Computer Science Technical Report

Toward a programmer-friendly formal

specification of the UPC memory model
by William Kuchera and Charles Wallace

Michigan Technological University
Computer Science Technical Report
CS-TR-03-01
February 25, 2003

Michigan) (:+]

Department of Computer Science
Houghton, MI 49931-1295
www.cs.mtu.edu

Toward a programmer-friendly formal specification of the UPC
memory model*

William Kuchera and Charles Wallace
Michigan Technological University
{wrkucher,wallace}@mtu.edu

February 25, 2003

1 Introduction

As part of our efforts to elucidate the UPC memory model, we have closely examined the memory
model definition given in the official UPC specification [3] (hereafter, “the UPC spec”). In this
document, §5.1.2.3 (hereafter, “the memory model spec”) gives most of the relevant details about
the memory model. After examining this material for some time, however, we feel that there
are several issues that need to be addressed with regard to the memory model’s definition. Our
position is not that the memory model as envisioned by the language’s designers is somehow
inappropriate or impractical; rather, we feel that its definition is inadequate and fails to capture
what the language designers intend. Our list of concerns appears in §2. We have come up with
an alternative specification of the memory model, using the operational semantics formalism of
Abstract State Machines (ASMs) [1]. This alternative specification, which appears in §2, avoids the
problems we find with the original specification; furthermore, we feel that it is simpler and more
intuitive for the average programmer struggling with the intricacies of UPC.

2 Issues with the existing UPC specification

2.1 What does “observe” mean?

Item 3 of the memory model spec uses the notion of a thread “observing” an access (read or write)
of a reference. The set of accesses that a thread observes plays a significant role in determining
which values are visible to a thread in a given execution. But “observing” is never defined in either
the UPC spec or the ISO specification of C [4]. We believe it needs to be explained, because it
is not obvious what the term means. In particular, there is no association at all between what a
thread does (in terms of detectable behavior during an execution) and what it “observes”. The
notion of observing lies on a plane totally divorced from actual behavior. As a result, any witness
— any programiner, tester, or user who executes a given UPC program and sees the results — has
no means to determine whether the visible behavior is even legal according to the memory model.
Consider an execution with the following sequences of operations:

*Financial support for this work has been provided by Hewlett Packard.

Thread O: write(x,1); fence; write(x,2)
Thread 1: read(x,2); read(x,1)

Here, write(addr,val) siginifes a write operation on address addr that stores the value val;
read(addr, val) signifies a read operation on address addr that returns the value val. We assume
that Thread 0’s writes are relaxed and the variable x is initialized to 0. Furthermore, Thread 1
writes the values it reads to an output device, so its reads (and, as a result, the operations it
observes) do “affect. . .its input and output dynamics”, as stated in item 3 of the memory model
spec. Personal communication with Bill Carlson has confirmed our hypothesis that this should be
an illegal execution. The fence should prevent Thread 1 from reading the value 1 at its second
read.

Let us now put ourselves in the position of a witness of this program execution. We wish
to check whether the behavior we have witnessed is in keeping with the restrictions of the UPC
memory model. The only evidence available to us is what the program actually outputs. In this
case, this includes the two values read for x. Armed with this evidence, we could reason as follows:

1. Since Thread 1 read the value 2 the first time, it must have observed Thread 0’s second write.
2. If Thread 1 reads the value 1 the second time, it must have observed Thread 0’s first write.

3. This implies that Thread 1 must observe Thread 0’s fence, since it turns out that this fence
does indeed “affect. .. its input and output dynamics”. The reasoning here would go as follows:
if Thread 1 does not observe the fence, it can read 1 the second time, but if it does observe
the fence, it can not read 1. Since there is a possible difference in what is read (and output),
Thread 1 had better observe the fence.

4. Then since the fence is really a strict reference, Thread 1 must observe Thread 0’s first write
before it observes the fence, and it must observe Thread 0’s second write after it observes the
fence.

5. This would seem to indicate that if Thread 1 reads the value 2 first, it has already observed
Thread 0’s first write, but the value of that write has been “overwritten” (in Thread 1’s view)
by Thread 0’s second write. Therefore, Thread 1 cannot get 1 for its second read.

