soft errors, Byzantine attacks, crash faults, stuck-at
faults)

• Efficient decision procedures: The language containment and non-emptiness problems must be decid-
able, and ideally solvable efficiently. This will help develop efficient verification and synthesis algorithms
for LL programs.

5

• Extensibility: Since different vendors create their own off-shoots of PLC languages, the proposed formal
semantics must be easily extensible to support such extensions. Thus, the formal semantics must have
a core and extensions should easily be definable (preferably in terms of the linguistic constructs of the
core).

3.1 Formalizing Cyclic PLC Executions

This section presents a Promela model that formalizes the execution semantics of cyclic PLC programs.
Each PLC program may include several tasks with distinct priorities. In each scan cycle, the PLC code of
all tasks are executed concurrently from higher priority to lower. A lower priority task cannot preempt a
higher priority task. The code of each task may be an LL program (similar to Figure 2). If the conditions
for the execution of a rung are not met, then that rung is skipped. Listing 1 presents a general semantics
for the cyclic execution of PLC programs (regardless of the PLC language). For simplicity, Listing 1 has
only two tasks, but it can easily be generalized to more tasks. The ‘init’ process (Lines 19-36) models the
cyclic execution of PLC programs. Initially, we assume that tasks have just finished the previous cycle of
execution, captured by the array cycleSync initialized to one in Line 4. Thus, the tasks will be initially waiting
on Lines 8 and 14 until the ‘init’ process verifies that all tasks have finished the current cycle (Lines 25-29).
Lines 30 and 31 must be implemented depending on the environment behaviors. Line 33 atomically resets
the cycleSync array to indicate the start of a new scan cycle to all tasks.

Listing 1: The outline of a PLC program in Promela
1 #define Low 1
2 #define High 10
3 #define N 2 // N captures the number of ta sks in the PLC program
4 bool cyc leSync [N] = {1 ,1} ;
5 bool cntFlag ;
6
7 proctype TaskOne () priority Low {
8 Star t : cyc leSync [pid −1] == 0 ;
9 // The body of TaskOne comes here . . .

10 cyc leSync [pid −1] = 1 ;
11 End : goto Start ;
12 }
13 proctype TaskTwo () priority High {
14 Star t : cyc leSync [pid −1] == 0 ;
15 // The body of TaskOne comes here . . .
16 cyc leSync [pid −1] = 1 ;
17 End : goto Start ;
18 }
19 i n i t {
20 int i ; // loop counter
21 atomic{ run TaskOne () ; run TaskTwo () ; }
22 cntFlag = 1 ;
23 s ta r tCyc l e :
24 // Wait f o r every task to f i n i s h t h i s cy c l e .
25 L0 : atomic{ f o r (i : 0 . . N−1) { cntFlag = cycleSync [i] && cntFlag ; } }
26 i f
27 : : atomic{(cntFlag == 0) −> cntFlag = 1 ; goto L0 ;}
28 : : else skip ;
29 f i ;
30 // Update outputs (sent to the enviornment) .
31 // Update inputs . Models environment ’ s behavior in updating
32 // the input s i g n a l s .
33 atomic{ f o r (i : 0 . . N−1) { cyc leSync [i] = 0 ; } }
34 // Star t a new cyc l e . Let the tasks move on .
35 endCycle : goto s ta r tCyc l e ;
36 } // end of in i t

3.2 From LL to Promela

This section illustrates how we can define a formal semantics in Promela for linguistic constructs of LL. The
resulting Promela code of each task will be inserted in Lines 9 and 15 of Listing 1.
Coil output (OUT instruction). The first rung of the LL program in Figure 2 is an example of how an
output coil (i.e., Y 70) is energized/de-energized based on some input conditions (i.e., (X0 ∨ Y 70) ∧ ¬M2).
For simplicity, consider a simple rung that connects the input signal X0 to the output coil Y 70. Figure 4
illustrates the timing chart of the OUT instruction. Notice that the rising edge of X0 precedes the rising
edge of Y 70 in the same cycle. Once X0, which is a Normally Open (NO) contact, closes (i.e., X0 holds)
the output coil Y 70 energizes, and remains energized as long as X0 is closed. Once X0 is open again, the
output coil Y 70 is de-energized too.

6

Listing 2 presents the Promela code that we specify for the OUT instruction. Note that, there is no need
to explicitly model the occurrence of edges because the new values of input signals are latched at the start
of each cycle. Thus, if there is a change in the value of an input signal it will be detected in the start of the
next cycle.
Pulse (PLS/PLF) instruction. Upon the rising/falling edge of an

Figure 4: The timing chart of OUT
(taken from [2]).

input signal, the pulse instruction creates a signal with the duration
of a single scan cycle. Figures 5 and 6 respectively represent the LL
construct and the timing chart of the PLS instruction upon the rising
edge of an input signal X0. The relay M5 is turned on when the rising
edge of X0 occurs, and it lasts for one scan cycle. Thus, M5 will pulse
for one cycle every time there is a rising edge of X0. Symmetrically,
M0 becomes 1 when there is a falling edge of X1 and it stays one for one scan cycle (see Figure 7). In the
case of PLF, the precedence relation holds between the falling edge of X1 and the rising edge of M0.

