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Abstract

This paper presents a direct approach to solving the aerosol coagulation equation. Newton-Cotes
formulas are used to discretize the integral terms, and the semi-discrete system is built using collocation.
A semi-implicit Gauss-Seidel time integration method is employed. The approach generalizes the semi-
implicit method of Jacobson.
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1 Introduction

As our understanding expands, new processes are incorporated into air quality computer models. One
example are the particulate matter (aerosol) processes, the importance of which is now widely recognized.
Aerosols are a priority focus area in environmental science due to the leading role they play as a cause of
adverse human health, and their ability to scatter and absorb incoming solar radiation and thus modify
warming due to greenhouse gases and reduce visibility. To accurately study the effects of aerosols it is
necessary to resolve aerosol number and mass distributions as a function of chemical composition and size.
In this paper we develop a numerical approach to solving the aerosol coagulation equation. The method is
of stationary sectional type: the number densities are computed at a predefined set of particle volumes (bin
mean volumes). The discretization is based on approximating the integral terms by Newton-Cotes sums, and
imposing that the resulting equations hold exactly at the node points (collocation). The resulting bilinear
system of coupled ordinary differential equations can be advanced in time by the time-stepping algorithm of
choice; here we use the semi-implicit formula solved with Gauss-Seidel iterations.

The paper is organized as follows: Section 2 gives an overview of aerosol dynamic equations; Section 3
presents the discretization technique while Section 4 shows numerical results obtained on a test problem with
analytical solution. Conclusions and future work are highlighted in Section 5. Newton-Cotes integration is

reviewed in the Appendix.

2 Continuous particle dynamics equations

In this paper the continuous particle size distributions are functions of particle volume (v) and time (¢). For
simplicity we consider single component particles; the technique can be generalized to multiple components.
The size distribution function (number density) of a family of particles is be denoted by n(v,t); the number
of particles per unit volume of air with the volume between v and v + dv is n(v,t)dv. Similar formulations

can be given in terms of mass and surface densities [10], etc.
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The aerosol population undergoes a series of physical transformations which change the number density
according to [3]

2n,t) = —£ L0+ E I} oo — w, (o,
n(v,t) 5 Bown(w, t)dw + S(v,t) , (1)
n(v,0) = ng(v) .

The different terms in equation (1) describe, in order, the modification in the number of particles due to
growth, creation of particles of volume v by coagulation, loss of volume v particles due to coagulation,
increase in particle number due to nucleation, emissions and depositions (sources and sinks). The equation
is subject to a specified initial condition ng.

2.1 Previous work

Representations of the particle size distribution. Three major approaches are used to represent the
size distribution of aerosols: continuous, discrete and parametrized. In this paper we focus on continuous
models; for computational purposes one needs to use finite-dimensional approximations. In the sectional
approach the size domain v € [0, 00] is divided into size bins v € [V*%, V;high). In each size bin j there are
n; particles per unit volume, all of them having the same mean volume V;. In the full-stationary structure
the number of particles in each bin n;(t) is allowed to change in time, but the particle volumes in each bin
(V;) are not. Formally, the density function is n(v,t) = ijl n;(t) 6(v — V;), where §(v) is the Dirac delta

function*.

Coagulation Equation. The integro-differential coagulation equation is difficult to solve accurately, due
to the quadratic terms under the integral. The standard discrete version of the coagulation equation uses
a monomer size distribution (the volume of the particles in bin each 4 is a multiple of the smallest volume,
Vi=14iV1,i =1,2,---). Jacobson [8, Section 16] proposed the semi-implicit scheme to solve the discrete
coagulation equation . The differential equation is discretized in time using backward Euler formula, and
the quadratic terms n;_,(t)ng(t) are replaced by the “linearized” version nj_¢(t)n¢(t — h). The scheme can
be adapted to general size distributions, and admits a volume-conserving formulation.

Lushnikov [9] uses generating functions to solve analytically the coagulation equation for particles con-
sisting of monomers of two kinds, under the assumptions of a constant coagulation rate 8 and particular
initial distributions.

