
Computer Science Technical Report

Implementing UPC’s MYSYNC Synchronization

Mode Using Pairwise Synchronization of

Threads
Prasad Dhamne and Steve Seidel

Michigan Technological University

Computer Science Technical Report

CS-TR-05-07

2005

Department of Computer Science

Houghton, MI 49931-1295

www.cs.mtu.edu

Abstract

UPC (Unified Parallel C) is an extension of ANSI C that provides a partitioned shared memory

model for parallel programming. Synchronization between threads (processes) in UPC is done

through the use of locks or barriers. We have investigated a new synchronization method which is

better suited in situations where threads do not need to synchronize with all of the other threads in

the system.

We implemented pairwise synchronization that can be used to synchronize pairs of threads

while not disturbing the remaining threads. This project also explored how to synchronize pairs

of UPC threads over a Myrinet interconnect. Myrinet is a low-latency, high bandwidth local

area network with a low level communication layer called GM. We implemented UPC’s MYSYNC

synchronization mode in collective operations which make use of pairwise synchronization. We

compared the performance of MYSYNC synchronization mode to the ALLSYNC synchronization

mode, that is often implemented by using a barrier. For performance analysis we used a collectives

testbed previously developed at MTU.

Results obtained from the testbed indicate that for collectives, such as Broadcast,Scatter

and Gather, MYSYNC synchronization considerably reduces the collective time. Overall testbed

execution time for 100 trials with MYSYNC mode was improved by 10-15% compared to the

ALLSYNC synchronization. For the Permute collective operation the performance improve-

ment is maximum in pull based implementation and it is close to 20%. For Gatherall and

Exchange the performance improvement is minimal. However, ALLSYNCmode performs better

over MYSYNC synchronization in push based implementation of Permute collective operation.

In general, the performance of MYSYNC reduces with increase in number of threads.

Contents

Abstract 1

1 Introduction 1
1.1 MuPC . 2

1.2 GM . 2

1.3 Motivation . 3

2 Collective Communication in UPC 4
2.1 Need for Collective Communication Operations 4

2.2 Push and Pull Implementations . 5

2.3 Collective Communication Operations in UPC 6

3 Message passing with GM 11
3.1 Programming model . 11

3.1.1 Token flow in GM . 12

3.1.2 DMA allocation schemes in GM . 12

3.2 Sending messages in GM . 13

3.3 Receiving messages in GM . 14

4 Synchronization modes in UPC 16
4.1 Synchronization Modes . 16

4.2 Pairwise Synchronization . 17

4.2.1 Applications . 17

5 Project work 20
5.1 upc all broadcast . 20

5.1.1 Push algorithm (myPUSH) . 20

5.1.2 Pull algorithm (myPULL) . 22

5.1.3 GM based push algorithm (myGMTU) 23

2

Contents 3

5.2 upc all scatter . 24

5.3 upc all gather . 24

5.4 upc all gather all . 25

5.5 upc all exchange . 25

5.6 upc all permute . 25

6 Performance Evaluation 26
6.1 Testbed . 26

6.1.1 Modifications in Testbed . 27

6.1.2 Testbed parameters . 27

6.2 Performance analysis . 29

6.2.1 Result:upc all broadcast . 30

6.2.2 Result:upc all scatter . 30

6.2.3 Result:upc all gather . 35

6.2.4 Result:upc all gather all . 37

6.2.5 Result:upc all exchange . 39

6.2.6 Result:upc all permute . 41

6.3 Effect of number of threads on performance . 44

6.4 Conclusion . 45

7 Conclusion 46

Bibliography 48

List of Figures

1.1 UPC memory model and Data distribution . 2

2.1 Pre-broadcast data layout . 4

2.2 Post broadcast data layout . 5

2.3 Push-Pull implementation of collectives . 6

2.4 upc all broadcast . 7

2.5 upc all scatter . 8

2.6 upc all gather . 8

2.7 upc all gather all . 9

2.8 upc all exchange . 9

2.9 upc all permute . 10

3.1 Tokenflow in send/receive operations in GM . 12

3.2 Sending message in GM . 13

3.3 Receiving message in GM . 14

4.1 Pipeline and ring based synchronization patterns 18

4.2 Grid based synchronization patterns . 18

4.3 Synchronization scheme for master drone algorithms 19

5.1 Synchronization types in UPC . 21

5.2 Static tree Broadcast1 . 24

5.3 Static tree Broadcast2 . 24

6.1 Message overhead in ALLSYNC,MYSYNC synchronization 29

6.2 Number of communication steps in ALLSYNC and MYSYNC 30

6.3 Collective Time: upc all broadcast, 2 Threads, Pull implementation 31

6.4 Collective Time: upc all broadcast, 8 Threads, Pull implementation 31

6.5 Overall Time: upc all broadcast, 8 Threads, Pull implementation 32

6.6 Collective Time: upc all broadcast, 8 Threads, Push implementations . . . 32

4

List of Figures 5

6.7 Overall Time: upc all broadcast, 8 Threads, Push implementations 33

6.8 Collective Time: upc all scatter, 2 Threads, Pull implementation 33

6.9 Collective Time: upc all scatter, 8 Threads, Pull implementation 34

6.10 Overall Time: upc all scatter, 8 Threads, Pull implementation 34

6.11 Collective Time: upc all gather, 2 Threads, Pull implementation 35

6.12 Collective Time: upc all gather, 8 Threads, Pull implementation 35

6.13 Overall Time: upc all gather, 8 Threads, Pull implementation 36

6.14 Collective Time: upc all gather, 8 Threads, Push implementations 36

6.15 Overall Time: upc all gather, 8 Threads, Push implementations 37

6.16 Collective Time: upc all gather all, 2 Threads, Pull implementation . . . 37

6.17 Collective Time: upc all gather all, 8 Threads, Pull implementation . . . 38

6.18 Overall Time: upc all gather all, 8 Threads, Pull implementation 38

6.19 Collective Time: upc all exchange, 2 Threads, Pull implementation 39

6.20 Collective Time: upc all exchange, 8 Threads, Pull implementation 39

6.21 Overall Time: upc all exchange, 8 Threads, Pull implementation 40

6.22 Collective Time: upc all exchange, 8 Threads, Push implementations 40

6.23 Overall Time: upc all exchange, 8 Threads, Push implementations 41

6.24 Collective Time: upc all permute, 2 Threads, Pull implementation 41

6.25 Collective Time: upc all permute, 8 Threads, Pull implementation 42

6.26 Overall Time: upc all permute, 8 Threads, Pull implementation 42

6.27 Collective Time: upc all permute, 8 Threads, Push implementations 43

6.28 Overall Time: upc all broadcast, 8 Threads, Push implementations 43

6.29 Collective Time: upc all permute, 15 Threads, Pull implementations 44

6.30 Overall Time: upc all broadcast, 15 Threads, Pull implementations 44

Chapter 1

Introduction

Unified Parallel C (UPC) is a parallel programming language based on a partitioned shared

memory model that is being developed by a consortium of academia, industry and government

[2,4,7]. It is an extension of ANSI C, aimed for high performance computing on various platforms.

In UPC, each participating thread is an independent process and has a shared address space

along with a local address space. The partitioned shared memory model allows for threads

to access any portion of the shared address space, besides access to their own private address

space. However, accesses to regions which do not have affinity to the particular thread are costlier

(and similarly accesses to regions which have affinity to the thread are less costly) [4]. UPC allows

the programmer to change the affinity of shared data to better exploit its locality through a set

of collective communication operations.

