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Abstract

This paper investigates the verification and synthesis of parameterized protocols that satisfy leadsto
properties R  Q on symmetric unidirectional rings (a.k.a. uni-rings) of deterministic and constant-
space processes under no fairness and interleaving semantics, where R and Q are global state predicates.
First, we show that verifying R Q for parameterized protocols on symmetric uni-rings is undecidable,
even for deterministic and constant-space processes, and conjunctive state predicates. Then, we show
that surprisingly synthesizing symmetric uni-ring protocols that satisfy R Q is actually decidable. We
identify necessary and sufficient conditions for the decidability of synthesis based on which we devise a
sound and complete polynomial-time algorithm that takes the predicates R and Q, and automatically
generates a parameterized protocol that satisfies R Q for unbounded (but finite) ring sizes. Moreover,
we present some decidability results for cases where leadsto is required from multiple distinct R predicates
to different Q predicates. To demonstrate the practicality of our synthesis method, we synthesize some
parameterized protocols, including agreement and parity protocols.
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1 Introduction

This paper investigates the verification and synthesis of parameterized protocols that satisfy leadsto prop-
erties R  Q on symmetric unidirectional rings (a.k.a. uni-rings) of deterministic and constant-space
processes under no fairness and interleaving semantics, where R and Q represent global state predicates.
The significance of this problem is two-fold. First, ring is a simple, but important topology for distributed
systems whose underlying communication graph includes cycles (which is the case in many practical do-
mains). Second, the leadsto property R  Q is a critical liveness requirement in numerous contexts where
system executions should guarantee eventual response (i.e., reaching the set of states Q) to specific stimuli
(i.e., being in the set of states R). In a symmetric ring, the code of each process is generated from the code
of a template/representative process by a simple variable renaming. Moreover, the number of processes in
the ring is unbounded (but finite). In this paper, we first extend Suzuki’s undecidability results of verifying
Linear Temporal Logic (LTL) properties of uni-rings [56] to the special case of verifying leadsto properties for
symmetric uni-rings of deterministic and constant-space processes, and show that the verification problem
remains undecidable. We then present a surprising result that, despite the undecidability of verification,
synthesizing uni-rings that satisfy leadsto properties is actually decidable. This is a counterintuitive result
as it is believed [47] that the synthesis of distributed systems is harder than their verification.

Most existing synthesis methods for parameterized protocols are extensions/variants of bounded and
parameterized synthesis with a focus on Temporal Logic (TL) properties [20] for general communication
topologies and under fairness assumptions. For example, Finkbeiner and Schewe [27] formulate the synthesis
of fixed-size protocols as a set of constraints, and use Satisfiability Modulo Theory (SMT) solvers [14]
to find a protocol that is accepted by a Universal Co-Buchi Tree (UCT) automaton generated from TL
specifications. The search for a protocol is conducted up to a certain bound in the state space of processes
and/or their automata-theoretic product; i.e., bounded synthesis. Jacobs and Bloem [37] extend bounded
synthesis to parameterized protocols by identifying cutoff bounds, where a solution exists for a protocol
with cutoff number of processes iff (if and only if) a solution exists for the parameterized protocol with
unbounded number of processes (a.k.a. parameterized synthesis). Then, they apply the SMT-based bounded
synthesis for an instance of the problem with at most cutoff processes. QBF-based bounded synthesis [29]
takes an incomplete design (a.k.a. sketch) of a protocol and uses bounded synthesis towards generating
fault-tolerant protocols in a bounded space. While methods for verification and synthesis of parameterized
programs inspire our work, they (1) are mainly based on bounded/parameterized synthesis from temporal
logic specifications; (2) make assumptions about synchrony, weak/strong fairness and complete knowledge of
the network for each process; (3) the iterative nature of bounded and parameterized synthesis makes them
computationally expensive and sensitive to their input (in part due to using SMT solvers), and (4) mostly
focus on safety and local liveness properties that are specified in terms of the neighborhood of a proper
subset of processes (e.g., progress of each process).

This paper puts forward a paradigm shift where we make a step towards developing a topology and
property-specific approach. Our long-term objective is to create an extensible library of synthesis algorithms
and tools that can efficiently generate parameterized protocols for specific elementary topologies (e.g., ring,
tree, mesh, etc.) and basic temporal properties (e.g., leadsto, until, safety, etc.). Another component of this
new paradigm includes methods that compose parameterized protocols with elementary topologies while
preserving correctness, which is beyond the scope of this work. The core novelty of the proposed approach
of this paper lies in identifying local characterizations of global properties (e.g., reachability, livelocks)
towards enabling synthesis in the local state space of the template process for global correctness. Such
local characterizations would enable more efficient automated reasoning methods, where the time/space
complexity of synthesis will be in terms of the size of the local state space of template processes instead of
semi-decision procedures that conduct backward/forward reachability analysis [13].

In the case of symmetric uni-rings that satisfy leadsto properties R  Q, we first show that verifying
R  Q remains undecidable even for protocols with constant-space and deterministic processes, and for
conjunctive state predicates R = ∀i ∈ ZN : r(xi−1, xi) and Q = ∀i ∈ ZN : q(xi−1, xi), where N denotes
the number of processes in the ring, ZN represents values modulo N , and xi captures an abstraction of
all writeable variables of the template process Pi. (Conjunctive predicates may seem restricted but they
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have important applications for many systems [60, 33].) We then show some negative results that satisfying
R Q by reaching states in Q where xi−1 6= xi is impossible. Intuitively, this negative result is an outcome
of the impossibility of recovery to an L-coloring in symmetric uni-rings from any state (due to Bernard et al.’s
[8]). Subsequently, we show that synthesizing a parameterized protocol that satisfies R Q is decidable iff
(if and only if) there are some distinct values v, γ ∈Dom(xi) for which q(γ, γ) and q(v, γ) hold. Our necessary
and sufficient conditions are based on the intuition that a parameterized protocol on a uni-ring that satisfies
R Q exists iff there is a sequence of steps for every process towards satisfying q(γ, γ) locally, starting from
a state that satisfies R. We then provide a sound and complete algorithm that takes the state predicates
R and Q, and generates the parameterized actions of the template process, if a solution exists. The time
complexity of the proposed algorithm is polynomial in the state space of the template process, which is often
a small value for constant-space processes. We also show that synthesis remains decidable for cases where
leadsto is required from the conjunction/disjunction of a set of predicates R1, · · · , Rk, where k > 1, to the
conjunction/disjunction of two predicates Q1 and Q2. To demonstrate the practicality of our algorithm, we
present a few case studies including a protocol that ensures reaching agreement in uni-rings when processes of
the ring disagree on a value, and a parity protocol that guarantees a common parity amongst the processes.
We conjecture that the implementation of our algorithm will provide a highly efficient synthesis tool as our
previous work [18] on the synthesis of fault-tolerant parameterized uni-rings confirms our belief.
Organization. Section 2 presents some basic concepts. Section 3 shows that verifying leadsto on uni-rings is
undecidable. Section 4 identifies necessary and sufficient conditions for decidability of synthesizing symmetric
uni-rings that satisfy leadsto properties. Section 5 presents a few case studies, including an agreement and a
parity protocol. Section 6 discusses related work, and Section 7 summarizes our contributions and outlines
some future work.

