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Abstract

This paper presents a general framework for the discretization of particle dynamics equation by
projection methods, which include Galerkin and collocation techniques. Based on this framework a
discretization over piecewise polynomial spaces is discussed. Numerical examples are given using both
linear and logarithmic coordinates; the results show that this discretization approach is able to accurately
solve aerosol size distribution using a relatively small number of “size bins”.
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1 Introduction

As our understanding expands, new processes are incorporated into air quality computer models. One
example is the particulate matter (aerosol) processes, the importance of which is now widely recognized.
Aerosols are now a priority focus area in environmental science due to the leading role they play as a cause
of adverse human health, and their ability to scatter and absorb incoming solar radiation and thus modify
warming due to greenhouse gases and reduce visibility. To accurately study the effects of aerosols it is
necessary to resolve aerosol number and mass distributions as a function of chemical composition and size.

In this paper we develop a framework for solving the aerosol dynamics equation, which determines the
size distribution of atmospheric particles. Approximations of the size distribution are considered in a suitable
finite dimensional space. The discrete equation is obtained by projecting the dynamics equation onto the
discrete space (using a Galerkin or a collocation approach). This approach leads to a bilinear system of
coupled ordinary differential equations, which can be solved by a time-stepping method of choice. For
simplicity the framework is developed for number densities of single-component particles, but it can be
directly extended to mass or volume densities and multiple component particles.

To illustrate the general approach, we consider discretizations over piecewise-polynomial spaces. A
linearly-implicit second order time-stepping method is proposed for the time integration. Numerical ex-
amples show that good accuracy is obtained with a small number of grid points.

The paper is organized as follows. Section 2 presents the particle dynamics equations and Section 3
surveys previous efforts to solve these equations numerically. The discretization framework is introduced in
Section 4. Numerical results are presented in Section 6 and Section 7 draws conclusions and pinpoints future
work.



2 The continuous particle dynamics equation

In this paper the continuous particle size distributions are considered functions of particle volume (v) and
time (¢). For simplicity we consider single component particles, but the discretization techniques can be
directly generalized to multiple components.

The size distribution function (number density) of a family of particles will be denoted by n(v,t); the
number of particles per unit volume of air with the volume between v and v + dv is n(v,t)dv.

Similar formulations can be given in terms of volume, surface, or mass densities [16]. However, recovering
mass from a volume formulation is difficult in practice, as the densities are only approximatively known and
are a function of composition and size.

The aerosol population undergoes a series of physical and chemical transformations. Growth processes
include condensation, evaporation, deposition and sublimation (of gases to/from the particle surface). The
growth of each component’s volume takes place at a rate that depends on the particle’s dimension and
composition, dv/dt = I,(v,t). Coagulation forms new particles of volume v + w from the collision of two
smaller particles of volumes v and w; the collision rate B ,n(v)n(w) is proportional to the number of available
small particles. Nucleation of gases creates small particles. Emissions increase the number of particles of a
specific composition and size, while deposition processes remove particles from the atmosphere. In addition,
the constituents interact chemically inside each particle, changing the chemical composition (but not the
number) of particles.

Under the above physical transformations the number density changes according to [4]

WD~ 9l ) n, 1) /v )
+% /OU By—w,wn(v —w,t)n(w,t)dw — n(v,t) /OOO Bo,wn(w, t)dw
+5(v,1) ,
n(,0) = n°(w), n(0,t)=0.

The different terms in equation (1) describe, in order, the modification in the number of particles due to
growth, creation of particles of volume v by coagulation, loss of volume v particles due to coagulation,
increase in particle number due to nucleation, emissions and depositions (sources and sinks). Each of the
terms will be explained in detail below. The equation is subject to a specified initial condition n°(v), and
the boundary condition of no zero volume particles.

3 Previous work

Three major approaches are used to represent the size distribution of aerosols: continuous, discrete and
parameterized. In this paper we focus on continuous models (i.e. continuous size distributions and the
general dynamic equations in continuous form).