UPC provides keywords and methods for parallel programming over the partitioned shared

model. It includes the shared type specifier, synchronization mechanisms such as locks, barriers

and memory consistency control (strict or relaxed). UPC is intended to be a simple and easy to

write programming language where remote reads and writes are done implicitly. This enables the

user to concentrate more on the parallelization task, rather than worrying about the underlying

architecture and communication operations as in message passing programming models where

explicit reads/writes need to be posted for remote operations. The local data are declared as per

ANSI C semantics, while shared data are declared with the shared type specifier. For instance,

creation and allocation of a shared array D with 9 elements, block size 2 and 4 THREADS is

declared by simply putting, amongst 4 threads, the shared array of 9 elements in blocks of 2

elements per thread and wrapped around. Figure 1.1 shows different ways of using the shared
qualifier and resulting distribution of data in the shared memory space [2].

1

1.1. MuPC 2

int A;

A A A A

B

C0 C2

Thread 0 Thread 1 Thread 2 Thread 3

Shared
Memory

Local
Memory

shared int B;
shared [] int C[3];

D0

C1

shared [2] int D[9];
D1 D2 D3 D4 D5 D6 D7D8

Figure 1.1: UPC memory model and Data distribution

1.1 MuPC

Originally UPC was developed for vector machines, such as the Cray T3E, and with the popu-

larity of cluster based high performance computing new compilers, runtime systems and libraries

were required to extend the language to these architectural models. Michigan Tech’s MuPC is one

such runtime system that uses MPI to bring UPC to platforms like Beowulf clusters that support

a partitioned shared memory environment [4]. MuPC relies on the MPI communication library

to implement reads and writes in shared memory. Depending upon the MPI compiler, we can

choose the underlying interconnect. For example, the Beowulf cluster lionel in MTU’s Center for

Experimental Computing (CEC), has both Ethernet and Myrinet interconnects. MPI programs can

be compiled under either LAM-MPI or MPICH-GM to use the Ethernet or Myrinet interconnects

respectively. A user can write supporting libraries for UPC just as in C, for mathematical cal-

culations, string manipulation and to add additional features such as pairwise synchronization of

threads or MYSYNC synchronization mode in collective operations.

1.2 GM

The Myrinet network is a low-latency, high bandwidth local area network developed by Myricom

[6]. Compared to conventional networks such as Gigabit Ethernet, Myrinet provides features

for high-performance computing using full-duplex links, flow control, cut-through routing and

OS-bypass. It is a robust, highly scalable interconnect and comes with a communication API,

called GM. GM provides a notion of logical software ports which are different from Myrinet’s

hardware ports. The ports are used by process or client applications to communicate with the

Myrinet interface directly. There are 8 such logical ports out of which ports 0, 1 and 3 are used

internally by GM and ports 2, 4, 5, 6 and 7 are available to the user applications. The maximum

transmission unit (MTU), which defines the size of the largest packet that can be physically sent, is

4K or 4096 bytes for GM. During transmission all packets of size larger than the MTU are broken

1.3. Motivation 3

down to around the 4K size before being sent. The GM API provides various functions to send and

receive messages using the GM communication layer. These functions can be used to speedup the

performance of user applications. We are using some of the send/receive functions to implement

data transfer among the collectives.

1.3 Motivation

The motivation behind this project is the highly efficient GM based collective communication

library developed by Mishra [4]. It makes use of GM to do low level message passing among

the UPC threads. This library achieves a 40-50% performance improvement over the reference

implementation of UPC collectives. At present in both these libraries the MYSYNC synchroniza-

tion mode is implemented with a barrier which acts as bottleneck to performance. A previous

project of Michigan tech to implement a MYSYNC synchronization using UPC had unpredictable

performance improvement [5].

The other motivation behind this project is to prove that MYSYNC synchronization offer per-

formance benefits compared to full barrier synchronization. Some researchers suggest that the

MYSYNC synchronization mode is unnecessary. We found some applications where MYSYNC

mode could give better performance than ALLSYNC mode. We are aiming to compare our imple-

mentation of the MYSYNC mode with the ALLSYNC mode and want to demonstrate that MYSYNC

mode provides performance benefits.

Chapter 2

Collective Communication in UPC

2.1 Need for Collective Communication Operations

As UPC is a shared memory programming language, each thread has local address space and

shared address space. Each thread has affinity to its own shared space which relates that partition

of shared space being closer to that thread as compared to other threads. The effect of this is

important in platforms such as Beowulf clusters, where the read/writes to areas of shared memory

that processes do not have affinity to are costlier because they access remote memory (Figure 2.1).

The execution time of application increases if each thread frequently access the shared space to

which it has no affinity. Hence, data relocalization is required which reduces the access to remote

shared memory and in turn reduces the application execution time. Collective operations provide

a way to achieve this relocalization of data, by changing the affinity of the data item. An example

of how the broadcast function performs relocalization is illustrated below [4]:

• Pre-Broadcast: b has affinity to thread 0 only, any computation involving other threads

would be costlier as they would be translated to remote read/writes

THREAD0 THREAD1 THREAD2 THREAD3

a

b

a a a

b b b

a[2] a[3] a[4] a[5] a[6] a[7]a[0] a[1]

b[0] b[1]
Shared

Local

shared [2] int b[2];
shared [2] int a[2*THREADS];

Figure 2.1: Pre-broadcast data layout

• Post-Broadcast: Each thread has a copy of ‘b’ in the shared area, ‘a’, with affinity to that

thread after re-localization. As a result they can use ‘a’ instead of ‘b’ to reduce the cost of

memory accesses to data contained in b
4

2.2. Push and Pull Implementations 5

��
���������������������������

���������������������������������
���������������������������

���������������������������������
���������������������������������

���������������������������
���������������������������
		
	

���������������������������������
���������������������������

��
�

THREAD0 THREAD1 THREAD2 THREAD3

a

b

a a a

b b b

a[2] a[3] a[4] a[5] a[6] a[7]a[0] a[1]

b[0] b[1]
Shared

Local

shared [2] int b[2];
shared [2] int a[2*THREADS];

Figure 2.2: Post broadcast data layout

2.2 Push and Pull Implementations

We know collective communication operations play an important role in the relocalization of data.

Before we go on to the types of collective operations we must first understand the two basic ways

in which data is distributed. Consider a producer consumer arrangement [4], where a producer

produces goods that are consumed by many consumers (1 producer and more than one consumer).

We can look at various aspects of this arrangement, but for our example let us consider how data

is distributed. The questions we must ask are does the producer bring the data to each consumer?

or do consumers go up to the producer and demand their data? In terms of hosts and nodes and

chunks of sharedmemory and collectives, we can restate the above questions as: during a broad-

cast, does the source write the data to the others? or do the nodes simply read a memory area from

the source? Therefore, collective communication operations where source thread(s) send the data

to the destination thread(s) are the push based implementation; while operations where the desti-

nation thread(s) read the data from the source thread(s) are termed pull based implementations.

Figure 2.3 shows how push and pull broadcast operations differ. In Figure 2.3(a), thread 0 is

writing the data to the destination threads by copying it into their memory locations; whereas in (b)

each destination thread is responsible for reading the data from thread 0’s memory. The reference

implementation provides a straight forward way of performing both push and pull relocalization

operations for all the collectives mentioned in the collective specification document [3]. The col-

lectives in the reference implementation are implemented using the upc memcpy() function

which, in the partitioned shared memory model, is translated into remote gets or puts depending

on whether it is the source or the destination location that is remote to the calling thread. An

example of the reference implementation upc all broadcast collective function, in push and

pull versions is given below [4].

• Pseudocode for push reference implementation of upc all broadcast

begin upc_all_broadcast(shared void *destination,

shared const void *source,

2.3. Collective Communication Operations in UPC 6

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����
�����
����� � �

 � �
 � �

!�!�!
!�!�!
!�!�!