2 Preliminaries

This section presents the definition of parameterized protocols and their representation as action graphs.
Wlog, we use the term protocol to refer to finite-state symmetric uni-rings as we conduct our investigation
in the context of network protocols. Such rings are parameterized in the number of processes in the ring. A
protocol p for a computer network includes N > 1 processes (finite-state machines), where each process Pi

has a finite set of readable and writeable variables. Any local state of a process (a.k.a. locality/neighborhood)
is determined by a unique valuation of its readable variables. We assume that any writeable variable is
also readable. The global state of a protocol is defined by a snapshot of the local states of all processes.
The state space of a protocol, denoted by Σ, is the universal set of all global states. A state predicate is
a subset of Σ. A process acts (i.e., transitions) when it atomically updates its state based on its locality.
The locality of a process is defined by the network topology. For example, in a uni-ring consisting of N
processes, each process Pi (where i ∈ ZN , i.e., 0 ≤ i ≤ N − 1) has a neighbor/predecessor Pi−1, where
subtraction and addition are in modulo N . We assume that processes act one at a time (i.e., interleaving
semantics). Thus, each global transition corresponds to the action of a single process from some global state.
An execution/computation of a protocol is a sequence of states s0, s1, . . . , sk where there is a transition
from si to si+1 for every i ∈ Zk. We consider parameterized protocols that consist of families of symmetric
processes. Each family is represented by a template process from which the code of all family members is
instantiated by a simple variable renaming/re-indexing. For instance, a symmetric uni-ring includes just one
family for which we use triples of the form (a, b, c) to denote actions (xi−1 = a ∧ xi = b −→ xi := c; ) of
the template process Pi. An action has two components; a guard, which is a Boolean expression in terms of
readable variables and a statement that atomically updates the state (i.e., writeable variables) of the process
once the guard evaluates to true; i.e., the action is enabled.

Definition 2.1 (Transition Function). Let Pi be any process with a state variable xi in a uni-ring protocol
p. We define its transition function δ : Σ × Σ → Σ as a partial function such that δ(a, b) = c if and only if
Pi has an action (xi−1 = a ∧ xi = b −→ xi := c; ). In other words, δ can be used to define all actions of Pi
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in the form of a single parametric action:

((xi−1, xi) ∈ Pre(δ)) −→ xi := δ(xi−1, xi);

where (xi−1, xi) ∈ Pre(δ) checks to see if the current xi−1 and xi values are in the preimage of δ. For other
topologies, the same definition of transition function holds except that the preimage of δ might be specified
differently depending on the locality of each process.

Definition 2.2 (Action Graph). We depict the set of actions of the template process of a symmetric uni-ring
by a labeled directed multigraph G = (V,A), called the action graph, where each vertex v ∈ V represents
a value in ZM , where M denotes the domain size of xi and each arc (a, c) ∈ A with a label b captures an
action xi−1 = a ∧ xi = b −→ xi := c.

For example, consider the Sum-Not-2 protocol given in [25]. Each process Pi has a variable xi ∈ Z3 and
actions xi−1 = 0∧xi = 2 −→ xi := 1, xi−1 = 1∧xi = 1 −→ xi := 2, and xi−1 = 2∧xi = 0 −→ xi := 1. This
protocol ensures that, from any global state, a state is reached where the sum of each two consecutive x values
does not equal 2. The set of such states is formally specified as the state predicate ∀i ∈ ZN : (xi−1 +xi 6= 2).
We can represent this protocol as a graph containing arcs (0, 2, 1), (1, 1, 2), and (2, 0, 1) as shown in Figure 1.

0 1 2
2

1

0

Figure 1: Graph representing
Sum-Not-2 protocol.

For simplicity, we assume that protocols consist of self-disabling pro-
cesses. As such, an action (a, b, c) cannot coexist with action (a, c, d)
for any d. Moreover, a deterministic process cannot have two actions
enabled at the same time; i.e., an action (a, b, c) cannot coexist with an
action (a, b, d) where d 6= c.

Definition 2.3 (Leadsto Properties). The focus of this paper is on leadsto properties that are specified as
�(R ⇒ ♦Q) in Linear Temporal Logic (LTL), also denoted R  Q, where � and ♦ respectively denote
the universality and eventuality modalities, and R = ∀i ∈ ZN : r(xi−1, xi) and Q = ∀i ∈ ZN : q(xi−1, xi)
represent conjunctive state predicates for a uni-ring of N processes. A computation σ = 〈s0, s1, · · · 〉 of a
protocol p satisfies �S iff the state predicate S holds in every state si ∈ σ, for all i ≥ 0. A computation
σ = 〈s0, s1, · · · 〉 of a protocol p satisfies ♦S iff there is some i ≥ 0 such that the state predicate S holds in
the state si ∈ σ. A computation σ = 〈s0, s1, · · · 〉 of a protocol p satisfies R Q iff s0 ∈ R implies that there
is some i ≥ 0 such that si ∈ Q. A symmetric uni-ring protocol p satisfies R Q iff all the computations of
p satisfy R Q, for unbounded (but finite) ring sizes.

Definition 2.4 (Fairness). A strongly fair scheduler ensures that any action that is infinitely often enabled
will be executed infinitely often (due to Gouda [31]). A weakly fair scheduler guarantees that if an action is
continuously enabled, then it will be executed infinitely often.

Livelock, deadlock, and closure. A global livelock of a protocol p is an infinite computation l =
〈s0, s1, · · · , s0〉, where si is a global state, for all i ≥ 0. A local livelock of a process P of protocol p is
an infinite execution l = 〈s0, s1, · · · , s0〉, where si is a local state of P , for all i ≥ 0. Unless stated otherwise,
we use the terms ‘’livelock” and ‘’global livelock” interchangeably. For satisfying a leadsto property R Q,
a reachable livelock l that includes at least one state in Q is acceptable; otherwise, it is considered as a
failure towards satisfying R Q. A deadlock of p is a state that has no outgoing transition; i.e., no process
is enabled to act. A state predicate I is closed under p iff there is no transition (s, s′), where s ∈ I but s′ /∈ I.

Definition 2.5 (Self-Stabilization and Convergence). A protocol p is self-stabilizing [15] to a state predicate
I (under no fairness) iff from any state in ¬I, every computation of p reaches a state in I (i.e., convergence)
and remains in I (i.e., closure). That is, p is livelock-free and deadlock-free in ¬I, and I is closed under p. A
protocol p is silent-stabilizing to I iff p converges to I and p has no computation starting in I. Notice that,
in LTL, convergence to I is specified as �♦I, which is logically equivalent to true  I.

Definition 2.6 (Weak Stabilization). A weakly stabilizing protocol to I ensures that from each state in ¬I,
there is some computation that reaches a state in I (a.k.a., weak convergence) and remains in I.
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Notice that, any self-stabilizing protocol is also weakly stabilizing but the reverse is not true.

