CS COMPUTER SCIENCE
TECHNICAL REPORT

Discretizing Aerosol Dynamics with
B-Splines

Adrian Sandu and Christian Borden

CSTR-01-09
December 2001

IMichigan] (/v

Michigan Technological University, Houghton, MI 49931



Discretizing Aerosol Dynamics with B-Splines
Adrian Sandu* and Christian T. Borden

Department of Computer Science, Michigan Technological University,
Houghton, MI 49931. E-mail {asandu,ctborden}@mtu.edu.

*Corresponding author.

Abstract

This paper presents a discretization technique for particle dynamics equation based on the B-spline
interpolation of the solution. The method is developed in the general framework recently proposed by
the authors, and extends the previous work of Pilinis and Seinfeld to arbitrary order splines and arbitrary
knot sequences. Numerical tests include the coagulation-growth of the exponential distribution and of a
cosine hill in logarithmic coordinates.
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1 Introduction

As our understanding expands, new processes are incorporated into air quality computer models. One
example is the particulate matter (aerosol) processes, the importance of which is now widely recognized.
Aerosols are now a priority focus area in environmental science due to the leading role they play as a cause
of adverse human health, and their ability to scatter and absorb incoming solar radiation and thus modify
warming due to greenhouse gases and reduce visibility. Particulate matter (aerosol) processes are “emerging
as a new frontier” in environmental studies (Nobel laureate P. Crutzen et. al. [6]).

To accurately study the effects of aerosols it is necessary to resolve aerosol number and mass distributions
as a function of chemical composition and size. Treatment of aerosol processes leads to (at least) an order of
magnitude increase in the overall computational time of an air quality model; this is mainly due to repeatedly
solving the aerosol chemistry (or chemical equilibria) for different particle sizes. Therefore there is a clear
need for rigorous, reliable and efficient computational techniques for aerosol simulations. In particular, there
is a need for methods that accurately solve aerosol dynamics using a small number of size bins (discretization
points), such that the time for aerosol chemistry calculations (which is proportional to the number of bins)
is manageable.

In this paper we develop a family of methods for solving the aerosol dynamics equations based on a
semi-discretization in particle size followed by the time-stepping method of choice. The semi-discretization
in size follows the general framework we proposed earlier [25]; the particular class of methods developed here
approximate the solution by a B-spline polynomial interpolant, and impose the equation to hold at a set
of collocation points. The new class of methods generalize the work of Gelbard and Seinfeld [13] to splines
of arbitrary orders, and to any sequence of collocation points. The discretization approach is presented in
the context of single component particle populations described by number densities; but it can be directly
extended to mass or volume densities and multiple component particles.

The paper is organized as follows. Section 2 presents the particle dynamics equations and Section 3
surveys previous efforts to solve these equations numerically. A brief review of B-spline interpolation is given
in Section 4. The new B-spline discretization approach is introduced in Section 5. Numerical results are
presented in Section 6, and Section 7 draws conclusions and pinpoints future work.

2 The continuous particle dynamics equation

In this paper the continuous particle size distributions are considered functions of particle volume (v) and
time (¢). For simplicity we consider single component particles, but the discretization techniques can be
directly generalized to multiple components. The size distribution function (number density) of a family of



particles will be denoted by n(v,t); the number of particles per unit volume of air with the volume between
v and v + dv is n(v,t)dv. This describes completely a population of single-component particles. Similar
formulations can be given in terms of volume, surface, or mass densities [24].

The aerosol population undergoes a series of physical and chemical transformations. Growth processes
include condensation, evaporation, deposition and sublimation (of gases to/from the particle surface). The
growth of each component’s volume takes place at a rate that depends on the particle’s dimension and
composition, dv/dt = I(v,t). Coagulation forms new particles of volume v + w from the collision of two
smaller particles of volumes v and wj; the collision rate 3, ,n(v)n(w) is proportional to the number of
available small particles; the proportionality factor (called the coagulation kernel) is usually a symmetric
function, By,w = Bw,w - Nucleation of gases creates small particles. Emissions increase the number of
particles of a specific composition and size, while deposition processes remove particles from the atmosphere.
In addition, the constituents interact chemically inside each particle, changing the chemical composition
(but not the number) of particles. Under the above physical transformations the number density changes
according to [12]
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The different terms in equation (1) describe, in order, the modification in the number of particles due to
growth, creation of particles of volume v by coagulation, loss of volume v particles due to coagulation,
increase in particle number due to sources (nucleation, emissions) and decrease due to depositions. The
equation is subject to a specified initial condition n°(v), and to the boundary condition of no zero-volume
particles.