Notice that this reasoning makes a couple of important assumptions about what it means to
observe an operation. The first assumption comes in steps 1 and 2: from seeing a given value a for
address x written to output, we conclude that Thread 1 must have observed a write of a to x. The
second assumption comes in step 5: once we establish that Thread 1 has observed writes of 1 and
2 to x in order, we conclude that the “older” value 1 has been “overwritten” by the “newer” value
2, and hence 1 is no longer visible to Thread 1.

As it is, nothing is said about what “observing” means — so its meaning is left up to the
reader’s imagination. This could easily lead people to invalid conclusions. Consider the following
code fragments:

Thread 0: x=-1;x=1;
Thread 1: if (x==1)y =2
Thread 2: templ = vy; temp2 = x;

Here, Thread 0’s writes are strict, all others are relaxed, and x and y are initialized to 0. Say
these fragments are executed concurrently, and Thread 2 gets the value 2 for y. It certainly seems

natural for a programmer to reason, “Since Thread 2 obviously observed Thread 1’s write, and
that write was contingent on x having the value 1, Thread 2 must also have observed Thread 0’s
second write.” The programmer would then conclude that Thread 2 cannot get -1 when it reads x.
This uses a more sophisticated, “causal” notion of observation, which seems perfectly reasonable.
However, discussion with UPC experts has confirmed that this is not the intended interpretation;
Thread 2 may indeed read the value -1.

2.2 How ordered does each “actual order” need to be?

For each thread ¢, the memory model spec defines a partial order “actual-order(t)”, representing
the order in which ¢ observes accesses. This order is defined quite loosely — so loosely, in fact, that
it permits certain behaviors of doubtful legality. Consider the following execution:

Thread 0: write(x,1); read(x,2); read(x,1)
Thread 1: write(x,2)

Is this a valid execution? It all depends on actual-order(0). If the two writes are ordered in
actual-order(0), then Thread 0’s first read would indicate that Thread 0’s write is ordered before
Thread 1’s write. Following the “overwriting” assumption of the previous section, the value 1 would
not be possible for the second read.

But actual-order(0) is simply defined as a partial order, so there does not seem to be any reason
to assume that the writes are ordered with respect to each other. If the writes are not ordered
in actual-order(0), then the second read could legally return 1. So should this be a legal result?
Communication with Bill Carlson indicates that this is not intended to be legal.

If the intent is to disallow this result, something more about actual-order(0) must be stated in
the memory model spec — perhaps, writes to a single location are linearly ordered in each thread’s
actual order.

2.3 The “least requirements” are undecidable

In item 3 of the memory model spec, the “least requirements on a conforming implementation” are
given, with a final disclaimer, “UNLESS such a restriction has no effect on either the data written
into files at program termination OR the input and output dynamics requirements”. Briefly stated,
the constraints of the least requirements do not apply if they have no effect on externally visible
behavior. Interestingly, the condition in this disclaimer is undecidable. Consider the following code
fragments:

Thread 0: x=1;x=2
Thread 1: f(x); flag =1

We assume that calls to f never produce output. In an execution of this code, must Thread 0’s
first write precede its second write in Thread 1’s actual order? According to the “UNLESS” clause,
only if it has an effect on files or input/output dynamics. If function f halts on both input values
1 and 2, or if it fails to halt on both 1 and 2, there is no difference, so there is no need to order
the writes. On the other hand, if f halts on one input but not the other, there will be a difference
(in the value of flag), so the writes do need to be ordered. But determining whether an arbitrary f
halts on a given input is, of course, undecidable.

It is not clear whether the presence of an undecidable predicate in the memory model specifi-
cation is undesirable. It is certainly an interesting oddity.