Definition 2.7 (Locality Graphs). Consider a state predicate Q = ∀i : q(xi−1, xi) for a uni-ring. The
relation q(xi−1, xi) captures a set of local states, representing an acceptable relation between each process
Pi and its predecessor. The relation q(xi−1, xi) must also be locally correctable in that, for any value of
xi−1, there is always a sequence of steps that Pi can take to establish q by updating xi only. To simplify
reasoning, we represent q(xi−1, xi) as a digraph G = (V,A), called the locality graph, such that each vertex
v ∈ V represents a value in ZM , and an arc (a, b) is in A iff q(a, b) is true.

Figure 2 illustrates the locality graph of the Sum-Not-2 protocol introduced in this section for the state
predicate Q = ∀i ∈ ZN : (xi−1 ⊕ xi 6= 2) where M = 4 and ⊕ represents addition modulo 4. Each closed
walk in the locality graph characterizes a class of global states in the state predicate Q. For example, the
closed walk (0, 1, 3, 1, 0) captures the global states of ring sizes 4× k where the xi value of processes follow
a repeated pattern of 0, 1, 3, 1, and k is a positive integer. We now represent one of our previous results [25]
on the relation between closed walks in locality graphs and global states of parameterized uni-rings.

0 1

2 3

Figure 2: Locality graph of the SumNotTwo protocol.

Theorem 2.8. Any closed walk of length L ≥ 1 in the locality graph of a conjunctive predicate Q of a
uni-ring characterizes global states in Q of ring sizes of L× k, where k is a positive integer. (Proof in [25])

A corollary of Theorem 2.8 is as follows:

Corollary 2.9. Any conjunctive state predicate Z = ∀i : i ∈ ZN : z(xi−1, xi) whose locality graph GZ is
acyclic specifies an empty set of states in a parameterized symmetric uni-ring.

Next, we represent some of our previous results regarding livelocks (from [25, 39]) that we shall use in this
paper.
Propagations and Collisions. When a process acts and enables its successor in a uni-ring, it propagates
its ability to act. The successor may enable its own successor by acting, and the pattern may continue
indefinitely. Such behaviors can be represented as sequences of actions that are propagated in a ring, called
propagations. A propagation is a walk through the action graph. For example, the Sum-Not-2 protocol
has a propagation 〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose actions can be executed in order by processes
Pi, Pi+1, Pi+2, and Pi+3 from a state (xi−1, xi, xi+1, xi+2, xi+3) = (0, 2, 1, 0, 1). A propagation is periodic
with period n iff its j-th action and (j + n)-th action are the same for every index j. A propagation with
period n ≥ 1 corresponds to a closed walk of length n in the action graph. The Sum-Not-2 protocol has
such a propagation of period 2: 〈(1, 1, 2), (2, 0, 1)〉 (see Figure 1). A collision occurs when two consecutive
processes, say Pi and Pi+1, have enabled actions; e.g., (a, b, c) and (b, e, f), where b 6= c. In such a scenario,
xi−1=a, xi=b, xi+1=e. A collision occurs when Pi executes and assigns c to xi. If that occurs, Pi will be
disabled (because processes are self-disabling), and Pi+1 becomes disabled too because xi is no longer equal
to b. As a result, two enabled processes become disabled by one action.
“Leads” Relation. Consider two actions A1 and A2 in a process Pi. We say the action A1 leads A2 iff the
value of the variable xi after executing A1 is the same as the value required for Pi to execute A2. Formally,
this means an action (a, b, c) leads (d, e, f) iff e = c. Similarly, a propagation leads another iff for every
index j, its j-th action leads the j-th action of the other propagation. In the action graph, this corresponds
to two walks where the label of the destination node of the j-th arc in the first walk matches the arc label
of the j-th arc in the second walk (for each index j). In [39, 41], we prove the following theorem:
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Theorem 2.10. A uni-ring protocol of symmetric, deterministic and self-disabling processes has a livelock
for some ring size iff there exist m propagations with some period n, where the (i − 1)-th propagation leads
the i-th propagation for each index i modulo m, for m > 1 and n ≥ 1; i.e., the propagations successively lead
each other modulo m.

We have shown [25] that verifying deadlock-freedom in uni-rings is decidable. However, checking livelock-
freedom is an undecidable problem for uni-ring protocols (with self-disabling and deterministic processes)
[39, 41].

Theorem 2.11. Verifying livelock-freedom in a symmetric uni-ring protocol (with self-disabling and deter-
ministic processes) is undecidable [39, 41].

We have also shown that verifying livelock-freedom remains undecidable even for a special type of live-
locks, where exactly one process is enabled in every state of the livelocked computation; i.e., deterministic
livelocks [39].

Theorem 2.12. Verifying livelock-freedom in a symmetric uni-ring protocol (with self-disabling and deter-
ministic processes) remains undecidable even for deterministic livelocks [39].

Since in every state of a deterministic livelock there is exactly one enabled process, the choice of fairness
policy has no impact on which process will be executed in each state because the scheduler has only one
enabled process to select.

Corollary 2.13. Verifying livelock-freedom in a symmetric uni-ring protocol (with self-disabling and deter-
ministic processes) remains undecidable regardless of the fairness assumption (i.e., scheduling policy) [39].

The above results imply the undecidability of verifying self-stabilization for symmetric uni-rings.

Theorem 2.14. Verifying silent-stabilization (and self-stabilization) for a symmetric uni-ring protocol (with
self-disabling and deterministic processes) is undecidable [39].

While verifying self-stabilization for uni-rings is undecidable, we have shown that synthesis of self-
stabilizing uni-rings is surprisingly decidable.

Theorem 2.15. Synthesizing silent-stabilization for a parameterized uni-ring protocol (with self-disabling,
deterministic and constant-space processes) is decidable [42, 18].

Theorem 2.16. Let xi denote a variable representing the local state space of each process Pi in a symmetric
uni-ring of N processes (where i ∈ ZN ), and the domain size of xi be a fixed value regardless of N . Then,
there is a protocol p that self-stabilizes to a state predicate Q = ∀i ∈ ZN : q(xi−1, xi) for unbounded (but
finite) ring size N iff there is a vertex γ in the locality graph of Q, where γ has a self-loop (i.e., q(γ, γ) holds)
that can be reached from another vertex.

3 Undecidability of Verification

This section presents some impossibility results for the verification and synthesis of symmetric uni-ring
protocols that satisfy leads-to properties. Throughout the rest of the paper, R = ∀i ∈ ZN : r(xi−1, xi)
and Q = ∀i ∈ ZN : q(xi−1, xi) represent conjunctive state predicates. First, we formulate the verification
problem as follows:

Problem 3.1 (Verification of LeadsTo). Let p be a symmetric parameterized protocol on a uni-ring, and R
and Q represent conjunctive state predicates. Does p satisfy R Q for unbounded (but finite) ring sizes?

Theorem 3.2. Problem 3.1 is undecidable for uni-rings of self-disabling, constant-space and deterministic
processes.
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Proof. For a symmetric protocol p to satisfy R  Q on a uni-ring, p should ensure that starting in R,
its computations will eventually reach some state in Q under no fairness and interleaving semantics. This
requires deadlock and livelock-freedom of computations of p that start in R. Due to undecidability of
verifying livelock-freedom on symmetric uni-rings (Theorem 2.11), Problem 3.1 is also undecidable.