For computational purposes one needs to use finite-dimensional approximations of the continuous size
distributions. In the sectional approach the size domain v € [0, 00] is divided into size bins v € [V o, V&),
In each size bin i there are n; particles per unit volume, all of them having the same mean volume V;.
variations of this approach include the full-moving structure, the quasi-stationary approach, as well as the
moving-center structure [9)].

A nice survey of several popular numerical methods for particle dynamics equations is given in Zhang et.
al. [22].

The standard discrete version of the coagulation equation uses a monomer size distribution (the volume
of the particles in bin each ¢ is a multiple of the smallest volume, V; = iV;, i = 1,2,---). The semi-
implicit scheme to solve the discrete coagulation equation [20] is discussed by Jacobson in [9, Section 16].
The differential equation is discretized in time using backward Euler formula, and the quadratic terms
nj_¢(t)ne(t) are replaced by the “linearized” version n;_,(t)ng(t — At), where At is the numerical time step
size. The scheme can be adapted to general size distributions, and admits a volume-conserving formulation.
A combination of cubic splines (coagulation) and moving finite element techniques (growth part) was used
by Tsang and Hippe [21]. Meng, Dabdub and Seinfeld [14] present a size-resolved and chemically-resolved



model for aerosol dynamics in a mass density formulation. Gelbard and Seinfeld [4, 5, 6] solve the coupled
dynamic equations using orthogonal collocation over finite elements. Lushnikov [13] uses generating functions
to solve analytically the coagulation equation for particles consisting of monomers of two kinds, under the
assumptions of a constant coagulation kernel 8 and particular initial distributions.

The integro-differential coagulation equation is difficult to solve accurately, due to the fact that the limit
of integration of the first term depends on the variable v and the integrands are quadratic (the first term is of
nonlinear Volterra type in the terminology of integral equations). The algorithms proposed in the literature
for the coagulation equation include semi-implicit solutions, finite element method, orthogonal collocation
over finite elements, J-space transformations, analytical solutions, etc.

The growth equation in number densities has the form of an advection equation, with the “flow speed”
equal to the time derivative of the volume [17, Section 12]. A nice survey of several popular numerical
methods for the growth equations is given in Zhang et. al. [22]. Different solution of the growth equations
were proposed in [2, 8, 11, 12].

Many models include different processes successively, using a time splitting scheme. This enables the use
of numerical methods tuned to each subprocess but introduces hard-to-quantify splitting errors. Simultaneous
solutions of all dynamic processes are given in [4, 5, 6, 7, 14, 16, 21].

4 A general framework for discretization

We solve equation (1) by a semi-discretization in particle size (v), followed by a time integration of the
resulting system of ordinary differential equations. The semi-discretization in size is done by projecting the
solution on a finite-dimensional subspace span{¢;(v),---,¢s(v)}; this generalizes the sectional approach.
The dynamic equation is imposed to hold exactly in a certain subspace (Galerkin approach) or at a certain
set of nodes (collocation approach).

4.1 Discretization of the particle size distribution

The continuous number distribution is given a finite-dimensional approximation. Let {¢;}1<i<s be a set of
continuous basis functions; then

n(v,t) = zs:n,-(t) ¢i(v) , ¢;(x) = basis function . (2)

The set of time-dependent expansion coefficients

n(t) = [m @), - ns(®]" 3)

will be determined from the dynamics equation.

In logarithmic scaled coordinates the basis function arguments are changed accordingly, ¢;(log[v/Vi])-

The representation (2) places the problem in the general framework of projection methods [1]. For example
¢; can be piecewise polynomials or can be orthogonal polynomials. The result is a continuous distribution
n(v,t). Higher order approximations can be obtained by increasing the order of the basis functions without
changing the number of bins s.