In practice one assumes that the particle population has a nonzero minimal volume and a finite maximal
volume, i.e. the dynamic equation is solved on a finite volume interval [Vinin, Viax]-
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Note that this equation is no longer self-consistent; for Vi, < v < 2Vpin the upper integration limit is smaller
than the lower integration limit in the positive coagulation term; we therefore introduce the convention that
the positive coagulation term is zero whenever the upper limit is smaller than the lower integration limit.

Particle sizes span orders of magnitude, and to reveal the particle distribution logarithmic coordinates
are popular. If we denote

T = IOg’U , Y= logw ) Xmin = 10g Vmin 5 Xmax = log Vmax ;

the dynamics equation becomes
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3 Previous work

Three major approaches are used to represent the size distribution of aerosols: continuous, discrete and
parameterized. In this paper we focus on continuous models (i.e. continuous size distributions and the
general dynamic equations in continuous form).

For computational purposes one needs to use finite-dimensional approximations of the continuous size
distributions. In the sectional approach the size domain v € [0, 00] is divided into size bins v € [V°V, Vih’gh).
In each size bin ¢ there are a; particles per unit volume, all of them having the same mean volume V;.
variations of this approach include the full-moving structure, the quasi-stationary approach, as well as the
moving-center structure [17].

The integro-differential coagulation equation is difficult to solve accurately, due to the quadratic terms
under the integral, as well as the Volterra nature of the first term. The algorithms proposed in the literature
for the coagulation equation include semi-implicit solutions, finite element method, orthogonal collocation
over finite elements, J-space transformations, analytical solutions [17, Section 16], [21] etc. A nice survey of
several popular numerical methods for particle dynamics equations is given in Zhang et. al. [33].

Jacobson [17, Section 16] proposed the semi-implicit scheme to solve the discrete coagulation equation.
In [27] we proposed a Newton-Cotes quadrature approach for solving the aerosol coagulation equation. Kim
and Seinfeld [19] extended the moving sectional method to solve the multicomponent aerosol condensation
equation. A nice survey of several popular numerical methods for the growth equations is given in Zhang
et. al. [33]. In UAM-AERO and SAQM-AERO [20] the boundaries of the size sections move at a rate
consistent with the growth rate equation (a Godunov-type advection scheme); CIT, UAM-AIM uses the
Eulerian advection scheme of Bott [5]. In GATOR [16] the mean particle size in each bin ¢ is allowed to
grow. Jacobson [15] developed a highly complex gas, aerosol, transport and radiation model (GATOR).
A combination of cubic splines (coagulation) and moving finite element techniques (growth part) was used
by Tsang and Hippe [32]. Meng, Dabdub and Seinfeld [22] present a size-resolved and chemically-resolved
model for aerosol dynamics in a mass density formulation. Different solution of the growth equations were
proposed in [3, 16, 19, 20].

Pilinis [24] derived and solved the equations that govern the time evolution of mass distribution for a
multicomponent particulate system using a Galerkin approach with linear basis functions. In [25] we proposed
a general framework for the numerical treatment of aerosol dynamics that encompasses both Galerkin and
collocation type methods; experiments were presented with higher order basis functions.

Gelbard and Seinfeld [12, 13, 14] solved the dynamic equations using a cubic spline approximation of the
solution (in piecewise-polynomial form) and orthogonal collocation.

In this paper we generalize the Gelbard and Seinfeld approach [13]. We formulate the discretization in
the general framework proposed in [25] using B-splines. This gives a broad class of discretization schemes
based on spline interpolants of any order, and on any suitable choice of the collocation points.

4 B-Spline Interpolation

In this section we briefly review some basic aspects of B-spline interpolation. For more details the reader is
invited to consult de Boor’s monograph on the subject [4].