Problem 3.3 (Synthesis of LeadsTo). Let R and Q be conjunctive state predicates. Consider a symmetric
uni-ring of self-disabling, constant-space and deterministic processes. Does there exist a symmetric protocol
p on the ring that satisfies R Q for unbounded (but finite) ring sizes?

To investigate Problem 3.3, we first consider a special case of this problem where R=true.

Problem 3.4 (Synthesis of Convergence). Let Q be a conjunctive state predicate. Consider a symmetric
uni-ring of self-disabling, constant-space and deterministic processes. Does there exist a symmetric protocol
p on the ring that satisfies true Q for unbounded (but finite) ring sizes?

Converging to a state where Q = ∀i ∈ ZN : q(xi−1, xi) holds in a uni-ring can be achieved in two
ways. First, there may be some value c ∈ ZM such that q(c, c) holds. Such values represent themselves as
self-loops in the locality graph of q(xi−1, xi). Second, L values c0, c1, · · · , cL−1 ∈ ZM satisfy q(xi−1, xi) in
a circular fashion, where q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0) hold and L > 1. Such values form
a cycle of length L in the locality graph of q(xi−1, xi). A cycle like that represents a family of rings that
include global states where Q holds through an ordered placement of the values that appear in the cycle.
The sizes of such rings are multiples of L; i.e., ring sizes of k · L, where k is a positive integer (Theorem
2.8). To design a parameterized symmetric protocol p that satisfies ♦Q from some initial states captured
by a state predicate R, developers should design p in such a way that it ensures convergence to one of the
aforementioned scenarios (under no fairness and interleaving semantics). We first show that, there is no
protocol that can ensure convergence through the second scenario.

Definition 3.5 (Ordered L-coloring). Consider a set of L distinct colors and a permutation function next(c)
(i.e., a bijective function from L to L) that takes a color c ∈ L and returns a color c′ ∈ L where c 6= c′. An
ordered L-coloring of a uni-ring is an L-coloring where ∀i ∈ ZN : ci = next(ci	1), N denotes the number of
processes in the ring, and 	 represents subtraction modulo N .

Theorem 3.6. No protocol exists that converges to an ordered L-coloring on symmetric uni-rings for rings
of N > L processes.

Proof. Bernard et al.’s [8] show that no converging L-coloring protocol exists on symmetric uni-rings for
rings of N > L processes. By contradiction, assume there is a converging protocol p that ensures an ordered
L-coloring for some uni-ring with size N > L. Such an ordered L-coloring is a legitimate L-coloring. Thus,
p converges to an L-coloring, which is a contradiction with [8].

Corollary 3.7. Theorem 3.6 holds under any fairness assumption, including strong fairness. In other words,
Theorem 3.6 holds for weak convergence too.

Proof. By contradiction, suppose Theorem 3.6 is falsified assuming strong fairness. That is, there is a weakly
converging protocol that guarantees L-coloring on uni-rings of N > L processes. This means that from any
arbitrary state, there is at least a computation that reaches a valid L-coloring of the uni-ring for any N > L.
Wlog, consider the case where N = L + 1; i.e., the number of colors is one unit less than the number of
processes, and processes that have a similar color to their predecessor simply choose the next color available
by incrementing their value. Bernard et al. [8] show that the executions of any deterministic coloring protocol
are isomorphic to a coloring protocol where all processes follow the rule of incrementing their value (i.e.,
choosing the next color in order). Now, consider an example state 〈0, 0, 1, 2, 3, · · · , N − 2〉 for the uni-ring of
size N . In this state, only the second process is enabled to change its color because it is the only processes
that has the same color as that of its predecessor’s. The execution of the second process would get the
protocol to the state 〈0, 1, 1, 2, 3, · · · , N − 2〉, where the third process is now enabled. Following the same
pattern, the uni-ring reaches the state 〈0, 1, 2, 2, 3, · · · , N − 2〉, where the fourth process is the only process
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that is enabled. This sequence of states forms the livelock 〈0, 0, 1, 2, 3, · · · , N − 2〉, 〈0, 1, 1, 2, 3, · · · , N − 2〉,
〈0, 1, 2, 2, 3, · · · , N − 2〉, · · · , 〈0, 1, 2, 3, 4, · · · , N − 2, N − 2〉, 〈0, 1, 2, 3, · · · , N − 2, 0〉. Notice that, the last
state is actually the same as the initial state of this execution of the symmetric uni-ring. Moreover, this
livelock is deterministic. Thus, by Corollary 2.13, even strong fairness will not resolve this deterministic
livelock, which prevents convergence to L-coloring. A similar argument holds for weak fairness.

Theorem 3.8. Let Q be a conjunctive state predicate ∀i ∈ ZN : q(xi−1, xi). No symmet-
ric uni-ring protocol exists that can converge to states where Q holds through cyclic satisfaction of
q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0), for rings of N > L processes and L > 1. This result holds
under any fairness assumption.

Proof. By contradiction, let p be a parameterized protocol that converges to states in Q (under any fair-
ness assumption) where q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0) hold for some values c0, c1, · · · , cL−1,
where L > 1. Thus, the locality graph of q(xi−1, xi) must include a cycle whose vertices are labeled with
c0, c1, · · · , cL−1 in order. As a results, such states of Q represent an ordered L-coloring. That is, p converges
to an ordered L-coloring protocol for N > L. This is a contradiction with Theorem 3.6 and Corollary 3.7.

Theorem 3.9. Let R and Q be non-empty conjunctive state predicates, R ∩ Q = ∅ and R 6= true. No
symmetric protocol exists on uni-rings that can satisfy (R  Q) by reaching states where Q holds through
cyclic satisfaction of q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0), for rings of N > L processes.

Proof. By contradiction, let p be such a protocol whose computations reach states in Q from states in R
through cyclic satisfaction of q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0). Using the decidability of syn-
thesizing self-stabilizing protocols (Theorem 2.16), we design a silent stabilizing protocol p′ that converges
to R from any state, and once in R, p′ becomes disabled. However, the actions of p and p′ may inter-
fere by creating livelocks outside R ∨ Q. Such livelocks include states where p and p′ both have enabled
processes that can take some action. Thus, such livelocks are not deterministic livelocks. To ensure re-
covery from such livelocks, we assume strong fairness. As a result, we guarantee that p′ will eventually
converge to R, and from R, protocol p can guarantee that we reach states in Q through cyclic satisfaction
of q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0). Therefore, the net result is a protocol that converges to
Q through cyclic satisfaction of q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0) under strong fairness. This
is a contradiction with Theorem 3.8.

4 Decidability of Synthesis

This section proves the decidability of synthesizing symmetric uni-ring protocols that satisfy the leads-to
property (R  Q), where R and Q denote non-empty conjunctive state predicates. We first establish a
relation between self-stabilization and leads-to by the following lemma:

Lemma 4.1. Let R and Q be conjunctive state predicates specified on uni-rings. There is a symmetric
protocol that satisfies (R  Q) for unbounded (but finite) ring sizes iff there is a symmetric protocol that
stabilizes to Q for unbounded (but finite) ring sizes.

