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This paper investigates asymptotic and exact lower bounds for the communication costs of distributing
Quantum Fourier Transform (QFT) on clique networks of quantum machines. We first show that determining
lower/upper bound communication complexity is closely related to the number of machines whose qubit
capacity becomes full at different stages of QFT. Subsequently, we provide lower and upper bounds on the
number of full machines during the execution of distributed QFT. These bounds help us determine the lower
bound of the number of non-local operations that should be performed during distribution of QFT on clique
networks. We initially analyze the lower bound on communication complexity for the case where machines
have capacity two; i.e., each quantum machine can hold at most two qubits. We show that, in this case, the
lower bound is Ω(n2), where n denotes the number of input qubits. Considering the existing quadratic upper
bound in related work, our lower bound result implies that the existing upper bound is actually tight when
machine capacity is two. This is a significant theoretical boundary for developers of distribution compilers.
We also show that if machine capacity c > 2 is a fixed fraction of n, then the lower bound becomes linear.
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1 Introduction

The distribution of Quantum Fourier Transform (QFT) is an important problem as QFT is a crucial building
block for many Quantum Algorithms (QAs) (e.g., Shor’s factoring algorithm [20]) and its distributed version
plays an important role in Distributed Quantum Computing (DQC). Due to limited qubit capacity of Noisy
Intermediate Scale Quantum (NISQ) machines, large scale quantum problem solving can be achieved through
the distribution of QAs over networks of quantummachines. One of the important challenges in DQC includes
the compilation of QAs to their distributed versions based on the constraints of a target Quantum Network
(QN). Numerous methods [10, 25, 24] exist for such compilations, most of which strive to minimize the
cost of quantum communication during distribution. As such, it is of paramount importance to know the
theoretical boundaries of the communication costs when developing compilers. While there are methods that
analyze the upper bound communication complexity of the distribution of QFT, there is a need for knowing
what the best compilation schemes can achieve in terms of quantum communication costs; i.e., lower bound.
This paper provides exact and asymptotic lower bounds for the communication complexity of distributing
QFT, which identifies the minimum resources needed for distributing QFT.

Most existing methods for the analysis of QFT either provide upper bound asymptotic complexity or
focus mainly on the implementation of QFT in hardware rather than its distribution. For example, Ki-
taev [14] proposed a circuit that approximates QFT for arbitrary dimension N , and proved that the size
of such a circuit has an upper bound of log(N/ϵ) for some error bound ϵ. Coppersmith [5] presents a
method for approximating QFT within some error bound ϵ, and shows an upper bound of O(nlog(n/ϵ))
on the size of such an approximate circuit where its dimension is N = 2n and n denotes the number of
qubits. Cleve and Watrous [4] present a parallelized unitary circuit that approximates QFT up to some
error bound ϵ > 0. They show that, if the dimension of QFT is a power of two, then their circuit size
has an upper bound O(nlog(n/ϵ)), which becomes quadratic for exponentially small ϵ. They also give the
upper bound O(n(logn)2loglogn) on the size of an exact QFT modulo 2n. Their approach is compositional
in a vertical manner in that the quantum circuit is partitioned into sub-circuits that should be composed
sequentially, whereas distribution is about horizontal partitioning where qubits are distributed across the
network. Yimsiriwattana and Lomonaco [27] present an upper bound O(n2) for the number of global gates
in a network of m machines with capacity k, where n denotes the number of qubits and n = mk, but they
impose no constraints on network connectivity. A global gate is a gate whose inputs are distributed across
several machines, thereby requiring quantum communication to make it local. Ferrari et al. [10] analyze
worst case communication complexity of distribution on a linear nearest-neighbor topology where machine
capacity is one. They show that the communication complexity grows quadratically with the number of
logical qubits and linearly with the depth of the distributed quantum circuit. In another paper, Ferrari et
al. [11] present a modular architecture for distribution compilers. Their architecture takes in a quantum
circuit and a network configuration, and then generates a compiled circuit ready to be distributed on QN.
They show that the overall asymptotic complexity of their approach is O(n3). Van Meter [22] shows that the
number of swap operations for inter-node communication on a linear topology is quadratic in the number
of qubits. Yimsiriwattana and Lomonaco [26] show that the asymptotic upper bound of distributing Shor’s
algorithm, including the QFT circuit, is quadratic in the number of qubits. Escofet et al. [9] show that
the exact upper bound on the number of global gates is proportional to twice the number of gates with two
inputs (i.e., binary gates), and the exact lower bound is proportional to the number of binary gates, which
is quadratic in the case of QFT.

This paper investigates the best that distribution schemes can achieve in terms of communication costs
of distributing QFT. Specifically, we consider a quantum network with clique topology (i.e., complete graph)
where any pair of quantum machines have a direct quantum link between them. The clique topology provides
a best case scenario in terms of the costs of establishing quantum link between arbitrary pairs of machines
in the network. Then, we present a theorem that shows a remote swap operation becomes unavoidable when
a global gate has its input qubits located in distinct full machines. Subsequently, we establish lower and
upper bounds on the number of full machines that can exist in each stage of the QFT circuit as it is executed
in a distributed fashion. The relation between the number of full machines and the necessity of quantum
communication is revealing as it helps us to determine the asymptotic lower bound of distributing QFT on
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a clique network. We first analyze the lower bound for a clique network of machines with capacity two;
i.e., each machine can hold at most two qubits. We show that, in this case, the asymptotic lower bound
for communication costs of distributing QFTn on a clique network is Ω(n2), where n denotes the number of
input qubits. Then, we generalize this result for the case where machine capacity is c > 2, and show that
the asymptotic lower bound for communication costs is Ω(n2/c). This implies that, if c = n

t where t > 1 is
a constant independent of the number of machines, then the asymptotic lower bound of the communication
costs becomes linear. In other words, in order to achieve linear asymptotic lower bound for communication
costs of distributing QFT in a clique network, we need to scale up the machine capacity c with constant ratio
of n

t as the number of qubits n increases. If the topology is not clique, then every pair of qubits involved in a
global gate in QFT must eventually become local, which will require more remote operations (e.g., swap) to
ensure that the pair of input qubits move to the same machine. For example, if the topology is a line/chain
of machines, then for every global gate to become local we would need m/2 quantum communications on
average, where m denotes the number of machines in the network. Thus, whatever lower bound we find
for QFT on a clique network, should be multiplied by m/2 to give us an average case lower bound on a
chain. This shows the significance of our results in that it will enable us to identify lower bounds of quantum
communication costs for topologies other than clique too.
Organization. Section 2 provides some preliminary concepts and assumptions used in this work. Then,
Section 3 analyzes the communication complexity of distributing QFT over clique networks of two-qubit
machines. Section 4 then generalizes the results for networks of c-qubit machines where c > 2. Subsequently,
Section 5 discusses related works. Finally, Section 6 makes concluding remarks and discusses future work.

2 Preliminaries

This section provides some basic concepts and assumptions required for the complexity analysis in this paper.
Subsection 2.1 covers quantum circuits and their distribution at a high level of abstraction. Then, Subsection
2.2 represents the Quantum Fourier Transform (QFT) circuit that we analyze for distribution over a clique
network. Finally, Subsection 2.3 introduces some of the underlying assumptions we make in our analysis.

2.1 Quantum Circuits and Their Distribution

Quantum Circuits (QCs) capture the logic and order of gate-based quantum transformations that are per-
formed on quantum information bits (i.e., qubits) towards solving a problem. A circuit contains a set of
horizontal wires carrying quantum information from left to right and quantum gates applied on a subset
of wires vertically [17]. There is a one-to-one correspondence between the input qubits of a circuit and its
wires. For example, Figure 1-(a) illustrates a quantum circuit processing four qubits through applying a set
of gates. A quantum machine runs a circuit by executing its gates from left to right. Notice that, some
gates have a single qubit as their input and some take two qubits (a.k.a. binary gates) in Figure 1-(a). In
general, gates might have multiple input qubits; however, it is known [15] that any quantum circuit can be
represented by another circuit formed of a universal set of single-qubit and binary gates to some degree of
accuracy. In this paper, we consider an abstract representation of quantum circuits, called the circuit graph
(e.g., see Figure1-(b)), where we consider a vertex as a point of intersection between a wire and a gate, and
an edge represents a binary gate. Each layer in a circuit is a collection of gates whose input qubits are
disjoint and can be executed simultaneously; e.g., the first two binary gates in Figure 1-(a) form the first
layer of the circuit.

Circuit distribution is performed horizontally where proper subsets of qubits are assigned to different
quantum machines in the network (see Figure 2). As a result, the inputs of some gates may be located in
different machines, called global gates; e.g., the first H gate from left in Figure 2. To enable the execution of
such gates, they should be localized. That is, make the remote inputs locally available to the machine that
is supposed to execute a global gate g, thereby turning g into a local gate. We use the term ‘localization’ for
both global gates and their input qubits. Such localization requires a means for the transmission of quantum
information from one machine to another. However, quantum information cannot be copied [23], nor can
it be communicated without error. There are reliable primitives for communicating quantum information,
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Figure 1: Abstracting circuit (a) as the circuit graph (b).