Consider a nondecreasing sequence of knots Ky, -+, Ksyr with K1 < Viin, Kstk > Vimax. The function
p(v) is a spline function of order k if it is a piecewise polynomial of degree at most k — 1, i.e. p(v) is a
(different) polynomial of degree at most k — 1 on each subinterval [K;, K;;1]. In addition, if the knots are
simple (not repeated), then p(v), p'(v), - - -, pt*~2) (v) are all continuous on the whole interval [K;, Ky,]. If a
knot has multiplicity r, i.e. K; = K;y1 = -+ = K;4,_1 then only p(v), p'(v), - -+, p*~1=") (v) are continuous
across that knot.

Any spline function can be expressed as a linear combination of the B-spline basis functions {¢;}i1<i<s
associated with the given set of knots

p(v) = ;i di(v) - (4)
i=1

Note that the dimension of the spline space is s (the number of knots minus k). Each B-spline has compact
support (more exactly ¢; = 0 outside the interval [K;, K;1x]) and takes values 0 < ¢;(v) < 1.



Let n(v) be a smooth function on v € [Vinin, Vinax|, and consider a set of s interpolation points Vi, ---,V;
in this interval. There is a unique spline function that interpolates n at the given points:

p(Vj) =n(Vj), j=1---s.
The s interpolation conditions can be written as
Alar, -, 0,]" = [n(W), - ,n(V:)]" (5)
where the B-spline basis collocation matrix is
A=¢; (Vz’)hgi,jgs : (6)

Note that the knots and interpolation points must be chosen such that A is nonsingular. Similarly, the
function derivative is approximated by the derivative of the spline interpolant

s
n'(v) A p'(v) =) i ¢i(v) - (7)
i=1
At the interpolation points this becomes
T T
[n’(%)7"'7nl(V8)] ND[OQ,'”,OAS] )
where the B-spline basis derivative collocation matrix is

D= [¢;‘(Vi)]1§i,jgs ) (8)

Accuracy of spline polynomial interpolation. We recall the following result from [4] which shows how
well do the spline interpolant and its derivatives approximate the function and its derivatives. If n(v) is
smooth then

) () — p) gy (k) - T
Vminrgnggvmln (v) =Y’ (v)| < Cj || v Dax [n* ()|, h m].a‘X|V]+1 Vil - 9)

Choosing the knots and the interpolation points. Clearly there are many possible choices of knots
and interpolation points, each defining a different aerosol discretization method. Note that we will use the
interpolation points as collocation points in formulating the discretized particle dynamics equations.

In this paper we consider the set of s Chebyshev interpolation points in the interval [Vinin, Vimax] (cf. [31])
which leads to a non-oscillatory interpolant

max — Vmin j—1 .
V]':Vmin‘i‘%{l_cos(ijﬂ)] s ]:]-S (10)

We use the Schoenberg knots associated with the Chebyshev interpolation points for the construction of
B-spline basis

K; = W, i=1,---k
Keri = (SEV) /=1, i=15—k (1)
K = Vi, i=s+1,,5+k

Note that the Gelbard and Seinfeld approach [13] corresponds to k = 4 (cubic splines); there are 2M + 4
knots, taking M distinct and equidistant values (all interior knots are double, while the first and the last knot
have multiplicity 4); finally, there are 2M collocation points at the roots of the shifted Legendre polynomial
(3 points in the first and in the last knot intervals, and 2 collocation points in each of the other knot intervals).

The Gelbard and Seinfeld approach (“orthogonal collocation over finite elements”) can be generalized
to splines of arbitrary even order k as follows. The number of degrees of freedom (number of collocation
points) is s = M (k/2), where M is the number of distinct knot values. The first and the last knots have
multiplicity &, and all the interior knots have multiplicity k/2. In each knot interval i (1 < i < M —1)



we place k/2 + n; collocation points at the zeros of the shifted Legendre polynomial (i.e. Gauss quadrature
points in the knot interval). The extra points n; are chosen such that ny +---+ny_1 = k/2, and ny > 1
(since we need one collocation point to impose the boundary condition). Our numerical experiments showed
this orthogonal collocation over finite elements approach to be less accurate than the Chebyshev collocation
(with Schoenberg knots) approach.