Listing 2: Promela code of the OUT instruction
atomic { i f

: : (X0 o == 0) && (X0 o == 1) −> Y70=1;
: : (X0 o == 1) && (X0 o == 0) −> Y70=0;

f i ; }

Listing 3 models the PLS instruction in Promela. In addition to that, we reset

Figure 5: The PLS
and PLF instruc-
tions (taken from
[2]).

M5 to zero at the end of the current cycle. That is, at the end of the proctype that
contains the PLS instruction, we include M5 = 0 before going back to the start of a
new cycle (e.g., before the ‘goto’ in Lines 11 and 17 of Listing 1). The Promela code
of the PLF instruction is similar except that M5 is set to 1 when (X0 o == 1) && ((X0

== 0)) holds.
SET/RST instructions. The SET instruction is to some extent

Figure 6: The timing chart of the pulse
instruction on rising edge (PLS) (taken
from [2]).

similar to PLS except that when an output signal is set, it will
remain on until it is reset back to 0. That is, its duration may
last beyond a single scan cycle. Figure 8 illustrates the rungs
corresponding to SET and RST commands. To understand the
semantics of these instructions, we study their timing charts in
Figure 9. Observe that, upon the rising edge of X0, the output
Y 70 turns on and stays on until X1 has a rising edge when the
RST instruction is executed. We model SET in Listing 4. Note that, while this instruction is similar to PLS
in terms of setting a signal/flag to one, it differs from PLS in that there is no need to reset that signal at the
end of the cycle; i.e., the output signal remains on. The Promela code of RST is similar except that Y 70 is
set to zero on the falling edge of X1.
Timers. Timers form an important class of devices used in

Figure 7: The timing chart of the pulse
instruction on falling edge (PLF) [2].

PLCs. There are different types of timers in PLCs but since
measured timers represent the general behavior of a timer, we
present only their formalization. Figure 10 illustrates the use of
a timer with both Normally Open (NO) and Normally Closed
(NC) contacts. To understand how the timer works, we use its
timing chart in Figure 11. Upon the rising edge of X5, the coil
of the timer T0 is energized and the timer is set to 30 as the number of scan cycles that the timer should
delay until its NO contact T0 closes and turns the output Y 70 on. In other words, after 30 scan cycles the
timer times out. Moreover, when the timer coil is energized, it remains energized until a falling edge of X5
is observed, which in turn puts the contact T0 back to its NO state. The reverse occurs if the timer has a
NC contact that turns the output signal Y 71 off after 30 scan cycles (see Figure 11).

Listing 3: Promela code of the PLS instruction
atomic { i f

: : (X0 o == 0) && (X0 == 1) −> M5=1;
: : else skip ;

7

f i ; }

Listing 5 specifies the behavior of the timer in Promela. We first define the

Figure 8: The SET and
RST instructions [2].

data type Timer that abstracts the timer, its contact and a Boolean flag indicating
whether the timer has started working.

The first atomic block of statements contains an ‘if fi’ statement whose first
action sets the value of the timer to 30 upon observing the rising edge of X5. This
action also makes sure that the NO contact remains open, and sets tmr.setFlag in
order to indicate that the timer has started counting the scan cycles. The second
action of ‘if fi’ statement just ensures that the NO contact remains open while the timer is counting down.

At the end of each scan cycle, tmr.value is decremented until it

Figure 9: The timing chart of SET
and RST instructions [2].

reaches zero. The second atomic block in Listing 5 implements this
idea. Once the tmr.value becomes zero, the third action in the first
atomic block resets tmr.setFlag, and closes the timer contact T0; i.e.,
sets tmr.contact. The timer coil remains energized until a falling edge
of X5 is observed (the last action in the ‘if fi’ statement of the first
atomic block), at which time the contact T0 becomes open (i.e., reset)
and turns Y 70 off. Likewise, the NC contact of T0 opens and turns
Y 71 on. The complete Promela code of the CL system is available in
the Appendix.

Listing 4: Promela code of the SET instruction
atomic { i f

: : (X0 o == 0) && (X0 == 1) −> Y70=1;
: : else skip ;

f i ; }

4 Formalizing Timing Chart Properties

This section presents the formalization of precedence relations between signal edges in timing charts. Some
of these precedence relations are required to occur in the same scan cycle, and some of them should occur
globally over a sequence of scan cycles.
Intracycle Requirements. Inside a scan cycle, timing charts

Figure 10: The rungs of a timer [2].

include rising/falling edges of signals coming one after another in
a top down fashion. The top-down direction is imposed by the way
rungs of a LL program are executed. Thus, we need to capture
such precedence relations in terms of LTL expressions and make
sure that they are required only in the span of a single cycle.
More precisely, between the start and end of each scan cycle, the
occurrence of one rising/falling edge leads to the rising/falling edge
of another signal. To verify the precedence of signal edges (e.g., in
SPIN), one has to specify them as LTL expressions. To this end,
we find Dwyer’s specification patterns [11] useful in showing that such properties can actually be specified
in LTL, and there is no need for new variants of temporal logic (such as [12]). For example, the CL system
requires that “with pressing the push button, the operation indicator will eventually turn on in the same
cycle”.