We note in passing that the full-stationary sectional approach can be formally cast into the form (2) by
using Dirac* basis functions ¢;(v) = d(v — V;). For this reason we extend the sectional interpretation and
call span{¢;} the size bin i, and refer to n; as the number of particles in bin i.

4.2 Coagulation

The theoretical coagulation equation for single-component particles is [9, Section 16]

on(v,t
ot

) % /Ov By—w,wn(v —w, t)n(w, t)dw — n(v,t) /Ooo B n(w, t)dw (4)

*Recall that §(z) = 0 for z # 0, §(0) = oo, and ;/1_-'_: f(z)é(z = Vi) dz = fF(Vi).



The Galerkin approach. To obtain a discrete form of the coagulation equation one inserts (2) into (4):

Sori0e) = 330 Y mtna) [ B (v — ) (w) o

k=1m=1

o Z Z nk(t)nm(t) /Ooo ﬂv,w¢k(v)¢m(UI) dw .

k=1 m=1

The resulting equation is multiplied by the test function &;(v) (j = 1---s) and integrated from v = 0 to oo
to obtain a system of s ordinary differential equations

;n;(t) /0°° ¢i(v)€j(v)dv = %ZS: zs: i (O (1) /000 </0v et w)¢m(w)dw) o

k=1 m=1
E s

= D nk(t)nm(?) /0 N ( /0 N Bo,wbm (w)dw> o (v)&; (v)dv (5)

k=1m=1
We build the following matrices of integral coefficients

4 = :/0°°¢j<v)§z-<v)dv]

1<4,j<s

= ) [ ([ buwtnto - w)imtuiin) 01 L 1<i<s. ©

1<k,m<s

ol = _/0°° (/Omﬂv,mm(w)dw) ¢k<v)§j<v)dv]lg’m§s, 1<j<s.

If n(t) is the vector of number concentrations (3), the equation (5) becomes

nT(t) (B' = C") n(t)
An'(t) = : . M)
n(t) (B® — C°) n(t)

One can regard B and C as 3-tensors, in which case the semi-discrete coagulation equation reads
An'(t) = [(B—=C) xn(t)] -n(t) . (8)

In the pure Galerkin approach [1] {¢;(v)} = {&(v)} are (piecewise) continuous basis functions. The
equation (7) is relatively expensive to solve, since one has to evaluate a large number of double integrals for
building the tensors B and C. If S(v,w) does not change in time one can compute the tensors once and
reuse them throughout integration, thus making the whole process computationally feasible.

The collocation approach. In the collocation approach {¢;(v)} are continuous basis functions, but the
test functions are deltas, {&(v) = 6(v — V) }, with V¢ the collocation points. The resulting equation is also
of form (7), but the integral coefficients to be computed simplify to

A = [0i(V)i<ij<s

B = [1/2) 5 Byp-watn(Vf —w)dmw)dw| ., 1<j<s, (9)
ci 1<)

[66V) J5* By otom (w)du]  1<j<s

1<k,m<s

This approach is computationally less expensive since all coefficients involve only simple integrals.



4.3 Growth

Growth processes include condensation, evaporation, deposition and sublimation (of gases to/from the par-
ticle surface). Consider again the case of single component particles. The growth equation in number

densities
on(v,t) 0 _du(t)

i =~ 5 [O)n@,0] , ()= ==,

has the form of an advection equation, with the “flow speed” provided by the time derivative of the volume.
This equation is to be solved subject to an initial distribution n°(v) and the boundary condition of no
zero-sized particles [17, Section 12],

A similar derivation process (as presented for coagulation) leads to the semi-discrete formulation of the
growth equations

n(O,t) =0, ’I’L(U,O) = nO(U) ) (10)

An/(t) =Gn(t), (11)
where

A= [ [ ewe (v)dv]

For G we have used one integration by parts and homogeneous boundary conditions at v = 0 and v = oo.
For the Galerkin approach use &; = ¢;. For the collocation approach one obtains

