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Abstract

This paper presents a sound and complete method for algorithmic design of self-stabilizing network
protocols. While the design of self-stabilization is known to be a hard problem, several sound (but
incomplete) heuristics exists for algorithmic design of self-stabilization. The essence of the proposed
approach is based on variable superposition and backtracking search. We have validated the proposed
method by creating both a sequential and a parallel implementation in the context of a software tool,
called Protocon. Moreover, we have used Protocon to automatically design self-stabilizing protocols for
problems which all existing heuristics fail to solve.

∗Superior, a high performance computing cluster at Michigan Technological University, was used in obtaining results
presented in this publication.
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1 Introduction

Self-stabilization is an important property of today’s distributed systems as it ensures convergence in
the presence of transient faults (e.g., loss of coordination and bad initialization). That is, from any
state/configuration, a Self-Stabilizing (SS) system recovers to a set of legitimate states (a.k.a. invariant) in a
finite number of steps. Moreover, from its invariant, the executions of an SS system satisfy its specifications
and remain in the invariant; i.e., closure. Design and verification of convergence are difficult tasks [12,19,29]
in part due to the requirements of (i) recovery from any state; (ii) recovery under distribution constraints,
where processes can read/write only the state of their neighboring processes (a.k.a. their locality), and (iii)
the non-interference of convergence with closure. This paper presents a novel method for algorithmic design
of self-stabilization by variable superposition [10] and a complete backtracking search.

Most existing methods for the design of self-stabilization are either manual [6, 8, 12, 19, 22, 37, 39] or
heuristics [1, 3, 16, 17] that may fail to generate a solution for some systems. For example, Awerbuch et
al. [8] present a method based on distributed snapshot and reset for locally correctable systems; systems
in which the correction of the locality of each process results in global recovery to invariant. Gouda and
Multari [22] divide the state space into a set of supersets of the invariant, called convergence stairs, where for
each stair closure and convergence to a lower level stair is guaranteed. Stomp [37] provides a method based
on ranking functions for design and verification of self-stabilization. Gouda [19] presents a theory for design
and composition of self-stabilizing systems. Methods for algorithmic design of convergence [1, 3, 16, 17]
are mainly based on sound heuristics that search through the state space of a non-stabilizing system in
order to synthesize recovery actions while ensuring non-interference with closure. Specifically, Abujarad
and Kulkarni [2] present a method for algorithmic design of self-stabilization in locally-correctable protocols.
Farahat and Ebnenasir [15,17] present algorithms for the design of self-stabilization in non-locally correctable
systems. They also provide a swarm method [16] to exploit computing clusters for the synthesis of self-
stabilization. Nonetheless, the aforementioned methods may fail to find a solution while there exists one;
i.e., they are sound but incomplete.

This paper proposes a sound and complete method (Figure 1) for the synthesis of SS systems. The essence
of the proposed approach includes (1) systematic introduction of computational redundancy by introducing
new variables, called superposed variables, to an existing protocol’s variables, called underlying variables,
and (2) an intelligent and parallel backtracking method. The backtracking search is conducted in a parallel
fashion amongst a fixed number of threads that simultaneously search for an SS solution. When a thread
finds a combination of design choices that would result in the failure of the search (a.k.a. conflicts), it shares
this information with the rest of the threads, thereby improving resource utilization during synthesis.

The contributions of this work are multi-fold. First, the proposed synthesis algorithm is complete; i.e.,
if there is an SS solution, our algorithm will find it. Second, we relax the constraints of the problem of
designing self-stabilization by allowing new superposed behaviors inside the invariant. This is in contrast to
previous work where researchers require that during algorithmic design of self-stabilization no new behaviors
are included in the invariant. Third, we provide three different implementations of the proposed method
as a software toolset, called Protocon (http://cs.mtu.edu/~apklinkh/protocon/), where we provide a
sequential implementation and two parallel implementations; one multi-threaded and the other an MPI-
based implementation. Fourth, we demonstrate the power of the proposed method by synthesizing four
challenging network protocols that all existing heuristics fail to synthesize. These case studies include the
3-bit (8-state) token passing protocol (due to Gouda and Haddix [21]), coloring on Kautz graphs [25] which
can represent a P2P network topology, ring orientation and leader election on a ring.
Organization. Section 2 introduces the basic concepts of protocol, transient faults, closure and convergence.
Section 3 formally states the problem of designing self-stabilization. Section 4 presents the proposed synthesis
method. Section 5 presents the case studies. Section 6 summarizes experimental results. Section 7 discusses
related work. Finally, Section 8 makes concluding remarks and presents future/ongoing work.
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Figure 1: A complete backtracking method for synthesis of self-stabilization.