In the timing chart of Figure 3, this requirement is stated as the rising edge of the input signal X0
must precede the rising edge of the output signal Y 70 in the same scan cycle. This requirement can be
specified as the ‘precedes’ specification pattern “between Q and R we have P leadsto S”, where Q and R
are respectively substituted by the start and end of the cycle, and P and S respectively capture the rising
edge of X0 and the rising edge of Y 70. Formally, the precedes pattern is specified as □((Q∧¬R∧♢R) =⇒
(P =⇒ (¬R U(S ∧ ¬R)))U R). We then use the ‘precedes’ specification pattern and specify the LTL

8

property X0Y70Edges in Lines 8 and 9 of Listing 6. We omit the specification of other intracycle requirements
of Figure 3 because their specification is similar to that of X0Y70Edges. An example of such requirements
includes the following: The falling edge of Y 73 precedes the rising edge of Y 74 (see Figure 3); i.e., after the
arm pushes an object forward for 3 seconds, it will start pushing backward in the same cycle.
Intercycle Requirements. Our specification of the timing chart

Figure 11: The timing chart of a timer
[2].

requirements that involve multiple cycles, i.e., intercycle or global
requirements, is inspired by leadsto properties, where P ‘leadsto’
Q is specified as □(P =⇒ ♢Q). For example, the CL system
requires that “when there is a work present (rising edge of X1),
it will eventually reach the forward limit (rising edge of X2) in
subsequent cycles. Line 11 of Listing 6 formalizes this requirement.
The X1LeadsToX2 property is slightly different from regular leadsto
because the rising edge of X2 is expected to appear in subsequent
cycles and not in the current cycle. That is why we have the ‘Next’
temporal operator (denoted by ‘X’) before ‘♢riseEdgeX2’; i.e., in the
next scan cycle, ♢riseEdgeX2 is satisfied.

Listing 5: Promela code of timer
typedef Timer {

int value ;
bool se tF lag ;
bool contact } ; // Def ine the Timer type .

Timer tmr ; // Declare a timer .
atomic { i f
: : ((X5 o == 0) && (X5 == 1)) && (! tmr . s e tF lag) −> tmr . value = 30 ;

tmr . contact = 0 ;
tmr . s e tF lag = 1 ;

: : ((X5 o == 1) && (X5 == 1)) && (tmr . se tF lag) && (tmr . value != 0)−> tmr . contact = 0 ;
: : ((X5 o == 1) && (X5 == 1)) && (tmr . se tF lag) && (tmr . value == 0)−> tmr . contact = 1 ;

tmr . s e tF lag = 0 ;
: : ((X5 o == 1) && (X5 == 0))&& (! tmr . se tF lag) −> tmr . contact = 0 ;
: : else skip ;

f i ;

atomic { // This ac t i on must be executed at the end of the scan cyc l e .
i f : : (tmr . value > 0) −> tmr . value −−;

: : else skip ;
f i ; // Decrease t imer .

}

Listing 6: Specification of timing chart properties in Promela.
1 #define s t a r t (i n i t@s ta r tCyc l e)
2 #define end (init@endCycle)
3 #define riseEdgeX0 ((X0 o == 0) && (X0 == 1))
4 #define riseEdgeY70 ((Y70 o == 0) && (Y70 == 1))
5 #define riseEdgeX1 ((X1 o == 0) && (X1 == 1))
6 #define riseEdgeX2 ((X2 o == 0) && (X2 == 1))
7
8 l t l X0Y70Edges { [] ((s t a r t && ! end && <>end) −>
9 (riseEdgeX0 −> (! end U (riseEdgeY70 && ! end))) U end) }

10
11 l t l X1LeadsToX2 { [] (riseEdgeX1 −> (X (<> riseEdgeX2))) }

5 Environment Model

This section presents a method for modeling the behavior of the environment of a PLC program. Specifically,
we follow the timing chart in order to create such a model whose outputs are the input signals of the program.
The inputs of the environment model includes the program’s outputs and the value of a variable that counts
the number of scan cycles. Thus, the process of creating a model for the environment has two inputs: a
timing chart and a behavioral model that shows how the environment changes the input signals based on
the output signals of a program. In the absence of a behavioral model, one can use just the timing chart
in order to create a Promela model of the environment. Such a model changes the values of input signals
depending on the current scan cycle only. For example, Listing 7 presents how we model the environment
of the CL program based on the timing chart of Figure 3.

9

Listing 7: Promela model of the environment.
atomic{ i f

: : (scanCounter >= 1) && (scanCounter <2) −> X0 = 1 ;
: : else X0 = 0 ;

f i ; }
atomic{ i f

: : (scanCounter >= 3) && (scanCounter <7) −> X1 = 1 ;
: : else X1 = 0 ;

f i ; }
atomic{ i f

: : (scanCounter >= 5) && (scanCounter <13) −> X2 = 1 ;
: : else X2 = 0 ;

f i ; }
atomic{ i f

: : (scanCounter >= 0) && (scanCounter <6) −> X3 = 1 ;
: : (scanCounter >= 6) && (scanCounter <20) −> X3 = 0 ;
: : (scanCounter >= 20) && (scanCounter<=maxIter) −> X3 = 1 ;
: : else skip ;