3 A Direct Discretization of the Coagulation Equation

The theoretical coagulation equation for single-component particles is [8, Section 16]

Zn(v,t) = 3 [ Bo—wwn(v —w, t)n(w, t)dw — n(v,t) [;° Bo.wn(w, t)dw . (2)
In practice the coagulation equation is restricted to particles having volumes in a finite range, 0 < Vin <
V < Vinax < 00:

Zn(v,t) =1 val:/m‘“ Bo—w.wn(v —w,t)n(w,t) dw — n(v, t)f " Bo,w n(w, ) dw (3)

T f(@)8(x — V) da = F(V;).

*Recall that §(z) = 0 for z # 0, §(0) = o0, and
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Particle volumes are distributed over several orders of magnitude; to better capture the distribution loga-
rithmic volume coordinates are frequently employed
1 —Vimin
Zn(logu,t) = L[5 ) g, n(log(v —w),t) n(logw, t) w d(log w)

(4)

—n(logv, t) flzogg;/::" Bo.wn(logw,t) wd(logw) .
Consider s size bins of volumes Vi = Vi < Vo < --- < Vg = Vipax- The direct approach for solving (3)
is based on discretizing the integrals by a quadrature formula with nodes V;,---,V;

b s
/ fdo 3 & 1) (5)

The bin volumes (the nodes V;) are given, but we need to specify the appropriate weights &;.
Replacing the integrals in (3) by (5) gives

onv,t) = 5 S 0o = Vi, (V3,6 —00,) S B nV0) @
j J
where we allow different weights (¢, ¢) on different intervals. For example, if 8 is symmetric (8y,; = Buw,v for
all v,w) then the integrand B,_q, n(v — w, t)n(w,t) is periodic on [Vimin, ¥ — Vmin]. Consequently, the first
term in (3) is the integral of a periodic function on a period, and choosing &; the trapezoidal rule weights
should provide a very accurate discretization.
We now impose that the equation (6) holds exactly at the node points (collocation). This gives:

an(Vit) = LY &V By v v n(Vi =V, tn(V, 1)

s . (7)
—n(Vi,t) X0y G By v Vi), 1<i<s

For a discrete coagulation equation we must express (7) only in terms of number density at the node points.
In general
Vi <Vi=V; <V, k=k(,j)

with &k depending on ¢ and j, and therefore n(V; — Vj,¢) must be approximated by polynomial interpolation
(of the same order as the underlying Newton-Cotes formula).

For example, if the evaluation of the first integral uses trapezoidal rule, n(V; — Vj,t) can be computed
by linear interpolation without losing the approximation order,

_ Vg1 VitV
k(i) =

, (Vi = Vi, t) = agg ) g () + (1 — o)) Pegingy+1 (E) -
Vetinrs — Vo) (Vi = Vi ) = (i gy n(ing) (8) + (1 = Qi) MG gy+1 (2)

With this the semi-discrete coagulation equation becomes a system of s coupled, bilinear ordinary differential
equations:

Il = LS &b vy (i) i () + (1= k(i) Mgy (£)) (1) ®)

—ni(t) 35y GBviv; i), 1<i<s

Here &;; denotes the j-th trapezoidal weight (node V;) for the interval [V1,V; — V4], and (; the j-th Newton-
Cotes weight for the interval [V, Vi].
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3.1 The semi-implicit method

The semi-implicit method of Jacobson [8, Section 16.2] can be viewed as a particular Newton-Cotes approach,
using the rectangular integration formula. Let N (V;,t) denote the total number of particles in size bin ¢, i.e.
particles having volumes between V;_; and V;. N(V;,t) are related to the density n(v,t) by

N(Vi,t) =Vin(W,t), NV, t) = (Vi = Vi) n(Vi,t) , 2<i<s.
The solution at t*+! is computed by

Do i=1:s
NVt )48 Y Bri—v,.vy N(Vi=Vi " T N(V; 6% 9)
L+h) 0 Bviv; N(Vith)

N(V;, tht1) =
N(V; — V;,t**1) is obtained from {N(Vj,t)} by linear interpolation.