"�"�"�"
"�"�"�"
"�"�"�"
#�#�#
#�#�#
#�#�# $�$�$�$�$�$�$�$

$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$
$�$�$�$�$�$�$�$

%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%

&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&

'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'

(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(

)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)

��*
��*
��*
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
/�/�/
/�/�/
/�/�/

PUSH

(a)

THREAD0

THREAD 1

THREAD2

THREAD3

THREAD0

THREAD 1

THREAD2

THREAD3

(a) Push based collectives rely on source thread copying data to each destination
(b)In Pull based collectives each destination thread copies data to source thread

THREAD 1

THREAD2

THREAD3 THREAD3

THREAD2

THREAD 1

THREAD0 THREAD0

(b)

PULL

Figure 2.3: Push-Pull implementation of collectives

size_t nbytes,

upc_flag_t sync_mode)

source:= upc_threadof ’source’ array

if(MYTHREAD = source) then

for i:=0 to THREADS

upc_memcpy ’nbytes’ from ’source’ into ’destination+i’

end for

end if

end upc_all_broadcast

• Pseudocode for pull reference implementation of upc all broadcast

begin upc_all_broadcast(shared void *destination,

shared const void *source,

size_t nbytes,

upc_flag_t sync_mode)

upc_memcpy ’nbytes’ from ’source’ into ’destination+MYTHREAD’

end upc_all_broadcast

2.3 Collective Communication Operations in UPC

In this project we implemented six of the collective communication operations as specified in the

UPC Collective Operations Specification V1.0 [3]. The details of these collective functions, their

2.3. Collective Communication Operations in UPC 7

parameters, and their operations on shared arrays are described below.

• upc all broadcast
void upc all broadcast(shared void *destination, shared const void

*source, size t nbytes, upc flag t sync mode)

Description:

The source pointer is interpreted as:

shared [] char[nbytes]

The destination pointer is interpreted as:

shared [nbytes] char[nbytes*THREADS]

The function copies nbytes of the source array into each nbyte-block of the destination array.

1 2 3 54 1 2 3 541 2 3 541 2 3 54

1 2 3 54

TH 0 TH1 TH2 TH3

Shared memory

Local memory

Source Array

Destination Array

Figure 2.4: upc all broadcast

• upc all scatter
void upc all scatter(shared void *destination,shared const void

*source, size t nbytes, upc flag t sync mode)

Description:

The source pointer is interpreted as:

shared [] char[nbytes*THREADS]

The destination array is interpreted as declaring:

shared [nbytes] char[nbytes*THREADS]

The ith thread copies the ith nbyte-block of the source array into the ith nbyte-block of the

destination array which has affinity to the ith thread.

• upc all gather
void upc all gather (shared void *destination,shared const void

*source, size t nbytes, upc flag t sync mode)

2.3. Collective Communication Operations in UPC 8

TH 0 TH1 TH2 TH3

Shared memory

Local memory

Source Array

Destination Array

1 432

1 2 43

Figure 2.5: upc all scatter

Description:

The source pointer is assumed to be an array, declared as:

shared [nbytes] char[nbytes * THREADS]

The destination pointer is assumed to be declared as:

shared [] char[nbytes* THREADS]

The ith thread copies the ith nbyte-block of the source array, with affinity the ith thread,

into the ith nbyte-block of the destination array.

1 2 43

TH 0 TH1 TH2 TH3
Local memory

1 2 3 4
Source Array

Destination Array

Shared memory

Figure 2.6: upc all gather

• upc all gather all
void upc all gather all (shared void *destination,shared const

void *source, size t nbytes, upc flag t sync mode)

Description:

The source pointer is assumed to be an array, declared as:

shared [nbytes] char[nbytes*THREADS]

The destination pointer as:

shared [nbytes*THREADS] char[nbytes*THREADS *THREADS]

The ith thread copies the ith nbyte-block of the source array into the ith nbyte-block of the

2.3. Collective Communication Operations in UPC 9

destination array.

1 2 43 1 2 43 1 2 43 1 2 43

TH 0 TH1 TH2 TH3
Local memory

Shared memory
1 2 3 4

Source Array

Destination Array

Figure 2.7: upc all gather all

• upc all exchange
void upc all exchange (shared void * destination, shared const

void *source, size t nbytes, upc flag t sync mode)

Description:

The source and destination pointers are assumed to be arrays, declared as:

shared [nbytes*THREADS] char[nbytes*THREADS*THREADS]

The ith thread, copies the jth nbyte-block of the source array into the ith nbyte-block of the

destination array which has affinity to the j th thread.

TH 0 TH1 TH2 TH3

Destination Array

Source Array

Shared memory

Local memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Figure 2.8: upc all exchange

• upc all permute
void upc all permute (shared void *destination, shared const void

*source, shared const int *perm, size t nbytes, upc flag t sync mode)

Description:

The source and destination pointers are assumed to be char arrays that are declared as:

2.3. Collective Communication Operations in UPC 10

shared [nbytes] char[nbytes*THREADS]

The ith thread, copies the ith nbyte-block of the source array into the nbyte-block of the

destination array which has affinity to the thread corresponding to the ith element of the

perm array.

TH3TH2TH1TH 0
Local memory

1 23 0

4 2 3 1

1 2 3 4
Source Array

Permute Array

Destination Array

Shared memory

Figure 2.9: upc all permute

Chapter 3

Message passing with GM

GM is a message-based communication system that uses the Myrinet interconnect to send and

receive messages over a connected network. GM provides low CPU overhead, portability, low

latency and high bandwidth. GM also provides reliable ordered delivery between hosts in the

presence of network faults. GM detects and retransmits lost and corrupted packets. GM also

reroutes packets around network faults when alternate routes exists. In the presence of catastrophic

network errors, such as crashed hosts or disconnected links, the undeliverable packets are returned

to the client with an error indication. GM provides two levels of message priority to allow efficient

deadlock free bounded-memory forwarding. GM allows clients to send messages up to 231 − 1

bytes long, under operating systems that support sufficient amounts of DMAable memory to be

allocated. At the application level, the communication model in GM is connectionless. This means

that, unlike other systems that use protocols to set up a communication link prior to message

passing, no handshaking is required by GM applications.

3.1 Programming model

GM applications use a message passing communication model similar to MPI. Before calling any

other GM function, gm init() should be called. gm finalize() should be called after all

other GM calls and before program exits. Each call to gm init() should be balanced by a call

to gm finalize() before the program exits. The calls to gm finalize() are required for

proper shutdown of GM to allow ports to be reused. A GM programming model requires that

every send operation on a source node must have matching receive operation on destination node.

These send and receive calls must also match in buffer size and message priority types at both

ends. This helps to distinguish between incoming messages. For instance, while sending nbytes

bytes of data the sender passes gm min size for length(nbytes) as the size parameter

and nbytes as the message length. The receiver does a gm provide receive buffer()

11

3.1. Programming model 12

with the size parameter gm min size for length(nbytes) to receive the message.

3.1.1 Token flow in GM

Both send and receives in GM are regulated by implicit tokens. These tokens represent space

allocated to the client in various internal GM queues, as depicted in the Figure 3.1. At the ini-

tialization of GM the client implicitly possesses gm num send tokens() send tokens, and

gm num receive tokens() receive tokens.

Send Queue

gm_num_send_tokens () slots

Receive Buffer Pool

gm_num_receive_tokens () slots

Receive Event Queue

gm_num_receive_tokens () +
gm_num_send_tokens () slots

Client
Software

LANai
memory

User Virtual
Memory

Figure 3.1: Tokenflow in send/receive operations in GM

In order to issue either a send or receive operation the client has to make sure that it has a token.