2.4 The definition of “abstract order” is circular

The memory model spec relies on the notion of an “abstract order” on accesses. In item 3, we
are asked to think of the accesses of each thread as labeled with integers according to their order
of execution; these integers “monotonically [increase] as the evaluation of the program proceeds
from startup through termination.” In the abstract order, accesses by a single thread are ordered
linearly according to their integer labels. However, there is a circularity here: the accesses that a
thread performs, and the order in which it performs them, may depend crucially on the memory
model. Consider the following code fragment:

Thread O: if(x==1)y=2;else z=3;

Assume that threads other than Thread 0 also access x. Let us establish the abstract order for
the accesses by Thread 0. First of all, what are the accesses that Thread 0 performs? Clearly, a
read of x — but then, it performs either a write to y or a write to z, depending on the value it reads
for x. This in turn depends on the definition of the memory model, which is based on the abstract
order.

The problem here is that the memory model rests on a well defined notion of “program order” of
accesses, but “program order” is not well defined without a memory model. Note that many other
memory-model definitions suffer from an a priori notion of “program order”. Rudolph, Arvind and
Shen comment on this in their original CRF paper [5].

3 An operational semantics approach

We wish to alleviate at least some of the problems with the current UPC spec by providing a
precise memory consistency model using Abstract State Machines (ASMs) [1]. Our view of a UPC
program execution is quite high-level, in keeping with the definition in the memory model spec:
we conceive of each thread producing a stream of accesses (reads and writes), as well as barrier
statements (fence, notify, and wait). At this point, we do not take into consideration the possibility
of reordering these instructions, though we are currently working on this. Thus, our semantics are
based at the architecture level rather than at the compiler level.

We begin by providing a translation from the official memory model spec to our semantics.
This requires adding some material to the official spec: in particular, we provide a link between
visible behavior and the memory model spec’s notion of “observing”. These axioms are based on
our understanding of the language designers’ intent, based on conversations with them.

If a thread performs a read at an address a and gets back a certain value v (as made visible
to a witness through a write to a file or output device), what can we say about what it must have
observed? It seems reasonable to infer that it observed a write of v to a. Our first axiom states that
threads read values provided by earlier write accesses, rather than “out of thin air”. Our second
axiom ties together the notions of reading and observing: reading is only possible for observed write
accesses. Finally, our third axiom asserts the assumption about write accesses “overwriting” one
another.

e The “not out of thin air” axiom: If thread ¢ performs a read at address a that returns value
v, then ¢ must read a write w(a,v).

e The “observe what you read” axiom: If ¢ reads a write w, then £ must have observed w.

e The “overwriting” axiom: Let w(a) and w'(a) be writes observed by t. If w < w’ in actual-
order(t), then ¢ can no longer read w.

Universes

We now present our operational semantics. For brevity, we do not provide an introduction to the
ASM formalism, but we do annotate the ASM definitions with comments which we hope will be
illustrative. We begin by defining universes, which can be thought of as the basic data types of the
ASM.

A distributed ASM consists of agents which execute rules of the ASM concurrently. Our ASM
consists of thread agents of the universe Thread that execute instructions of the universe Instruction.
A universe Action contains the type of actions that an instruction will perform.

In describing the memory model of UPC we are concerned with the ordering of shared memory
“accesses”. We define a universe Event containing all executions of write, read, and fence instruction
in the system history. Read and write instructions operate on addresses, which form the universe
Address. An address may take any value from the universe Value.

To facilitate global synchronization, UPC uses two so-called “split-phase” barrier statements,
upc_notify and upc_wait. A thread cannot proceed past a upc_wait until all threads have executed
the previous upc_notify. Additionally, an integer label is associated with each upc_wait or upc_notify
statement. The label of any upc_wait must match the label of all upc_notify statements in the same
phase. The universe BarrierLabel is the universe of barrier statement labels.

A synchronization phase is defined in §6.5.1 of the UPC spec as the collection of statements be-
tween upc_notify statements. An alternative definition of synchronization phase has been suggested
in discussion on the UPC mailing list [2]; in the alternative, a phase is the collection of statements
between upc_wait statements. We use the latter definition with one modification: in our version, a
synchronization phase contains a upc_wait and all the preceding statements up to but not including
the previous upc_wait. We introduce the universe Phase of synchronization phases.