2 Preliminaries
In this section, we present the formal definitions of protocols and self-stabilization. Protocols are defined in
terms of their set of variables, their actions and their processes. The definitions in this section are adapted
from [6,12,19,32]. For ease of presentation, we use a simplified version of Dijkstra’s token ring protocol [12]
as a running example.
Protocols. A protocol p comprises N processes {P0, · · · , PN−1} that communicate in a shared memory
model under the constraints of an underlying network topology Tp. Each process Pi, where i ∈ ZN and ZN

denotes values modulo N , has a set of local variables Vi that it can read and write, and a set of actions
(a.k.a. guarded commands [13]). Thus, we have Vp = ∪N−1i=0 Vi. The domain of variables in Vi is non-empty
and finite. Tp specifies what Pi’s neighboring processes are and which one of their variables Pi can read;
i.e., Pi’s locality. Each action of Pi has the form grd → stmt, where grd is a Boolean expression specified
over Pi’s locality, and stmt denotes an assignment statement that atomically updates the variables in Vi. A
local state of Pi is a unique snapshot of its locality and a global state of the protocol p is a unique valuation
of variables in Vp. The state space of p, denoted Sp, is the set of all global states of p, and |Sp| denotes the
size of Sp. A state predicate is any subset of Sp specified as a Boolean expression over Vp. We say a state
predicate X holds in a state s (respectively, s ∈ X) if and only if (iff) X evaluates to true at s. A transition
t is an ordered pair of global states, denoted (s0, s1), where s0 is the source and s1 is the target state of t.
A valid transition of p must belong to some action of some process. The set of actions of Pi represent the
set of all transitions of Pi, denoted δi. The set of transitions of the protocol p, denoted δp, is the union of
the sets of transitions of its processes. A deadlock state is a state with no outgoing transitions. An action
grd→ stmt is enabled in a state s iff grd holds at s. A process Pi is enabled in s iff there exists an action of
Pi that is enabled at s.
Example: Token Ring (TR). The Token Ring (TR) protocol (adapted from [12]) includes three processes
{P0, P1, P2} each with an integer variable xj , where j ∈ Z3, with a domain {0, 1, 2}. The process P0

has the following action (addition and subtraction are in modulo 3):

A0 : (x0 = x2) −→ x0 := x2 + 1

When the values of x0 and x2 are equal, P0 increments x0 by one. We use the following parametric action
to represent the actions of processes Pj for 1 ≤ j ≤ 2:

Aj : (xj 6= x(j−1)) −→ xj := x(j−1)
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Each process Pj copies xj−1 only if xj 6= xj−1, where j = 1, 2. By definition, process Pj has a token iff
xj 6= xj−1. Process P0 has a token iff x0 = x2. We define a state predicate ITR that captures the set of
states in which only one token exists, where ITR is

((x0 = x1) ∧ (x1 = x2)) ∨ ((x1 6= x0) ∧ (x1 = x2)) ∨ ((x0 = x1) ∧ (x1 6= x2))

Each process Pj is allowed to read variables xj−1 and xj , but can write only xj . Process P0 is permitted
to read x2 and x0 and can write only x0. C
Computations. Intuitively, a computation of a protocol p is an interleaving of its actions. Formally, a
computation of p is a sequence σ = 〈s0, s1, · · · 〉 of states that satisfies the following conditions: (1) for each
transition (si, si+1) in σ, where i ≥ 0, there exists an action grd → stmt in some process such that grd
holds at si and the execution of stmt at si yields si+1, and (2) σ is maximal in that either σ is infinite or if
it is finite, then σ reaches a state sf where no action is enabled. A computation prefix of a protocol p is a
finite sequence σ = 〈s0, s1, · · · , sm〉 of states, where m > 0, such that each transition (si, si+1) in σ (where
i ∈ Zm) belongs to some action grd→ stmt in some process. The projection of a protocol p on a non-empty
state predicate X, denoted δp|X, consists of transitions of p that start in X and end in X.
Specifications. We follow [31] in defining a safety specification sspec as a set of bad transitions in Sp × Sp

