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Abstract

Chemical kinetics conserves mass and renders non-negative solutions; a good numerical simu-
lation would ideally produce mass balanced, positive concentration vectors. Many time stepping
methods are mass conservative; however, unconditional positivity restricts the order of a tradi-
tional method to one. The projection method presented in [13] post-processes the solution of
a one-step integration method to ensure mass conservation and positivity. It works best when
the underlying time-stepping scheme favors positivity. In this paper several Rosenbrock-type
methods that favor positivity are presented; they are designed such that their transfer functions
together with several derivatives are nonnegative for all real, negative arguments.

Keywords: Chemical kinetics, linear invariants, positivity, numerical time integration.

1 Introduction

Air quality models [3, 11] solve the convection-diffusion-reaction set of partial differential equa-
tions which describe the atmospheric physical and chemical processes. Usually an operator-split
approach is taken: chemical equations and convection-diffusion equations are solved in alterna-
tive steps. In this setting the integration of chemical kinetic equations is a demanding compu-
tational task. The chemical integration algorithm should be stable in the presence of stiffness;
ensure a modest level of accuracy, typically 1%; preserve mass; and keep the concentrations
positive.

Most popular ODE integrators (multistep, Runge-Kutta, Rosenbrock) preserve mass, but
positivity is more difficult to achieve. Unconditional positivity restricts the order of a numerical
method to one [2]. Clipping (setting the negative concentrations to zero) enhances stability but
artificially adds mass to the system. Solution projection and stabilization [13] are postprocessing
techniques which allow a positive, mass balanced solution without restrictions on the order or
time step of the integration method.

In order to be effective, projection and stabilization must be paired with time stepping
methods that favor positivity. Although positivity is not guaranteed, these methods tend to keep
nonnegative concentrations and reduce the postprocessing overhead. One example of positivity
favorable method is Ros2 (advocated by Verwer et. al. [15]).

In this paper we explore several methods that favor positivity. These methods are developed
based on the conjecture that good positivity behavior is related to the positivity of the transfer
function and its first several derivatives for negative real arguments. All methods are of Rosen-
brock type. Numerical experiments show that the new methods paired with solution projection
produce smaller overheads.
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The paper is organized as follows. Section 2 reviews the properties of chemical kinetic sys-
tems. Positive time stepping methods are discussed in Section 3 (following Bolley and Crouzeix
[2]), and in Section 4 (solution postprocessing techniques). Section 5 presents new time stepping
methods that favor positivity. A test case from stratospheric chemistry is considered in Section
6, where different numerical results are presented. Finally, the findings and conclusions of the
paper are summarized in Section 7. Appendix A defines the numerical integration methods and
Appendix B the test chemical mechanism.

2 Mass action kinetics, linear invariants and positivity

Consider a chemical kinetic system with N species y1, - - -, yn interacting in r chemical reactions.
The time evolution of the chemical concentrations is governed by the “mass action kinetics”
differential law!

y'=5-wy), ylto)=y", (1)
where S € ®V*7 is the matrix of stoichiometric coefficients and w € R is the vector of reaction
speeds. Any solution of (1) satisfies

AT y(t) = AT y° = b = const. for all t > ¢to , (2)

where A € RV*™ is a matrix whose columns span ker (S7), i.e. ATS = 0. This implies
ATy'(t) = 0 and ATy(t) is invariant in time. The vector b € R™ contains the m invariant
values. Simply stated, the existence of linear invariants ensures that mass is conserved during
chemical reactions.

Let us now separate the production terms P(y) from the destruction terms D(y) in (1)

yi=Pi(y) - Di(y)yi, 1<i<N.

The special form of the reaction speeds ensures that P;(y) and D;(y) are polynomials in y with
positive coefficients. If at time moment 7 all concentrations are nonnegative, y(7) > 0, and the
concentration of species i is zero, y;(7) = 0, then the corresponding derivative is nonnegative,
yi(1) = Pi(r) > 0, which implies that

y(to) 20 = yt)>0 foralt>ty. (3)

In short, the concentrations cannot become negative during chemical reactions.
Linear invariants (2) and positivity (3) imply that the solution of (1) remains all the time
within the reaction simplex

y(t)eSforallt >ty, S={yeR st ATy:bandyZO}. (4)

A general principle in scientific computing says that the numerical solution must capture (as
much as possible) the qualitative behavior of the true solution. Good numerical methods for
integrating chemical reaction models (1) should therefore be unconditionally stable, as the system
is usually stiff (this requires implicit integration formulas); should preserve the linear invariants,
otherwise artificial mass sources (or sinks) are introduced; and should preserve solution positivity.