Similarly, the finite element basis we used in [25] corresponds to equispaced knots of multiplicity & — 1
for different k-s; the collocation points are the knots, plus k¥ — 1 equispaced points inside each knot interval.

Logarithmic coordinates. In the logarithmic formulation (3) the knots K; and the collocation points
X, are chosen similarly in the interval [Xmin, Xmax]- The B-spline basis functions are constructed in the
variable = logv, which gives the collocation matrices

A= [¢j(Xi)]1§i,j§s ) D= [d’;‘(Xi)]lSi’sz :

5 The discrete formulation of aerosol dynamics

Following the general approach we developed in [25], the equation (1) is solved by a semi-discretization
in particle size (v) plus a time integration of the resulting system of ordinary differential equations. The
semi-discretization in size is done by approximating the solution with the B-spline polynomial interpolant,
(i.e. projecting the solution and the equation on the finite-dimensional subspace spanned by B-spline basis
functions {¢1,---,¢s}) and by imposing the resulting equation to hold exactly at the set of collocation
points. Here we present the derivation only briefly; for more details the reader is invited to consult [25]. For
simplicity single-component particle populations described completely by the number density are considered;
but the ideas can be directly extended to multiple (mass or volume) distributions for multiple-component
aerosols.

5.1 Discretization of the particle size distribution

From (4) one can approximate the continuous particle distribution by the B-spline interpolation polynomial
8
n(v,t) = 3 ai(t) ¢i(v) (12)
i=1

The approximation is finite dimensional, with the set of time-dependent B-spline coefficients
T
a(t) =[ai(t), -+, as(t)] (13)

to be determined from the dynamics equation.
Let {V;}1<j<s be a set of collocation points. The interpolation condition gives the coefficients « as a

solution of the linear system: .
Aa(t):[n(‘/lat)a"';n(vsat)] :

In the logarithmic formulation
Aa(t) = [n(X1, 1), (X, )]
5.2 Coagulation
The theoretical coagulation equation for single-component particles is [17, Section 16]
Vimax

) L (o e, O o t) [ Bt (14)

6t 2 Viin Vinin

To obtain a discrete form of the coagulation equation one inserts the B-spline polynomial approximation
(12) into (14), and imposes the resulting equation to hold exactly at the set of collocation points V;,1 < j < s.



After some calculations (see [25]) one arrives at
oI (t) (B - CY) af(t)
Ad(t) = ; , (15)
aT(t) (B* - C%) a(t)
with the matrices

B

[1/2) J32 7 By bV~ w)bm(u)dw] o 1<i<s, ”

[01(V3) J3r By, o m (w) ] L 1<j<s

1<k,m<s

Ci

One can regard B and C as three-tensors and compactly write the discrete equation (15) as
Ad'(t) = [(B-C) x a(t)] - a(t). (17)
The discrete coagulation system is bilinear. The Jacobian of the coagulation term can be expressed as
aT {(B' = C") + (B' —C")T}
JO% (o) = :
o {(B* - C*) + (B* - C*)"}

Particularly attractive are linearly implicit time-stepping methods which preserve stability yet avoid iterative
solutions. For example, the linearized backward Euler scheme reads

(A - %Jcoag(ako bt = ok (18)

Here o, o**! denote the numerical approximations of a(t*) and a(t**!), with the time moments related
by tF+1 =tk 4 At.
In the logarithmic formulation (3) one defines the coagulation tensors as

B

log(e*Xi —eXmin ) .
[(1/2) ) Brog(eXs —ev) yh10B(€X7 = )b (y)evdy , 1<j<s,

1<k,m<s (19)
. Xmax y < - <
[64060) Jem Brswbm@erdy] o 1<j<s.

Ci

Note that one similar formulas are derived for a Galerkin formulation; the tensor entries in this case involve
double integrations.