that should not be executed. A computation σ = 〈s0, s1, · · · 〉 satisfies sspec from s0 iff no transition in σ is in
sspec. A liveness specification lspec is a set of infinite sequences of states [5]. A computation σ = 〈s0, s1, · · · 〉
satisfies lspec from s0 iff σ has a suffix in lspec. A computation σ of a protocol p satisfies the specifications
spec of p from a state s0 iff σ satisfies both safety and liveness of spec from s0.
Closure and invariant. A state predicate X is closed in an action grd → stmt iff executing stmt from
any state s ∈ (X ∧ grd) results in a state in X. We say a state predicate X is closed in a protocol p iff
X is closed in every action of p. In other words, closure [19] requires that every computation of p starting
in X remains in X. We say a state predicate I is an invariant of p iff I is closed in p and p satisfies its
specifications from any state in I.
TR Example. Starting from a state in the predicate ITR, the TR protocol generates an infinite sequence of
states, where all reached states belong to ITR. C
Remark. In the problem of synthesizing self-stabilization (Problem 3.1), we start with a protocol that satisfies
its liveness specifications from its invariant. Since during synthesis by superposition and backtracking we
preserve liveness specifications in the invariant, we do not explicitly specify the nature of liveness specifica-
tions.
Convergence and self-stabilization. A protocol p strongly converges to I iff from any state in Sp, every
computation of p reaches a state in I. A protocol p weakly converges to I iff from any state in Sp, there
is a computation of p that reaches a state in I. We say a protocol p is strongly (respectively, weakly)
self-stabilizing to I iff I is closed in p and p is strongly (respectively, weakly) converging to I. For ease of
presentation, we drop the term “strongly” wherever we refer to strong stabilization.

3 Problem Statement

In this section, we state the problem of incorporating self-stabilization in non-stabilizing protocols using
superposition. Let p be a non-stabilizing protocol and I be an invariant of p. As illustrated in Figure
1, when we fail to synthesize a self-stabilizing version of p, we manually expand the state space of p by
including new variables. Such superposed variables provide computational redundancy in the hopes of giving
the protocol sufficient information to detect and correct illegitimate states without forming livelocks. Let
p′ denote the self-stabilizing version of p that we would like to design and I ′ represent its invariant. Sp′

denotes the state space of p′; i.e., the expanded state space of p. Such an expansion can be captured by a
function H : Sp′ → Sp that maps every state in Sp′ to a state in Sp. Moreover, we consider a one-to-many
mapping E : Sp → Sp′ that maps each state s ∈ Sp to a set of states {s′ | s′ ∈ Sp′ ∧ H(s′) = s}. Observe
that H and E can also be applied to transitions of p and p′. That is, the function H maps each transition
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(s′0, s
′
1), where s′0, s

′
1 ∈ Sp′ , to a transition (s0, s1), where s0, s1 ∈ Sp. Moreover, E((s0, s1)) = {(s′0, s′1) | s′0 ∈

Sp′ ∧ s′1 ∈ Sp′ ∧H((s′0, s
′
1)) = (s0, s1)}. Furthermore, each computation (respectively, computation prefix) of

p′ in the new state space Sp′ can be mapped to a computation (respectively, computation prefix) in the old
state space Sp using H. Our objective is to design a protocol p′ that is self-stabilizing to I ′ when transient
faults occur. That is, from any state in Sp′ , protocol p′ must converge to I ′. In the absence of faults, p′

must behave similar to p. That is, each computation of p′ that starts in I ′ must be mapped to a unique
computation of p starting in I. Moreover, no new computations should be introduced in the computations
of p in I. However, new computations are allowed in the new invariant I ′. We use H and E to formally state
the problem constraints1 on I ′ and δp′ with respect to I and δp as follows: (The function Pre(δ) takes a set
of transitions δ and returns the set of source states of δ.)