Negative concentrations are non-physical. In addition, the kinetic system may become un-
stable for negative concentrations, as shown by Verwer et. al. [15]. An operator-split solution of
convection-diffusion-reaction atmospheric equations alternates chemical integration steps with
advection steps; negative concentrations from chemical integration can hurt the positivity of the
following advection step, which will perturb the next chemical step etc. leading to poor quality
results.

It is well known that the most popular integration methods (Runge-Kutta, Rosenbrock
and Linear Multistep) preserve exactly? all the linear invariants of the system [15]. Moreover,

We denote by y; both the chemical species # and its mass concentration.
21f the computations are performed in infinite arithmetic precision.



the (modified) Newton iterations used to solve for implicit solutions also preserve the linear
invariants at each iteration. With linear-preserving integration methods the accuracy of the
individual components is given by the truncation errors (e.g. having a magnitude 10~*), while
the accuracy of the linear invariants is only affected by the roundoff errors (having a much
smaller magnitude, e.g. 10714).

3 Positive time-stepping methods

Positivity of the numerical solution is more difficult to achieve. We would like to obtain higher
order methods that unconditionally preserve positivity. The results of Bolley and Crouzeix
[2] show that unconditional positivity limits the order of the numerical method to one. For
convenience we briefly review their analysis. Bolley and Crouzeix [2] focus on linear systems

y = Ay with AeM,, y(to)=v>0, (5)

where
My={AeR™™" : A;; >0fori+#jand A; > —a ,Vi}

A one step method of order p, applied to (5) gives
y™t = R(RA)y" ,

where R(z) is a rational function whose Taylor expansion around zero matches the expansion of
e” up to zP. A necessary and sufficient condition for the scheme to be positive is that R(hA) > 0.

Let M = —hal and N = h(al+ A), such that M+ N = hA and N > 0. Bolley and Crouzeix
established that the following Taylor type expansion holds

RM+N)=>)" ,l'RU) (M) N/ =" h,—fRU) (—ha) - (aI + A)7 . (6)
707" izo I

Let vr be the largest positive number such that R(z) and all its derivatives R'(z), R"(z), ---
are nonnegative for z € [—yg,0]. We say that R is absolutely monotonic on [—yg,0]. Since
al + A >0, it is clear that

R(hA) >0 forall Ae My, & h<I2. (7)

a

For (linearized) chemical kinetics 1/a is roughly the lifetime of the fastest species in the
system. Consequently, the positivity step size restriction (7) is similar to the upper bound
required for the stability of an explicit integration scheme. This leads to impractically small
steps for stiff chemical systems.

In practice we need a numerical method which unconditionally preserves positivity: A € M,
= R(hA) > 0 for all h. From (7) this method must have a stability function with yg = oo, i.e.
R(z) must be absolutely monotonic on (—o0, 0]. But this condition prohibits R of approximating
€? to more than first order (see [2]). Therefore there is no one-step method which unconditionally
conserves positivity of order greater than or equal to two.

Hundsdorfer [8] proved that the (first order) implicit Euler method is unconditionally pos-
itive. In practice, even implicit Euler may produce negative values since the iterative solution
process is halted after a finite number of steps; while the exact solution is non-negative, the
successive approximations computed by (modified) Newton are not.

4 Positivity by solution postprocessing

Postprocessing corrects the computed solution at each step such that negative concentrations
are avoided. The most popular method is clipping, which simply sets the negative components



to zero. Clipping destroys the preservation of linear invariants. Moreover, all clipping errors act
in the same direction, namely increase mass (artificially); therefore they accumulate over time
and may lead to significant global errors over longer simulation intervals.

In [13] two methods for preserving both mass balance and positivity were developed. Solution
projection method is based on a linear invariant-preserving one-step integration method & (e.g.
Runge-Kutta or Rosenbrock)

2= @] (y™) .