Functions

We now define the functions used in the ASM to relate elements of the various universes. The
interpretations of these functions, taken together, form the “current state” of the ASM.

Each thread agent needs to keep track of the instruction to be executed. The function currlnstr
maps each thread to its current instruction. Another function nextlnstr maps an instruction to the
next instruction to be executed. For any instruction we need the ability to extract information
about its attributes: the instruction type, the address being read/written (in the case of a read or
write), the value being written (in the case of a write), the barrier label (in the case of a notify or
wait), the consistency mode (in the case of a read or write). The functions type, value, addr, label,
and mode map an instruction to these various attributes. Of course, some of these attributes will
be undefined for any given instruction.

When a thread issues a write, certain attributes of the write must be established. The functions
thr, addr, and val map events to threads, addresses, and values, respectively. The function type
maps events to their respective types: write, read, or fence. A thread perfoming a read uses these
attributes when selecting a valid write.

In UPC, a thread is more restricted when reading a write issued by itself than reading a write
from another thread. Only the last write to a location can be read by the thread that issued the
write, although there may be many writes from other threads which can be read for that location.
In the case of a single thread this mimics the behavior of sequential, non-parallel computations. To

keep track of the latest write we use the function maxLocal, which maps a thread and an address
to a write.

A memory consistency model can be described in terms of two characteristics: the precedence
relation between shared accesses and the values that can be returned from a read. The relation <
specifies how shared accesses are ordered across all threads. We use a partially ordered precedence
relation to describe the hybrid memory model of UPC. It is helpful to think of each thread main-
taining a history of shared acesses. All accesses created by relaxed instructions are ordered after
the most recent strict access. A strict access is ordered after the most recent strict access in the
history. The function maxStrict maps a thread to its latest strict access.

If a thread reads a write from another thread, it must obey the restrictions imposed by the
memory model spec. To determine which writes it can read, a thread agent must keep track of
the maximal write it has read from a remote thread. The function maxRemote maps the reading
thread and a remote thread to the maximal event read from the remote thread.

To perform synchronization operations, thread agents must store information regarding phases
and barrier labels. The function phase maps a thread to its current synchronization phase. Another
function nextPhase maps a phase to the next sychronization phase. Each phase contains at most
one notify statement and notify label. Once a thread reaches a upc_wait it must compare the label
of the upc_wait to the label of all the upc_notifys issued in the same phase as the upc_wait. This
comparison necessitates the function notifylLabel that maps a given thread and phase to a barrier
label. If a thread has not yet reached the upc_notify in a certain phase the function is undefined.
When a thread has reached a upc_notify, all waiting threads are brought up to date with regard to
the thread’s most recent event(s) before the upc_notify. The function phaseMax maps a thread and
a phase to the most recent event before a notify.

Rules

We now give rules describing the dynamics of any UPC memory system. We view each thread as
operating on a stream of instructions. With the exception of a wait instruction, we conceive of each
instruction type as taking a single step.

module Thread:

let 7 = Self.instr
case i.type of
write: Write i.val to i.addr in mode i.mode
read: Read to i.addr in mode i.mode
fence: Fence
notify: Notify ¢.label
wait: Wait i.label

endcase

rule Proceed:
Self.instr := Self.instr.nextInstr

We begin by focusing on the actions associated with a write. When a write event is issued, the
three attributes associated with it are updated. The write is also added to the thread’s shared access
history. How it is ordered with respect to other events in the history depends on the consistency
mode of the write (strict or relaxed).

rule Write v to a in mode m:

extend WriteEvent with w
w.thr := Self w.addr := a w.val := v
Self.maxLocal(a) := w
if m = strict then Order new strict event w
else Order new relazed event w
endif

endextend

Proceed

When a strict access is created, it must be ordered in a thread’s shared access history. The new
strict access is ordered after the latest strict access and all relaxed accesses that follow the latest
strict access. The new strict access then becomes the latest strict access. In contrast, a relaxed
write only needs to be ordered after the latest strict access.

rule Order new strict event e:

do-forall d: Event: Self.maxLocalStrict < d
d<e
Self.maxLocalStrict := ¢

enddo

rule Order new relazed write event w:
Self.maxLocalStrict < w := true

We now describe the dynamics behind a read access. To read from a shared address, a thread
has two options: read a local write or a remote write. If a thread reads a write from itself, then
it must choose the latest write to the corressponding location. When a thread reads a write from
another thread, there may be multiple legal choices. For any pair of threads ¢; and to, there is a
maximal event that ¢; has observed from to. A write is (remotely) readable if there is no intervening
write between it and the maximal element read by the reading thread. As a result, the semantics
of reading relaxed writes between two strict accesses is very relaxed indeed.