Problem 3.1. Synthesizing Self-Stabilization.
• Input: A protocol p and its invariant I for specifications spec, the function H and the mapping E

capturing the impact of superposed variables.
• Output: A protocol p′ and its invariant I ′ in Sp′ .
• Constraints:

1. I = H(I ′)
2. ∀s ∈ Pre(δp) ∩ I : E(s) ⊆ Pre(δp′)
3. δp|I = H({(s′0, s′1) | (s′0, s′1) ∈ (δp′ |I ′) ∧H(s′0) 6= H(s′1)})
4. ∀s ∈ Pre(δp) ∩ I : δp′ |E(s) is cycle-free
5. p′ strongly converges to I ′

The first constraint requires that no states are added/removed to/from I; i.e., I = H(I ′). The second
constraint requires that any non-deadlocked state in I should remain non-deadlocked. The third constraint
requires that any transition in δp|I should correspond to some transitions in δp′ |I ′, and each transition
included in δp′ |I ′ must be mapped to a transition (s0, s1) in δp|I while ensuring s0 6= s1. Implicitly, this
constraint requires that no transition in δp′ |I ′ violates safety of spec. The fourth constraint stipulates that,
for any non-deadlock state s ∈ I, the transitions included in the set of superposition states of s must not form
a cycle; otherwise, liveness of spec may not be satisfied from I ′. Notice that the combination of constraints 3
and 4 allows the inclusion of transitions (s′0, s

′
1) ∈ δp′ |I ′ where H(s′0) = H(s′1) under the constraint that such

transitions do not form a cycle. Finally, p′ must converge to I ′. Notice that, the combination of Constraints
1 to 4 ensure that p′ would satisfy spec from I ′.

Example 3.2. Token ring using two bits per process

Consider the non-stabilizing token ring protocol p with N processes, where each process Pi owns a binary
variable ti and can read ti−1. The first process P0 is distinguished, in that it acts differently from the others.
P0 is said to have a token when tN−1 = t0 and each other process Pi is said to have a token when ti−1 6= ti.
P0 and the other processes Pi (where i > 0) have the following actions:

tN−1 = t0 −→ t0 := 1− t0;

ti−1 6= ti −→ ti := ti−1;

Let I denote the legitimate states, where exactly one process has a token, written I ≡ ∃! i ∈ ZN : ((i =
0∧ ti−1 = ti)∨ (i 6= 0∧ ti−1 6= ti)), where the quantifier ∃! means there exists a unique value of i. The above
protocol is in fact similar to the Token Ring protocol presented in Section 2 except that N > 3 and ti is a
binary variable. Dijkstra [12] has shown that such a protocol is non-stabilizing. To transform this protocol
to a self-stabilizing version thereof, we add a superposed variable xi to each process Pi. Each process Pi

can also read its predecessor’s superposed variable xi−1. Let I ′ = E(I) be the invariant of this transformed
protocol. Let the new protocol have the following actions for P0 and other processes Pi where i > 0:

1This problem statement is an adaptation of the problem of adding fault tolerance in [32].
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P0 : tN−1 = 0 ∧ t0 = 0 −→ t0 := 1;

P0 : tN−1 = 1 ∧ xN−1 = 0 ∧ t0 = 1 −→ t0 := 0; x0 := 1− x0;

P0 : tN−1 = 1 ∧ xN−1 = 1 ∧ t0 = 1 ∧ x0 = 1 −→ t0 := 0;

Pi : ti−1 = 0 ∧ ti = 1 −→ ti := 0; xi := 1− xi;
Pi : ti−1 = 1 ∧ xi−1 = 1 ∧ ti = 0 −→ ti := 1;

Pi : ti−1 = 1 ∧ xi−1 = 0 ∧ (ti = 0 ∨ xi = 1) −→ ti := 1; xi := 0;

This protocol is stabilizing for rings of size N = 2, . . . , 7 but contains a livelock when N = 8. We have
found that given this topology and underlying protocol, no self-stabilizing token ring exists for N ≥ 8. In
Section 5, we expand the state space further towards synthesizing a self-stabilizing token rings with constant
number of states for each process.

Let us check that the expansion of state space preserves the behavior of the underlying two-bit to-
ken ring protocol for a ring of size N = 3. Figure 2 shows the transition systems of the underly-
ing and transformed protocols, where each state is a node and each arc is a transition. Legitimate
states are boxed and transitions within these states are black, while transitions from illegitimate states
are gray. Using the conditions in the problem statement: (1) I = H(I ′) is true since I ′ = E(I), (2)
∀s ∈ Pre(δp) ∩ I : E(s) ⊆ Pre(δp′) holds since all invariant states of p′ have outgoing transitions, (3)
δp|I = H({(s′0, s′1) | (s′0, s′1) ∈ (δp′ |I ′) ∧H(s′0) 6= H(s′1)}) holds since there exists a transition in p′ which
matches each transition in the underlying protocol, (4) ∀s ∈ Pre(δp) ∩ I : δp′ |E(s) is cycle-free holds since
there are no cycles in any of the boxed rows of p′, and (5) convergence from ¬I ′ to I ′ holds since there are
not livelocks or deadlocks within ¬I ′.
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Figure 2: Underlying and transformed transition systems when N = 3