Here t” denotes the discrete time value at n'*? step, y™ the n'" step solution, h = t"+' — ¢" the
step size, and f(t,y) = Sw(t,y).
If some of the computed concentrations are negative

t<o - zi’;“ <0,
the next step approximation y™! is the solution of the following quadratic optimization problem

.1 2 .
min > |yt — 2", subject to ATyt =b, y"t >€. (8)
If the are no negative components then y"t! = 2"+l The solution y™*! is the projection of
21 onto the reaction simplex S; € are small numbers which ensure a positive solution in the
presence of roundoff. The norm ||w||¢ = VwTGw is the typical error norm used by the ODE
step size controller, with the positive matrix G given at each step by

1
G = diag 5
1<i<s | s (atol + rtol |2]))

(9)

In [13] it was shown that the projected vector is a better (G-norm) approximation to the
true solution then is the computed vector,

y(@ g < =7 =yt g -

Any algorithm for quadratic programming can be employed to solve (8). We found the primal-
dual algorithm of Goldfarb and Idnani [5] to be a suitable solution method.

Solution stabilization is a simpler alternative to projection. The next step solution is com-
puted as

o7+ -

zn-l—l = @Z(yn) with Zﬁ+1,"',z,:;+1<0, B:[A|ei1|'“|eip] )
ATzntl
e (10)
y = i_gip (BTG iB) | T
z;,+1 — €ip
It can be directly verified that the solution satisfies AT y"*' = b, y/i*! = €1, -+, Yot = €;p. The

method does not guarantee positivity, since the projection step may render other components
negative (i.e. y]’-”rl < Ofor j # il...ip), but can have a beneficial effect on maintaining positivity.

In [13] it was shown that projection and stabilization work best when the underlying numer-
ical method favors positivity. Such methods are discussed next.

5 Methods that favor positivity

In the view of the theory developed in [2] we do not require the methods to be unconditionally
positive, but we relax the requirements to methods which favor positivity. Although positiv-
ity is not guaranteed, these methods tend to keep nonnegative concentrations and reduce the
postprocessing overhead.



In [15, 16, 17] it was noted that the second order Rosenbrock method Ros2 (16) has favorable
positivity properties, and the method is stable for nonlinear problems even with large fixed step
sizes. It was also noted that Ros2 provides positive solutions for the scalar problems C' = —kC
and C' = —k C?, C(ty) > 0.

In [13] we conjectured that a possible explanation for the good observed behavior is that
not only the transfer function of this method, but also its first two derivatives are nonnegative
for real, negative arguments (i.e. R(z),R'(z),R"(z) > 0 for any z < 0). Therefore the first
(most significant) terms in the Taylor series (6) are nonnegative. Higher order terms may be
negative, but they are weighted by higher powers of the step size h, therefore the negative part
will hopefully be small.

Based on this conjecture we develop several methods whose transfer functions and their first
several derivatives are nonnegative for any real, negative argument. Specifically, we consider
one-step, second order, s-stage methods (s > 2) with a stability function of the form

_l-az , 1445 _ s+/s
R(z)_(l—fyz)s with a= 1 7_3(8_1)_

The relations for a and v follow from imposing R to approximate the exponential to second
order. We have

o 1=7(Vs+1)2 ey = 18R+ (s=1)7) - (Vs +1)2
o=y s (12" |

and we see that R(z), R'(z), R"(z) > 0 for any z < 0. Ros2 falls into this category of methods for
s = 2. For more stages these methods have the added benefit of higher damping of transients,
and faster steady-state introduced for short-lived species.

We developed four such methods which, to our knowledge, have not been proposed elsewhere.
The methods are second order accurate and require only two function evaluations:

e Method A (17) is three-stage, second-order, stiffly accurate. It preserves its order for
inexact Jacobians;

e Method B (18) is three-stage, second-order, stiffly accurate. One of the order 3 conditions
is also satisfied;

e Method C (19) is three-stage, second-order (but not stiffly accurate). It works with inexact
Jacobians; One of the order 3 conditions is also satisfied.

e Method D (20) is four-stage, second-order, stiffly accurate. It allows inexact Jacobians
and has an embedded method of order 3.