Figure 2: A distributed circuit on two machines M1 and M2 connected by a quantum link..

including teleportation [3] (a.k.a. TeleData) and Cat-entanglement/disentanglement (Cat-Ent/Cat-DisEnt)
[8] (a.k.a. TeleGate). Without loss of generality (Wlog), we use the number of teleportations as an indicator
of the number of occasions where such localizations are required, but our analysis is independent of what
kind of remote operation is used. For example, to teleport a qubit of information from a location loc0 to
another location loc1, we need two classic bits of information as well as an Entangled Pair (EP) of qubits,
called Ebit, that are already distributed over loc0 and loc1. The teleportation of a qubit from loc0 to loc1 can
then be achieved through the execution of some local quantum gates in loc0 and loc1. After teleportation,
the Ebit is consumed and another one should be generated next time locations loc0 and loc1 want to
communicate; i.e., link entanglement generation. Likewise, the execution of Cat-Ent consumes an Ebit.
Another common quantum communication primitive includes the swap operation between two qubits q1 and
q2 respectively located on two distinct machines M1 and M2. Such a swap operation can be implemented
using two teleportations; one for teleporting q1 to M2 and another for teleporting q2 to M1. Teleportation is
a destructive operation in that when a qubit is teleported to a destination machine, it will be destroyed in
the source machine. We ignore the technical details of how such communications take place as our objective
is to analyze the number of times such primitives are required for localization.

2.2 Quantum Fourier Transform (QFT)

QFT is a crucial building block of many important QAs such as Shor’s factoring and discrete logarithm
algorithms [20] and quantum phase estimation [14]. While there are different methods [14, 5, 4, 2] for the
implementation of the QFT circuit in hardware, our focus is on its distribution on a network. Implementation
and distribution of quantum circuits are similar in that both approaches partition the circuit towards an
efficient implementation/distribution. However, the two problems have different constraints and differ in
the way they partition a circuit (e.g., vertical vs. horizontal partitioning). In this paper, we focus on the
distribution of a standard unitary gate-based QFT circuit using Hadamard and rotation gates. Figure 3
illustrates the QFT5 circuit and a generalized QFTn circuit is shown in Figure 4, where n denotes the
number of qubits. Since single-qubit gates have no role in making global gates, we eliminate them to get the
circuit in Figure 4, which contains only binary rotation gates. For simplicity, we analyze the distribution of
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QFT based on its flow of execution from left to right and consider its sub-circuit, separated by dashed red
lines in Figure 4. For example, the front sub-circuit of QFTn includes the rotation gates R2, · · · , Rn, then
the front sub-circuit of QFTn−1 has the rotation gates R2, · · · , Rn−1, and so on. Observe that, QFT has a
recursive structure where lower size QFT circuits are used in building larger size QFT circuits. For instance,
QFTn−1 is used to construct QFTn by adding the front sub-circuit of QFTn. Next, we present some lemmas
on the structure of QFTn.

Figure 3: The QFT5 circuit.

Figure 4: The sub-circuits of QFTn after removing the single-qubit gates.

Lemma 1. Let C be the revised QFTn circuit that excludes the single-qubit Hadamard gates and includes

only the two-qubit rotation gates R2, · · · , Rn. C has n(n−1)
2 layers.

Proof. We can partition C into sub-circuits as in Figure 4. This way, QFT2 has just one layer. The QFT3

front circuit has two layers, QFT4 front has three layers and QFT5 front has four layers. Thus, QFTn front
has n − 1 layers. Adding up the number of layers of sub-cricuits, we get the summation of the arithmetic

series 1 + 2 + · · ·+ (n− 1) = n(n−1)
2 .

Lemma 2. The i-th front sub-circuit of QFTn (from left to right) has n− i layers, where 1 ≤ i ≤ n− 2.

Proof. We show this lemma by induction on i.
Base Case: Let i = 1. Observe that, the first front sub-circuit of QFTn has gates R2, · · · , Rn, where each
gate forms a layer. Thus, we have n− 1 layers.
Induction Hypothesis: The i-th front sub-circuit of QFTn has n− i layers.
Inductive Step: We show that the (i + 1)-th front sub-circuit of QFTn has n − (i + 1) layers. Once the
execution of the i-th front sub-circuit is finished, the remaining gates/layers will be one less than the i-th
front sub-circuit, which would be n− i− 1 = n− (i+ 1) layers.

2.3 Assumptions

We make the following assumptions in this work:
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1. Moving from a front sub-circuit of QFT with k qubits to the subsequent sub-circuit with k − 1 qubits
(see Figure 4), we assume that the first qubit can be measured based on the principle of deferred
measurement. The rationale behind this assumption is that such measurements free some space in
some quantum machines and help us analyze the best case scenario.

2. We consider an abstract unit of cost, which captures the need for the localization of a rotation gate.
Our complexity analysis is based on the number of such localization and the implementation of such
localizations (e.g., teleportation vs. Cat-Ent/DisEnt) is irrelevant to our analysis.

3. We assume that each quantum machine has an internal clique topology between its qubits; i.e., any
local binary gate can be executed on any pair of qubits at no cost. This is a best case assumption in
order to analyze the best lower bound communication complexity we can get for the distribution of
QFT.

4. A swap operation costs two teleportations.

5. We assume that every individual machine has all the rotation gates R2, · · · , Rn used in QFTn.

3 Lower Bounds for Networks of Two-Qubit Machines

This section investigates the costs of quantum communication when QFTn is distributed on a clique network
of quantum machines with capacity two. Even if machines have larger capacities, smaller number of qubits
might be allocated for QFT while executing an algorithm that invokes QFT. In the following lemmas, let
qf be the first qubit in the i-th front sub-circuit of QFTn (which goes through the gates R2 to Rn+1−i for
1 ≤ i ≤ n − 2), and qt be the target qubit that should be localized with qf in order to enable the local
execution of some Rj gate, where 2 ≤ j ≤ n. Moreover, m = ⌈n

2 ⌉ denotes the number of machines in the
quantum network. Let Mf and Mt be the machines that respectively hold qf and qt. We state the following
lemma:

Lemma 3. The cost of a swap is unavoidable iff both Mf and Mt are full where Mf ̸= Mt.

Proof. Proof of ⇒: We prove the contrapositive of this part. That is, if Mf is not full or Mt is not full, then
a swap can be avoided. Trivially in this case we can teleport either qf to Mt or qt to Mf ; hence no swaps
needed.
Proof of ⇐: Let q′f and q′t be the qubits that are co-located with qf and qt respectively in Mf and Mt. If
Mf is full and Mt is also full where Mt ̸= Mf , then there are three ways to localize qf and qt: (1) teleport
qt to an empty machine Me, and then teleport qf to Me too; (2) swap qf with q′t, or (3) swap qt with q′f .
The first case takes two teleportation operations, which is the same as the cost of a swap. The other two
cases each take a swap. Thus, the cost of a swap is unavoidable.

Remark. Based on the principle of deferred measurement, qf can be measured once the execution of the
current (i.e., i-th) front circuit is finished. That is, the first top qubit in the i-th front sub-circuit of QFTn

can be measured. For example, in the QFT5 front sub-circuit of Figure 3, q1 can be measured after the
first four layers are executed. Once a qubit is measured, the machine that holds it will free up space for one
qubit.

Lemma 4. The number of remaining (i.e., unmeasured) qubits during the execution of the i-th front sub-
circuit of QFTn is (n+1− i), where 1 ≤ i ≤ n− 2. That is, after the execution of the i-th front sub-circuit,
the number of remaining qubits is n− i.

Proof. We show this lemma by induction on i.
Base Case: Let i = 1. Thus, we have the first front sub-circuit of QFTn with n qubits, which can be

derived from n+ 1− 1. After the first front sub-circuit is executed, the top qubit can be measured and we
are left with n− 1 qubits.
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Induction Hypothesis: The number of remaining (i.e., unmeasured) qubits during the execution of the
i-th front sub-circuit of QFTn is (n+1− i). After the execution of the i-th front sub-circuit, the number of
remaining qubits is n− i.

Inductive Step: We show that the number of remaining (i.e., unmeasured) qubits in the (i+ 1)-th front
sub-circuit of QFTn is (n+1−(i+1)). Based on the hypothesis, at the start of the (i+1)-th front sub-circuit
we have (n−i) qubits, which is equal to (n+1)−(i+1). After the execution of the (i+1)-th front sub-circuit,
the top qubit can be measured, and we would have ((n− i)− 1) = n− (i+ 1) remaining qubits.

Lemma 5. Let n > 2 be an even value. After the i-th front sub-circuit is executed in QFTn, where 1 ≤ i ≤ n
2 ,

the minimum number of full machines in the quantum network is (m− i) and the maximum number of full
machines is m− ⌈ i

2⌉.