f i ; }
atomic{ i f

: : (scanCounter >= 0) && (scanCounter <8) −> X4 = 1 ;
: : (scanCounter >= 8) && (scanCounter <11) −> X4 = 0 ;
: : (scanCounter >= 11) && (scanCounter<=maxIter) −> X4 = 1 ;
: : else skip ;

f i ; }

The code of Listing 7 is inserted in Line 31 of Listing 1. The ‘scanCounter’ is a global counter variable
in the Promela model that starts from 0 and counts up to a maximum number of iterations, maxIter. Notice
that, the initial state of the program is the valuation of all input-output signals right before the first vertical
dashed line in Figure 3. As such, in the initial state, we have X0 = 0, X1 = 0, X2 = 0, X3 = 1, X4 = 1,
and all output signals are zero. The first scan cycle starts with pressing the start button of the CL system,
which turns X0 on for exactly on cycle. All the other inputs should remain unchanged. The first atomic
action in Listing 7 captures this change. The remaining actions model how the other input signals change in
the timing chart of Figure 3. Notice that, each action actually implements the time intervals when an input
should be on/off. Moreover, the overlapping intervals are modeled by using appropriate range values in the
guard conditions of the actions. For instance, there is an overlap between the interval where X1 is on and
where X2 is on, however, X2 must turn on after X1 and X1 must turn off before X2. We have selected the
current range values for a maxIter = 22 in order to expedite the simulation/verification of the Promela code of
the CL program in SPIN. Nonetheless, as long as such ‘happens-before’ relations between the rising/falling
edges of signals are preserved, the concrete lower and upper bounds of the ranges of the guards could be
anything (given a specific maxIter). To determine whether the LL program of Figure 2 meets the requirements
of the timing chart of Figure 3, we verify the generated Promela model against the precedence properties
specified in Listing 6 using the environment model of Listing 7. The results of verification tell us whether
with such changes in the input signals we get the correct timings in the output signals (as required by Figure
3). Our verification attempt confirms this. The Appendix presents the complete Promela model of CL and
all the precedence properties that we verified.

6 Faults and Fault Tolerance

This section presents a method for modeling faults in Promela models of PLC programs in the context of
intracycle and intercycle behaviors. We also define levels of fault tolerance with respect to intracycle and
intercycle specifications. Avizienis et al. [5] classify faults based on the conditions that cause them. They
define soft (a.k.a. elusive) faults (e.g., residual development faults) that cannot be easily reproduced due to
complex conditions (i.e., combination of internal state and external conditions) under which they occur. By
contrary, hard faults have activation conditions that are reproducible. We are mostly interested in the impact
of faults on PLC programs instead of their reproducibility. As such, we consider transient faults that occur
in a bounded amount of time and perturb the state of PLC programs without causing permanent damage.
Such faults could occur due to a variety of reasons such as EMI and RF interference, hardware aging, etc.
On the other hand, permanent faults persist over time and cause permanent failures such as failure of an
input sensor, processor crash, etc. Next, we analyze the impact of transient and permanent faults in the
context of cyclic PLC programs.
Intracycle and intercycle impact of faults. We call the faults that impact the input PLC signals input
faults. That is, the input signals may be faulty in a transient or permanent way. In fact, we model input

10

faults as part of environment’s behavior. In terms of timing, input faults may be latched in the current or
next cycle; i.e., input faults’ impact may be delay for one scan cycle. Moreover, from the modeling point
of view, input faults are synchronized with the scan cycle because any input change would be visible to the
program at the start of the cycle. On the other hand, transient faults could impact the internal state of a
PLC program at any moment regardless of scan cycle. That is, the impact of transient faults is asynchronous
and does not follow the scan cycle timing. Thus, the transient fault model must be executed asynchronously
with the PLC program tasks in Listing 1, whereas the input faults model is executed synchronously at the
start of each scan cycle where inputs get updated. For example, if the start button in the CL system get
stuck, then the input signal X0 becomes one forever; i.e., X0 = 1 holds always. This is a kind of faults,
known as stuck-at that frequently occur in industrial environments.

We model stuck-at faults as illustrated in Listing 8, and insert its code in Line 31 of Figure 1, right
after the Promela code that models the environment in Listing 7. The stuckatFlag is a Boolean flag that
captures whether faults have occurred. The first ‘if fi’ statement has two actions none of which has a guard
condition; i.e., SPIN non-deterministically picks one of them for execution, representing the non-deterministic
occurrence of faults. Once faults occur and the start button gets stuck, it remains in that state until human
operators repair it. Thus, from the point of view of program execution, the value of X0 is stuck at 1 forever.
Notice that, since we insert the code in Listing 8 after the environment model, even if the value of X0 is
reset by the environment model, the fault model sets it back to 1 before it is fed to the program.

Listing 8: Modeling Stuck-At faults.
bool s tuckatFlag = 0 ;
atomic{ i f

: : X0 = 1 ; stuckatFlag = 1 ;
: : skip ;
f i ; }

atomic { i f
: : s tuckatFlag == 1 −> X0 = 1 ;
: : else skip ;
f i ; }

We model transient faults as an independent active proctype that is run in parallel with program’s model.
For instance, transient faults may arbitrarily change the value of memory bits M1 and M2 in the CL system
(see Figure 2) at any moment. Listing 9 presents how we model the impact of transient faults.