After issuing the send operation the send client implicitly relinquishes the token, which is re-

turned back to it when the send completes. Similarly, a call to gm provide receive buffer

at the receive client will release a receive token and once a matching receive (based on size and

priority) has been received token will be returned to client. Calling a GM API function without

the required tokens has undefined results, but GM usually reports such errors.

3.1.2 DMA allocation schemes in GM

All messages sent and received by GM must reside in DMAable memory. GM API provides func-

tions such as gm dma malloc() and gm dma calloc() to allocate new DMAable memory.

There is also the facility to register existing memory regions in the user space through calls to

gm register memory(). The process of registering memory makes the region non-pageable

and adds a page table entry to a DMAable page table that LANai accesses enabling GM to

read/write onto that region [4]. The process of deregistering memory, using gm deregister memory(),

makes the region pageable again, and involves removing the memory address hash and pausing

the firmware. This makes it more expensive to deregister memory than to register. Our collective

library uses this fact to provide further optimizations.

3.2. Sending messages in GM 13

3.2 Sending messages in GM

As mentioned earlier, to send messages the client application must keep track of the number of

send tokens it has. Before making calls to any GM functions that require tokens, the client ap-

plication should call gm num send tokens() to make sure that it possess the required token.

gm send with callback() is used when the receiving client’s GM port id is different from

the sending client’s GM port-id; otherwise gm send to peer with callback is used since

it is slightly faster. By calling a GM send function, the client relinquishes that send token. The

client passes a callback and context pointer to the send function as shown in Figure 3.2. When the

send completes, GM calls callback, passing a pointer to the GM port, the client-supplied context

pointer, and the status code indicating if the send completed successfully or with an error. When

GM calls the client’s callback function, the send token is implicitly passed back to the client.

Send Queue

Send Packet

Machine
State
Send

gm_send_with_callback(... , ptr, size,, callback, context);
....
event = gm_receive () ;
switch (event − > recv.type) {
....
default:

gm_unknown (port , event) ;
}

callback (port, context, status)
Behind the scene in gm_unknown

Receive Event Queue

Memory
LANai

User Process
Memory

Figure 3.2: Sending message in GM

Most GM programs that rely on GM’s fault tolerance to handle transient network faults, should

consider a send that completed with a status other than GM SUCCESS to be a fatal error. It is

also important to note that the sender does not need to deallocate (or deregister) or modify the

send buffer until the callback function returns successfully, until gm wait for callback()

completes, since the data then might become inconsistent.

3.3. Receiving messages in GM 14

3.3 Receiving messages in GM

GM receives are also regulated by the notion of implicit tokens. After a port is opened, the client

implicitly possesses gm num receive tokens() receive tokens, allowing it to provide GM

with up to this many receive buffers using gm provide receive buffer(). Before a re-

ceiving client can receive a message intended for it, it must provide a receive buffer of the ex-

pected size and priority. With each call to gm provide receive buffer() the receiving

client gives up a receive token as shown in Figure 3.3. This token is returned after a receive

event has been handled properly. Upon providing a receive buffer the receiving client checks for a

gm receive event() using the gm receive event t structure’s recv type field. The re-

ceiver waits until a message of matching size and priority is received. When a message is received

there are numerous receive event types that may be generated depending on the size, priority and

receive port of the receive event type.

LANai

User Virtual
Memory

Machine

Arriving Packet

Receive
State

Receive Event Queue
gm_provide_receive_buffer ()

Receive Buffer Pool

....
gm_receive ()

Memory

Figure 3.3: Receiving message in GM

The client application handles all the expected receive event types as shown in the following

algorithm [6] and the rest are simply passed to the gm unknown() function. The gm unknown()

function is a special function that helps the client application resolve unknown messages types and

allows the GM library to handle errors.

3.3. Receiving messages in GM 15

gm_provide_receive_buffer(g_ptr->my_sync_port,g_ptr->sync_buffer,

gm_min_size_for_length(nbytes),

GM_HIGH_PRIORITY);

messages=1;

while(messages)

{

event = gm_receive(g_ptr->my_sync_port);

switch (gm_ntoh_u8(event->recv.type))

{

case GM_RECV_EVENT

if(g_ptr->node_list[source]==gm_ntohs(event->recv.sender_node_id))

messages--;

else

gm_provide_receive_buffer(g_ptr->my_sync_port,g_ptr->sync_buffer,

gm_min_size_for_length(nbytes),

GM_HIGH_PRIORITY);

break;

case GM_NO_RECV_EVENT:

break;

case default:

gm_unknown(g_ptr->my_sync_port,event);/*calls callback*/

}

}

Chapter 4

Synchronization modes in UPC

4.1 Synchronization Modes

All of the computational and relocalization collective operations in UPC have two synchronization

modes specified by the single argument sync mode. These modes enforce guarantees on the state

of the data before and after the collective call. The following text describes the synchronization

modes in detail [3]. If sync mode has the value (UPC IN XSYNC |UPC OUT YSYNC), then

If X is,

NO : the collective function may begin to read or write data when the first thread has entered the
collective function call
MY : the collective function may begin to read or write only data which has affinity to threads that
have entered the collective function call
ALL : the collective function may begin to read or write data only after all threads have entered
the collective function call
If Y is,

NO : the collective function may read and write data until the last thread has returned from the
collective function call

MY : the collective function call may return in a thread only after all reads and writes of data with
affinity to the thread are complete
ALL : the collective function call may return only after all reads and writes of data are complete.

The NOSYNC synchronization mode is intended to be used when the programmer knows that

the running threads are not dependent on the data being sent or received [5]. This synchroniza-

tion mode should also be used if the programmer knows that there is more computation that can

be done after the collective operation that does not use the data being sent or bundles many dis-

16

4.2. Pairwise Synchronization 17

joint collective operations together and begins as well as ends the sequence with a barrier. The

ALLSYNC synchronization mode is the easiest for the programmer because it provides the equiv-

alent of barrier synchronization, and the programmer knows that no thread will interfere with the

data being sent or received.

It is the work of this project to show that the MYSYNC synchronization mode should be used

when the programmer knows that each thread will work on the data it has received and will not

interfere with any other thread’s data. Our interest is in the implementation and performance

of the MYSYNC synchronization mode compared to a barrier implementation of the ALLSYNC

synchronization mode. As the collective specification has developed there was a large amount of

debate as to whether all three synchronization modes were needed. There is currently a debate

as to whether the MYSYNC synchronization mode will be used at all and whether it promises any

performance gain. The goal of this project is to show that the MYSYNC does have its place in

the collective specification and will have better performance than the ALLSYNC synchronization

mode in some situations.

4.2 Pairwise Synchronization

The pairwise synchronization process involves a pair of threads which communicate in order to

synchronize with each other. Ideally, threads involved in pairwise synchronization do not affect the

performance of other threads. We can use pairwise synchronization to implement upc barrier

or to implement synchronization among an arbitrary subset of threads.

4.2.1 Applications

Pairwise synchronization may be more efficient in some cases because it allows the earlier arriving

threads to synchronize first, allowing them to exit the synchronization step sooner, so they can

continue with other work. These threads would be able to synchronize with whatever threads they

need to, provided those other threads are ready, and not have to wait for all of the other threads

in the system. Certain threads may arrive at a collective call earlier than others due to several

factors, primarily the work environment as other users of the computer may have jobs running

taking up CPU cycles. Also, some algorithms may have threads that perform different tasks than

the other threads in the system. This type of synchronization is desirable for algorithms where the

processors only need to synchronize with their immediate neighbors as some following examples

illustrate.