Proof. We first prove this lemma by an induction on n for a fixed i. Then, we assume that n is fixed and
prove the lemma by induction on i.
Base Case: We start the base case with n = 4 because QFT2 is not a distributed circuit. As such, m = n

2 = 2
and 1 ≤ i ≤ 2. After the QFT4 front circuit (see Figure 3) is executed (i.e., i = 1), the top qubit can be
measured and we have one half-full machine. Thus, one machine is full and the other is half full. For i = 1,
we have m − ⌈ i

2⌉ = 2 − 1 = 1, which is the maximum number of full machines, and m − 1 = 2 − 1 as
the minimum number of full machines. When QFT3 front circuit (see Figure 3) is executed (i.e., i = 2),
we have m − ⌈ i

2⌉ = 2 − 1 = 1 as the maximum number of full machines, and m − 2 = 2 − 2 = 0 as the
minimum number of full machines. The maximum case occurs when both measure qubits are in one machine
and the minimum occurs when one qubit from each machine is measured. For the case of n = 6, we have
m = 3, 1 ≤ i ≤ 3. If i = 1, then we have at least m− i = 3− 1 = 2 full machines (because we are left with
five qubits and three machines), and at most = m− ⌈ 1

2⌉ = 3− 1 = 2 full machines. When i = 2, there is at
least m− i = 3− 2 = 1 full machine (i.e., four qubits and three machines, where at least one machine must
be full), and at most m − ⌈ 2

2⌉ = 3 − 1 = 2 full machines (when one machine is vacant and four qubits are
distributed over two machines). Finally, for i = 3, we have at least m − i = 3 − 3 = 0 full machine (when
each machine holds one of the remaining three qubits), and at most m− ⌈ 3

2⌉ = 3− 2 = 1 full machines.
Induction Hypothesis: For even values of n, after the i-th front sub-circuit is executed in QFTn, where

1 ≤ i ≤ n
2 , the minimum number of full machines in the quantum network is (m − i) and the maximum

number of full machines is m− ⌈ i
2⌉.

Inductive Step: We show that, after the i-th front sub-circuit is executed in QFTn+2, where 1 ≤ i ≤ n+2
2 ,

there are at most m− ⌈ i
2⌉ full machines and at least (m− i) full machines in the quantum network, where

m = n+2
2 . We start from the first front sub-circuit (i = 1). After executing the QFTn+2 front sub-circuit and

measuring the top qubit, we have one machine that has only one qubit, and the remaining m− 1 machines
remain full. Thus, we have at least m− 1 = m− i full machines and at most m− ⌈ i

2⌉ = m− ⌈ 1
2⌉ = m− 1

full machines. Now, let i = 2. At this step, the QFTn+1 front sub-circuit is executed and the second qubit
is measured. Measuring the second qubit may result in another half-full machines or an empty machine. In
the former case, m − 2 machines would be full, and in the latter case, we have m − 1 full machines and a
vacant machine. This matches with the statement of the lemma that we have at least m − i = m − 2 full
machines and at most m− ⌈ i

2⌉ = m− ⌈ 2
2⌉ = m− 1 full machines. After measuring two qubits, what is left

is QFTn. Based on the induction hypothesis, the statement of the lemma holds for QFTn. Therefore, the
lemma holds for QFTn+2 too.

Induction on i. We now prove the lemma by induction on i for a fixed even n.
Base Case: Let i = 1 and n be a fixed even value. Observe that, since n is even, m = n

2 and all machines
are initially full. After the first front sub-circuit is executed in QFTn, we can measure the top qubit qf , and
we are left with a half-full machine and m− 1 full machines; i.e.; m− i and m−⌈ i

2⌉ are both equal to m− 1
when i = 1.

Induction Hypothesis: For even values of n, after the i-th front sub-circuit is executed in QFTn, where
1 ≤ i ≤ n

2 , the minimum number of full machines in the quantum network is (m − i) and the maximum

number of full machines is m− ⌈ i
2⌉.
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Inductive Step: We show that after the (i+1)-th front sub-circuit is executed in QFTn, where 1 ≤ i < n
2 ,

the minimum number of full machines in the quantum network is m−(i+1) and the maximum number of full
machines is m−⌈ i+1

2 ⌉. By induction hypothesis, the minimum and maximum number of full machines after

the i-th front sub-circuit is executed are respectively (m− i) and m−⌈ i
2⌉. Based on Lemma 4, we have n− i

qubits at this point. After the execution of the (i + 1)-th front sub-circuit, the top qubit can be measured
and we have one less qubit; i.e., n− i− 1 remaining qubits. Considering the case of qubit distribution where
we have at least m − i full machines in the i-th front sub-circuit, we now have one less full machine since
there is one less qubit. Thus, the minimum number of full machines over any qubit distribution is m− i− 1,
which is equal to m−(i+1). Moreover, the maximum number of full machines occurs when all the measured
qubits form the minimum number of non-full machines. Thus, the number of remaining full machines could
be at most m − ⌈ i+1

2 ⌉ where ⌊ i+1
2 ⌋ captures the minimum number of vacant machines. Since there might

also be a half-full machine, we get ⌈ i+1
2 ⌉ as the minimum number of non-full machines, thereby maximizing

m− ⌈ i+1
2 ⌉.

Lemma 6. Let n > 2 be an odd value. After the i-th front sub-circuits is executed in QFTn, where 1 ≤ i ≤
⌊n
2 ⌋, the minimum number of full machines in the quantum network is m− i− 1, and the maximum number

of full machines is equal to m− ⌈ i+1
2 ⌉ .

Proof. We prove this lemma by an induction on n for a fixed i, and then an induction on i for a fixed n.
Base Case: We start the base case with n = 3, where m = ⌈n

2 ⌉ = 2. The QFT3 has just one front sub-
circuit composed with QFT2. Thus, when i = 1 we execute the QFT3 front sub-circuit (see Figure 3) and
measure the top qubit. Since we start with two machines and three qubits, one of the machines is initially
half-full. After measuring the first qubit, we either have a vacant machine and a full machine, or two half-full
machines. Validating the statement of the lemma, we have at least m− i− 1 = 0 full machines and at most
m − ⌈ i+1

2 ⌉ = 2 − 1 = 1 full machines. For the case of n = 5, we have m = 3, 1 ≤ i ≤ 2. Thus, when i = 1,

we have at least m− i− 1 = 3− 1− 1 = 1 full machine, and at most m− ⌈ i+1
2 ⌉ = 3− 1 = 2 full machines.

Note that, for QFT5, we start with two full machines and a half-full machine. Thus, once the first qubit
is measured, we may have either two half-full machines and a full machine, or a vacant machine and two
full machines. After measuring the second qubit (i.e., i = 2), we have three remaining qubits and three
machines. Thus, we have at least m− i− 1 = 3− 2− 1 = 0 full machine, and at most m−⌈ i+1

2 ⌉ = 3− 2 = 1
full machine.

Induction Hypothesis: For odd values of n, after the i-th front sub-circuits is executed in QFTn, where
1 ≤ i ≤ ⌊n

2 ⌋, the minimum number of full machines in the quantum network is m− i− 1, and the maximum

number of full machines is equal to m− ⌈ i+1
2 ⌉ .

Inductive Step: We start from the first front sub-circuit of QFTn+2 (i = 1). Note that, we havem = ⌈n+2
2 ⌉

machines in the network, where one of them is half full. After executing the QFTn+2 front sub-circuit
and measuring the top qubit, we may have two machines each having only one qubit, and the remaining
m − 2 machines are full, or we have m − 1 full machines and an empty machine. Thus, we have at least
m − i − 1 = m − 1 − 1 = m − 2 full machines and at most m − ⌈ i+1

2 ⌉ = m − ⌈ 2
2⌉ = m − 1 full machines,

which is consistent with the previous sentence.
Now, let i = 2, where one qubit has already been measured and either a machine is empty (i.e., m − 1

full machines) or there are two half-full machines (i.e., m − 2 full machines). At this step, the QFTn+1

front sub-circuit is executed and the second qubit is measured. Measuring the second qubit may result
in two cases: (1) a half-full machine, an empty machine and m − 2 full machines, or (2) three half-full
machines and m − 3 full machines. This matches with the statement of the lemma that we have at least
m − i − 1 = m − 2 − 1 = m − 3 full machines and at most m − ⌈ i+1

2 ⌉ = m − ⌈ 3
2⌉ = m − 2 full machines.

After measuring two qubits, what is left is QFTn. The statement of the lemma holds for QFTn based on
the induction hypothesis.
Induction on i. We now prove the lemma by induction on i for a fixed odd n.

Base Case: Let i = 1 and n be a fixed odd value. Observe that, since n is odd, m = ⌈n
2 ⌉ = n+1

2 .
Initially, m− 1 machines are full and there is a half-full machine. After the first front sub-circuit is executed
in QFTn, we can measure the top qubit qf , and we are left with either a vacant machine and m − 1 full
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machines, or two half-full machines and m − 2 full machines. Thus, the minimum number of full machines
is m− 1− 1 = m− 2 and the maximum number of full machines is m− ⌈ 1+1

2 ⌉ = m− 1 when i = 1.
Induction Hypothesis: For odd values of n, after the i-th front sub-circuit is executed in QFTn, where

1 ≤ i ≤ ⌊n
2 ⌋, the minimum number of full machines in the quantum network is m− i− 1 and the maximum

number of full machines is m− ⌈ i+1
2 ⌉.