5.3 Growth
The growth equation in number densities

00— D geyna) . 10 =20 aw=0n=0, nwi=0=n"w), ()
has the form of an advection equation, with the “flow speed” provided by the growth rate I(v) (i.e. the time
derivative of the particle volume). This equation is to be solved subject to an initial distribution n°(v) and
the boundary condition of no zero-sized particles [28, Section 12],

To obtain a discrete version of the growth equation we need to either interpolate the flux I(v)n(v,t) or
to explicitly use the derivative of the growth rate in

on(v,t) 0 _ o1 on
G0~ 2 (o, )] = - (0 nio 1) - 1) 20,1 (21)

We take the (practical) approach of interpolating the growth rate and approximating its derivative by the
derivative of the interpolant:

I(U)=Z7i¢i(v): ’7=[’711"'778]T ) A’7=[I(V1),---,I(Vs)]T



and therefore
[8I/0v(VL),---,8I)0v(V,)]" ~ D~ .
The growth equation (21) is imposed to hold exactly at the collocation points

n'(Vi,1) o1/ov(V1) -n(Vi,t) T [ I(V1)-0n/dv(V1,1)
ot | o1/0u(Ve) -n(Vat) | | I(Va) - on/0u(Vi,1)
or n(V,t) | n/0v(V, t)
:-m%dﬁwﬂ- L |~ diag; [1(V)] - :
n(Vj,t) | on/ov(Vs,t)

~ —diag[Dv] Aa(t) —diag[Ay] D a(t)
Therefore the growth equation expressed in the B-spline coefficients is
Ad'(t) = —Ga(t) where G =diag[D~v]- A+ diag[A~v]-D. (22)

To impose the boundary condition at v = Vi, we always let Vi3 = Vinin. The boundary condition can be
written in terms of the first row of matrix A

N(Viin, t) = n(V1,t) = g(t) & Zaiqﬁz’(vl) =Aj1sa(t) =g(t) . (23)

Therefore we impose the equation (22) to hold at V5 through Vi and the boundary condition (23) to hold
at V1. For example, if a trapezoidal time discretization is used the discrete system (22)—(23) reads

At [ of g(tF+1)
A+ = 1:s k+1 _
( + 2 |: G2:s,1:s :|) @ |: (AZ:s,l:s - %GQ:S,l:s) ak

In the logarithmic formulation (3) the growth equation reads

on(a,) _ ,0[I(z)n(z, 1) _ L da(t) _ _
5 = ¢ 5 , I(z)=e 7 n(Xmin,t) =0, n(z,0) =n"(z) . (24)
The logarithmic semidiscrete growth equation is of the form (22), with + defined in logarithmic coordinates
and with

G = diag; [e=%] - (diag[Dv]- A + diag[ Ay]- D) .

Note that the growth equation (20) has the form of an advection equation; spurious oscillations in the
numerical solution may appear when a nonsmooth distribution is subject to strong growth (advection). Total
variation diminishing (TVD) advection schemes are used to suppress spurious oscillations. The use of such
schemes for aerosol growth calculations was advocated by Dabdub and co-workers[7, 8]. For a comprehensive
treatment of non-oscillatory advection methods see [10].

It is possible to construct total variation diminishing advection schemes using the the B-spline interpolant
as follows. We regard n; as the mean number concentration in size bin ¢; this size bin contains particles with
volumes in between V;_;,5 and V;; /2, where the bin boundaries are

Vi+ Vi
2 )

The growth equation (20) can be written in conservative (flux) form as

Vigrye = 1<i<s—-1.

At
k+1 k k k
n;,  =n;+————"—— (1 . 25
i Vitr2 — Vi1 (f 1/2 f+1/2) (25)

The bin boundary number density values can be obtained by B-spline interpolation
nk(Vi,2)

. k
: =Apa”, Ap = (¢j(m+l/2))1§i§s—1,1§j§s ’
nk(V,_y /2)



which gives a high order approximation of the inter-bin fluxes
high
fixiye = IVik1y2) n(Viga2)-
The first order upwind scheme is monotonic; this scheme uses a low order approximation of the flux,

f}g—v{/z = I(Vz’+1/2) ;-

A total variation diminishing scheme is obtained by limiting the high-order flux to the low-order flux in
regions of sharp gradients [10, Section 5]

high low N — Ni—1

low i —
fi+1/2 = fiil/z + L(Ti+1/2) (f,-+1/2 - i+1/2) ) Tiv1/2 = m

There are numerous suitable limiters L; an example is the superbee function [10, Section 5]
L(r) = max (0, min(1, 2r), min(2,r)) .