If 1 reads a write from %5 that is ordered after the current maximal element, the write is updated
as the new maximal element. Keeping track of maxRemote allows us to limit which writes can be
read by one thread from another. If a read is strict, it is ordered as a new strict access.

rule Read to a for r locally:
r.val := Self.maxLocal(a).val

term w.overwritten?:
(3w': WriteEvent: w'.addr = w.addr) w < w' <* Self.maxRemote(w.thr)

rule Read to a for r remotely:

choose w: WriteEvent: w.thr # Self and w.addr = a and not w.overwritten?
r.val := w.val
if Self.maxRemote(w.thr) <* w then Self.maxRemote(w.thr) := w
endif

endchoose

rule Read to a in mode m:
extend ReadEvent with r
r.thr := Self r.addr:=a
choose among
Read to a for r locally
Read to a for r remotely
endchoose
if m = strict then Order new strict event r
endif
endextend
Proceed

A fence is defined as a null strict reference, so it only affects the ordering of shared accesses.
The fence is ordered as a new strict access.

rule Fence:

extend FenceEvent with f
Order new strict event f

endextend

Proceed

We now turn to the dynamics of notify and wait. A thread that issues a notify in a given phase
must keep track of the associated barrier label. A notify instruction also records the maximal strict
event issued by the thread. Other threads will be brought up to date at least up to this maximal
event when they reach the corresponding wait.

rule Notify £:

Self.phaseMax(Self.phase) := Self.maxLocalStrict
Self.notifyLabel(Self.phase) := £

Proceed

Three possible situations arise when a thread reaches a wait instruction. First, some thread
may have issued a notify with a label different from the label of the current wait. This is illegal
behavior, according to the UPC spec; all threads must share the same label for a given phase. A
mismatch in label values is detected by labelMismatch? and, according to the UPC spec, results in
a “runtime error”. Both the UPC and ISO C specs are silent on the meaning of “runtime error”,

and no answer has been forthcoming on the UPC mailing list. For the time being, we leave this
portion of the ASM undefined.

The second situation arises if another thread has not reached the corresponding notify; in this
case, the waiting thread continues to wait. The final situation is when all other threads have
executed their respective notify instructions and there is no label mismatch. In this case, a thread
proceeds and updates its current phase. It must also update maxRemote for itself across all other
threads, bringing itself up to date with respect to accesses issued by the other threads.

term stopWaiting?(¢):
(Vt: Thread) Self.phase < t.phase and t.notifyLabel(Self.phase) = £

term labelMismatch?(£):
(3t: Thread) t.notifyLabel(Self.phase) # £

rule Wait ¢:
if stopWaiting? then
do-forall ¢: Thread: ¢ # Self
Self.maxRemote(t) := ¢.phaseMax(Self.phase)
enddo
Self.phase := Self.phase.nextPhase
Proceed
elseif labelMismatch?(¢) then “Runtime error”
endif

References

[1] Abstract State Machines home page. http://www.eecs.umich.edu/gasm/.
[2] Archives of upc@hermes.gwu.edu. http://hermes.gwu.edu/archives/upc.html.

[3] T. El-Ghazawi, W. Carlson, and J. Draper. UPC language specifications,
v1.0. Technical report, Center for Computing Sciences, 2001. Available at
http://www.gwu.edu/ upc/doc/upc_specs.pdf.

[4] Programming languages — C. ISO/SEC 9899, 2000.

[5] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A new memory model
for architects and compiler writers. In Proc. ISCA, pages 150-161, 1999.