The coefficients for all methods are given in Appendix A.

6 Numerical Results

We consider the basic stratospheric reaction mechanism presented in Appendix B (and adapted
from NASA HSRP/AESA [9]). The numerical examples are implemented in MATLAB. The simu-
lation starts at noon with the initial concentrations of Table 1 and continues for 72 hours. The
computation of G-norms was done with 7tol = 107° and atol = 10~3. Throughout the tests
the minimal values were set to ¢; = 1 molec/ cm?®. Reference solutions were obtained with the
MATLAB integration routine ODE15S (variable order numerical differentiation formula); the
control parameters were RelTol = 10~8, AbsTol = 108, with analytic Jacobian.

The integration algorithms used are BDF2 (12), Ros2 (16), Rodas3 (15), RK2 and RK2+
(13), as well as the new methods A (17), B (18), C (19), and D (20). For the Rosenbrock methods
we use the non-autonomous forms. RK2 and RK2+ differ by the value of the coefficient 7; the
classical formula RK2 is more accurate, while RK2+ has the same transfer function as Ros2
(hence falls in the previously discussed category of positive favorable methods).



To compare the performance of different methods we measured the solution accuracy at the
end of the integration interval (t = Tr). With y® the reference solution and y the computed
solution, the error measure reads

I (v (Tr) —yf (Tr) ?
B= SZ< Y (Tr) ) ()

1=1

Figure 1 shows the solution accuracies (11) versus computational work (Kflops) for different
methods (plain versions). All methods perform similarly, with methods A and B slightly better
at low accuracies and C more performant at high accuracies. RK2+ and BDF2 are not com-
petitive at low accuracies, presumably due to convergence problems at large step sizes. The
conclusions of this diagram are limited, however, since the system is small and sparsity is not
accounted for.

Figures 2, 3, and 4 show the average negative values and the percent of time negative
values were obtained for O'P, O and NO respectively. For O'P (Figure 2) methods A, B,
D give reasonably small negative concentrations. Even smaller concentrations (in absolute
value) are produced by BDF2 and Rodas3. The percent of steps which produced negative O'”
concentrations changes for different step sizes for each of the methods, so there is no ”clear
winner” here. For O (Figure 3) method D shows negligible percent of negative values for steps
up to 30 min. Methods A and B show small percent for small and large steps, while C and Ros2
show large percents of negative values. The mean negative values are smallest for methods A,
B and D. Also RK2+ shows better results than RK2 for small step sizes. For NO (Figure 4)
the methods A, B (up to 15 min), C (up to 10 min), and D (up to 30 min) show a negligible
percent of negative steps. The mean negative concentrations are smallest for A, B and D.
RK2+ again produces fewer times negative concentrations than Ros2, but the average negative
concentrations are large.

Interestingly, the Ros2 performance is rather modest with regard to positivity. We assume
that this is due to the fact that, once a concentration ¢™ accidentally becomes negative, the
next step approximation (of the form ¢"t! ~ R(hJ)c") will tend to remain negative precisely
because of the positivity of R.

Figure 5 shows the computational overhead (percentage) of the projected versions versus
the plain versions. At small time steps (large computational work and high accuracies) Ros2
has negligible overheads; methods A, B and D have overheads around 5%, while the overheads
of method C are different at different step sizes. RK2+ has half the overhead of RK2. BDF2,
RK2 and Rodas3 have higher overheads. At large steps (small computational work and low
accuracies) Ros2 is the clear winner, with small overheads.

These experiments show a clear difference between the plain versions and the projected
versions. While the plain Ros2 performance is modest with regard to positivity, the corrected
version performance is excellent. This can be explained by the fact that once the negative
concentration ¢® are corrected, then the next step value ¢c®*! will tend to remain positive.

7 Conclusions

Projection and stabilization ensure mass conservation and positivity for the numerical solu-
tions of chemical kinetic problems. The techniques are based on postprocessing the next-step
approximations given by linear-preserving methods, should negative concentrations develop.