With F' the vector of limited inter-bin fluxes, and with AV, AF denoting the bin size and flux difference
vectors respectively, the equation (25) becomes

Aah! = Aok + At - diag[AV] - AF(a*) .

5.4 Sources and sinks
Sources (emissions, nucleation) and sinks (removal processes) have a simple mathematical formulation,
on(v,t)
ot
The simplicity comes from the fact that the S and R terms are not coupled across different volumes. Using

the spline interpolant (12) in place of n and imposing the resulting equation to hold at the collocation points
leads to

= S(v,t) — R(v,t)n(v,t) .

Ad'(t) =S(t) — R(t) Aa(t) , (26)

with
S(t) =[S(Va,1),---,S(Vs,H)]" ,  R(t) = diag[R(V1,1),---, R(Vs, )] -
A trapezoidal (Crank-Nicholson) integration of (26) gives
(A + %R’“HA) aftl = (A - %R’“A) of + At Skta
where . -
2

In the logarithmic formulation (3) one defines

S(t) = [S(Xl,t),---,S(Xs,t)]T ,  R(t) =diag[ R(X1,t), -+, R(Xs,t)] .

5.5 Simultaneous discretization of the dynamic equations

A coupled solution of coagulation, growth, nucleation, emissions and deposition is of interest; it will, for
example, better capture the competition between nucleation of new particles and condensation on existing
particles for gas-to-particle conversion [33].

For single component particles combining (15), (22) and (26) gives the semi-discrete aerosol dynamics
equation

Ad'(t) = —Ga(t) +[(B-C) x a(®)] at)+ S(t) —RAa(t) . (27)
R RN ~ ) ~— ———
growth coagulation nucl.+em dep.



This is a system of s coupled ordinary differential equations. The discrete initial conditions are obtained
from the interpolation of the initial condition

a(0) = [ad,--,a0]", n0) =Y alei(v) . (28)
i=1

The system (27)-(28) can be solved by any appropriate time-stepping method. The system has a particular
form: the growth term is linear, while the coagulation term is bilinear. Combining the linearized backward
Euler scheme for coagulation with Crank-Nicholson for growth and sources/sinks we achieve second order
time accuracy:

A A .
(A - 7'5 {Jeo%®(a*) — (G + Rk+lA)}) aftt = (A - 7'5 G+ R’“A)) of + AtSHte (29)

Like before superscripts denote the discrete times at which the entities are evaluated. Imposing the left
boundary condition can be done by replacing the first equation in (29) with (23)

g(tk+1)
(-
2:5,1:s

2 [ {Jcoag(ak)—(o' {(4- 4G +R*4)) o* + Atst+i]

1:s k+1 _
+ Rk+1A)}2:s 1:s :|> “ B

(30)
At each step the number concentration vector can be easily retrieved

n* = Aad* .

6 Numerical experiments

Problem A. For the numerical experiments we first consider the test problem from [13], which admits an
analytical solution. Let Ny be the total initial number of particles and V;, the mean initial volume. The
initial number distribution is exponential, the coagulation rate is constant, and the growth rate is linear with
the volume:

Ny(v) = (Ne/Vm) e/ M, Bv,w) = fo . I(v) =0,v.

The analytical solution (see [13]) is

4N, —2vexp (o,t)
A t

= - — . _—_— Ot .
" (v,7) Vin (Ng 8ot + 2)2 & (Vm(Ntﬂot +2) )

We solve the dynamics equation for 3, = 6.017 x 10~1° cm3sec~!particles—, o, = 0.03 hour !, N; = 10*
particles, Vi = 0.03 pm®. The value of o, is chosen such that coagulation and growth have effects of
comparable magnitude.

The equation was solved on the time interval [ tinitia; = 0, tfina1 = 6 hours | with a small time step At =
1 second; the timestep was chosen such that the time discretization errors are small compared to the size
discretization errors. The volume interval | Vipin = m/6 x 1079 pm?®, Vipax = /6 um?® | corresponds to a
particle diameter range | Dimin = 1072 pm, Dpax =1 pm |.