Inductive Step: We show that after the (i+1)-th front sub-circuit is executed in QFTn, where 1 ≤ i < ⌊n
2 ⌋,

the minimum number of full machines in the quantum network is m− (i+1)− 1 and the maximum number

of full machines is m − ⌈ (i+1)+1
2 ⌉. By induction hypothesis, the minimum and maximum number of full

machines after the i-th front sub-circuit is executed are respectively (m − i) − 1 and m − ⌈ i+1
2 ⌉. Based on

Lemma 4, we have n− i qubits at this point. After the execution of the (i+ 1)-th front sub-circuit, the top
qubit can be measured and we have one less qubit; i.e., n− i− 1 remaining qubits. Considering the case of
qubit distribution where we have at least m− i− 1 full machines in the i-th front sub-circuit, we now have
one less full machine since there is one less qubit. Thus, the minimum number of full machines over any
qubit distribution is m− i− 1− 1, which is equal to m− (i+1)− 1. Moreover, the maximum number of full
machines occurs when all the measured qubits form the minimum number of non-full machines. Thus, the

number of remaining full machines could be at most m− ⌈ (i+1)+1
2 ⌉ where ⌊ (i+1)+1

2 ⌋ captures the minimum

number of vacant machines. Since there is also a half-full machine, we get ⌈ (i+1)+1
2 ⌉ as the minimum number

of non-full machines, thereby giving us maximum m− ⌈ (i+1)+1
2 ⌉ full machines.

Corollary 1. After the i-th front sub-circuits is executed in QFTn, where 1 ≤ i ≤ ⌊n
2 ⌋, there can be no less

than m− i− 1 full machines in the quantum network. (Proof follows from Lemmas 5 and 6.)

Lemma 7. After the ⌊n
2 ⌋-th front sub-circuit is executed in QFTn, the minimum and maximum number of

full machines in the quantum network are respectively zero and ⌈ (n−⌊n
2 ⌋−i)

2 ⌉, for 1 ≤ i ≤ (n− 2)− ⌊n
2 ⌋.

Proof. We first prove this lemma by induction on n, and then perform an induction on i assuming n is fixed.
Base Case: We show the base case for n = 5, 6, 7 because (n− 2)− ⌊n

2 ⌋ = 0 for n = 3, 4. Let n = 5. Thus,
we have (5−2)−⌊5

2⌋ = 1, m = 3 and 1 ≤ i ≤ 1. After the second (i.e., ⌊ 5
2⌋ = 2) front sub-circuit is executed

in QFT5, two qubits have been measured and we are left with three qubits and three machines. The three
qubits could each be in a machine, hence leaving us no full machines. Alternatively, two of the qubits may

be in one machine, giving us one full machine, which is consistent with ⌈ (n−⌊n
2 ⌋−i)

2 ⌉ = 1 for n = 5 and i = 1.
If n = 6 (for an even value), then we have m = 3, (6 − 2) − ⌊ 6

2⌋ = 1 and 1 ≤ i ≤ 1. After the third (i.e.,
⌊ 6
2⌋ = 3) front sub-circuit is executed (i.e., QFT6, QFT5, QFT4 front sub-circuits), we have three machines

and three qubits, which can give us at least 0 and at most 1 full machine (based on a reasoning similar to

the case of n = 5). This validates ⌈ (n−⌊n
2 ⌋−i)

2 ⌉ = 1 for n = 6 and i = 1. If n = 7, then we have m = 4,
(7 − 2) − ⌊7

2⌋ = 2 and 1 ≤ i ≤ 2. After the third (i.e., ⌊ 7
2⌋ = 3) front sub-circuit is executed (i.e., QFT7,

QFT6, QFT5 front sub-circuits), we have four machines and four qubits, which can give us at least 0 and at
most 2 full machines because two pairs of qubits can be in two distinct machines. For n = 7, i = 1, we have

⌈ (n−⌊n
2 ⌋−i)

2 ⌉ = 2, and for n = 7, i = 2, we have ⌈ (n−⌊n/2⌋−i)
2 ⌉ = 1.

Induction Hypothesis: After the ⌊n
2 ⌋-th front sub-circuit is executed in QFTn, the minimum and maximum

number of full machines in the quantum network are respectively zero and ⌈ (n−⌊n
2 ⌋−i)

2 ⌉, for 1 ≤ i ≤ (n −
2)− ⌊n

2 ⌋.
Inductive Step: We prove the lemma for QFTn+1, and consider two cases. First, we let n be an even

value, thus making n + 1 an odd value. As such, ⌊n+1
2 ⌋ = n

2 and 1 ≤ i ≤ ((n + 1) − 2) − ⌊n+1
2 ⌋, which

means 1 ≤ i ≤ n
2 − 1. After n

2 front sub-circuits are executed, n
2 qubits have been measured and there are

(n+1)− n
2 = n

2 +1 qubits left. The number of machines is m = ⌈n+1
2 ⌉, which is equal to n+2

2 = n
2 +1 since

n + 1 is odd. Now, for every front sub-circuit i (where 1 ≤ i ≤ n
2 − 1) that is executed from this point on,

one additional qubit can be measured. Thus, if we have measured i additional qubits starting with the n
2 +1

remaining qubits, then n
2 + 1− i qubits remain, for 1 ≤ i ≤ n

2 − 1. Since we have m = n
2 + 1 machines and

n
2 + 1 − i remaining qubits, there may be some qubit distribution where all machines are half-full; i.e., no

machine is full. On the other hand, we can have ⌊ (n
2 +1−i)

2 ⌋ pairs of qubits giving us at most ⌊ (n
2 +1−i)

2 ⌋ full
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machines. This is exactly equal to ⌊ (n+1−⌊n+1
2 ⌋−i)

2 ⌋, which has a tight upper bound ⌈ (n+1−⌊n+1
2 ⌋−i)

2 ⌉. Using
a similar reasoning, one can show that we have at least no full machine and at most ⌈ (n+1−⌊n+1

2 ⌋−i)

2 ⌉ full
machines for the case where n is odd and n+ 1 becomes even.
Induction on i. We now prove the lemma by induction on i for a fixed odd n.

Base Case: Let i = 1. Thus, after the execution of (⌊n
2 ⌋+ 1)-th front sub-circuit, we have n− (⌊n

2 ⌋+ 1)
remaining qubits (based on Lemma 4). Let n be an odd value, where ⌊n

2 ⌋ = n−1
2 . Thus, n − (⌊n

2 ⌋ + 1) =
n − n−1

2 − 1 = n−1
2 . Since the number of machines is m = ⌈n

2 ⌉ = n+1
2 (for odd values of n), we have more

machines than qubits. As a result, the minimum number of full machines is zero where each qubit is in a
distinct machine (i.e., all machines are either half-full or empty). The maximum number of full machines
happens for a distribution where machines are filled up with qubits to the extent possible. That is, we

have n−1
4 full machines. This matches with the statement of the lemma, where we have ⌈ (n−⌊n

2 ⌋−i)

2 ⌉ =

⌈n−n−1
2 −1

2 ⌉ = ⌈n−1
4 ⌉ = n−1

4 (because n is odd).
Now, let n be an even value, where ⌊n

2 ⌋ = n
2 . Thus, we have n − (⌊n

2 ⌋ + 1) = n − n
2 − 1 = n−2

2
remaining qubits after the execution of (⌊n/2⌋ + 1)-th front sub-circuit. Since the number of machines is
m = ⌈n

2 ⌉ =
n
2 (for even values of n), we have more machines than qubits. As a result, the minimum number

of full machines is zero where each qubit is in a distinct machine (i.e., all machines are either half-full or
empty). The maximum number of full machines happens for a distribution where machines are filled up
with qubits to the extent possible. That is, we have n−2

4 full machines. This matches with the statement of

the lemma, where we have ⌈ (n−⌊n/2⌋−i)
2 ⌉ = ⌈n−n

2 −1

2 ⌉ = ⌈n−2
4 ⌉ = n−2

4 (because n is even).
Induction Hypothesis: After the ⌊n

2 ⌋-th front sub-circuit is executed in QFTn, the minimum and maximum

number of full machines in the quantum network are respectively zero and ⌈ (n−⌊n
2 ⌋−i)

2 ⌉, for 1 ≤ i ≤ (n −
2)− ⌊n

2 ⌋.
Inductive Step: We show that, after the ⌊n

2 ⌋+(i+1)-th front sub-circuit is executed in QFTn, the minimum

and maximum number of full machines in the quantum network are respectively zero and ⌈n−⌊n
2 ⌋−(i+1)

2 ⌉.
Since the minimum number of full machines is zero after the (⌊n

2 ⌋+ i)-th front sub-circuit is executed (based
on induction hypothesis), executing one more front sub-circuit and measuring one more qubit will preserve
the minimum at zero. As for the maximum, we have n− (⌊n

2 ⌋+ i+ 1) remaining qubits after the execution

of the ⌊n
2 ⌋ + i + 1-th front sub-circuit. Thus, there can be at most ⌈n−(⌊n

2 ⌋+i+1)

2 ⌉ full machines, which is

equal to ⌈n−⌊n
2 ⌋−(i+1)

2 ⌉.