4.2. Pairwise Synchronization 18

By using pairwise synchronization we can construct routines that are capable of synchronizing

any given set of threads. Applications that are set up in a pipeline or ring fashion are able to

synchronize with their nearest neighbors without forcing all of the processors to synchronize at a

given point [5]. Having thread 0 and thread 2 synchronize is not needed as thread 0 and thread 2

do not have to communicate in a pipeline. Figure 4.1 illustrates these ideas. Each box represents

a thread and the arrows represent the synchronization.

01010
01010
01010
21212
21212
21212

31313
31313
31313
41414
41414
41414

51515
51515
51515
61616
61616
61616 71717

71717
71717
81818
81818
81818

91919
91919
91919
:1:1:
:1:1:
:1:1:

;1;1;
;1;1;
;1;1;
<1<1<
<1<1<
<1<1<

(a) Pipeline Pattern (b) Ring Pattern

Figure 4.1: Pipeline and ring based synchronization patterns

Pairwise synchronization is also applicable to grids [5]. In grid algorithms where each thread

only synchronizes with its immediate neighbors there is no need for threads to synchronize with

threads that are not its immediate neighbors. If we use the UPC barrier then those threads would

be synchronized. This also applies to algorithms that use a torus communication patterns.

Figure 4.2: Grid based synchronization patterns

Figure 4.2 illustrates this scenario in which each thread issues pairwise synchronization calls

which is equal to size of its neighbor set.

Using pairwise synchronization we can also set up a routine to facilitate master/ drone algo-

rithms such as the LU decomposition version of the matrix multiplication algorithm. This allows

the master to synchronize only with the drones that need more work, and not with the entire sys-

tem [5]. Figure 4.3 illustrates a possible synchronization pattern in a master drone algorithms.

4.2. Pairwise Synchronization 19

=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=

?>?>?
?>?>?
?>?>?
?>?>?Master Thread Slave Thread

Slave Thread

Slave Thread

Figure 4.3: Synchronization scheme for master drone algorithms

Chapter 5

Project work

The main goal of this project work is to show that MYSYNC synchronization in UPC collectives

provides better performance than ALLSYNC synchronization in certain scenarios. With this in

mind, we implemented push and pull based UPC level MYSYNC synchronization and compared it

with respective reference implementations of all 6 relocalization collectives. We also implemented

push based GM level synchronization and compared it with Mishra’s push based GM level imple-

mentation of ALLSYNC synchronization. Finally, we integrated our implementation of MYSYNC

synchronization with the reference implementation of ALLSYNC and NOSYNC synchronization

so that user can use our library for any combination of UPC IN *SYNC and UPC OUT *SYNC

(Figure 6.28) to specify synchronization at the time of entering and leaving the collective oper-

ation. The performance evaluation is done by using the testbed developed at MTU. The details

of this work are provided below and the results from the testbed are shown in the following chapter.

5.1 upc all broadcast

5.1.1 Push algorithm (myPUSH)

In the push based implementation of MYSYNC synchronization for upc all broadcast (myPUSH),

each thread signals source thread that its ready to accept data and keep waiting for the exit signal

from source thread. On the other hand, source thread loops on a busy wait until it serves all the

threads. When it gets a signal from any of the threads, it sends the data to that particular thread

and signals it to exit from the collective. In order to perform two successive calls to collectives

with synchronization mode as UPC IN MYSYNC | UPC OUT MYSYNC, each thread maintains a

collective call counter. Depending upon the counter value each thread decides which copy of two

data structures to use for issuing synchronization signals in MYSYNC synchronization. This design

20

5.1. upc all broadcast 21

UPC_OUT_ALLSYNC

UPC_OUT_ALLSYNC

UPC_OUT_ALLSYNC

UPC_OUT_MYSYNC

UPC_OUT_MYSYNC

UPC_OUT_NOSYNC

UPC_OUT_NOSYNC

UPC_OUT_MYSYNC

UPC_OUT_NOSYNC

UPC_IN_NOSYNC

UPC_IN_NOSYNC

UPC_IN_NOSYNC

UPC_IN_ALLSYNC

UPC_IN_ALLSYNC

UPC_IN_ALLSYNC

UPC_IN_MYSYNC

UPC_IN_MYSYNC

UPC_IN_MYSYNC

Synchronization
Collective In

Synchronization
Collective Out

Figure 5.1: Synchronization types in UPC

avoids a race condition between consecutive collective calls. The pseudocode and data structure

used for MYSYNC implementation is given below.

shared[THREADS] int upc ready1[THREADS*THREADS];

shared[THREADS] int upc ready2[THREADS*THREADS];

shared[THREADS] int upc out1[THREADS*THREADS];

shared[THREADS] int upc out2[THREADS*THREADS];

begin upc_all_broadcast(shared void *destination,

shared const void *source,

size_t nbytes,

upc_flag_t sync_mode)

source_thread = upc_threadof ’source’ array

collective_count++;

count=THREADS;

if(collective_count is odd)

if(MYTHREAD = source_thread)

while(count)

5.1. upc all broadcast 22

for i=0 to THREADS

if(upc_ready1[MYTHREAD][i])

upc_memcpy ’nbytes’ from source into ’destination+i’

upc_ready1[MYTHREAD][i]=0;

upc_out1[i][MYTHREAD]=1;

count--;

end if

end for

end while

else

upc_ready1[MYTHREAD][source_thread]=1;

while(1)

if(upc_out1[MYTHREAD][source_thread])

upc_out1[MYTHREAD][source_thread]=0;

break;

end if

end while

end ifelse

else

/*Do the same for even collective call count using different set of

data structures to avoid race condition*/

5.1.2 Pull algorithm (myPULL)

In the pull based implementation of MYSYNC synchronization for upc all broadcast (myPULL)

source thread signals to each thread that it is ready to deliver data. It waits until it gets THREADS−1

exit signals. On the other hand, each thread loops on busy wait until it receives ready signal from

source thread. Upon receiving ready signal, each thread pulls data from source thread and issues

exit signal to source thread. The Pseudocode used for MYSYNC implementation is given below.

begin upc_all_broadcast(shared void *destination,

shared const void *source,

size_t nbytes,

upc_flag_t sync_mode)

source_thread = upc_threadof ’source’ array

collective_count++;

5.1. upc all broadcast 23

count=THREADS;

if(collective_count is odd)

if(MYTHREAD = source_thread)

for i=0 to THREADS

upc_ready1[i][MYTHREAD]=1;

end for

while(count)

for i=0 to THREADS

if(upc_out1[MYTHREAD][i])

upc_out1[MYTHREAD][i]=0;

count--;

endif

end for

end while

else

while(1)

if(upc_ready1[MYTHREAD][source_thread])

upc_memcpy ’nbytes’ from source into ’destination+i’

upc_ready1[MYTHREAD][source_thread]=0;

break;

end if

end while

upc_out1[source_thread][MYTHREAD]=1;

end ifelse

else

/*Do the same for even collective call count using different set of

data structures to avoid race condition*/

5.1.3 GM based push algorithm (myGMTU)

The myGMTU algorithm makes use of a tree based broadcast algorithm which uses a fixed tree

structure as shown in Figure 5.2. In Figure 5.2 thread 0 is the source thread. If thread 2 is the

source thread, then the data transfer takes place as shown in Figure 5.3. Here, we swap source

thread node with thread 0 node in the tree structure in Figure 5.2 and use the modified tree to

transfer the data.

5.2. upc all scatter 24

6

0

0

0

4

2

1

4

2 3 4 5 6 7

Itr 0

Itr 1

Itr 2

Figure 5.2: Static tree Broadcast1

6

4

1

4

3 4 5 6 7

Itr 0

Itr 1

Itr 2

2

2

2 0

0

Figure 5.3: Static tree Broadcast2

Implementation of MYSYNC synchronization for this push based algorithm takes place in four

steps.