Proof. Any protocol p that is self-stabilizing to Q ensures convergence to Q; i.e., (true  Q). Since
R ⊂ true, it follows that protocol p satisfies (R  Q). Now, if there is no protocol that stabilizes to Q,
then Theorem 2.16 implies that there is no value γ in the domain of xi for which q(γ, γ) holds. Thus, for
a protocol p′ to satisfy (R  Q), p′ must converge to states where Q holds through cyclic satisfaction of
q(c0, c1), q(c1, c2), · · · , q(cL−2, cL−1), q(cL−1, c0), which is impossible due to Theorem 3.9.

Theorem 4.2. Synthesizing a symmetric protocol on uni-rings that satisfies (R  Q) (for unbounded ring
sizes) is decidable.
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Algorithm 1. SynLeadsTo(r(xi−1, xi), q(xi−1, xi): state predicate, M : domain size of xi)

1: Create the locality graphs GQ = (VQ, AQ) and GR = (VR, AR) respectively for both q(xi−1, xi) and
r(xi−1, xi).

2: Find a γ ∈ VQ such that q(γ, γ) holds and γ has not been used before. If no such γ exists, then declare
that no solution exists and exit.

3: Induce a subgraph G′Q = (V ′Q, A
′
Q) that contains all arcs of AQ that participate in simple cycles

involving γ. If there is no such subgraph, then V ′Q = {γ} and A′Q = ∅.
4: Compute a spanning tree τ of G′Q rooted at γ.
5: Let V ′R be the subset of VR that do not participate in any cycle.
6: Let V ′Rleaf be the set of vertices v ∈ V ′R that are leaves in τ . Remove the outgoing arc of each
v ∈ V ′Rleaf , hence creating a tree τ ′ (which is no longer a spanning tree of G′Q).

7: For each node v ∈ (VQ − (V ′Q ∪ V ′Rleaf )), include an arc from v to the root γ of the spanning tree τ ′

of G′Q, unless r(v, γ) holds.
8: For each node v ∈ VQ where r(v, γ) holds, include an arc (v, l), where l is a leaf in τ ′. The resulting

graph would still be a tree, denoted τ ′′. Include a self-loop (γ, γ) at the root of τ ′′. If τ ′′ has no leaves
in common with any cycle in GR, then go to Step 2.

9: For each leaf vertex a in τ ′′, label its outgoing arc (a, c) with a value b ∈ ZM iff b 6= c and r(a, b) ∧
¬q(a, b).

10: For any other arc (a, c) in τ ′′, label it with a value b ∈ ZM iff b 6= c and ¬q(a, b).
11: For each labelled arc (a, b, c) in τ ′′ (where b is the label of arc (a, c)), generate a parameterized action

xi−1 = a ∧ xi = b→ xi := c.

end

Figure 3: Synthesis algorithm for LeadsTo in symmetric uni-rings

To prove Theorem 4.2, we present a synthesis algorithm that takes two non-empty and disjoint conjunctive
state predicates R and Q, and generates a parameterized protocol that satisfies R  Q on symmetric uni-
rings, for unbounded ring sizes. Wlog, we assume that R∩Q = ∅; even if R and Q intersect, i.e., (R∩Q 6= ∅)
, the synthesis problem is formulated for (R − X)  (Q − X), where X = R ∩ Q. (Note that R  Q is
vacuously true in X.) We later show that Algorithm 1 is sound and complete.

For a specific γ, Algorithm 1 performs Steps 3 to 8 in order to determine if there is a solution for that
γ. In Steps 3 to 8, Algorithm 1 constructs the underlying structure of an action graph that will form the
synthesized protocol p after the labeling steps of 9 and 10. A correct protocol must meet certain constraints
that are the minimum requirements for a protocol p that satisfies R  Q. For instance, p should only
guarantee R  Q starting in R. That is why Step 5 calculates the set of values in ZM that do not appear
in any state of R, and Step 6 removes them from the spanning tree of G′Q. Moreover, since we assume
R ∩ Q = ∅, the cycles of GR and GQ are arc-disjoint (due to Theorem 2.8). Thus, any correct protocol
cannot include an arc (a, c) ∈ AR for which r(a, c) holds and c = γ. Otherwise, the processes will include
an action xi−1 = a ∧ xi = b → xi := c, for some b where ¬q(a, b). Such an action would set the locality of
each process to a state (i.e., xi−1 = a ∧ xi = c) where R holds, thereby preventing reachability to Q. That
is why Step 7 excludes such arcs. After eliminating such vertices and arcs through Steps 3 to 8, if we have a
tree-like structure that has no leaves in common with the cycles in GR, then we move to Step 2 and repeat
the same process for a different γ. Algorithm 1 exits only if no valid action graph can be built for any γ.

Theorem 4.3 (Soundness). Algorithm 1 is sound.

Proof. We show that if Algorithm 1 generates a parameterized protocol p for two disjoint predicates R and
Q, then p satisfies R  Q for unbounded ring sizes. To prove this, we show that any computation of p
starting in a state s ∈ R will be deadlock-free and livelock-free outside Q and will eventually reach a state
sf in Q.
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Deadlock-freedom: Since the synthesized action graph, denoted AG, is a tree with a self-loop on its root
γ, AG must have some leaves. Step 8 of the algorithm ensures that any vertex v 6= γ that participate in a
cycle in the locality graph GR of the state predicate R appears as a leaf in the tree. The labeling method
of Step 9 guarantees that any leaf a of AG has an outgoing arc (a, c) (to some vertex c ∈ ZM ) with a
label b such that r(a, b) holds. Step 11 would translate each labeled arcs (a, b, c) to a parameterized action
xi−1 = a∧ xi = b→ x := c. By Theorem 2.8, we also know that cycles in locality graphs characterize global
states of uni-rings. Thus, the guard condition of such an action evaluates to true in a state in R because
r(a, b) holds. Thus, starting in R, there is at least one enabled action; i.e., deadlock-freedom in R. We now
show that the computations of the synthesized protocol p remain deadlock-free until reaching a state in Q.
The only values in ZM that are excluded from the synthesized action graph AG include those values that
do not participate in any cycle in GR; i.e., those values do not appear in states in R. If computations of p
reach a state outside R∨Q, the labeling method of Step 10 ensures that there is some enabled action; hence
deadlock-freedom.

Livelock-freedom: The only type of propagation included in the synthesized action graph is (γ, b, γ). Thus,
there are no propagations that lead each other circularly. That is, based on Theorem 2.10, the synthesized
protocol is livelock-free.

Reachability of Q: By deadlock-freedom and livelock-freedom, each process will eventually satisfy q(γ, γ),
which would result in a global state of the ring in Q.

Theorem 4.4 (Completeness). Algorithm 1 is complete.