Lemma 8. If Mf is full in the first layer of the i-th front sub-circuit of QFTn, where 1 ≤ i ≤ n − 2,
and there are k ≥ 1 other full machines distinct from Mf , then the distribution of QFTn over m = ⌈n

2 ⌉
machines of capacity 2 requires at least 2k swaps and ((n+ 1− i)− 2k) teleportation operations in the i-th
front sub-circuit of QFTn.

Proof. Let the number of machines in the network be m = ⌈n
2 ⌉, where there are k full machines and m− k

non-full machines. Moreover, we know that the i-th sub-circuit has n − i layers (based on Lemma 2), in
order containing the gates R2, · · · , Rn−i+1 (where 1 ≤ i ≤ n − 2). The number of remaining qubits in the
i-th front sub-circuit is (n+ 1− i) (based on Lemma 4). Also, the number of qubits in full machines is 2k,
and the number of qubits in non-full machines is (n+ 1− i)− 2k.

Case 1: qt is in a half-full machine. Initially, one can teleport qf to Mt, and locally execute the gate Ri+1

whose input includes qf and qt. This can occur as many times as the number of qubits that are in half-full
machines. The number of such qubits is equal to the total number of qubits at i-th front sub-circuit (i.e.,
(n+ 1− i) based on Lemma 4) minus the total number of qubits in full machines (i.e., 2k). Thus, we have
(n+ 1− i)− 2k qubits that can be in half-full machines. That is, (n+ 1− i)− 2k teleportation operations
occur. After these teleportations, qt must be in a full machine Mt, and we are to execute some gate Rj ,
where j = 2 + ((n + 1 − i) − 2k). (Note that, at the i-th front sub-circuit, we start from gate R2 up to
Rn−i+1.) Let q′t be the neighboring qubit of qt in Mt. Then, to execute Rj locally, either q′f is swapped
with qt or qf is swapped with q′t. Wlog, let q′f be swapped with qt, which results in qf and qt ending up
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in the same (full) machine. A similar scenario occurs for the neighboring qubit q′t, and another swap takes
place. Since we have k full machines, we have 2k target qubits that are in full machines, where a swap must
take place for each such qubit. Thus, we have to perform at least 2k swaps and (n+1−i)−2k teleportations.

Case 2: qt is in a full machine. Since Mf is in a full machine, a scenario similar to the previous case occurs
until execution gets to a gate Rj where qt is not in a full machine. At this point, qf can be teleported to
Mt. As long as qt remains to be in a half-full machine for the subsequent gates, the same scenario occurs
and one teleportation per gate will occur. Thus, we need at least (n + 1 − i) − 2k teleportations because
(n+ 1− i)− 2k represents the number of qubits qt in half-full machines. However, once execution reaches a
gate where qt is in a full machine, a swap is unavoidable to make that gate local (based on Lemma 3). Thus,
for every gate whose qt is in a full machine a swap must take place. Thus, we have to perform at least 2k
swaps and (n+ 1− i)− 2k teleportations.

Lemma 9. If Mf is half-full in the first layer of the i-th front sub-circuit of QFTn, where 1 ≤ i ≤ n − 2,
and there are k ≥ 1 other full machines distinct from Mf , then the distribution of QFTn over m = ⌈n

2 ⌉
machines of capacity 2 requires at least 2k swaps and ((n+ 1− i)− 2k) teleportation operations in the i-th
front sub-circuit of QFTn.

Proof. Since both qf and qt are in half-full machines, we can teleport either one to the machine of the other
qubit. This will result in Mf becoming a full machine. Thus, once we execute the first gate of the i-th front
sub-circuit, qf will end up in a full machine, and we are back to a scenario captured by Lemma 8, where
execution starts with qf being in a full machine. In this case, we have executed one gate and the number of
remaining gates/layers is one less. However, this does not affect the number of full machines, and in turn
has no impact on the minimum number of swaps and teleportations.

Theorem 1. To distribute QFTn over a network of quantum machines with capacity 2 and a clique topology,

we need at least n2−2n
4 swaps and n2−2n−10

4 teleportation operations, where n is even. If n is odd, the

minimum cost of communication includes n2−1
4 swaps and 5n2−8n−17

8 teleportations. Overall, the asymptotic
lower bound of communication costs is Ω(n2).

Proof. We show this lemma by calculating the summations of the minimum number of swap and teleporta-
tions required across all front-sub-circuits of QFTn. The minimum values depend on the minimum number
of full machines in the i-th front sub-circuit, for 1 ≤ i ≤ n − 2. Based on Lemma 5, there are at least
m − i full machines for front sub-circuits from 1 to ⌈n/2⌉; i.e., 1 ≤ i ≤ ⌈n/2⌉. Based on Lemmas 8 and
9, in the i-th front sub-circuit, the distribution of QFTn requires at least 2k swaps and n + 1 − i − 2k
teleportations if there were k full machines, for 1 ≤ i ≤ n − 2. Thus, for 1 ≤ i ≤ ⌈n/2⌉, we need at least

Σ
⌈n/2⌉
i=1 2k = Σ

⌈n/2⌉
i=1 2(m − i) = 2Σ

⌈n/2⌉
i=1 ⌈n/2⌉ − i swaps and Σ

⌈n/2⌉
i=1 (n + 1 − i − 2(⌈n/2⌉ − i)) teleportations.

We calculate this summation for odd and even n as follows:

• If n is even, then ⌈n/2⌉ = n/2. Thus, we have 2Σ
n/2
i=1n/2 − i = 2(n/2)2 − 2Σ

n/2
i=1i = 2(n/2)2 −

2[(n/2)(n/2+1)/2] = (n2−2n)/4 swaps and Σ
n/2
i=1(n+1− i−2(n/2− i)) = Σ

n/2
i=1(i+1) = n/2+Σ

n/2
i=1i =

(n2 + 6n)/8 teleportations.

• When n is odd, we have ⌈n/2⌉ = (n + 1)/2. Thus, it follows that 2Σ
(n+1)/2
i=1 (n + 1)/2 − i = 2(n +

1)2/4−2Σ
(n+1)/2
i=1 i = (n2−1)/4 swaps and Σ

(n+1)/2
i=1 (n+1− i−2((n+1)/2− i)) = Σ

(n+1)/2
i=1 i = n2+4n+3

2
teleportations.

Since the minimum number of full machines after ⌊n/2⌋-th front sub-circuit is zero (based on Lemma 7),

the distribution of QFTn would take only Σ
(n−2)
i=⌊n/2⌋+1n+ 1− i teleportations, for ⌊n/2⌋ < i ≤ (n− 2).

• If n is even, then ⌊n
2 ⌋ = n

2 . As a result, we have Σ
(n−2)
i=⌊n

2 ⌋+1((n + 1) − i) = Σ
(n−2)
i=n

2 +1((n + 1) − i) =

(n+ 1)(n−6
2 )− Σ

(n−2)
i=n

2 +1i =
n2−10n−20

8 , for ⌊n/2⌋ < i ≤ (n− 2) teleportations.
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• If n is odd, then ⌊n
2 ⌋ =

n−1
2 . Thus, Σn−2

i=n−1
2 +1

((n+1)−i) = Σn−2

i=n+1
2

((n+1)−i) = (n+1)n−5
2 −Σn−2

i=n+1
2

i =

n2−4n−5
2 − 1

2 (n⌈
n
2 ⌉+(⌈n

2 ⌉+1)2), for 1 ≤ i ≤ n/2+3/2 teleportations. Since n is odd, we have ⌈n
2 ⌉ =

n+1
2 ,

and as a result, 1
2 (n⌈

n
2 ⌉+ (⌈n

2 ⌉+ 1)2) = 3n2+8n+9
8 . Therefore, Σn−2

i=n−1
2 +1

((n+ 1)− i) = n2−24n−29
8 .

Adding up the above number of teleportations to the number of teleportations for front sub-circuits

from 1 to ⌈n/2⌉, we get the total number of n2−2n−10
4 teleportations for even values of n and 5n2−8n−17

8
teleportations where n is odd.

4 Lower Bounds for Networks of c-Qubit Machines for c > 2

This section studies the quantum communication costs when QFTn is distributed on a clique network of
quantum machines with capacity c > 2. Let m = ⌈n

c ⌉ denote the number of machines in the quantum
network. We state the following lemma:

Lemma 10. Let n > 2 be a multiple of c; i.e., initially all machines are full; m = n/c. After the i-th front
sub-circuit is executed in QFTn, where 1 ≤ i ≤ m, the minimum number of full machines is (m− i) and the
maximum number of full machines is m− ⌈ i

c⌉ in the quantum network.

Proof. We prove this lemma by an induction on i for a fixed n, and then an induction on n for a fixed i.
Base Case: We start the base case with i = 1. Since n is a multiple of c, all machines are initially full. After
the first front sub-circuit is executed, one of the machines becomes non-full, thereby giving us a minimum
of m− 1 full machines. Moreover, since c > 2, ⌈ 1

c ⌉ = 1. Thus, we get a maximum of m− 1 full machines.
Induction Hypothesis: After the i-th front sub-circuit is executed in QFTn, where 1 ≤ i ≤ m, the

minimum number of full machines is (m − i) and the maximum number of full machines is m − ⌈ i
c⌉ in the

quantum network.
Inductive Step: We show that, after the (i + 1)-th front sub-circuit is executed in QFTn, the minimum

number of full machines is (m−(i+1)) and the maximum number of full machines ism−⌈ i+1
c ⌉, for 1 ≤ i < m.