A= [¢j(V%c)]1§i,j§s ) G= |:_ [I¢j]’ (Vic)]lgi,jgs : (13)

. 6= [ | 10,0060 . (12)

1<i,j<s 1<4,j<s

4.4 Sources and sinks

Sources and sinks (i.e. emissions, nucleation and deposition processes) have a simple mathematical formu-
lation,
on(v,t)
ot
The simplicity comes from the fact that S and R terms are not coupled across different volumes; finite-
dimensional approximations of these terms can be given: S(t) = Y7, S;(¢)¢;(v) and R(t) = Y, Ri(t)¢i(v).
The discrete evolution equation can be written as

= S(v,t) — R(v,t)n(v,t) . (14)

n'(t) = S(t) — R(t)n(t) where R(t) = diag (Ri(t),--,Rs(?)) - (15)

4.5 Simultaneous discretization of the dynamic equations

Of particular interest is the coupled solution of coagulation, growth, nucleation, emissions and deposition.
The coupled approach will, for example, better capture the competition between nucleation of new particles
and condensation on existing particles for gas-to-particle conversion [22].

For single component particles combining (7), (11) and (15) gives the semi-discrete aerosol dynamics
equation

An'(t) = Gn(t) +[(B = C) x n(t)] n(t) + AS(t) — AR(t)n(t) . (16)
N s N~ ~~ - h '—/ —’_f
growth coagulation sources deposition

This is a system of s coupled ordinary differential equations. The discrete initial conditions
n(0) = n° (17)

are derived by projecting the continuous initial distribution ng(v) onto the finite-dimensional solution space,

0w =Y 0 iw) . 0= [nd 0]
=1



4.6 Time integration

The system (16)-(17) can be solved by any appropriate time-stepping method. The system has a particular
form: the growth term is linear, while the coagulation term is bilinear. This makes it easy to express the
Jacobian for implicit methods.

Particularly attractive are linearized versions of the implicit numerical methods which avoid iterative
solutions. The following linearized backward Euler time discretization has second order time accuracy for
the coagulation term:

At
An(tFt) = An(t*) + 7J°°ag (n(tk)) n(tk+1y (18)
where the Jacobian of the coagulation term is
nT D!
J%8(n) = : , D'=(B'-C)+(B'-0)",1<i<s. (19)
nT D*

This can be coupled with the Crank-Nicholson method for the growth and source terms to obtain the second
order, non-iterative scheme

(A - % [J°°% (n(t")) + G + AR(t’““)]) n(thth) = (A + % (G + AR(t")] ) n(t?)  (20)

+% [S(E**1) +5(t%)] .

4.7 Extension to volume densities

The framework can be easily extended to treat volume, surface, or mass densities. For example the volume
density V(v,t) = vn(v,t) can be discretized as

V(v,t) = ZVz'(t) ¢i(v) .

The aerosol dynamics equation for volume densities is

OV(v,t)/0t =

(growth) —0[V(v,t) I(v,t)] JOv + V(v,t)I(v,t) /v 1)
(coagulation) + [ B Yy )V (w, t)dw — V(v, 1) [ 222 Y(w, t)dw

(sources, deposition) + S(v,t) — R(v,t)V(v,t) .

A discretization of equation (21) can be obtained following the framework approach; one obtains a discrete
system of the form (20) with B, C and G redefined accordingly.