Proof. Let p be a parameterized protocol that satisfies R  Q but Algorithm 1 fails to generate p. By
Theorem 3.9, p cannot satisfy R Q through cyclic satisfaction of some values; i.e., the action graph of p,
denoted Ap, can include only cycles of length 1; i.e., self-loops. Further, if a node v has a self-loop in Ap,
then v cannot have any other outgoing labeled arc; otherwise, Ap will include either cycles of length greater
than one, which contradicts Theorem 3.9, or ends in nodes without any outgoing arcs; i.e., deadlock. Thus,
there must be a value γ ∈ ZM for which q(γ, γ) holds and there is some value v ∈ ZM , where v 6= γ and
q(v, γ) holds too. That is, Ap must include γ as well as another labeled arc (v, b, γ) for some b ∈ ZM , where
v 6= γ and b 6= γ. This means that Algorithm 1 would actually find such γ in Step 2. The action graph
Ap must also include some source nodes without any incoming arcs. Otherwise, it would include cycles of
length greater than one (which again contradicts Theorem 3.9). Such source nodes must also intersect with
the vertices of some cycles in VR and have outgoing labeled arcs (a, b, c) such that r(a, b) holds and a is a
vertex in a cycle in GR. Otherwise, p deadlocks in R, which contradicts with p satisfying R Q. As such,
Algorithm 1 would have included such labeled arcs in Steps 8 and 9, and would have created the action
graph Ap sinking towards γ.

Theorem 4.5. Algorithm 1 has an asymptotic polynomial time complexity in the domain size M .

Proof. Other than Step 3, it is trivial to see that all the other steps would take polynomial amount of time (in
M = |VQ| =DomainSize(xi)) to compute. For Step 3, we first remove self-loops. Then, we start eliminating
any vertex v 6= γ in the locality graph GQ = (VQ, AQ) that has no outgoing arcs. This would result in
removing the incoming arcs of v too. We continue such vertex/arc removals until all remainig vertices have
at least one outgoing arc, or no vertex remains. The remaining sub-graph that contains γ would be used for
subsequent steps of the algorithm. This process takes O(M). Therefore, the asymptotic time complexity of
Algorithm 1 is polynomial in M .

Theorem 4.6. Let Ri and Q be conjunctive state predicates, for 1 ≤ i ≤ k and k > 1. Synthesizing a
parameterized protocol on symmetric uni-rings that satisfies ((R1 ∨R2 · · · ∨Rk) Q) is decidable.

Proof. One can apply Algorithm 1 k times for each Ri and decide if there is some 1 ≤ i ≤ k for which there
is a protocol that satisfies Ri  Q. Any such protocol is also a solution for ((R1 ∨R2 · · · ∨Rk) Q).

Theorem 4.7. Let Ri be conjunctive state predicates, for 1 ≤ i ≤ k and k > 1. Synthesizing a parameterized
protocol on symmetric uni-rings that satisfies ((R1 ∧R2 · · · ∧Rk) Q) is decidable.
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Proof. Since Ri predicates are conjunctive, we apply Algorithm 1 while identifying cycles in the intersection
of the locality graphs of Ri, for 1 ≤ i ≤ k. The rest of Algorithm 1 remains the same.

Theorem 4.8. Let R,Q1 and Q2 be conjunctive state predicates and Q1 ∩Q2 6= ∅. Synthesizing a parame-
terized protocol on symmetric uni-rings that satisfies (R (Q1 ∧Q2)) is decidable.

Proof. We use Algorithm 1 by finding a value γ in the domain of the variable xi (of the template process Pi)
such that q1(γ, γ)∧ q2(γ, γ) holds. Moreover, it is straightforward to algorithmically find a common cycle in
the locality graphs of Q1 and Q2 that contains γ (e.g., by running a DFS algorithm starting at γ). There
is a parameterized protocol that satisfies (R  (Q1 ∧ Q2)) iff Algorithm 1 generates a protocol (due to its
completeness).

Theorem 4.9. Let R,Q1 and Q2 be conjunctive state predicates. Synthesizing a parameterized protocol on
symmetric uni-rings that satisfies (R (Q1 ∨Q2)) is decidable.

Proof. It is straightforward to see that a protocol p satisfies (R  (Q1 ∨ Q2)) iff p satisfies (R  Q1) or
(R  Q2). We execute Algorithm 1 once for R  Q1 and another time for R  Q2 in order to decide if a
solution for (R (Q1 ∨Q2)) exists.

5 Case Studies

This section presents four case studies of using Algorithm 1 for the synthesis of symmetric uni-rings. Section
5.1 discusses the synthesis of the Sum-Not-2 protocol, and Section 5.2 presents the dual of Sum-Not-2
protocol. Section 5.3 illustrates the synthesis of a symmetric uni-ring for solving the parity problem in
distributed computing. Section 5.4 presents the synthesis of an agreement protocol on uni-rings. To increase
our confidence in the proposed synthesis method, we have model checked all protocols synthesized in this
section using SPIN [35] up to the extent our computational resources permit. The Promela models are
available at http://asd.cs.mtu.edu/projects/ProTop/index.html.

5.1 Sum-Not-2

The Sum-Not-2 protocol is a simple but non-trivial example that can clearly demonstrate the complexity of
synthesizing parameterized uni-rings that satisfy leadsto properties. In this protocol, we specify the set of
initial states for even-size uni-rings where the summation of xi−1 and xi is equal to two (modulo M = 4)
but xi 6= 1. That is, R = ∀i ∈ ZN : r(xi−1, xi), where r(xi−1, xi) ≡ (xi = 2∧xi−1 = 0)∨ (xi = 0∧xi−1 = 2),
and N denotes the number of processes (i.e., ring size). The objective is to synthesize a protocol that
eventually reaches states where the summation of xi−1 and xi is no longer equal to two (for all processes),
and it is not the case that all processes have a value of zero; i.e., Q = ∀i ∈ ZN : q(xi−1, xi), where
q(xi−1, xi) ≡ ((xi−1 ⊕4 xi) 6= 2) ∧ ((xi−1 6= 0) ∨ (xi 6= 0)), and ⊕4 denotes addition modulo M = 4. We
require that R Q is satisfied from R for all even values of N .
Step 1: As the first step of Algorithm 1, we construct the locality graphs of R and Q illustrated in Figure
4. Each arc (a, b) captures the fact that r(a, b) (respectively, q(a, b)) holds. For example, the only arcs in
Figure 4-(a) are between 0 and 2 because r(xi−1, xi) does not hold for any other pairs of values in Z4. As
another example, Figure 4-(b) lacks any arcs between 0 and 2 because their summation adds up to 2, which
violates Q. Moreover, the only vertex that has a self-loop is 2 because the arc (0, 0) violates the second
conjunct of Q and arcs (1, 1) and (3, 3) violate the first conjunct of Q (i.e., 1⊕4 1 = 2 and 3⊕4 3 = 2).
Step 2: Since q(2, 2) holds in GQ (see Figure 4-(b)), we set γ to 2.
Step 3: Figure 5-(a) illustrates the induced subgraph G′Q including simple cycles of GQ that contain γ (e.g.,
the simple cycle (0, 3, 2, 1, 0)).
Step 4: Figure 5-(b) illustrates a spanning tree τ rooted at γ = 2, where each arc (a, b) denotes that b is the
parent of a in τ . Notice that, there may be several spanning trees; i.e., the solution is not unique.
Step 5: Figure 4-(a) illustrates that vertices 1 and 3 do not participate in any cycles; hence V ′R = {1, 3}.
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0 1

2 3

(a) Locality graphGR rep-
resenting predicate R.