1. Each thread signals its parent that it has arrived at the collective call.

2. Each thread determines the child threads to which it is going to transfer data.

3. Each thread waits for the data signal from its parent thread

4. When any child thread is ready to receive data, data is transferred

5.2 upc all scatter

The implementation of the myPULL and myPUSH algorithms for upc all scatter is very

similar to the one explained for upc all broadcast. For myGMTU algorithm, instead of

using the tree based structure we transfer data as in the myPUSH implementation.

5.3 upc all gather

In the push based implementation of MYSYNC in upc all gather destination thread signals

each thread that it has arrived at the collective and wait for an exit signal from all other threads.

On the other hand, all the THREADS−1 threads wait for an arrival signal from the destination

thread. Upon receiving the arrival signal each thread transfers data to the destination thread and

sends an exit signal to it. For the myGMTU algorithm the same synchronization mechanism is

used.

5.4. upc all gather all 25

In the pull based implementation each thread reports its arrival to the destination thread and

waits for an exit signal from destination thread. Each destination thread waits and then pulls data

from the source thread as soon as it receives an arrival signal. The destination thread then send

an exit signal to source thread. After pulling that from all threads destination thread exits the

collective call.

5.4 upc all gather all

For upc all gather all collective function, pull based as well as push based implementa-

tions are same because each thread has to wait for all other threads. To implement MYSYNC

synchronization each thread signals its arrival to all other threads and waits for arrival signal from

all other threads. As soon as it receives an arrival signal from another thread it either pushes/pulls

data to/from the other thread depending upon type of algorithm.

5.5 upc all exchange

upc all exchange collective function moves data in a pattern very similar to the collective

upc all gather all. The only difference is the way data is transferred from source array to

destination array. Thus, the synchronization mechanism used is same as upc all gather all.

5.6 upc all permute

In the push based implementation each thread sends signal to the thread with id equal to permute[MYTHREAD]

about its arrival and finds its partner thread by searching its thread id in the permute array. Upon

receiving signal from its partner each thread transfers data and send an exit signal. As soon as a

thread receives an exit signal from its partner thread and thread with id permute[MYTHREAD]

it leaves the collective call. The same synchronization mechanism is used for the myGMTU algo-

rithm.

In the pull based implementation each thread send an arrival signal to its partner thread. Upon

receiving signal from permute[MYTHREAD] each thread transfers data to it and send an exit

signal. As soon as each thread receives an exit signal from partner thread and from thread with id

permute[MYTHREAD] it leaves the collective call.

Chapter 6

Performance Evaluation

6.1 Testbed

Standard benchmarks, like the Pallas MPI benchmarks (PMB), were not specifically constructed

to measure collective communication time for different collective libraries. In these benchmark,

computational time dominates the collective time by several orders of magnitude. Therefore, we

are going to use a testbed developed by Alok Mishra at MTU that was specifically developed to

compare collective communication times of different collective libraries. This testbed allows us

to set computational time as per requirement. The term collective time is the maximum time spent

by any thread in the collective call. Computational time can be defined as the time spent by any

thread in computing something between two consecutive collective calls.

The testbed interleaves computation and collective communication, to provide comparisons

close to real world applications [4]. In order to compare the UPC IN ALLSYNC | UPC OUT ALLSYNC

synchronization mode Mishra used to set computational time slightly higher than the collective

communication time, to ensure that all threads have completed one round of collective communi-

cation before entering the next round. In our case, we want to compare collective communication

time for the UPC IN MYSYNC | UPC OUT MYSYNC synchronization mode and we came up

with some modifications to the testbed which are explained in the following subsection.

The testbed conducts a warm-up routine with a small number of collective calls before con-

ducting the actual test runs. This allows us to obtain the raw collective time with no computation.

The collective time measured is then used to determine how much computation should be done

between two successive collective calls. All of the computation is local and there are no remote

operations during the compute phase. In Mishra’s testbed the computation time was set to twice

that of the collective time to quiet the network before measuring the collective time again. In order

26

6.1. Testbed 27

to calculate the collective time, the testbed trials t is set to be 100 and the number of threads is

assumed to be T . Each thread determines the time taken by collective call for all the testbed trials.

Let tij be the time the collective call took on thread i for trial j. Each thread i then determines the

average time taken by the collective calls in the testbed trials as ai = 1

t

∑t
j=1

tij . At the end, thread

0 calculates maxT−1

i=0
ai, which is the maximum of average collective call time in testbed trials on

all threads. This maximum time is reported as the collective time. In order to calculate the overall

time testbed computes the slowest thread i for which ai is maximum. Testbed then reports time

taken by the slowest thread to execute the entire set of trials as the overall time for the testbed.

6.1.1 Modifications in Testbed

During the study of the testbed we found that there is need to modify the testbed’s approach of

collective and overall time measurement. All the modifications mentioned below are incorporated

to the testbed algorithm to obtain the results.

• In order to more consistently measure the difference in overall time due to MYSYNC syn-

chronization compared to ALLSYNC synchronization, we decided to set the computational

time to be twice that of the collective time of the slowest algorithm. With this arrangement,

for a given message length each thread does the same amount of computation irrespective

of the algorithm.

• In order to determine collective time, each thread reports its collective time to thread 0 for

each testbed trial. Thread 0 determines the maximum of the reported timings for each trial.

The Maximum time collective call took for trial j on all threads is mj = maxT−1

i=0
{tij}. At

the end of the testbed trials, thread 0 calculates the collective time to be c = 1

t

∑t
j=1

mj

which is the average of the maximum times on each trial.

• The overall time is the maximum time taken by any thread to complete all the testbed trials.

6.1.2 Testbed parameters

To begin the process of measurement we needed to identify the important parameters that would

allow us to measure the performance of the library functions. Below is a list of parameters that we

identified along with some discussion.

• Hardware platform

We tested our library on a 15 node Linux/Myrinet cluster. The cluster is also connected by a

fast ethernet connection. We used the MPICH-GM distribution of the MuPC runtime system

for UPC.

6.1. Testbed 28

• Algorithms

The testbed can be compiled by linking different collective libraries and comparing one

implementation with another. We compared the performance of the following implementa-

tions.

– mPULL - Reference PULL based implementation of MYSYNC synchronization

– mPUSH - Reference PUSH based implementation of MYSYNC synchronization

– myPULL - PULL based (UPC) implementation of MYSYNC synchronization

– myPUSH - PULL based (UPC) implementation of MYSYNC synchronization

– GMTU - PUSH based (GM level) implementation of MYSYNC synchronization

– myGMTU - PUSH based (GM level) implementation of MYSYNC synchronization

• Collective Operation

The testbed is designed to measure the performance of the following collective:

– upc all broadcast

– upc all scatter

– upc all gather

– upc all gather all

– upc all exchange

– upc all permute

• Number of threads involved

The number of processes, or UPC threads, varies from 2 to 15. (Currently one node on lionel

is not functioning and hence we can use maximum 15 threads. Run times were measured

for 2 8 and 15 threads.

• Synchronization within the collective

The synchronization flags in UPC collective communication operations can be used by

a programmer to control the type of synchronization within a collective function. The

IN *SYNC and OUT *SYNC flags, where ’*’ can be either ALL, MY or NO, are used in

combination to specify the synchronization before and after data transfer within a collec-

tive. We set the synchronization mode for the collective testbed to be UPC IN MYSYNC |

UPC OUT MYSYNC.

• Message Length

Performance was measured for message lengths from 8 bytes to 16K bytes.