Listing 9: Modeling transient faults.
active proctype t r an s i en tFau l t s (){

i f
: : M1 = 0 ;
: : M1 = 1 ;

f i ;
i f

: : M2 = 0 ;
: : M2 = 1 ;

f i ;
}

Levels of fault tolerance. Fault tolerance defines the degree up to which a program meets its safety and
liveness specifications when faults occur [4]. Intuitively, when there is no faults, a fault-tolerant program
satisfies its safety and liveness specifications. However, when faults occur, a failsafe fault-tolerant program
satisfies its safety specifications only. Thus, a failsafe fault-tolerant program satisfies its safety specifications
at all times. A nonmasking fault-tolerant program ensures that when faults occur it will eventually recover
to states from where it meets its safety and liveness specifications. During such recovery, a nonmasking
program may violate its safety, though. A masking fault-tolerant program is both failsafe and nonmasking;
i.e., it satisfies its safety specifications always and ensures recovery to states from where both safety and
liveness are met.
Intracycle fault tolerance. We now define the notion of fault tolerance with respect to the requirements
of timing charts; i.e., precedence relations. As defined in Section 4, the precedence relations have a general
template as follows between the start and end of a scan cycle, an event P leadsto another event S, where P
and S denote the events of the rising/falling edge of some signals. Thus, the only way such an intracycle
precedence relation may be violated in a scan cycle is that its premise (i.e., event P) holds, but its consequent
(i.e., event S) does not. For example, in the LL program in Figure 2, a rising edge of X0 must be followed

11

by a rising edge of Y 70 in the same scan cycle, but if transient faults set M2 to one before Y 70 is turned
on by the first rung of the program, then the precedence property X0Y70Edges in Listing 6 is violated in the
same cycle (because the rising edge of Y 70 will never occur). Can we detect and correct such failures in the
same scan cycle; i.e., intracycle fault tolerance? Since in each scan cycle rungs of a program are executed
in a top-down fashion, any detection/correction must occur before program execution reaches the second
rung. Otherwise, we have lost the chance of recovery in the current scan cycle. Thus, any fault tolerance
mechanism must be included either in the first rung or right before the second rung. In this case, we need to
detect the rising edge of X0 immediately followed by a rising edge of M2. If that occurs, then we must reset
M2 to zero. More precisely, since M2 is a completion flag and must be set to one in the last rung of the
program of Figure 2, M2 must be zero before and after the execution of every rung of the program (except
the last one).

The dashed rungs in Figure 12 illustrate the fault toler-

Figure 12: The LL code added for tolerat-
ing transient faults that perturb M2.

ance functionality included for meeting the precedence prop-
erty X0Y70Edges (in Listing 6) in the presence of transient faults
that perturb M2. Notice that, the code added for fault toler-
ance is itself fault-tolerant for property X0Y70Edges. That is,
even if faults perturb M2 while the fault tolerance rungs are
executed, the rising edge of Y 70 will occur eventually following
the rising edge of X0. Listing 10 presents the corresponding
Promela code of the dashed rungs in Figure 12. If M2 is fur-
ther perturbed by transient faults after the code of Figure 12 is
executed, we must ensure that M2 is recovered back to zero until we get to the last rung. For this purpose,
M2 must be reset to zero in every subsequent rung. We have used SPIN to verify the correctness of
the resulting program, which is a masking fault-tolerant program for X0Y70Edges against faults that perturb
M2.

Listing 10: Tolerating transient faults that perturb M2.
atomic{ i f

: : (X0 | | Y70) && M2 −> M2 =0;
: : else skip ;

f i ;
i f

: : (X0 | | Y70) −> Y70 = 1 ;
: : else skip ;

f i ;
}

Intercycle fault tolerance. Precedence relations that occur over multiple cycles are examples of bounded
liveness properties. For example, in the CL system we have the following requirement: When there is a
work present (i.e., rising edge of X1 occurs), it will reach the forward limit in exactly 30 cycles (i.e., rising
edge of X2 will happen in exactly 30 cycles). The violation of this property could be due to two types
of faults: physical and cyber. First, if the carriage is stuck in the middle of its way to the forward limit
(for mechanical reasons), then the rising edge of the signal X2 will never be observed. Second, the carriage
does actually reach the forward limit but the signal X2 does not turn on due to some noise/fault. In both
cases, any fault tolerance scheme can raise a flag for the operator. While the detection of this type of faults
can be done in software, their correction may need human intervention in the physical space. Moreover,
faults may affect timers and lead to the violation of timing constraints. For instance, in the aforementioned
requirement of the CL system, the rising edge of X2 may occur in more or less number of scan cycles than
30 cycles. Designing failsafe fault tolerance against such types of timing faults is impossible because faults
directly violate safety properties. Nonetheless, to contain the impact of faults, it is desirable to detect them
and implement fault containment schemes. This problem is part of our ongoing investigations.