Problem B. The second test problem is posed naturally in logarithmic coordinates; the initial concentra-
tion is a (logarithmic) cosine hill
max —Zmin

n (1)) —_ ]gt ) [1 — COS (27T ;1,;0 t—Zmin )] ) log Vmin < Zmin < IOgU < Tmax < log Vmax -
0 =
0, log v < Tmin Or l0gv > Tmax -

The parameter values used are 8, = 1.083 x 10~3 cm? hour ' particles !, I(v) = 0.02 gm3hour™" = const,
and Ny = 10* particles. The volume interval is [ Vipin = 1073 um?®, Vipax = 1pm? ], the time interval
[ tinitial = 0, tana1 = 1 hour ], and the time step At =1 second.



The reference solution was obtained using the standard numerical method for coagulation [17] on the

uniform grid V; = i - Av, Av = 104 um?2, such that Vi = Vi, and V10,000 = Vmax. The reference
growth-coagulation solution is obtained by translating the reference coagulation solution 200 gridpoints to
the right.

Problem B is a challenging test due to two factors. First, the initial distribution is continuously differen-
tiable, but its second derivative is not continuous. We expect that the accuracy of the spline approximations
is affected by the limited smoothness of this test problem; specifically, the error bound (9) will only hold for
k < 2 regardless of the spline interpolant order. Second, the growth rate is the same for all particle sizes. In
the classical Fuchs and Sutugin approach [11] the growth rate is approximately of the form I(v) = ov?/3;
i.e. the smaller the particle the smaller its growth rate. With problem B the growth rate is large for small
particle sizes too (i.e. at and near the inflow boundary); due to the logarithmic distribution of discretization
points the CFL number can become very large in the small particle range.

Error Measure. The accuracy of the numerical solutions at the final time is measured against the ana-
lytical (or reference) solution by the root-mean-square (RMS) error norm

S

1 n (V;, tina) — n (V;, thinal)
Ell=,]- E . 1
Il s = ( max(n4 (V;, tana) , th) (31)

The threshold th = 1000 particlescm ™3 ym—3 makes the error indicator to ignore the smallest part of the
number distribution. The use of a finite volume interval for problem A introduces errors in the coagulation
right-hand-side of the order of 10~8. The best accuracy we can hope for is consequently of this magnitude
regardless of how many size bins we use.

Experiment I. In this experiment we solve test problem A in the formulation (2), i.e. in linear volume
coordinate. We consider separately the coagulation-only and growth-only problems in addition to coagulation
and growth. Figure 1 plots the error norm of the solution at the end of the simulation time versus the number
of bins; the errors decrease rapidly. The accuracy of coagulation is bounded below at 10~8 due to the finite
volume interval approximation. For s = 10 the exact solutions are reproduced within acceptable “visual
accuracy” for all tests; this means that the plot of the numerical solution nearly overlaps the plot of the
exact solution. For larger numbers of bins the errors decrease rapidly, and the slopes of the error curves
illustrate the convergence orders of different methods. The slopes, i.e. the experimental convergence orders,
are given in Table 1; for all tests the convergence orders are better than the spline order k, which suggests
a superconvergence phenomenon.

Experiment II. We now solve the test problem A in the logarithmic formulation (3). The approach uses
B-spline interpolation in the z = logv variable. The resulting solution accuracies are shown in Figure 2; for
the same number of bins the solutions are slightly less accurate in logarithmic than in linear coordinates.
Growth errors show a lower bound of about 107® which may indicate the existence of another source of
numerical errors, that becomes more important than the discretization errors at large values of s. The
experimental orders of convergence (outside the lower plateau) are shown in Table 1 and they agree well
with our expectations. From a practical perspective, acceptable “visual accuracy” can be obtained with 10
to 20 bins.

Experiment ITII. For this experiment we solve the test problem B in logarithmic coordinates. Figure 3
shows the results. The experimental convergence orders (shown in Table 1) are limited by the smoothness of
the test problem. Figure 4 shows the numerical solution for quintic splines (k=6) and 12 bins. The “visual
accuracy” of the numerical solution is satisfactory. The numerical solution shows some small but spurious
oscillations upwind of the concentration profile.