6.2. Performance analysis 29

• Number of testbed runs

The testbed runs 100 identical trials to determine collective time and overall time.

• Computational coefficient

This parameter is used to compute computational time from the warm-up collective time of

slowest algorithm which is assumed to be the mPUSH implementation of each collective.

Computational time is set to twice that of computational coefficient.

6.2 Performance analysis

In the implementation of MYSYNC in broadcast and scatter, either the source thread reports its ar-

rival at the collective call to all other threads or each thread reports its arrival to the source thread.

In the case of the gather collective operation each thread reports to the destination thread about its

arrival or the destination thread reports its arrival to all other threads. In all cases this results in

THREADS−1 messages. In the gather all and exchange collectives each thread reports to all other

threads about its arrival at the collective call resulting in THREADS*(THREADS −1) messages.

For the permute operation, each thread reports to its partner thread about its arrival resulting in

THREADSmessages. Thus, there are 2 ∗ (THREADS− 1) messages required in the implementation

of MYSYNC for broadcast, scatter and gather; 2 ∗ THREADS messages for the permute collective

operation and 2∗THREADS∗ (THREADS−1) messages are required for the gather all and exchange

collective operations.

upc_all_broadcast

UPC_COLLECTIVES
ALLSYNC MYSYNC

upc_all_gather_all

upc_all_exchange

upc_all_permute

2*(THREADS−1)

2*(THREADS−1)

2*(THREADS−1)

2*(THREADS−1)

2*THREADS*(THREADS−1)

2*THREADS*(THREADS−1)

upc_all_scatter

upc_all_gather

4*(THREADS−1)

4*(THREADS−1)

4*(THREADS−1)

4*(THREADS−1)

4*(THREADS−1)

4*(THREADS−1)

Figure 6.1: Message overhead in ALLSYNC,MYSYNC synchronization

On the other hand, upc barrier, which is used to implement the ALLSYNC mode, causes

2 ∗ (THREADS − 1) messages. As upc barrier is used twice, when entering and leaving the

collective, the total messages required to implement ALLSYNC mode are 4 ∗ (THREADS − 1).

6.2. Performance analysis 30

Table in Figure 6.1 summarizes the message overhead for ALLSYNC and MYSYNC in each of the

six relocalization collectives.

The second parameter which has impact on the performance of collectives is number of com-

munication steps involved in synchronization mechanism. Figure 6.2 gives the number of com-

munication steps, for the MYSYNC and ALLSYNC modes, for the 6 relocalization collectives.

upc_all_broadcast

upc_all_scatter

upc_all_gather

upc_all_gather_all

upc_all_exchange

upc_all_permute

ALLSYNCUPC_COLLECTIVES MYSYNC

8*[log (THREADS)−1]

8*[log (THREADS)−1]

8*[log (THREADS)−1]

8*[log (THREADS)−1]

8*[log (THREADS)−1]

8*[log (THREADS)−1]

2*(THREADS−1)

2*(THREADS−1)

2*(THREADS−1)

2*(THREADS−1)

2*(THREADS−1)

2

Figure 6.2: Number of communication steps in ALLSYNC and MYSYNC

Other than the number of communication steps and message overhead performance is affected

by parallelism in data transfer and synchronization with other threads. MYSYNC mode can make

progress on data transfer if some threads arrive late at the collective call. On the other hand,

upc barrier used to implement ALLSYNC, do not allow transfer of data until all the threads

are synchronized. Thus the waiting time of source thread is reduced due to parallelism in MYSYNC

which leads to better performance. Reduced waiting time of all other threads in MYSYNC, as

compared to ALLSYNC results in overall lesser execution time of an application.

6.2.1 Result:upc all broadcast

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

6.2.2 Result:upc all scatter

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

6.2. Performance analysis 31

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_broadcast for 2 Threads

mPULL
myPULL

Figure 6.3: Collective Time: upc all broadcast, 2 Threads, Pull implementation

 200

 300

 400

 500

 600

 700

 800

 900

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_broadcast for 8 Threads

mPULL
myPULL

Figure 6.4: Collective Time: upc all broadcast, 8 Threads, Pull implementation

6.2. Performance analysis 32

 30000

 40000

 50000

 60000

 70000

 80000

 90000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_broadcast for 8 Threads

mPULL
myPULL

Figure 6.5: Overall Time: upc all broadcast, 8 Threads, Pull implementation

 200

 300

 400

 500

 600

 700

 800

 900

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_broadcast for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.6: Collective Time: upc all broadcast, 8 Threads, Push implementations

6.2. Performance analysis 33

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_broadcast for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.7: Overall Time: upc all broadcast, 8 Threads, Push implementations

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_scatter for 2 Threads

mPULL
myPULL

Figure 6.8: Collective Time: upc all scatter, 2 Threads, Pull implementation

6.2. Performance analysis 34

 300

 400

 500

 600

 700

 800

 900

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_scatter for 8 Threads

mPULL
myPULL

Figure 6.9: Collective Time: upc all scatter, 8 Threads, Pull implementation

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_scatter for 8 Threads

mPULL
myPULL

Figure 6.10: Overall Time: upc all scatter, 8 Threads, Pull implementation

6.2. Performance analysis 35

6.2.3 Result:upc all gather

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

 120

 140

 160

 180

 200

 220

 240

 260

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_gather for 2 Threads

mPULL
myPULL

Figure 6.11: Collective Time: upc all gather, 2 Threads, Pull implementation

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_gather for 8 Threads

mPULL
myPULL

Figure 6.12: Collective Time: upc all gather, 8 Threads, Pull implementation

6.2. Performance analysis 36

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_gather for 8 Threads

mPULL
myPULL

Figure 6.13: Overall Time: upc all gather, 8 Threads, Pull implementation

 300

 400

 500

 600

 700

 800

 900

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_gather for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.14: Collective Time: upc all gather, 8 Threads, Push implementations

6.2. Performance analysis 37

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_gather for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.15: Overall Time: upc all gather, 8 Threads, Push implementations

6.2.4 Result:upc all gather all

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_gather_all for 2 Threads

mPULL
myPULL

Figure 6.16: Collective Time: upc all gather all, 2 Threads, Pull implementation

6.2. Performance analysis 38

 500

 1000

 1500

 2000

 2500

 3000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_gather_all for 8 Threads

mPULL
myPULL

Figure 6.17: Collective Time: upc all gather all, 8 Threads, Pull implementation

 50000

 100000

 150000

 200000

 250000

 300000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_gather_all for 8 Threads

mPULL
myPULL

Figure 6.18: Overall Time: upc all gather all, 8 Threads, Pull implementation

6.2. Performance analysis 39

6.2.5 Result:upc all exchange

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_exchange for 2 Threads

mPULL
myPULL

Figure 6.19: Collective Time: upc all exchange, 2 Threads, Pull implementation

 0

 500

 1000

 1500

 2000

 2500

 3000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_exchange for 8 Threads

mPULL
myPULL

Figure 6.20: Collective Time: upc all exchange, 8 Threads, Pull implementation

6.2. Performance analysis 40

 0

 50000

 100000

 150000

 200000

 250000

 300000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_exchange for 8 Threads

mPULL
myPULL

Figure 6.21: Overall Time: upc all exchange, 8 Threads, Pull implementation

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_exchange for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.22: Collective Time: upc all exchange, 8 Threads, Push implementations

6.2. Performance analysis 41

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_exchange for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.23: Overall Time: upc all exchange, 8 Threads, Push implementations

6.2.6 Result:upc all permute

The results for 2 and 8 threads, comparing the UPC level pull-based implementation of MYSYNC

against ALLSYNC and myPUSH and myGMTU implementations against reference push imple-

mentation and Mishra’s GMTU implementation are shown below.