By induction hypothesis, we know that before executing the (i+ 1)-th front sub-circuit, the number of full
machines is between (m− i) and m− ⌈ i

c⌉. After the execution of the (i+ 1)-th front sub-circuit, one more
qubit is measured. This qubit could be in a full machine, which would decrease the minimum of (m − i)
machines to (m − i − 1) = m − (i + 1). Alternatively, the measured qubit could have been in a non-full
machine, which will not change the number of full machines unless i is a multiple of c. In this case, ⌈ i+1

c ⌉
will be one unit more than ⌈ i

c⌉. This will decrease the maximum from m− ⌈ i
c⌉ to m− ⌈ i+1

c ⌉. Overall, the

maximum number of full machines will be m− ⌈ i+1
c ⌉ after the (i+ 1)-th front sub-circuit.

The induction proof on n for a fixed i has a similar outline to the proof of Lemmas 5 and 6, hence
omitted.

Lemma 11. Let n > 2 be a value that is not a multiple of c; i.e., initially there are m − 1 full machines
where m = ⌈n/c⌉. After the i-th front sub-circuit is executed in QFTn, where 1 ≤ i < m, the minimum
number of full machines in the quantum network is m− 1− i and the maximum number of full machines is
m− ⌈ i+1

c ⌉.

Proof. We prove this lemma by an induction on i for a fixed n, and then an induction on n for a fixed i.
Base Case: We start the base case with i = 1. Since n is not a multiple of c, there are exactly m − 1 full
machines and a non-full machine initially. After the first front sub-circuit is executed, the top qubit qf can
be measured and two cases could occur. Either qf was in the non-full machine, or it was in a full machine. In
the former case, the number of full machines would not change, i.e., the minimum number of full machines
is m− 1 and the maximum number of full machines would be m− ⌈ 2

c ⌉ = m− 1 (since c > 2). However, in
the latter case, the minimum number of full machines would be decreased to m− 2. The maximum number
of full machines would be the maximum over the two cases; i.e., m− 1.
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Induction Hypothesis: After the i-th front sub-circuit is executed in QFTn, where 1 ≤ i < m, the
minimum number of full machines is (m− i− 1) and the maximum number of full machines is m− ⌈ i+1

c ⌉ in
the quantum network.

Inductive Step: We show that, after the (i + 1)-th front sub-circuit is executed in QFTn, the minimum
number of full machines is (m − 1 − (i + 1)) and the maximum number of full machines is m − ⌈ i+2

c ⌉, for
1 ≤ i < m. By induction hypothesis, we know that before executing the (i + 1)-th front sub-circuit, the
number of full machines is between (m − 1 − i) and m − ⌈ i+1

c ⌉. After the execution of the (i + 1)-th front
sub-circuit, one more qubit is measured. This qubit, denoted qf , could be in a full machine, which would
decrease the minimum of (m− 1− i) full machines to (m− 1− i− 1) = m− 1− (i+ 1). Alternatively, the
measured qubit could have been in a non-full machine, which will not change the number of full machines
unless i + 1 is a multiple of c. In this case, ⌈ i+2

c ⌉ will be one unit more than ⌈ i+1
c ⌉. This will decrease the

maximum from m− ⌈ i+1
c ⌉ to m− ⌈ i+2

c ⌉. Overall, the maximum number of full machine will be m− ⌈ i+2
c ⌉

after the (i+ 1)-th front sub-circuit.
The induction proof on n for a fixed i has a similar outline to the proof of Lemmas 5 and 6, hence

omitted.

Corollary 2. After the i-th front sub-circuits is executed in QFTn, where 1 ≤ i < m, there can be no less
than m− i− 1 full machines in the quantum network. (Proof follows from Lemmas 10 and 11.)

Lemma 12. For front sub-circuits of QFTn beyond m-th, the maximum number of full machines is ⌊n−m−i
c ⌋

and the minimum number of full machines is zero in each front sub-circuit i, for 1 ≤ i ≤ n−m− 2. (Recall
that, m = ⌈n

c ⌉.)

Proof. We prove this lemma by an induction on i starting from m-th front sub-circuit.
Base Case: Let i = 1; i.e., the execution is at the end of m+1-th sub-circuit. Thus, we have m+1 measured
qubits and n −m − 1 remaining qubits. Each machine will hold n−m−1

m qubits on average. We show that
n−m−1

m < c, representing a scenario where qubits are distributed evenly and no machine is full. Observe
that, n−m−1

m = n
m − 1− 1

m . If n is a multiple of c, then n
m = c, and as a result, n

m − 1− 1
m = c− 1− 1

m < c.
If n is not a multiple of c, then initially m − 1 machines are full and one machine is non-full with less
than c qubits; i.e., n = c(m − 1) + r, where r < c. Now, we show that n−m−1

m < c. Observe that,
n−m−1

m = cm−c+r−m−1
m = c − c

m + r
m − 1 − 1

m . Since r < c, the value of − c
m + r

m is negative. Thus, the
expression c − c

m + r
m − 1 − 1

m is strictly less than c. Therefore, if the remaining n − m − 1 qubits are
evenly distributed, then there are no full machines in the network. The maximum occurs when we fill up
the machines one after another using the remaining n−m− 1 qubits. That is, the maximum number of full
machines is ⌊n−m−1

c ⌋.
Induction Hypothesis: For front sub-circuits of QFTn beyondm-th, the maximum number of full machines

is ⌊n−m−i
c ⌋ and the minimum number of full machines is zero in each front sub-circuit i, for 1 ≤ i ≤ n−m−2.

Inductive Step: We show that, if for some (m + i)-th front sub-circuit, where 1 < i < n − m − 2, the
maximum number of full machines is ⌊n−m−i

c ⌋ and the minimum number of full machines is zero, then for

(m + i + 1)-th front sub-circuit the maximum number of full machines is ⌊n−m−i−1
c ⌋ and the minimum

number of full machines is zero. Let the execution be at the end of the (i + 1)-th sub-circuit. Thus, we
can measure the top qubit qf and remain with n − m − (i + 1) qubits. If we allocate these qubits in a
way that machines are filled up one after another, then we can fill up ⌊n−m−i−1

c ⌋ machines of capacity c,

thereby getting maximum ⌊n−m−i−1
c ⌋ full machines. Based on the base case and the fact that i > 1, even

distribution of n−m− i− 1 qubits across m machines of capacity c would leave no full machines, giving us
the minimum of zero full machines.

Lemma 13. Let Mf be full. In the i-th front sub-circuit of QFTn, where 1 ≤ i ≤ n− 2, if there are k other
full machines distinct from Mf (where 0 ≤ k ≤ m), then the distribution of QFTn over m = ⌈n

c ⌉ machines

of capacity c in a clique network requires at least ck swaps and at least ⌈ (n+1−i)−ck
c−1 ⌉ teleportation operations.

Proof. Case 1: qt is in a non-full machine. Initially, one can teleport qf to Mt, and locally execute the
gate whose input includes qf and qt. (Note that, if qt is in Mf , the current gate can be executed locally.)
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The maximum number of teleportations that one can perform is equal to the number of qubits that are in
non-full machines (where qt of the next gate is always in a different machine than the current machine).
The minimum number of teleportations is equal to the number of non-full and non-empty machines, which
is equal to the number of remaining qubits in non-full machines divided by c − 1 (because each non-full
machine can have at most c − 1 qubits). The number of qubits in non-full machines is equal to the total
number of qubits at the i-th front sub-circuit (i.e., (n+ 1− i) based on Lemma 4) minus the total number
of qubits in full machines (i.e., ck). Note that, Mf is initially full and after the first gate is executed qf
might be teleported to a non-full machine. Thus, we have (n+ 1− i)− ck qubits in non-full machines. The
best case occurs when qf is teleported to a machine and all the target qubits of the next c− 1 gates are in

Mf too. Thus, the minimum number of teleportations in this case is equal to ⌈ (n+1−i)−ck
c−1 ⌉. We consider

the ceiling because the last non-full machine may have less than c − 1 qubits, but still needs an additional
teleportation for qf . The maximum number of teleportations occurs when qf should be moved to a different
machine as the next gate is to be executed; i.e., (n+ 1− i)− ck teleportation operations. (There is no need
to teleport the qubits that are in Mf .) After these teleportations, qt may end up in a full machine Mt, and
we should execute some gate Rj , where j = 2+ ((n+1− i)− ck). Let q′t be a neighboring qubit of qt in Mt.
Then, to execute Rj locally, either some neighboring qubit of qf , denoted q′f , is swapped with qt or qf is
swapped with q′t. Wlog, let q′f be swapped with qt, which results in qf and qt ending up in the same machine.
(Alternatively, one could argue that we could teleport qf to another machine Me that contains at most c− 2
qubits and then teleport qt to Me too. This would also take two teleportations, which costs the same as a
swap operation.) Next, the gate Rj+1 should be executed locally whose inputs include qf and some other
qubit qt. A similar scenario occurs and another swap must take place. Thus, for each full machine (distinct
from Mf ) at least c swaps take place, which results in a total ck swaps in the i-th front sub-circuit.
Case 2: qt is in a full machine. Since qt is in a full machine, a sequence of swaps occurs until execution
gets to a gate Rj whose qt is in a non-full machine. At this point, qf can be teleported to Mt. As long as
qt remains in a non-full machine for the subsequent gates, the same scenario as Case 1 occurs in terms of
the number of teleportations. However, once execution reaches a gate where qt is in a full machine, a swap
is unavoidable to make that gate local (see Lemma 3). Thus, for every gate whose qt is in a full machine a
swap must take place. Since we have k full machines in addition to Mf , we have ck target qubits that are
in full machines, where a swap must take place for each such qubit.