7 Conclusions and Future Work

This paper presented a novel approach for (i) formalizing Ladder Logic (LL) programs in Promela; (ii)
characterizing timing charts requirements as precedence relations between signal edges, and formalizing

12

them in LTL, and (iii) modeling faults and designing fault tolerance for LL programs. The characterization
of timing charts requirements as intracycle and intercycle precedence relations leads to defining intracycle
and intercycle fault tolerance for cyclic PLC programs, in general. To the best of our knowledge, this is
the first work that studies fault tolerance in the context of cyclic PLC programs, especially for ladder logic.
We are currently working on several extensions of this work, including (1) automation of the formalization
method, both for LL programs and for timing charts requirements; (2) algorithmic incorporation of fault
tolerance functionalities in LL programs (while benefiting from our past work on synthesis of fault-tolerant
concurrent programs [16, 17]), and (3) mechanical proof of correctness of the formalization approach.

References

[1] Promela language reference. http://spinroot.com/spin/Man/promela.html.

[2] Mitsubishi PLC Training Manual: Basic Course for GX Works2, 2012. https://dl.

mitsubishielectric.com/dl/fa/document/manual/school_text/sh081123eng/sh081123enga.

pdf.

[3] International Electrotechnical Commission, IEC International Standard IEC 61131-3 (Programming
Languages), 2013. https://www.plcopen.org/iec-61131-3.

[4] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering, 19(11):1015–1027, 1993.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

[6] C. Belo Lourenço, D. Cousineau, F. Faissole, C. Marché, D. Mentré, and H. Inoue. Automated for-
mal analysis of temporal properties of ladder programs. International Journal on Software Tools for
Technology Transfer, pages 1–21, 2022.

[7] E. Brinksma, A. Mader, and A. Fehnker. Verification and optimization of a PLC control schedule.
International Journal on Software Tools for Technology Transfer, 4:21–33, 2002.

[8] L. A. Bryan and E. A. Bryan. Programmable controllers: Theory and implementation. Industrial Text
Company, 1997.

[9] D. Darvas, E. Blanco Vinuela, and B. Fernández Adiego. Plcverif: A tool to verify plc programs based
on model checking techniques. 2015.

[10] D. Darvas, I. Majzik, and E. B. Viñuela. Conformance checking for programmable logic controller
programs and specifications. In 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES),
pages 1–8. IEEE, 2016.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for finite-state ver-
ification. In Proceedings of the second workshop on Formal methods in software practice, pages 7–15,
1998.

[12] N. O. Garanina, I. S. Anureev, V. E. Zyubin, S. M. Staroletov, T. V. Liakh, A. S. Rozov, and S. P.
Gorlatch. A temporal logic for programmable logic controllers. Automatic Control and Computer
Sciences, 55(7):763–775, 2021.

[13] L. Garcia, S. Mitsch, and A. Platzer. HyPLC: Hybrid programmable logic controller program translation
for verification. In Proceedings of the 10th acm/ieee international conference on cyber-physical systems,
pages 47–56, 2019.

13

[14] I. Grobelna, M. Grobelny, and M. Adamski. Petri nets and activity diagrams in logic controller
specification-transformation and verification. In Proceedings of the 17th International Conference Mixed
Design of Integrated Circuits and Systems-MIXDES 2010, pages 607–612. IEEE, 2010.

[15] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295,
1997.

[16] A. Klinkhamer and A. Ebnenasir. A software framework for automated synthesis of self-stabilization.
http://asd.cs.mtu.edu/projects/protocon/.

[17] A. Klinkhamer and A. Ebnenasir. Shadow/puppet synthesis: A stepwise method for the design of
self-stabilization. IEEE Trans. Parallel Distrib. Syst., 27(11):3338–3350, 2016.

[18] E. Kuzmin, V. Sokolov, and D. Ryabukhin. Construction and verification of PLC-programs by LTL-
specification. Automatic Control and Computer Sciences, 49:453–465, 2015.

[19] O. Ljungkrantz, K. Akesson, M. Fabian, and C. Yuan. Formal specification and verification of industrial
control logic components. IEEE Transactions on Automation Science and Engineering, 7(3):538–548,
2009.

[20] I. D. Lopez-Miguel, J.-C. Tournier, and B. F. Adiego. Plcverif: Status of a formal verification tool for
programmable logic controller. arXiv preprint arXiv:2203.17253, 2022.

[21] J. Luo, Q. Zhang, X. Chen, and M. Zhou. Modeling and race detection of ladder diagrams via ordinary
petri nets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(7):1166–1176, 2017.

[22] X. Mao, Y. Zhang, J. Shi, Y. Huang, and Q. Li. A refinement development approach for enhancing the
safety of plc programs with event-b. Science of Computer Programming, 215:102763, 2022.

[23] K. L. McMillan. The smv system. In Symbolic Model Checking, pages 61–85. Springer, 1993.

[24] S. Mesli-Kesraoui, A. Toguyeni, A. Bignon, F. Oquendo, D. Kesraoui, and P. Berruet. Formal and
joint verification of control programs and supervision interfaces for socio-technical systems components.
IFAC-PapersOnLine, 49(19):426–431, 2016.

[25] R. Wísniewski, G. Bazyd lo, P. Szcześniak, and M. Wojnakowski. Petri net-based specification of cyber-
physical systems oriented to control direct matrix converters with space vector modulation. IEEE
Access, 7:23407–23420, 2019.