Deterministic, self-disabling processes. The following theorems show that the assumption of deter-
ministic and self-disabling processes does not impact the completeness of any algorithm that solves Problem
3.1. In general, convergence is achieved by collaborative actions of all processes. That is, each process par-
tially contributes to the correction of the global state of a protocol. As such, starting at a state s0 ∈ ¬I, a
single process may not be able to recover the entire system single-handedly. Thus, even if a process executes
consecutive actions starting at s0, it will reach a local deadlock from where other processes can continue
their execution towards converging to I. The execution of consecutive actions of a process can be replaced
by a single write action of the same process. As such, we assume that once a process executes an action it
will be disabled until the actions of other processes enable it again. That is, processes are self-disabling.

Theorem 3.3. Let p be a non-stabilizing protocol with invariant I. There is an SS version of p to I iff there
is an SS version of p to I with self-disabling processes.

Proof. The proof of right to left is straightforward, hence omitted. The proof of left to right is as follows. Let
pss be an SS version of p to I, and Pj be a process of pss. Consider a computation prefix σ = 〈s0, s1, · · · , sm〉,
where m > 0, ∀i : 0 ≤ i ≤ m : si /∈ I, and all transitions in σ belong to Pj . Moreover, we assume that Pj

becomes disabled at sm. Now, we replace each transition (si, si+1) ∈ σ (0 ≤ i < m) by a transition (si, sm).
Such a revision will not generate any deadlock states in ¬I. Moreover, if the inclusion of a transition (si, sm),
where 0 ≤ i < m−1, forms a non-progress cycle, then this cycle must have been already there in the protocol
because a path from si to sm already existed. Thus, this change does not introduce new livelocks in δp | ¬I.
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Since transitions (si, si+1) ∈ σ, where 0 ≤ i < m − 1, are removed without affecting the reachability of
sm from each si ∈ σ (0 ≤ i < m), this change will not create any livelocks in δp | ¬I. If the inclusion of a
typical transition (si, sm), where 0 ≤ i < m− 1, forms a non-progress cycle, then this cycle must have been
already there in the program because a path from si to sm already existed.

Theorem 3.4. Let p be a non-stabilizing protocol with invariant I. There is an SS version of p to I iff there
is an SS version of p to I with deterministic processes.

Proof. Any SS protocol with deterministic processes is an acceptable solution to Problem 3.1; hence the
proof of right to left. Let pss be an SS version of p to I with non-deterministic but self-disabling processes.
Moreover, let Pj be a self-disabling process of pss with two non-deterministic actions A and B originated
at a global state s0 /∈ I, where A takes the state of pss to s1 and B puts pss in a different state s2. The
following argument does not depend on s1 and s2 because by the self-disablement assumption, if s1 and s2
are in ¬I, then there must be a different process other than Pj that executes from there. Otherwise, the
transitions (s0, s1) and (s0, s2) recover pss to I.

The state s0 identifies an equivalence class of global states. Let s′0 be a state in the equivalence class.
The local state of Pj is identical in s0 and s′0, and the part of s0 (and s′0) that is unreadable to Pj could vary
among all possible valuations. As such, corresponding to (s0, s1) and (s0, s2), we have transitions (s′0, s

′
1)

and (s′0, s
′
2). To enforce determinism, we remove the action B from Pj . Such removal of B will not make

s0 and s′0 deadlocked. Since s′0 is an arbitrary state in the equivalence class, it follows that no deadlocks
are created in ¬I. Moreover, removal of transitions cannot create livelocks. Therefore, the self-stabilization
property of pss is preserved in the resulting deterministic protocol after the removal of B.

4 Backtracking Search

We present an efficient and complete backtracking search algorithm to solve Problem 3.1. Backtracking
search is a well-studied technique [36] which is easy to implement and can give very good results. We employ
some optimizations to improve runtime over a naive approach, yet leave plenty of room for improvement.