3.2 Time integration

The semi-discrete system (8) could be integrated in time with an explicit or with an implicit time-stepping
formula. For implementing an implicit formula the Jacobian of the derivative function is needed; the Jacobian
is easy to derive analytically, due to the bilinear function form; we do not give more details here.
Of interest is the direct generalization of the semi-implicit method of Jacobson; the time-stepping idea
can be extended to a full Gauss-Seidel approach, which (in the context of Newton-Cotes formulation) reads
Do i=1:s
(Vi )+ T By, v, vy n(Vie Vit eV 2 ) 4 B Y By v n(0,6t ) n(viet)  (10)

k+1y
n(Vz t )— =T Vi,V s ViVs
’ 1+ Y G By n(V D+ Y Y By, n(vy )

4  Numerical Results

Test problem. For the numerical experiments we consider the test problem from [4]. Let Niot be the total
initial number of particles and Vi ean the mean initial volume. The initial number distribution is exponential,

and the coagulation rate is constant:

10 (v) = (Nyot/Vinean) €~/ Ve . B(v,w) = By .

This test problem admits the analytical solution [4]:

n(v,t) = ANioy exp ( —2v )
’ Vmean(Ntot,BOt + 2)2 Vmean(Ntot,BOt + 2) ’

We solve this coagulation equation for Vipean = 0.05 um?, Nyoy = 10* particles/em?, and

8kpT 3
Bo = N = 6.017e —10 ——
Ma |r—o9sk sec - particle

(n, is the atmospheric dynamic viscosity). The integration time interval is 24 hours, and the integration
time step h = 0.2 seconds is chosen small enough to ensure that time discretization errors are negligible
when compared to volume discretization errors. For discretization of the integral terms we choose the fourth
order repeated Newton-Cotes algorithm (Boole formula).

The initial and final number distributions are shown in Figure 1.
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Figure 1: Exact initial and final distributions, in linear (left) and logarithmic (right) coordinates.

Experiment I. In the first experiment we consider particles with diameters between D, = 0 gm and
Dmax = 1 pm (i.e. volumes in the range [Vipin = 0 1m3, Vinax = 5.236E — 1 ,um3], and use equidistant size
bin volumes,

szw; Vi=Vain+ (G —1)Av, 1<i<s.

The computed solutions and the error distribution (versus particle diameter) at the end of the 24 hours
interval are shown in Figure 2. The fourth order Newton-Cotes discretization (Boole formula) provides more
accurate solutions than the semi-implicit method for the same number of discretization points. Note that
using the trapezoidal discretization for the first integral term (with a linear interpolation for n(v — w,t))
gives better results than the Boole formula with order 4 polynomial interpolation (for reasons of periodicity,

as explained before).

Experiment II. In the second experiment we consider particles with diameters in between D, = 1E —
3 pum and Dyay = 1 pm (i.e. volumes in the range [Vipin = 5.236E — 10 pm?®, Vipax = 5.236E — 1 um?]. The

distribution of the bin volumes is logarithmic-uniform,

1
Vinax | ** i—1 ,
r=\v_ ; Vi=Vanp' ", 1Zi<s.

We actually solve the form (4) of the coagulation equation, with the interpolation also performed on loga-
rithmic scale. Linear interpolation works better than higher order interpolation.

The computed solutions and the error distribution (versus particle diameter) at the end of the 24 hours
interval are shown in Figure 3. Boole formula again provides more accuracy, but the difference is less
dramatic. For a large number of size bins the semi-implicit method is slightly better toward the high-volume
end of the interval. This is probably due to the fact that the log-uniform grid has insufficient resolution at

high particle volumes (diameters).
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Figure 2: Distribution of solution errors in Experiment I after 24 hours. Compared are Jacobson’s original

method, and Boole discretization.
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Figure 3: Distribution of solution errors in Experiment IT after 24 hours. Compared are Jacobson’s original

method, and Boole discretization.
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5 Conclusions and future work

In this paper we developed a direct method for the size discretion of aerosol coagulation equation. The number
densities are computed at a predefined set of particle volumes (bin mean volumes). The coagulation rate
integral terms are replaced by discrete approximations provided by Newton-Cotes formulas. The resulting
equations are imposed to hold exactly at the node points (collocation). This semi-discretization in size
results in a bilinear system of coupled ordinary differential equations. The system can be advanced in time
by explicit, implicit or ad-hoc time-stepping techniques.