Lemma 14. Let Mf be non-full. In the i-th front sub-circuit of QFTn, where 1 ≤ i ≤ n− 2, if there are k
full machines (where 0 ≤ k ≤ m), then the distribution of QFTn over m = ⌈n

c ⌉ machines of capacity c in a

clique network requires at least ck − c swaps and at least ⌈ (n+1−i)−ck
c−1 ⌉ teleportation operations.

Proof. Case 1: qt is in a non-full machine. Initially, one can teleport qf to Mt so the current gate can be
locally executed. Similar to the proof of Lemma 13, the minimum number of teleportations is equal to the
number of non-full and non-empty machines. To determine the number of such machines we calculate the
number of qubits in non-full machines and divide it by c− 1. The number of qubits in non-full machines is

(n+1−i)−ck. Thus, the minimum number of teleportations in this case is ⌈ (n+1−i)−ck
c−1 ⌉. Once the execution

reaches a gate whose qt is in a full machine, target qubits can be teleported to Mf until Mf becomes full,
thereby decreasing the number of full machines distinct from Mf to k − 1. When that happens, subsequent
gates whose target qubit is in a full machine can only be localized through a swap operation because we
reach a configuration similar to that of Lemma 13 where Mf is full and there are k − 1 other distinct full
machines. Thus, in the i-th front sub-circuit of QFTn, the minimum number of swaps is c(k − 1).
Case 2: qt is in a full machine. This case is similar to the analysis of Case 1, where we reach a gate whose
qt is in a full machine.

Corollary 3. Consider a clique network of quantum machines of capacity c qubits, where 2 < c < n and
n denotes the number of qubits. To distributed the i-th front sub-circuit of QFTn, for 1 ≤ i ≤ n − 2, over

the quantum network, we need a minimum number of ck swaps and ⌈ (n+1−i)−ck
c−1 ⌉ teleportation operations,

where k denotes the number of full machines and 0 ≤ k ≤ m.
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Proof. Proof follows from Lemmas 13 and 14. We use the larger lower bound on the number of swaps because
we would like to have a tight bound regardless of Mf being full or not.

Theorem 2. Let n be a multiple of c; i.e., m = n
c . To distribute QFTn over a network of quantum

machines with capacity 2 < c < n and a clique topology, we need at least n(n−c)
2c swaps and n2

2c +
n

c(c−1) −
3

c−1

teleportation operations. Overall, the asymptotic lower bound of communication costs is Ω(n2), assuming c
is a constant.

Proof. The minimum number of full machines in the i-th front sub-circuit of QFTn is k = m− i for i ≤ m.
When i > m, then the minimum number of full machines is zero because we can have one measured qubit

per machine, which would make all machines non-full. Consider at least ck swaps and at least ⌈ ((n+1−i)−ck)
(c−1) ⌉

teleportation operations for the i-th front sub-circuit, where 1 ≤ i ≤ n−m. Next, we calculate the number
of swaps and teleportations separately.

• Number of swap operations: Σm
i=1ck = Σm

i=1c(m− i) = cΣm
i=1(m− i) = c(m2 −Σm

i=1i) = c(m2 −m(m+

1)/2)) = cm(m − 1)/2. Since n is a multiple of c, m = ⌈n
c ⌉ = n

c and the number of swaps is: n(n−c)
2c .

Observe that, when c = 2, we get n2−2n
4 , which is the value we computed in the proof of Theorem 1.

• Number of teleportation operations: Σm
i=1⌈

(n+1−i)−ck)
(c−1) ⌉ is greater than or equal to Σm

i=1
(n+1−i)−ck)

(c−1) ,

where k = (m − i). Since our objective is to find an optimal lower bound, we compute the minimum

number of teleportations based on Σm
i=1

(n+1−i)−ck)
(c−1) , which is equal to (c+1+2n)m−(c+1)m2

2(c−1) . Since n is

a multiple of c, we have m = ⌈n
c ⌉ = n

c , which leads to (c+1+2n)m−(c+1)m2

2(c−1) = n
2(c−1) +

n
2c(c−1) +

n2

2c2 .

For c = 2, we have n2+6n
8 , which matches with the value computed in the proof of Theorem 1 for even

values of n.

Since the minimum number of full machines after m-th front sub-circuit is zero (based on Lemma 12),

the distribution of QFTn would take only Σ
(n−2)
i=m+1⌈

(n+1−i)
c−1 ⌉ teleportations in the best case. We lift the

ceiling and calculate the minimum number of teleportations based on Σ
(n−2)
i=m+1

(n+1−i)
c−1 because we would like

to find the best we can achieve.

Σ
(n−2)
i=m+1

(n+1−i)
c−1 = 1

c−1 (Σ
(n−2)
i=m+1(n + 1 − i)) = (n−m−3)(n+1)

c−1 − 1
c−1Σ

(n−2)
i=m+1i = (n−m−3)(n+1)

c−1 −
(n−m−3)(m+1)

c−1 − Σ
(n−m−3)
i=1 i = (n−m−3)(n+1)

c−1 − (n−m−3)(m+1)
c−1 − (n−m−3)(n−m−2)

2(c−1) = (n−m−3)(n−m+2)
2(c−1) .

When n is a multiple of c, we have m = n
c , which in turn results in (n−m−3)(n−m+2)

2(c−1) = n2(c−1)
2c2 − n

2c −
3

c−1 .

The overall minimum number of teleportations is n
2(c−1) +

n
2c(c−1) +

n2

2c2 +
n2(c−1)

2c2 − n
2c −

3
c−1 = n2

2c +
n

c(c−1) −
3

c−1

Theorem 3. Assume that n is not a multiple of c, where m = ⌈n
c ⌉, and n = cq + r, for some integers

0 < q < n and r < c. To distribute QFTn over a network of quantum machines with capacity 2 < c < n

and a clique topology, we need at least (n−r)2+c(n−r)
2c swaps and n2

2c + n(r−c)
c2 + r2(c+2)

2c2(c−1) − r(c+4)
2c(c−1) − 2

(c−1)

teleportation operations. Overall, the asymptotic lower bound of communication costs is Ω(n2), assuming c
is a constant.

Proof. The minimum number of full machines in the i-th front sub-circuit of QFTn is k = m− i for i ≤ m.
When i > m, then the minimum number of full machines is zero because we can have one measured qubit
per machine, which would make all machines non-full. Consider at least ck swaps and at least ⌈((n+1− i)−
ck)/(c− 1)⌉ teleportation operations for the i-th front sub-circuit, where 1 ≤ i ≤ n−m. Next, we calculate
the number of swaps and teleportations separately.
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• Number of swap operations: From the proof of Theorem 2, we have the number of swaps as Σm
i=1ck =

cm(m−1)
2 . Let n = cq + r, where r < c. Thus, m = ⌈n

c ⌉ = q + 1. As a result, we have Σm
i=1ck =

cm(m−1)
2 = cq(q+1)

2 . Since n = cq + r, we have Σm
i=1ck = (n−r)2+c(n−r)

2c . For odd values of n and c = 2,

we have r = 1, which means Σm
i=1ck = n2−1

4 , which is the same value obtained for the number of swaps
(when n is odd) in the proof of Theorem 1.

• Number of teleportation operations: Σm
i=1⌈

(n+1−i)−ck)
(c−1) ⌉ is greater than or equal to Σm

i=1
(n+1−i)−ck)

(c−1) ,

where k = (m − i). Since our objective is to find an optimal lower bound, we compute the minimum

number of teleportations based on Σm
i=1

(n+1−i)−ck)
(c−1) , which is equal to (c+1+2n)m−(c+1)m2

2(c−1) . Let n =

cq + r, where r < c. Thus, m = ⌈n
c ⌉ = q + 1. As a result, we have (c+1+2n)m−(c+1)m2

2(c−1) = n2

2c2 +

n
2c +

(c+1)r2

2c2(c−1) −
(c+1)r
2c(c−1) . For odd values of n and c = 2, we have n2+2n−3

8 , which is smaller than what

we calculated in Theorem 1 (i.e., n2+4n+3
2 ). This is due to considering Σm

i=1
(n+1−i)−ck)

(c−1) instead of

Σm
i=1⌈

(n+1−i)−ck)
(c−1) ⌉.