0 1

2 3

(b) Locality graph GQ

representing predicate Q.

Figure 4: Locality graphs for the predicates R and Q in SumNotTwo.

0 1

2 3

(a) Induced subgraph G′
Q.

0 1

2 3

(b) Spanning tree τ of
the induced subgraph G′

Q
with the root γ = 2.

Figure 5: Construction of the spanning tree of SumNotTwo.

Step 6: Since 1 is the only vertex of V ′R that is also a leaf of the spanning tree τ , we eliminate its outgoing
arc to 3, illustrated by the dashed arrow in Figure 5-(b).
Step 7: Since V ′Q = VQ, Step 7 does not make any changes.
Step 8: The only leaf of the tree τ ′ for which r(0, 2) holds is 0. Thus, we include just the self-loop (2, 2) to
generate the tree τ ′′ in Figure 6-(a).

0 1

2 30

2

3

(a) Action graph of the
synthesized protocol.

xi−1=0 ∧ xi=2 −→ xi := 3;

xi−1=3 ∧ xi=3 −→ xi := 2;

xi−1=2 ∧ xi=0 −→ xi := 2;

(b) Parameterized actions.

Figure 6: Synthesized parameterized protocol that satisfies R Q.

Steps 9 and 10: Consider the arc (3, 2). The candidate labels of this arc include 0, 1 and 3. We exclude 2
because it is equal to the parent vertex of 3. Since q(3, 0) and q(3, 1) are true and q(3, 3) is false, the only
acceptable label for the arc (3, 2) is 3 (see Figure 6-(a)). The arc (0, 3) has the label 2 because r(0, 2)∧¬q(0, 2)
holds. Likewise, the self-loop on 2 gets 0 as its label.
Step 11: Figure 6-(b) illustrates the synthesized parameterized actions for any even-size uni-ring that satisfies
R Q.

5.2 SumTwo Protocol

We consider the dual of the previous example, which provides another interesting case. Let R be ∀i ∈ ZN :
(xi ⊕4 xi−1 6= 2) ∧ (xi ⊕4 1 = xi−1), and Q be ∀i ∈ ZN : ((xi−1 ⊕4 xi) = 2) ∧ ((xi−1 6= 1) ∨ (xi 6= 1)), where
N denotes the number of processes (i.e., ring size), and ⊕4 represents addition modulo M = 4. (Addition
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and subtraction in subscripts are done modulo N .) We would like to synthesize a protocol that eventually
reaches states where the summation of xi−1 and xi is equal to two (for all processes), and it is not the case
that all processes have a value 1. We require that R Q is satisfied from R for all even values of N .
Step 1: Figure 7 illustrates the locality graphs of the predicates R and Q.

0 1

2 3

(a) Locality graphGR rep-
resenting predicate R.

0 1

2 3

(b) Locality graph GQ

representing predicate Q.

Figure 7: Locality graphs of SumTwo protocol.

Steps 2, 3, 4: Since q(3, 3), we have γ = 3 (see Figure 7-(b)). The induced subgraph G′Q includes the vertex
3. Thus, the resulting spanning tree would include a single vertex; i.e., 3.
Steps 5, 6: Since all vertices of GR participate in a cycle (Figure 7-(a)), we have V ′R = ∅. As such, there is
nothing to be done in Step 6.
Steps 7 and 8: Including arcs from vertices that are in VQ − V ′Q to γ would result in the spanning tree τ
in Figure 8-(a). Since r(0, 3) holds, τ ′ would look like the tree in Figure 8-(b) excluding the dashed arc and
the self-loop. Including an arc from 0 to the leaf 1 as well as the self-loop (3, 3) would generate the tree τ ′′

in Figure 8-(b).

0 1

2 3

(a) Initial spanning tree τ
built in Step 7.

0 1

2 3

(b) Revised spanning tree
τ ′′ for SumTwo.

Figure 8: Spanning tree built for the SumTwo protocol.

Steps 9, 10, 11: The remaining steps of Algorithm 1 would generate the action graph of Figure 9-(a), which
would be translated to the parameterized actions of the synthesized SumTwo protocol in Figure 9-(b).

0 1

2 3 0|1|2

3

0|2

1

(a) Action graph of the
synthesized protocol.

xi−1=0 ∧ xi=3 −→ xi := 1;

xi−1=1 ∧ (xi=0 ∨ xi=2) −→ xi := 3;

xi−1=2 ∧ xi=1 −→ xi := 3;

xi−1=3 ∧ (xi=0 ∨ xi=1 ∨ xi=2) −→ xi := 3;

(b) Parameterized actions.

Figure 9: Synthesized parameterized SumTwo protocol that satisfies R Q.
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5.3 Parity Protocol

The Parity protocol solves the problem of identifying a common parity amongst the nodes of a distributed
system without a central coordinator dictating what the parity should be. In this case study, we synthesize
a parameterized protocol for symmetric uni-rings that ensures reachability to an even parity in the entire
ring from states where there is an odd parity. In fact, the synthesized protocol provides an algorithm for
switching from odd to even parity amongst the nodes of a uni-ring. More precisely, we would like the
protocol to satisfy R Q, where R = ∀i ∈ ZN : (((xi 	4 xi−1) mod 2 = 0) ∧ (xi mod 2 6= 0)), Q = ∀i ∈ ZN :
(((xi 	4 xi−1) mod 2 = 0) ∧ (xi mod 2 = 0)), M = 4 and 	4 denotes subtraction modulo 4.
Steps 1 and 2: We first construct the locality graphs GR and GQ (illustrated in Figure 10). Notice that both
0 and 2 can be considered as γ; we let γ = 2.

0 1

2 3

(a) The locality graph GR

for the state predicate R.

0 1

2 3

(b) The locality graph GQ

for the state predicate Q.

Figure 10: Locality graphs of the Parity protocol.

Steps 3 and 4: We induce the subgraph G′Q from GQ by considering the simple cycle between 0 and 2. We
then compute the spanning tree of G′Q rooted at γ = 2.

0 1

2 3

(a) The induced sub-graph
G′

Q.

0 1

2 3

(b) The spanning tree τ of
G′

Q rooted at γ.

Figure 11: Induced subgraph and its spanning tree τ of the Parity protocol.

Steps 5, 6: The set V ′R includes vertices 0 and 2, and the only vertex that is a leaf in τ is 0; hence V ′Rleaf = {0}.
Removing the outgoing arc (0, 2) will create the tree τ ′ with the single vertex 2.
Steps 7 and 8: We now compute VQ− (V ′Q∪V ′Rleaf ), which is equal to {1, 3}. Thus, we include the arcs (1, 2)
and (3, 2) to generate the tree τ ′′. We also include the self-loop (2, 2) in τ ′′ to generate the structure of the
action graph of the synthesized protocol in Figure 12-(a). Notice that, r(1, 2) and r(3, 2) do not hold. Since
the only leaf in τ ′ is vertex 2, arc (0, 2) cannot be included in τ ′′.