4.8 Extension to multiple components

Complex models treat particles composed of multiple chemical constituents. Let vq(v,t), ¢ = 1,---,m be the
volume of the ¢g-th chemical component in particles of volume v; the multi-component aerosol population is
described by the individual volume densities of each constituent V9(v,t) = v,(v,t) n(v, t); the total volume
of component ¢ (per unit volume of air) contained in all particles having individual volumes between v
and v + dv is V?(v,t)dv. Under these transformations the volume densities of each constituent V?(v,t),
g =1,---,m change according to [4, 16]

BVI(v,1)/0t =

(growth) —OVi(v,t) Yo Ii(v,t)] JOv + V(v,8) I3 (v, t) /v

(coagulation) + Jy ﬁ”‘% Vi(v —w, )V (w, t)dw — Vi(v,t) [;° '8‘;’)‘“ (w, t)dw (22)
(sources) + Sy(v, 1)

(deposition) — Ry(v,t) Vy(v,1t)

(ChemiStrY) +K(V17"'7Vm7t) ) g=1---,m,



where V(v,t) = 30", V9(v,t) is the total volume distribution; the m integro-differential equations are
coupled through V(v,t) and K(V1,---,Vm,t). The system (22) is subject to the initial and boundary
conditions

Vq(vat:()):(vq)o(v) ) Vq(U:()’t):O, g=1,---,m. (23)

The equations (22)-(23) can be discretized in size using the same approach. For each component volume one
has

=2 Vit giw), VIO =V(Viit), g=1,m, (24)

and the semidiscrete system reads

%Vq(t) = GVI(t) — diag, (I

(Vi) —
)Xo

~ /

~
growth

+[Bx VItV Vit

CxZV’c

~ J
~~

coagulation
+ S(t) _Rq Vq(t)+K(V177Vm)t) ’ qzla"')m'
e ed —_— Y—m—m—

nucl.4+em dep. chem.

The matrix G and the tensors B and C are redefined according to (22). Note that the same G, B,C are
used for all chemical components ¢, which makes the method efficient.

5 Piecewise-polynomial discretization

Consider now the discrete space of piecewise-polynomials of order smaller than or equal to 7, Pr(Vinin, Vinax)-
We assume that s — 1 is a multiple of r; the functions are polynomial on each interval [V1+£r;V1+(e+1)r]-
A basis of P, is provided by the Lagrange polynomials in each interval, with the r + 1 nodes given by
Viter, Vatr, -+ s Vigrter- Thus, the basis functions ¢; have compact support, are piecewise-polynomials of
order less than or equal to r and satisfy the relation

|1, fori=j,
¢’(V])_{ 0, fori#j.

The discrete approximation

n(v,t) = i mat d)l an ¢z
i=1

is the order r piecewise-polynomial interpolant of n(v,t) with nodes Vi. Let h = max; |Viy1 — V;|. Assuming
smooth solutions n(v,t) the interpolation order is

8

n(v,) = 3 n(Vi,t)gi(v)

i=1

=0 (h’r'—i-l) .

In general one expects that the approximation order is given by the interpolation order.

A direct approach is to consider the system as being discretized first in time then in size. The time
integration method (18) applied to the coagulation system leads to the linear second order Fredholm equation
(with unknown function n (v, t**1))

H Y ﬂvf'w,'w + ﬂw,vfw

5 n(v — w, t*)n(w, t* 1) dw (25)

n(v, t**1) = n(v,tf) +

A b A e
—Tt n(v, tF*1) / B 1w, t¥)dw — 7t n(v, %) / Buw,w n(w, t* ) dw
0 0



The Galerkin or collocation discretization over P,.(Vinin, Vimax) compute a solution which approximates
n(v,t**1) with an accuracy of O(h"*+1), see for example [1, Section 3.1.3.].

In practice the observed convergence orders may be faster than this theoretical bound (“superconver-
gence”). For example, the collocation method approximates

8

n(v'jc,t)/o Bvewn(w, t)dw  ~ Z nk(t)nm(t)ci,m

k,m=1
= (Z nk(t)(ﬁk(v;c)) /)OO Bvew <Z nm(t)¢m(w)> dw .

If the collocation points are the node points V* = V; then n(Vj,t) = 3 ";_; ni(t)¢x (V;) by the interpolation
requirement. For smooth 8 the term [; Bvew (35— v (t) pm (w)dw) is a weighted Newton-Cotes approach

for integration, therefore if r is even the negative term is approximated within O (h”+2). However, this does
not hold for the positive coagulation term (consider for example the case j = 1).