4.1 Overview of the Search Algorithm

Like any other backtracking search, our algorithm incrementally builds upon a guess, or a partial solution,
until it either finds a complete solution or finds that the guess is inconsistent. We decompose the partial
solution into two parts: (1) an under-approximation formed by making well-defined decisions about the form
of a solution, and (2) an over-approximation which is the set of remaining possible solutions (given the current
under-approximation). In a standard constraint satisfaction problem, a backtracking search builds upon a
partial assignment of variables, and it is inconsistent when the constraints upon those assigned variables
are broken (i.e., the under-approximation causes a conflict) or the constraints cannot be satisfied by the
remaining variable assignments (i.e., the over-approximation cannot contain a solution). In our context, a
backtracking search builds a set of actions to form a protocol, and it is inconsistent when a livelock is formed
by the chosen “delegate” actions (i.e., the under-approximation causes a conflict) or some deadlock cannot
be resolved by the remaining “candidate” actions (i.e., the over-approximation cannot contain a solution).
Each time a choice is made to build upon the under-approximation, the current under/over-approximations
are saved at decision level j and a copy along with the new choice are placed at level j + 1. If the guess
at level j + 1 is found to be inconsistent, we move back to level j and discard the choice which brought us
to level j + 1. If the guess at level 0 is found to be inconsistent, then enough guesses have been tested to
determine that no solution exists.

Our algorithm starts in the AddStabilization function (Algorithm 1) which takes a non-stabilizing
protocol p, its invariant I, its safety specifications badTrans, its required actions delegates and a mapping
E : Sp → Sp′ as input and generates a self-stabilizing version of p in the variable delegates. The algorithm
AddStabilization constructs a list of candidate actions that can be included in a solution and an empty
list of actions which form the under-approximation. These lists are respectively denoted by the candidates
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and delegates variables. To begin at decision level 0, we call the recursive search function AddStabiliza-
tionRec. This function continues to move actions from candidates to the under-approximation delegates

while no inconsistencies are found (that is, the protocol formed by delegates contains no livelocks, and the
actions from candidates can potentially resolve all remaining deadlocks). Each time an action is added to
the under-approximation, the function AddStabilizationRec recurses, moving to the next decision level.
When the partial solution is found to be inconsistent, AddStabilizationRec returns false. If a complete
solution is found, AddStabilizationRec returns true, and the solution itself is contained in the variable
passed to AddStabilizationRec as the delegates parameter (i.e., a return argument). AddStabiliza-
tion follows the same convention for returning success and failure.

Throughout the search, the ReviseActions function is used to add delegate actions, remove candidate
actions, and check for inconsistencies. Like the other functions, if it finds the partial solution to be inconsis-
tent, it returns false. Otherwise, it returns true, and its modified delegates and candidates parameters
are accessible to the calling function. During the updates, ReviseActions can add actions to delegates and
remove actions from candidates if it does not affect completeness. For example, if only one action remains
which can resolve a certain deadlock, then that action can and will be added to the under-approximation
without the need to recurse to a new decision level.

To choose the next action to add to the partial solution, AddStabilizationRec calls PickAction.
A simple implementation of PickAction can return any candidate action without sacrificing correctness.
Thus, for reasoning about correctness, the reader may assume an arbitrary candidate is chosen. Nonetheless,
to improve the performance of the search, our implementation resolves the deadlocks that the fewest candi-
date actions can resolve. By picking one of the n actions which resolve one of these deadlocks, we guarantee
that if the partial solution is found to be inconsistent, we only need to try n− 1 more candidate actions to
resolve the deadlock before backtracking. This is analogous to the minimum remaining values heuristic [36]
which is commonly used in backtracking search for constraint satisfaction problems.

4.2 Details of the Search Algorithm

Misusing C/C++ notation, we prefix a function parameter with an ampersand (&) if modifications to it will
affect its value in the caller’s scope (i.e., it is a return parameter).
AddStabilization. Algorithm 1 is the entry point of our backtracking algorithm. This function returns
true iff a self-stabilizing protocol is found which will then be formed by the actions in delegates. Initially,
the function determines all possible candidate actions, where actions are minimal in that they cannot be
represented equivalently by multiple actions. That is, each candidate action of a process (or set of symmetric
processes) is formed by a single valuation of all readable variables in its guard and a single valuation of all
writable variables in its assignment statement. Next, the function determines which actions are explicitly
required (Line 2) or disallowed by the safety specification (Line 4). As an optimization which is not shown
in the algorithm, we can disallow the invariant from changing (i.e., enforce I ′ = E(I)), allowing us to
include actions which break closure in the dels set on Line 4. We invoke ReviseActions to include
adds in the under-approximation and remove dels from the over-approximation on Line 6. If the resulting
partial solution is consistent, then the recursive version of this function (AddStabilizationRec) is called.
Otherwise, a solution does not exist.
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Algorithm 1 Backtracking algorithm for solving Problem 3.1.