Both techniques have to be paired with a positivity-favorable numerical integration methods,
in order to reduce the overheads. Although such methods do not guarantee positivity, they
seldom produce non-positive results, which minimizes the overheads incurred by projection or
stabilization. Such a method is for example Ros2 [16, 17]; Verwer et. al. explained the good
properties of Ros2 by the fact that its stability function R(z) > 0 for all z < 0, and also by the
fact that the result of integrating ¢’ = —c?, ¢(ty) > 0 is unconditionally positive.



Based on the theory of Bolley and Crouzeix [2] we conjectured that the positivity of the
first and second derivatives of the transfer function R'(z), R"(z) > 0 for all z < 0 play a role in
making a method positivity favorable. Following this conjecture we derived four new Rosenbrock
methods which fulfill this condition. In addition, we tested a a Runge-Kutta scheme (RK2+)
whose transfer function has similar properties.

The results seem to confirm the conjecture. Solution projection gives low overheads when
paired one of these positivity favorable techniques. Also, the modified RK2+4+ method has
consistently given lower overheads than the original method RK2, even if the latter method is
more accurate.

The conclusion, however, is not as clear cut as one hoped. First, method C does not behave as
well as the other methods, suggesting that extra factors besides the transfer function determine
positivity. Second, there is a significant difference between the behavior of the plain and the
corrected methods. For example the Ros2 results are rather dissapointing (in terms of positivity)
for the noncorrected version, but are excellent for the corrected version.

Appendix A. Numerical integration methods

The second order backward differentiation formula BDF2 [6, Section IIL.1] is

yn—i-l — Yn + g hf (tn—l—l’yn—i-l) , Yn — éyn _ lyn—l . (12)
3 3 3
Here t"+1 =" 4+ h = ¢~ + 2h; for variable time steps the coefficients change. The very first
step requires both ¢! and y°; the former is given, while the latter is obtained with one backward
Euler step.
The second order Runge-Kutta method RK2 [10] is

y o=yt (L= ) kv k2
ky = hf(t"+hy"+ 1 -7k +vk2),

withy=1— \/5/2 For RK2+ the valueis y =1+ \/5/2
An s-stage Rosenbrock method reads

yn-i-l — yn_i_z:j:l miki , ' gn—i—l :yn_i_z;?:l miki y
(HI-T) ke = (" +ahy+ ST ask;) + S0 () ki gihfe, i=1,s

(14)
where the Jacobian matrix J = 0f(t,y)/0y and the time partial derivative f; = df(t,y)/0t are
evaluated at t = t™. A specific method is defined by its coefficients.

The Rodas3 method [12] is third order accurate and reads

00 00 0 0 0 0
00 00 4 0 0 0
v=1/2, A=150 o0 9F1 0 0]
20 -1 0 1 -1 —-8/3 0
0 1/2 2 0 (15)
o 3/2 o . _|o
=111 9 o> ™11 ™T o
1 0 1 0

The second order Rosenbrock scheme Ros2 [16, 17] is defined as

v=1+v2/2, A:[Z_oﬂ 8]’ C:[—4f2\/§ 8]’ (16)
o= (8] o= [ 2] - [STRR] [P0
/ V2/

7



The vector y™ + (1/7)k1 is a consistent approximation at t"*! and was used to implement the
error estimator in the variable step formulation.
Method A is second-order, stiffly accurate, and is defined by

0 0 07 0 0 0
A=|3-v3 0 0|, C=| —6+4V3 0 o] ,
3—v3 0 0 | 3-2v/3 3-2V3 0 (17)
0] (3+3)/6 3—3
v=0B+vV3)/6, a=|1|, g=| a+v3)/2 |, m= 0
1 0 1

It requires only 2 function evaluations and preserves its order for inexact Jacobians.
Method B is second-order, stiffly accurate, and is defined by

0 00 0 0 0
y=B+v3)/6, A=|3-v3 0 0], C= 0 0 0],
3-v3 0 0 —44+2V/3 1-+/3 0 (1s)
0 (34++/3)/6 3-3
[1) [
1 0 1

One of the order 3 conditions is also satisfied.
Method C is second-order (but not stiffly accurate) and is defined by

0 0 0
A= 0 0 01,
(1272 — 823+/3) /354 3(—514+49v/3)/59 0

0 0 0
=3+v3)/6, C=| —1+7/3/18 0 0] , (19)