The collocation method is less expensive computationally and provides the same order of accuracy, so in
principle it is to be preferred. Note at this point that if the collocation points are the node points then the
mass matrix A is the identity matrix, and the tensor C is 2-dimensional,

Ci = |:5k,j / BVjc,wflSm(w)dw , 1<j<s.
0

1<k,m<s

The order of accuracy gives a hint on how to carry the numerical evaluation of integral coefficients; if B,
C are approximated within O(h"*!) the order of accuracy remains unchanged, and if the integral coefficients
are approximated within O(h"+2) the integration errors become negligible when compared to discretization
errors for small h. One can use a Gaussian quadrature with (r 4+ 1)/2 nodes.

The pure Galerkin approximation of the growth term is accurate of order O(h") [10, Section 9.3]. Note
that an upwind Petrov-Galerkin method is more appropriate to ensure stability of the hyperbolic growth
term, in which case the order of approximation may be O(h™9%); a discussion is outside the scope of this
paper. The collocation method for piecewise polynomial basis cannot be directly extended to the growth
term due to non-differentiability at node points (which were chosen to be the collocation points also).

This discussion leads to the following idea for an O(h™*!) discretization of the coagulation-growth equa-
tion. Discretize the coagulation term using collocation on P, and use a Galerkin approximation on P4
for the growth term. Replace the integrals by repeated [r/2]-point Gaussian quadrature on each [V, V1]
subinterval. Matrices A and G are then defined using the basis polynomials of P,,1, while the tensors B
and C are computed from the basis functions of P.. Using the timestepping formula (20) the combined
numerical method for coagulation-growth can be written as

At

(A— %A J°% (n(th)) — 5 G) n(tF1) = <A+ %G) n(th) .

6 Numerical experiments

Test problem I. For the numerical experiments we consider the test problem from [5], which admits an
analytical solution. Let V¢ be the total initial number of particles and V4, the mean initial volume. The
initial number distribution is exponential, the coagulation rate is constant, and the growth rate is linear with

the volume:
Ni(v) = (Ne/Vin) eV | Blo,w) =By, I(v)=ov.

This test problem admits an analytical solution, which is given in [5]

B 4N, ‘ —2vexp (dot)
n(v,t) = —Vm(Nt/Bot+ %7 exp (—Vm(NtBot +2) O'Ot) . (26)

cm3

—10-1 L
sec-particles’ 0o = 10 sec’

We solve the dynamics equation for 3, = 6.017 x 10~10
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Figure 1: Solution RMS errors at tfinqa = 6 hours for test problem I.

N, = 10* particles, Vi, = 10~ ! um?.
Time interval:
[to =0, tfina = 12] hours, At = 1072 hours.

Volume interval:
[Vmin = 07 Vmax = 7T/6] /J/m3 .

The discretization errors are presented in Figure 1. Different slopes show different convergence orders
for different element types. The experimental orders (the slopes) are better than our analysis predicted,
showing superconvergence at the grid points.

Test problem II. We now consider a second test problem that is posed in naturally logarithmic coordi-
nates. Here 8, = 1.083 x 10~3 cm? hour™! particles™!, I(v) = 0.02 um3hour ! = const, and N; = 10* par-
ticles. The volume interval is Vipin = 1073 pym?, Vipay = 1 pm3, the time interval [ty = 0, tana = 6 hours ],
and the time step At = 1 second.
The initial concentration is a cosine hill in logarithmic coordinates
no(v) = { % . [1 — COoS (2#%)] , 1og Vinin < Zmin < logv < Zmax < 10g Vinax -
0, logv < Zmin or logv > Tmax -

The reference solution was obtained using the standard numerical method for coagulation [9] on the uniform
grid V; =i - Av, Av = 1073 um3, such that Vi = Viuin and Vigoo = Vinax. The reference growth-coagulation
solution is obtained by translating the reference coagulation solution to the right by an appropriate number
of bins. Figure 3 shows the initial distribution, as well as the coagulation-growth solution after 1 hour.