Since the minimum number of full machines after m-th front sub-circuit is zero (based on Lemma 12),

the distribution of QFTn would take only Σ
(n−2)
i=m+1⌈

(n+1−i)
c−1 ⌉ teleportations in the best case. We lift the

ceiling and calculate the minimum number of teleportations based on Σ
(n−2)
i=m+1

(n+1−i)
c−1 because we would like

to find an optimal lower bound.

Σ
(n−2)
i=m+1

(n+1−i)
c−1 = 1

c−1 (Σ
(n−2)
i=m+1(n + 1 − i)) = (n−m−3)(n+1)

c−1 − 1
c−1Σ

(n−2)
i=m+1i = (n−m−3)(n+1)

c−1 −
(n−m−3)(m+1)

c−1 − Σ
(n−m−3)
i=1 i = (n−m−3)(n+1)

c−1 − (n−m−3)(m+1)
c−1 − (n−m−3)(n−m−2)

2(c−1) = (n−m−3)(n−m+2)
2(c−1)

Since m = q + 1 and q = n−r
c , we have (n−m−3)(n−m+2)

2(c−1) = n2(c−1)
2c2 + (2r−3c)n

2c2 + r2−3cr−4c2

2c2(c−1) . Adding this

to the minimum number of teleportations we obtain for 1 ≤ i ≤ m; i.e., n2

2c2 + n
2c +

(c+1)r2

2c2(c−1) −
(c+1)r
2c(c−1) , we get

n2

2c + n(r−c)
c2 + r2(c+2)

2c2(c−1) −
r(c+4)
2c(c−1) −

2
(c−1) as the overall minimum number of teleportations.

Corollary 4. If c = n
t where t > 1 is a constant independent of the number of machines, then the asymptotic

lower bound of the communication costs is linear.

Corollary 4 implies that as the number of qubits n increases, we need to scale up the machine capacity
with constant ratio of t = n

c in order to achieve linear asymptotic cost.

5 Related Work

There is a rich body of work [16, 19, 2, 13] on efficient implementation of QFT in hardware. Such methods
are mostly hardware-dependent (e.g., available gate set, proximity noise of qubits) and are constrained
by topological limits of hardware devices (e.g., linear nearest neighbor topology) which may not hold in
quantum networks. Additionally, many researchers focus on minimizing the number of remote operations
(e.g., TeleData/TeleGate) during distribution of quantum circuits in general, without a focus on lower
bound. Such methods can be classified into graph-theoretic, heuristic-based and distribution compilers.
As an example of graph-theoretic techniques, Andres-Martinez and Heunen [1] reduce the minimization
problem to the problem of hypergraph partitioning where the number of cuts in the partitioned graph must
be minimized. While this approach is efficient for some circuits, the hypergraph partitioning is by itself a
hard problem. Davarzani et al. [7] create a bipartitie graph out of a quantum circuit where the two sets of
vertices include the qubits and the gates, and solving TMP amounts to partitioning the set of qubits while
minimizing the number of teleportations. Daei et al. [6] model a quantum circuit as a weighted undirected
graph and utilize Kernighan–Lin’s [12] algorithm to find the minimum-weight cut.
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Heuristic-based approaches improve the efficiency of minimization. For example, Nikahd et al. [18]
present a window-based partitioning method where they consider a window of length w that slides from
leftmost layer to right and creates sub-circuits. They formulate the problem as an Integer Linear Program
(ILP), which they solve using the CPLEX ILP solver. Ranjani and Gupta [21] present two algorithms: a
local-best algorithms and a zero-stitching algorithm. Their local-best algorithm is a greedy approach in
nature while their zero-stitching method is a dynamic programming approach to partition the circuit into
sub-circuits that can be executed without any teleportations, and then stitching them together. To solve
TMP, Zomorodi-Moghadam et al. [28] explore all possible configurations of executing every global gate in
either one of two machines, which has an exponential cost.

Most recent DQC compilers focus on identifying communication patterns in quantum circuit as well as
implementing minimized teleportation plans on quantum networks. For example, Wu et al. [25] observe
that many remote two-qubit gates can be executed using one or two quantum communications, called burst
communication. In another work, Wu et al. [24] develop a compiler based on the notion of collective
communication blocks, where each block is a set of global gates whose pattern of qubit communication forms
a connected graph over multiple network nodes. Ferrari et al. [10] discuss the challenges of developing
compilers for DQC, and then present an upper bound complexity for the compilation process.

6 Conclusion and Future Work

This paper investigated lower bounds on the complexity of quantum communication for the distribution of
Quantum Fourier Transform (QFT) in clique networks. We first discovered the relation between lower bound
and the number of full machines, and presented necessary and conditions for unavoidable swaps. Then, we
identified lower and upper bound on the number of full machines. We used this result to provide exact and
asymptotic lower bound on the communication costs of distributing QFT on clique networks. Considering the
existing quadratic upper bound in related work, our lower bound result implies that the existing upper bound
is actually tight when machine capacity is two. This is a significant theoretical boundary for developers of
distribution compilers. We also showed that if machine capacity c > 2 is a fixed fraction of n, then the lower
bound becomes linear. We are currently extending these results for topologies other than clique. Moreover,
we plan to study the communication complexity of distributing other building blocks of quantum algorithms
(e.g., quantum phase estimation) as well as Variational Quantum Algorithms.
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[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters,
70(13):1895, 1993.

[4] R. Cleve and J. Watrous. Fast parallel circuits for the quantum fourier transform. In Proceedings 41st
Annual Symposium on Foundations of Computer Science, pages 526–536. IEEE, 2000.

[5] D. Coppersmith. An approximate fourier transform useful in quantum factoring. arXiv preprint quant-
ph/0201067, 2002.

[6] O. Daei, K. Navi, and M. Zomorodi-Moghadam. Optimized quantum circuit partitioning. International
Journal of Theoretical Physics, 59(12):3804–3820, 2020.

17



[7] Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, and M. Nouri-Baygi. A dynamic programming
approach for distributing quantum circuits by bipartite graphs. Quantum Information Processing, 19:1–
18, 2020.

[8] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio. Optimal local implementation of nonlocal
quantum gates. Physical Review A, 62(5):052317, 2000.

[9] P. Escofet, A. Ovide, M. Bandic, L. Prielinger, H. Van Someren, S. Feld, E. Alarcon, S. Abadal,
and C. Almudever. Revisiting the mapping of quantum circuits: Entering the multi-core era. ACM
Transactions on Quantum Computing, 6(1):1–26, 2025.

[10] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi. Compiler design for distributed quantum
computing. IEEE Transactions on Quantum Engineering, 2:1–20, 2021.

[11] D. Ferrari, S. Carretta, and M. Amoretti. A modular quantum compilation framework for distributed
quantum computing. IEEE Transactions on Quantum Engineering, 4:1–13, 2023.

[12] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell system
technical journal, 49(2):291–307, 1970.

[13] K. Khadiev, A. Khadieva, Z. Chen, and J. Wu. Implementation of quantum fourier transform and
quantum hashing for a quantum device with arbitrary qubits connection graphs. arXiv preprint
arXiv:2501.18677, 2025.

[14] A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv preprint quant-
ph/9511026, 1995.

[15] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys,
52(6):1191, 1997.

[16] Y. Nam, Y. Su, and D. Maslov. Approximate quantum fourier transform with O(n log (n)) T gates.
NPJ Quantum Information, 6(1):26, 2020.

[17] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Phys. Today,
54(2):60, 2001.

[18] E. Nikahd, N. Mohammadzadeh, M. Sedighi, and M. S. Zamani. Automated window-based partitioning
of quantum circuits. Physica Scripta, 96(3):035102, 2021.

[19] B. Park and D. Ahn. Reducing cnot count in quantum fourier transform for the linear nearest-neighbor
architecture. Scientific Reports, 13(1):8638, 2023.

[20] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings
35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.

[21] R. G. Sundaram and H. Gupta. Distributing quantum circuits using teleportations. In IEEE Interna-
tional Conference on Quantum Software (QSW), pages 186–192, 2023.

[22] R. Van Meter. Communications topology and distribution of the quantum fourier transform. In Proc.
Tenth Symposium on Quantum Information Technology (QIT10), pages 19–24, 2004.

[23] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886):802–803,
1982.

[24] A. Wu, Y. Ding, and A. Li. Qucomm: Optimizing collective communication for distributed quantum
computing. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 479–493, 2023.

18



[25] A. Wu, H. Zhang, G. Li, A. Shabani, Y. Xie, and Y. Ding. Autocomm: A framework for enabling efficient
communication in distributed quantum programs. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1027–1041. IEEE, 2022.

[26] A. Yimsiriwattana and S. J. Lomonaco Jr. Distributed quantum computing: A distributed shor algo-
rithm. In Quantum Information and Computation II, volume 5436, pages 360–372. SPIE, 2004.

[27] A. Yimsiriwattana and S. J. Lomonaco Jr. Generalized ghz states and distributed quantum computing.
arXiv preprint quant-ph/0402148, 2004.

[28] M. Zomorodi-Moghadam, M. Houshmand, and M. Houshmand. Optimizing teleportation cost in dis-
tributed quantum circuits. International Journal of Theoretical Physics, 57:848–861, 2018.

19