 100

 150

 200

 250

 300

 350

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_permute for 2 Threads

mPULL
myPULL

Figure 6.24: Collective Time: upc all permute, 2 Threads, Pull implementation

6.2. Performance analysis 42

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_permute for 8 Threads

mPULL
myPULL

Figure 6.25: Collective Time: upc all permute, 8 Threads, Pull implementation

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_permute for 8 Threads

mPULL
myPULL

Figure 6.26: Overall Time: upc all permute, 8 Threads, Pull implementation

6.2. Performance analysis 43

 200

 300

 400

 500

 600

 700

 800

 900

 1000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_permute for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.27: Collective Time: upc all permute, 8 Threads, Push implementations

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_permute for 8 Threads

mPUSH
myPUSH

GMTU
myGMTU

Figure 6.28: Overall Time: upc all broadcast, 8 Threads, Push implementations

6.3. Effect of number of threads on performance 44

6.3 Effect of number of threads on performance

The following diagrams illustrates the collective time and overall time for upc all broadcast

on 15 threads. We compared the results for upc all broadcast on 2 and 8 threads, shown in

Figure 6.3, 6.4 and 6.5 respectively, with the results obtained on 15 threads in Figures 6.29 and

6.30.

 400

 600

 800

 1000

 1200

 1400

 1600

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Collective Time: upc_all_broadcast for 15 Threads

mPULL
myPULL

Figure 6.29: Collective Time: upc all permute, 15 Threads, Pull implementations

 40000

 60000

 80000

 100000

 120000

 140000

 160000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(u

se
cs

)

Message Length (bytes)

Overall Time: upc_all_broadcast for 15 Threads

mPULL
myPULL

Figure 6.30: Overall Time: upc all broadcast, 15 Threads, Pull implementations

6.4. Conclusion 45

We noticed that the performance improvement due to MYSYNC mode reduces with increase

in number of threads . This is because the number of communication steps are proportional to

log(THREADS) in ALLSYNC mode whereas in the MYSYNC mode communication steps are pro-

portional to number of THREADS. Thus increasing the number of threads, increases the synchro-

nization time required in MYSYNC mode. This leads to increase in collective time and overall

time.

6.4 Conclusion

The results that we got from the testbed indicate that the collective time increases with increase in

the number of threads. Increase in the collective time leads to increase in the overall time. Also,

the performance improvement that we got in MYSYNC mode than ALLSYNCmode is independent

of the message length. This is because the performance improvement is due to collective com-

munication steps and the parallelism in synchronization and data transfer. We also noticed that

in the push implementation of Permute, the ALLSYNC synchronization performs better than

the MYSYNC synchronization mode. This is because in the MYSYNC mode each thread finds the

partner thread by accessing data from shared memory to which thread does not have affinity.

Chapter 7

Conclusion

The UPC-level library developed in this project implements the MYSYNC synchronization mode

along with ALLSYNC and NOSYNC reference implementation, providing users with all possible 9

synchronization modes for collectives. Users can also use the GM version of the library which in-

tegrates the MYSYNC implementation with Mishra’s implementations of ALLSYNC and NOSYNC.

The MYSYNC implementation makes use of pairwise synchronization of threads and thus each

thread avoids waiting for all other threads with which it does not need to communicate.

As per the analysis, the collective time mainly consists of communication steps in synchroniza-

tion, message overhead due to synchronization and data transfer time. In the MYSYNC implemen-

tation message overhead due to synchronization is less than in ALLSYNC. But in ALLSYNCmode,

synchronization messages are passed along the tree in parallel fashion. The number of commu-

nication steps in MYSYNC mode are less than in ALLSYNC mode for small number of threads.

MYSYNCmode can make progress on data transfer if some threads arrive late at the collective call.

On the other hand, no progress can be made in data transfer in ALLSYNC mode. This leads to

decrease in waiting time of source thread in MYSYNC mode and thus, it improves the collective

time. The decrease in waiting time of other threads in MYSYNC mode lead to performance gain in

overall execution time. The number of communication steps in the MYSYNC are proportional to

THREADS whereas in ALLSYNC mode communication steps are proportional to log(THREADS).

Thus, ALLSYNC mode performs better when compared with MYSYNC mode on large number of

threads.

As per the results obtained, permute collective operation has performance improvement of al-

most 20% as each thread waits for only 2 threads. ALLSYNC push implementation of permute

collective operation performs better than MYSYNC implementation as MYSYNC has more remote

references than ALLSYNC implementation. In broadcast, scatter and gather collectives, collective

46

47

time gain is considerable and overall performance improvement is close to 15%. For gatherall and

exchange collectives the performance improvement is minimal as the message overhead is more

as compared to message overhead in ALLSYNC mode.

During the course of the project we have also noticed that, as a part of future work, we can pro-

vide MuPC level non collective function upc notify(int) which we can use to implement

MYSYNC synchronization. In this function, if the argument integer is -1 then the thread which is-

sues call to this function signals all other threads about its arrival in the collective. If the argument

integer is positive then it should be less than number of threads. In that case, thread which issues

call to upc notify(int) signals to thread with id equal to integer passed as an argument. Us-

ing this function we can reduce the message overhead of MYSYNC synchronization in collectives.

Thus, MYSYNC synchronization mode has its own space in UPC collectives.

Bibliography

[1] UPC Consortium. UPC language specifications v1.2, 2005.

Available at http://www.gwu.edu/ upc/docs/upc specs 1.2.pdf.

[2] S. Chauvin, P. Saha, S. Annareddy, T. El-Ghazawi and F. Cantonnet. UPC Manual. Techni-
cal report, George Washington university, 2003.

Available at http://www.gwu.edu/ upc/docs/Manual-01r.pdf.

[3] E. Wiebel, D. Greenberg and S. Seidel. UPC collective Operations Specifications v1.0.
Technical report, 2003.

Available at http://www.gwu.edu/ upc/docs/UPC Coll Spec V1.0.pdf

[4] A. Mishra. Implementing UPC collectives using GM-API. MS Project report. Michigan

Technological University, 2004.

[5] E. Fessenden. Pairwise synchronization in UPC. MS Thesis report. Michigan Technological

University, 2004.

[6] Myrinet technical support team. The GM message passing system. Reference guide to GM-
API.
Available at http://www.myri.com/scs/GM-2/doc/html/

[7] T. El-Ghazwi, W. Carlson, T. Sterling and K. Yelick. UPC: Distributed shared memory
programming. Publisher : John Wiley & Sons, 2005.

48

	Abstract
	Introduction
	MuPC
	GM
	Motivation

	Collective Communication in UPC
	Need for Collective Communication Operations
	Push and Pull Implementations
	Collective Communication Operations in UPC

	Message passing with GM
	Programming model
	Token flow in GM
	DMA allocation schemes in GM

	Sending messages in GM
	Receiving messages in GM

	Synchronization modes in UPC
	Synchronization Modes
	 Pairwise Synchronization
	Applications

	Project work
	upc_all_broadcast
	Push algorithm (myPUSH)
	Pull algorithm (myPULL)
	GM based push algorithm (myGMTU)

	upc_all_scatter
	upc_all_gather
	upc_all_gather_all
	upc_all_exchange
	upc_all_permute

	Performance Evaluation
	Testbed
	Modifications in Testbed
	Testbed parameters

	Performance analysis
	Result:upc_all_broadcast
	Result:upc_all_scatter
	Result:upc_all_gather
	Result:upc_all_gather_all
	Result:upc_all_exchange
	Result:upc_all_permute

	Effect of number of threads on performance
	Conclusion

	Conclusion
	Bibliography