14

Appendix: Complete Promela Model of the Fault-Tolerant Car-
riage Line System

1 #define maxIter 21
2 #define s t a r t (Carr iage@StartCycle)
3 #define end (Carriage@EndCycle)
4
5 // Int ra cyc l e p r op e r t i e s : For example , ”between Q and R we have P l ead s to S”
6 // [] ((Q & !R & <>R) −> (P −> (!R U (S & !R))) U R)
7 // Q can be the s t a r t of the cyc l e and R can denote the end of a cyc l e
8
9 #de f i n e posEdgeX0 ((X0 o == 0) && (X0 == 1))

10 #de f i n e posEdgeY70 ((Y70 o == 0) && (Y70 == 1))
11
12 #de f i n e posEdgeX1 ((X1 o == 0) && (X1 == 1))
13 #de f i n e posEdgeY71 ((Y71 o == 0) && (Y71 == 1))
14
15 #de f i n e posEdgeX2 ((X2 o == 0) && (X2 == 1))
16 #de f i n e posEdgeY73 ((Y73 o == 0) && (Y73 == 1))
17
18 #de f i n e negEdgeY73 ((Y73 o == 1) && (Y73 == 0))
19 #de f i n e posEdgeY74 ((Y74 o == 0) && (Y74 == 1))
20
21 // With p r e s s i ng the push button , the operat ion i nd i c a t o r w i l l eventua l l y turn on in the same cyc l e .
22 l t l X0Y70Edges { [] ((s t a r t && ! end && <>end) −> (posEdgeX0 −> (! end U (posEdgeY70 && ! end))) U end) }
23
24 // When there i s a work present , the c a r r i a g e eventua l l y moves i t forward in the same cyc l e .
25 l t l X1Y71Edges { [] ((s t a r t && ! end && <>end) −> (posEdgeX1 −> (! end U (posEdgeY71 && ! end))) U end) }
26
27 // When there i s a work present (p o s i t i v e edge of X1) , i t w i l l eventua l l y reach the forward l im i t
28 // (p o s i t i v e edge X2) in subsequent c y c l e s
29 l t l X1LeadsToX2 { [] (posEdgeX1 −> X (<> posEdgeX2)) }
30
31 // When the work i s stopped at the forward l im i t (p o s i t i v e edge of X2) , then the arm w i l l eventua l l y s t a r t pushing
32 // i t to the other conveyer be l t (p o s i t i v e edge of Y73) in the same cyc l e .
33 l t l X2Y73Edges { [] ((s t a r t && ! end && <>end) −> (posEdgeX2 −> (! end U (posEdgeY73 && ! end))) U end) }
34
35 // The push forward takes 3 seconds (i . e . , 30 c y c l e s) . That i s , p o s i t i v e edge of Y73 w i l l be fo l l owed
36 // by a negat ive edge of Y73 in 30 scan cy c l e s .
37
38 // After the arm pushes the work forward f o r 3 seconds (f a l l i n g edge of Y73) , i t w i l l eventua l l y s t a r t pushing
39 // backward in the same cyc l e (r i s i n g edge of Y74) .
40 l t l Y73Y74Edges { [] ((s t a r t && ! end && <>end) −> (negEdgeY73 −> (! end U (posEdgeY74 && ! end))) U end) }
41
42 bool X0 , X1 , X2 , X3=1, X4=1;
43 bool Y70 , Y71 , Y72 , Y73 , Y74 ;
44
45 bool X0 o , X1 o , X2 o , X3 o=1, X4 o=1; // Capture the va lues of input /output s i g n a l s in the prev ious scan cyc l e .
46 bool Y70 o , Y71 o , Y72 o , Y73 o , Y74 o ;
47 int scanCounter=1;
48
49 typedef Timer {
50 int value ;
51 bool se tF lag ;
52 bool contact } ;
53
54 bool M1; // This i s an i n t e r n a l va r i ab l e of Carr iage () but we have moved i t here to
55 // model the impact of f a u l t s on i t .
56 bool M2=0;
57 active proctype Carr iage () {
58
59
60 bool precond ;
61
62
63 Timer tmr ;
64 tmr . se tF lag = 0 ; // Timer has not energ i z ed yet
65 tmr . contact = 0 ; // Timer has a normally open contact
66
67 // Set t ing the input va lues
68 atomic{ i f
69 : : (scanCounter >= 1) && (scanCounter <2) −> X0 = 1 ;
70 : : else X0 = 0 ;
71 f i ;
72 }
73
74 atomic{ i f
75 : : (scanCounter >= 3) && (scanCounter <7) −> X1 = 1 ;
76 : : else X1 = 0 ;
77 f i ;
78 }
79 atomic{
80 i f
81 : : (scanCounter >= 5) && (scanCounter <13) −> X2 = 1 ;
82 : : else X2 = 0 ;
83 f i ;
84 }
85 atomic{
86 i f
87 : : (scanCounter >= 0) && (scanCounter <6) −> X3 = 1 ;
88 : : (scanCounter >= 6) && (scanCounter <20) −> X3 = 0 ;
89 : : (scanCounter >= 20) && (scanCounter<=maxIter) −> X3 = 1 ;
90 : : else skip ;
91 f i ;
92 }
93 atomic{
94 i f
95 : : (scanCounter >= 0) && (scanCounter <8) −> X4 = 1 ;