Figure 2 displays the numerical errors. A meaningful solution for coagulation can be obtained with as
few as 7 bins. For growth one needs at least 50 points to obtain a good numerical solution. The results for
all elements show a second order convergence, a fact that we cannot explain at this time.

To solve the coagulation-growth problem the obvious approach is to increase the number of bins to 50,
such that each subproblem is treated correctly; the cost of building 50-dimensional tensors for coagulation
is however significant.

In order to avoid these extra costs we propose the following approach, based on different grids for
coagulation and for growth. Let {z;}, 1 <4 < s and {z}}, 1 < j < s’ be two sets of gridpoints points on
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Figure 2: Solution RMS errors at tf;nq = 1 hour for test problem II.
[Vinin, Vinax)- If the function N is represented on grid x as [Ny,---, Ns]T then a representation on the grid

z' is given by piecewise-polynomial interpolation:

Ny Ny N
= TZ’ZI - )

Ny

T
— (! .
: = [ ¢i(z}) ]1gigs,1§jgs' :
N;I NS
where ¢; are the basis piecewise-polynomials associated with the points {z;}.
This allows us to use a finer grid for growth and a coarser grid for coagulation. This also allows to
combine a logarithmic grid for coagulation and a linear grid for growth. The method can be formulated on

the fine grid as
ﬁG) nktl = (A+ AtG) nk .

(A _ %A .Tup . jcoag (Tdown nk) A Tdown _ 5 7 (27)

where T9°"" and TUP are the transformation matrices from fine to coarse and from coarse to fine (it is easy
to see that coagulation is solved on the coarse grid, and the solution extended to the fine grid).

The results displayed in Figure 3 are obtained using cubic elements (in logarithmic coordinate) with 145
gridpoints for growth and 13 gridpoints for coagulation. The reference solution is reproduced quite well,
with a rms error norm of about 1.4e-2.

7 Conclusions

Aerosols are becoming an important topic in air pollution modeling. For a correct representation of particles
in the atmosphere one needs to accurately solve for the size distribution of particle populations.

In this work we develop a general framework for the discretization of aerosol dynamics equation using
projection methods, which include Galerkin and collocation approaches. The resulting semidiscrete system
is bilinear and is solved by a second order order linearly-implicit time stepping method. Although the
formulation is given in terms of number densities and single-component particles, the ideas extend directly
to volume, surface and mass densities, as well as to multiple-component aerosols.

To exemplify the use of the framework we consider piecewise-polynomial discretizations with linear,
quadratic, cubic and fourth order elements. The collocation approach was used for coagulation and the
Galerkin approach for growth. Two test problems are employed: one with analytical solution in the infinite
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Figure 3: The coupled coagulation-growth solutions at ¢finai = 1 hour for test problem II. The numerical
solution is obtained using a combined grid with s=145 for growth and s=13 for coagulation.

volume range v € [0, 0o]; and a second one with the solution “living” in a finite volume interval and formulated

in logarithmic coordinates.
In the standard formulation (linear coordinates) the numerical solution displays excellent accuracy — the

convergence orders at node points are one order better than those predicted by a direct theory. In logarith-
mic coordinates (preferred by environmental modelers) good solutions can be obtained for the coagulation
equation; but the growth problem is ill-scaled and can be solved accurately only by increasing the number
of bins. A mixed solution is proposed to solve growth on a fine grid and coagulation on a coarse grid. Lower
accuracy is observed in logarithmic coordinates, although the numerical solutions reproduce quite well the

reference solutions.
Future work will focus on testing the discretization framework on multiple component particles and on

coupled aerosol dynamics and chemistry models.
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