AddStabilization(p: protocol, I: state predicate, E : mapping Sp → Sp′ , &delegates: protocol actions,
badTrans: safety specifications)

Output: Return true when a solution delegates can be found. Otherwise, false.
1: let candidates be the set of all possible actions from E(δp)
2: let adds := delegates

3: delegates := ∅
4: let dels be a set of actions from candidates such that dels ∈ badTrans
5: let I ′ := ∅
6: if ReviseActions(p, I, E , &delegates, &candidates, &I ′, adds, dels) then
7: return AddStabilizationRec(p, I, E , &delegates, candidates, I ′)
8: else
9: return false

10: end if

AddStabilizationRec. Algorithm 2 defines the main recursive search. Like AddStabilization, it returns
true if and only if a self-stabilizing protocol is found which is formed by the actions in delegates. This
function continuously adds candidate actions to the under-approximation delegates as long as candidate
actions exist. If no candidates remain, then delegates and over-approximation delegates∪ candidates of
the protocol are identical. If ReviseActions did not find anything wrong, then delegates is self-stabilizing
already, hence the successful return on Line 16.

On Line 2 of AddStabilizationRec, a candidate action A is chosen by calling PickAction (Algorithm
4). Any candidate action may be picked without affecting the search algorithm’s correctness, but the next
section explains a heuristic we use to pick certain candidate actions over others to improve search efficiency.
After picking an action, we copy the current partial solution into next delegates and next candidates,
and add the action A on Line 6. If the resulting partial solution is consistent, then we recurse by calling
AddStabilizationRec. If that recursive call finds a self-stabilizing protocol, then it will store its actions
in delegates and return successfully. Otherwise, if action A does not yield a solution, we will remove it
from the candidates on Line 12. If this removal makes the partial solution unable to form a self-stabilizing
protocol, return in failure; otherwise, continue the loop.

Algorithm 2 Recursive backtracking function to add stabilization.

AddStabilizationRec(p, I, E , &delegates, candidates, I ′)

Output: Return true if delegates contains the solution. Otherwise, return false.
1: while candidates 6= ∅ do
2: let A := PickAction(p, E , delegates, candidates, I ′)
3: let next delegates := delegates

4: let next candidates := candidates

5: let I ′′ := ∅
6: if ReviseActions(p, I, E , &next delegates, &next candidates, &I ′′, {A}, ∅) then
7: if AddStabilizationRec(p, I, E , &next delegates, next candidates, I ′′) then
8: delegates := next delegates {Assign the actions to be returned.}
9: return true

10: end if
11: end if
12: if not ReviseActions(p, I, E , &delegates, &candidates, &I ′, ∅, {A}) then
13: return false
14: end if
15: end while
16: return true
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ReviseActions. Algorithm 3 is a key component of the backtracking search. ReviseActions performs
five tasks: it (1) adds actions to the under-approximated protocol by moving the adds set from candidates

to delegates; (2) removes safety-violating actions from the over-approximated protocol by removing the
dels set from candidates; (3) enforces self-disablement and determinism (see Theorem 3.3) which results
in removing more actions from the over-approximated protocol; (4) computes the maximal invariant I ′

and transitions (δp′ |I ′) in the expanded state space given the current under/over-approximations, and (5)
verifies constraints 1 to 4 of Problem 3.1, livelock freedom of the under-approximation in ¬I ′, and weak
convergence of the over-approximation to I ′. If the check fails, then ReviseActions returns false. Finally,
ReviseActions invokes the function CheckForward to infer actions which must be added to the under-
approximation or removed from the over-approximation. (A simple implementation of CheckForward can
always return true without inferring any new actions.)

A good ReviseActions implementation should provide early detection for when delegates and
candidates cannot be used to form a self-stabilizing protocol. At the same time, since the function is
called whenever converting candidates to delegates or removing candidates, it cannot have a high cost.
Therefore, we do checks that make sense, such as ensuring that actions in delegates do not form a livelock
and that actions in delegates ∪ candidates provide weak stabilization.