15

96 : : (scanCounter >= 8) && (scanCounter <11) −> X4 = 0 ;
97 : : (scanCounter >= 11) && (scanCounter<=maxIter) −> X4 = 1 ;
98 : : else skip ;
99 f i ;

100 }
101 StartCyc le :
102 atomic { precond = (X0 | | Y70) && !M2; }
103 atomic {
104 i f
105 : : precond −> Y70 = 1 ; // Energ iz ing . This i s an OUT in s t r u c t i o n on dev ice Y70 .
106 : : ! precond −> Y70 = 0 ; // Denerg iz ing .
107 // When the cond i t i on becomes fa lse , the dev ice should turn o f f .
108 f i ;
109 }
110
111
112 atomic{ // Added f o r recovery aga ins t f a u l t s that perturb M2
113 i f
114 : : (X0 | | Y70) && M2 −> M2 =0;
115 : : else skip ;
116 f i ;
117 i f
118 : : (X0 | | Y70) −> Y70 = 1 ;
119 : : else skip ;
120 f i ;
121 }
122
123
124 atomic { i f
125 : : precond && X1 && X3 −> M1 = 1;
126 : : else skip ;
127 f i ; } // Pulse M1
128 atomic { i f
129 : : precond && M1 −> Y71 = 1 ;
130 : : else skip ;
131 f i ; } // Set Y71 . The SET in s t r u c t i o n s e t s a dev ice once a cond i t i on becomes true .
132 // The dev ice remains on even i f the cond i t i on i s f a l l s i f i e d . A Reset i n s t can turn the dev ice o f f .
133
134 atomic { i f
135 : : precond && Y71 && X2 −> Y71 = 0 ; Y73 = 1 ;
136 : : else skip ;
137 f i ; } // Reset Y71 and Set Y73
138 atomic { i f
139 : : precond && Y73 && (! tmr . s e tF lag) −> tmr . value = 3 ; tmr . contact = 0 ; tmr . s e tF lag = 1 ;
140 : : precond && Y73 && (tmr . se tF lag) && (tmr . value != 0) −> tmr . contact = 0 ;
141 : : precond && Y73 && (tmr . se tF lag) && (tmr . value == 0) −> tmr . contact = 1 ; tmr . se tF lag = 0 ;
142 : : ! (precond && Y73) −> tmr . contact = 0 ; // Once the enabl ing cond i t i on i s no longer true ,
143 // the timer contact must go back to i t s normal cond i t i on .
144 : : else skip ;
145 f i ;
146 } // Set the timer . t imer . contact p lays the r o l e of contact T0 in the ladder program
147
148
149 atomic { i f
150 : : precond && (tmr . contact == 1) −> Y73 = 0 ; Y74 = 1 ;
151 : : else skip ;
152 f i ; } // Reset Y73 and s e t Y74 when timer goes on ; i . e . , 30 scan cy c l e s have past .
153
154 atomic { i f
155 : : precond && Y74 && X4 −> Y74 = 0 ; Y72 = 1 ;
156 : : else skip ;
157 f i ; } // Reset Y74 and se t Y72
158
159 atomic { i f
160 : : precond && Y72 && X3 −> Y72 = 0 ; M2 = 1 ;
161 : : ! (precond && Y72 && X3) −> M2 = 0;
162 f i ; } // Reset Y72 and se t the complet ion f l a g M2
163
164
165
166
167
168 // M1 must be r e s e t at the end of the cyc l e because i t i s supposed to be a pu l se .
169 atomic { // end of cyc l e a c t i v i t i e s
170 M1 =0;
171 i f : : (tmr . value > 0) −> tmr . value −−;
172 : : else skip ;
173 f i ; // Decrease t imer .
174
175
176 }
177
178 i f
179 : : (scanCounter <= maxIter +1) −> scanCounter++;
180 : : else goto e x i t ;
181 f i ;
182
183 EndCycle :
184 // This code i s inc luded f o r s p e c i f y i n g the timing chart requirements .
185 X0 o = X0 ; X1 o = X1 ; X2 o = X2 ; X3 o= X3 ; X4 o = X4 ;
186 Y70 o = Y70 ; Y71 o = Y71 ; Y72 o = Y72 ; Y73 o = Y73 ; Y74 o = Y74 ;
187
188
189
190 goto StartCyc le ;
191
192 ex i t : skip ;
193 }
194
195 active proctype f a u l t s (){
196
197 // I f the X1 sensor becomes f au l t y then the property X1Y71Edges i s v i o l a t ed

16

198 // because X1 may become 1 and Y71 does not become one in the same cyc l e .
199 // This i s s o r t of a s a f e t y property .
200 // We can recover from th i s but no f a i l s a f e program ex i s t s .
201 // Recover i f we have not seen a f a l l i n g edge of X0 yet .
202 // ! negEdgeX0 && (X1 == 1) −> X1 = 0 ;
203
204
205 i f
206 : : M2 = 0 ;
207 : : M2 = 1 ;
208 f i ;
209 }

17