The discretization methods are inexpensive, since the weights can be calculated before the integration
process and stored. For implicit time-stepping the Jacobian can be easily obtained; however it does not have
any special structure (it is a full matrix) so solving the linear systems might prove costly for large number
of bins. An extension of the semi-implicit time stepping method to a full Gauss-Seidel approach was used
in the experiments for time integration.

Future work will focus on improving the accuracy of the quadrature discretizations for the logarithmic
distribution of bin volumes.

Appendix: Newton-Cotes integration

A Newton-Cotes formula of order n for evaluating f: f(v)dv is based on a repeated application of the
following elementary rule. The order n polynomial p,(v) that interpolates the function at nodes v; through
Un41 i expressed as pp,(v) = E?:ll (v;) £;(v), where £; are the degree n Lagrange interpolation polynomials,

Ki(’l)j) = (5,’j. Then

N Uni1 nt+1 Vni1 n+1
[ [T pat =3 ) [ oo = Y wi (w0
v v i=1 v i=1
To cover the whole interval [a, b] the elementary rule is repeatedly applied on subintervals [v1, vp41], [Vn+2, V2nt2]
etc. If the number of nodes is not a multiple of n 4+ 1 the integration of the last interpolation polynomial is
restricted to the remaining subinterval. For convenience, we present the weights for orders 1, 2 and 4.
Trapezoidal rule (n=1):

wy = _ Vg — U1
1= w2 = 2 .
Simpson rule (n=2):
L= (1}3 — 1}1)(2’1)1 — vy + ’1)3) wy = (’U3 - ’1)1)3 .= (’U3 — ’1)1)(’[)1 — vy + 21}3)
6(’(11 - ’U2) ’ 6(’1}1 - ’112)(1)2 - ’113) ’ 6(-’(12 + ’U3) )
Boole rule (n=4):
w; = [(vs —v1)(120F — 1503wy — 150203 + 20v1v9v3 — 150204 + 20v1 V204

+20v1v3v4 — 30V2v304 + 91)%1)5 — 10v1vovs — 10v1v3vs + 10V20305
—10v1v4v5 + 10v9v4v5 + 10v30405 + 6vlv§ - 51}21}% — 5U3U§ - 5v4v§ + 3v§)]

/[60(v1 — v2)(v1 — v3)(v1 — v4)] ,

(vs — v1)3(3v% — buyvs — Svyvg + 10v3v4 + 4vivs — Sugvs — Svgvs + 3v3)
60(’1]1 - UQ)(UQ - 1)3)(’1]2 - ’U4)(Uz - U5)

(vs — v1)3 (30} — Burve — 5vrvs + 10vav4 + 4v1vs — Hvavs — Hvsvs + 3v2)

ws o= 60(v; — v3)(—vg + v3)(v3 — v4)(v3 — v5) ’
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(vs — v1)3(3v} — Burvs — Suyws + 10vav3 + 4vyvs — Suaws — Huzvs + 3v3)

we = 60(vy — va)(—v2 + v4)(—v3 +v4) (Vg — v5) ’
ws = [(vs —v1)(3v} — 5vive — 5vivg + 10v1v2v3 — 5vivs + 10v1V204 + 10V V304
—30vou3vs + 611%115 — 10v1v2v5 — 10v1v3v5 + 20V0v3v5 — 10V1V4v5 + 20V20405
+20v3v4v5 + 9v1vz — 150207 — 150307 — 150407 + 1203)]
/[60(—v2 + vs5)(—vs + v5)(—va + v5)] -
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