(25 -13v/3)/6 12-63 0

0 (3++/3)/6 (—12089 + 5037+/3) /472
a=| 0 |, g=| (39+14v3)/108 | , m= 9(344 — 135/3)/118
2/3 (9+3)/6 3(3 —V/3)/4

It also requires only 2 function evaluations and is more accurate than method A, since one of
the order 3 conditions is also satisfied. It works with inexact Jacobians.
The stability function for both methods A and B is

1— 1+v3
R(z) = 2 *

=)

and we have R(z),R'(z), R"(z) > 0 for z <0.
Method D is second-order, stiffly accurate,

0000 0 0 00
2.0 00 —4/3 0 0 0
_1 _ _
Y=z A=159909 0] © ~10/3 -2 0 0|
2000 ~1/2 0 3/2 0
0 1/2 2 8/3 (20)
|1 1/6 o |1
YT —1/2 R N A B
1 1 ~1/3

It requires 2 function evaluations. It allows inexact Jacobians and the embedded method is

order 3. The stability function is
1—2
R(z) = ———
1-2/2)

and we have R(z), R'(z),R"(z),R"(z) > 0 for z < 0.



Appendix B. The test mechanism

Consider the basic stratospheric reaction mechanism (adapted from NASA HSRP/AESA [9])

rl) 0, + W 5% 20 (k1 = 2.643 x 10710 - 3)
r2) 0 + 0, £ 0 (k; = 8.018 x 10717)
r3) O3 + W £ 0 4+ 05 (ks=6.120x10"".0)
rd) O + O3 2% 20, (kg = 1.576 x 1071%)
r5) O3 + hw =5 0 4 0, (ks =1.070x 10703 .52) (1)
r6) O + M 25 0 4+ M (ke =7.110x10""
r7) O 4+ 05 L5 20, (k7 = 1.200 x 1010)
r8) NO + O3 =% NO, + O, (ks=6.062x 1071%)
r9) NO, + O 2% NO + 0, (ko =1.069x 10)
rl0) NO» + hw 2% NO + 0O (kio=1289x10"%2.0)

Here M = 8.120F + 16 molec/cm?® is the atmospheric number density; the rate coefficients are
scaled for time ¢ in seconds; and o(t) represents the normalized sunlight intensity,

t
T, = (3600) mod 24 ; Tr =4.5 (SunRise); Ts = 19.5 (SunSet);
oy = | 3+ deos (v | 2Tt [P TTe]) TR <Tu < T
otherwise

It is easy to see that along any trajectory of the system (21) the number of oxygen and the
number of nitrogen atoms are constant,

[O'P] +[O] + 3[03] + 2[02] + [NO] + 2[NO3] = const , [NO] +[NOs] = const ,
therefore if we denote the concentration vector
y=[[0"), 0], [0s], [02],INO ,[NO,] ],
the linear equality constraints have the form

1

T _
A_O

3 2 1 2
coo Ll ATy = ATy() =0

[

The reduced stratospheric system (21) auto-corrects the negative values of O, O and NO,
which explains the good accuracy of the standard methods. For example, the atomic oxygen
destruction term is —[O] (k2[O2] + k4[O3] + k9[NO2)]) ; since the parenthesis does not depend
on any “possibly-negative” concentration, whenever [O] < 0 this destruction term is positive
(produces O!) and the oxygen concentration increases toward positive values. Not all chemical
systems have the auto-correction property. Appending the extra reaction

ril) NO + 0 % NO, (ki1 = 1.0E — 8) (22)

leads to a non-correcting kinetic scheme as (22) will continue to destroy
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Figure 1: Work-precision diagram shows the solution accuracy versus the computational work. All
methods perform similarly.
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Figure 2: Mean negative values of O'P (left) and the percent of steps which produced negative
values (right). Different methods and different step sizes are considered.
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Figure 3: Mean negative values of O (left) and the percent of steps which produced negative values
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Figure 4: Mean negative values of NO (left) and the percent of steps which produced negative
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values (right). Different methods and different step sizes are considered.
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Figure 5: Overheads incurred by solution projection versus computational work of the plain version.
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