Wiggles appear when a nonsmooth distribution is subject to strong growth; total variation diminishing
advection schemes can suppress these spurious oscillations at the price of some accuracy loss in areas of
sharp gradients. For the purpose of comparison, Figure 5 presents the growth solutions obtained with the
total variation diminishing method presented in Section 5.3; the low-order fluxes are given by the first
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order upwind formula, the high-order corrective fluxes at intercell boundaries are obtained by B-spline
interpolation, and a superbee limiter is used. Log-Chebyshev and log-uniform distributions of collocation
points are considered, both with the Schoenberg placement of knots. The flux limited solutions are monotonic
(no spurious oscillations) but the distribution peak is smeared. The log-uniform solution is more accurate.

7 Conclusions and Future Work

Simulation of aerosols plays a significant role in air pollution modeling. For a correct representation of
particles in the atmosphere one needs to accurately solve for the size distribution of particle populations.

In this work we developed a family of discretization methods for the aerosol dynamics equation based
on approximating the solution by a B-spline polynomial interpolant and collocating the equation. Different
methods are obtained by choosing different B-spline bases, i.e. by selecting the B-spline order, the knots
and the collocation points. The resulting semidiscrete system is bilinear (due to coagulation terms) and
can be solved by the time stepping method of choice. The present formulation of the discretization method
is based on number densities and single-component, particles. The same discretization technique can be
easily and directly applied to volume, surface and mass densities, as well as to multiple densities that model
multiple-component aerosols.

The performance of the methods is illustrated on two test problems: one is smooth, involves an expo-
nential distribution in the infinite volume range v € [0, 00], and admits an analytical solution; the second
one involves a finitely-supported cosine hill distribution and is formulated in logarithmic coordinates. The
accuracy of solutions for the smooth problem improves rapidly with increased number of bins in both linear
and logarithmic coordinates; the convergence orders depend on the order of the B-spline interpolant. The
convergence orders for the cosine hill problem are limited by the limited smoothness of the profile. Never-
theless, for both problems, good solutions are obtained with a small number of bins. The cosine hill growth
solution displays small but spurious oscillations; they can be eliminated by using a flux-limited advection
scheme for which the high order inter-cell fluxes are obtained by B-spline interpolation.

Future work will focus on testing the B-spline discretization method on real-life problems involving the
coagulation, growth and nucleation of particles under clear and hazy conditions. The method will be extended
to multiple component particles and to coupled aerosol dynamics and chemistry systems. Attention will be
paid to the use of non-oscillatory yet non-dissipative discretization schemes for the growth equation.
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Figure 1: Experiment I (problem A in linear coordinates). Accuracy of final solutions (tfina = 6 hours)
versus the number of bins for coagulation only, growth only, and coagulation-growth problems. Spline bases
of different orders are considered.
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Figure 2: Experiment II (problem A in logarithmic coordinates). Accuracy of final solutions (tgna = 6 hours)

versus the number of bins for coagulation only, growth only, and coagulation-growth problems. Splines bases
of different orders are considered.
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Figure 3: Experiment III (problem B). Accuracy of final solutions (¢ana = 1 hour) versus the number of bins
for coagulation only, growth only, and coagulation-growth problems. Splines of different orders show similar

convergence rates.
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Figure 4: Experiment III (problem B). The reference and the numerical solutions at tans = 1 hour for
coagulation, growth, and coupled problems. The numerical solutions correspond to s=12 and k=6.
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Figure 5: Experiment III (problem B). The reference and the numerical solutions at tgna = 1 hour for the
growth problem solved with a flux-limited scheme. The numerical solutions shown correspond to s=12 and
k=6. Log-Chebyshev and log-uniform collocation points are considered.
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Spline Order (k) 4 6 8 10
coagulation 4.58 7.15 8.88 12.52
Experiment I growth 437 6.76 8.63 10.71
coag.+growth | 4.78 7.29 9.74 11.97
coagulation 516 7.21 7.75 9.96
Experiment II  growth 4.59 5.76 T7.89 9.26
coag.+growth | 4.68 7.39 9.30 9.35
coagulation 3.22 328 3.27 3.33
Experiment III  growth 121 129 149 1.65
coag.+growth | 2.05 2.62 282 2.62

Table 1: Experimental orders of convergence for the three experiments.
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