0 1

2 3

(a) The tree τ ′′.

0 1

2 31|3
3

1

(b) Action graph.

Figure 12: Action graph of the Parity protocol.

Steps 9, 10, 11: The remaining steps of the algorithm labels τ ′′ (Figure 12-(a)), which would result in the
action graph in Figure 12-(b). The synthesized parameterized actions of the parity protocol are as follows:
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xi−1=1 ∧ xi=3 −→ xi := 2;

xi−1=3 ∧ xi=1 −→ xi := 2;

xi−1=2 ∧ (xi=1 ∨ xi=3) −→ xi := 2;

5.4 Agreement Protocol

Agreement is a fundamental problem in distributed computing. This section demonstrates how Algorithm
1 synthesizes a parameterized protocol on symmetric uni-rings that ensures agreement from a set of initial
states. Specifically, we synthesize a protocol that meets R  Q, where Q = ∀i ∈ ZN : xi−1 = xi, and
R = ∀i ∈ ZN : (((xi 	 xi−1) mod 2 = 0) ∧ (xi 6= xi−1)).
Steps 1 and 2: Figure 13 illustrates the locality graphs GR and GQ, respectively for predicates R and Q. We
have four possible values for γ. Wlog, we let γ be 1.

0 1

2 3

(a) The locality graph GR

for the state predicate R.

0 1

2 3

(b) The locality graph GQ

for the state predicate Q.

Figure 13: Locality graphs of the Agreement protocol.

Steps 3 and 4: Since GQ has only self-loops on its vertices, G′Q would include just Vertex 1. Correspondingly,
the spanning tree τ includes just a single vertex (i.e., 1).
Steps 5, 6: Since V ′R is empty, V ′Rleaf becomes empty too.
Steps 7 and 8: We have VQ − (V ′Q ∪ V ′Rleaf ) = {0, 2, 3}. As a result, τ ′ would include arcs (0, 1) and (2, 1),
but excludes (3, 1) because r(3, 1) holds (see Figure 14-(a)). Executing Step 8 would result in including arcs
(3, 2) and (1, 1), resulting in tree τ ′′ (Figure 14-(b)).

0 1

2 3

(a) The tree τ ′.

0 1

2 3

(b) The tree τ ′′.

Figure 14: Trees computed during synthesis of the Agreement protocol.

Steps 9, 10, 11: The remaining steps of the algorithm labels τ ′′ (Figure 14-(b)), which would result in the
action graph in Figure 15.

0 1

2 3

0|2|3
2

0|3

1

Figure 15: Action graph synthesized for Agreement .

The synthesized parameterized actions of the agreement protocol are as follows:

15



xi−1=0 ∧ xi=2 −→ xi := 1;

xi−1=3 ∧ xi=1 −→ xi := 2;

xi−1=2 ∧ (xi=0 ∨ xi=3) −→ xi := 1;

xi−1=1 ∧ (xi=0 ∨ xi=2 ∨ xi=3) −→ xi := 1;

6 Related Work

There is a diverse set of methods for the synthesis of fixed-size and parameterized programs/protocols. For
example, program sketching [55, 54] aims to automatically fill the holes in an incomplete program. Example-
based synthesis [53] generates a program from a table of inputs and expected outputs. Syntax-guided program
synthesis [3] constrains the search space of synthesis using a syntactic template of a program. Counterexample
guided inductive synthesis [48, 1] generates abstract programs and a verifier provides counterexamples for
refining the synthesized abstract programs. Techniques for automated completion of distributed protocols
[59, 4, 58, 5] mainly extend program sketching and synthesis-by-examples for distributed programs under
strong/weak fairness. Existing automated techniques [6, 43, 32, 17, 11, 19, 24, 22, 40, 23] for the addition
of fault tolerance mainly enable the synthesis of fixed-size fault-tolerant protocols from their fault-intolerant
versions.

Most existing methods for the verification of parameterized programs can be classified into abstraction
methods [9, 36, 21], SMT-based verification [30, 13], parameterized visual diagrams [52], network invariants
[61, 38, 34], compositional model checking [46], logic program transformations and inductive verification
methods [49, 50, 51, 28], regular model checking [12, 57, 2], proof spaces [26] and topology-specific verification
[45].

There are a variety of methods for the synthesis of parameterized programs. For example, Attie and
Emerson [7] compose a pair of representative processes (under weak fairness) to reason about the global safety
and local leads-to properties of a symmetric parameterized system. Some researchers [16, 10] present methods
for generating parameterized protocols for specific problems (e.g., counting) on specific topologies (e.g., clique
[16]). Verification and synthesis methods based on threshold automata [44] take a sketch automaton (whose
transitions have incomplete guard conditions capturing the number of received messages), and complete the
guards towards satisfying program specifications.

The closest work to this paper includes our previous work on the synthesis of self-stabilizing parameterized
uni-rings [18], where a protocol is expected to recover to a set of states from any state. In the synthesis
of self-stabilization, R = true and Q captures a set of legitimate states to which recovery is required. As
such, we construct a spanning tree of the locality graph of Q rooted at some γ. Such a spanning tree should
include all values in the domain of xi. By having just a self-loop on γ, we ensure that starting from any state
in ¬Q, no livelocks will be reached (due to Theorem 2.10). However, when R ⊂ true, it is not trivial how
the synthesis should be conducted so global computations of a parameterized ring guarantee reachability of
Q only from global states in R. To address this challenge, we would need to identify local characterization
of states that are reachable from R as well as ensuring livelock-freedom only in states reachable from R.
Algorithm 1 succeeds in tackling these challenges. It is noteworthy to mention that a self-stabilizing solution
may not be the best solution for R  Q in cases where multiple leadsto properties must be satisfied. For
example, consider the case of two leadsto properties R1  Q1 and R2  Q2, where R1 ∩ R2 = ∅. If one
synthesizes a self-stabilizing protocol p that recovers to Q1, then p certainly satisfies R1  Q1 too. However,
all hopes for revising p towards satisfying R2  Q2 are lost because p instead satisfies R2  Q1. Using
Algorithm 1, we ensure that R1  Q1 is satisfied only from R1, and not from states outside R1. We are
currently investigating conditions under which synthesis of parameterized uni-rings that satisfy two leadsto
properties R1  Q1 and R2  Q2 becomes possible.
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7 Conclusions and Future Work

We investigated the problems of verifying and synthesizing parameterized protocols on symmetric unidirec-
tional rings for leadsto properties R  Q. We showed that the verification problem remains undecidable
even for constant-space and deterministic processes and for global state predicates R and Q that are formed
by the conjunction of symmetric local state predicates; i.e., conjunctive predicates. We then presented a
somewhat surprising result that, synthesizing protocols that satisfy R Q on uni-rings is actually decidable!
This is a significant result as both ring and leadsto are important aspects of distributed protocols. We are
currently working on the implementation of our synthesis algorithm and conducting more interesting case
studies such as cache coherence, leader election, etc. Moreover, we plan to study the synthesis of leadsto on
bidirectional rings, and other elementary topologies (e.g., mesh, torus).
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