Line 12 calls CheckForward which infers new actions to add and remove, and it may return false only
when it determines that the partial solution cannot be used to form a self-stabilizing protocol. If some new
actions are inferred to be added or removed, simply call ReviseActions again to add or remove them. A
very simple implementation of CheckForward can always return true without inferring any new actions.
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Algorithm 3 Add adds to under-approximation and removing dels from over-approximation.

ReviseActions(p, I, E , &delegates, &candidates, &I ′, adds, dels)

Output: Return true if adds can be added to delegates and dels can be removed from candidates, and
I ′ can be revised accordingly. Otherwise, return false.

1: delegates := delegates ∪ adds
2: candidates := candidates \ adds
3: for A ∈ adds do
4: Add each candidate action B to dels if it belongs to the same process as A and satisfies one of the

following conditions:
• A enables B (enforce self-disabling process)
• B enables A (enforce self-disabling process)
• A and B are enabled at the same time (enforce determinism)
{This adds actions to dels from candidates which are now trivially unnecessary for stabilization}

5: end for
6: candidates := candidates \ dels
7: Compute the maximal I ′ and (δp′ |I ′) such that:

• I ′ ⊆ E(I)
• (δp′ |I ′) transitions can be formed by actions in delegates ∪ candidates
• Constraints 2, 3, and 4 of Problem 3.1 hold

8: Perform the following checks to see if:
• I = H(I ′)
• All transitions of delegates beginning in I ′ are included in (δp′ |I ′)
• The protocol formed by delegates is livelock-free in ¬I ′
• Every state in ¬I ′ has a computation prefix by transitions of delegates∪candidates that reaches

some state in I ′

9: if all checks pass then
10: adds := ∅
11: dels := ∅
12: if CheckForward(p, I, E , delegates, candidates, I ′, &adds, &dels) then
13: if adds 6= ∅ or dels 6= ∅ then
14: return ReviseActions(p, I, E , &delegates, &candidates, &I ′, adds, dels)
15: end if
16: return true
17: end if
18: end if
19: return false

Theorem 4.1 (Completeness). The AddStabilization algorithm is complete.

Proof. We want to show that if AddStabilization returns false, then no solution exists. Since each
candidate action is minimal in that it cannot be broken into separate actions, and we begin by considering
all such actions as candidates, a subset of the candidate actions must form a self-stabilizing protocol if and
only if such a protocol exists. Observe that AddStabilizationRec follows the standard backtracking [30]
procedure where (1) a new decision level to add a candidate action to the under-approximation, and (2)
we backtrack and remove that action from the candidates when an inconsistency (which cannot be fixed
by adding to the under-approximation) is discovered by ReviseActions at that new decision level. Note
also that, even though ReviseActions removes candidate actions in order to enforce deterministic and
self-disabling processes, but we know by Theorems 3.4 and 3.3 that this will not affect the existence of a self-
stabilizing protocol. Thus, the search algorithm will test every subset of the initial set of candidate actions
where processes are deterministic and self-disabling and ReviseActions did not find an inconsistency in a
smaller subset.
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Theorem 4.2 (Soundness). The AddStabilization algorithm is sound.

Proof. We want to show that if AddStabilization returns true, then it has found a self-stabilizing pro-
tocol formed by the actions in delegates. Notice that when AddStabilizationRec returns true, the
AddStabilization (Line 7) or AddStabilizationRec (Line 8) function which called it simply returns
true with the same delegates set. The only other case when true is returned is on candidates is empty
in AddStabilizationRec (Line 16). Notice that to get to this point, ReviseActions must have been
called and must have returned true after emptying the candidates set and performing the checks on Line
8. When candidates is empty, ReviseActions verifies that the protocol formed by delegates satisfies the
constraints of Problem 3.1. Thus, a return value of true corresponds with the actions of delegates forming
a self-stabilizing protocol, and those actions are subsequently the solution found by AddStabilization.

4.3 Picking Actions via the Minimum Remaining Values Heuristic

The worst-case complexity of a depth-first backtracking search is determined by the branching factor b and
depth d of its decision tree, evaluating to O(bd). We can therefore tackle this complexity by reducing the
branching factor. To do this, we use a minimum remaining values (MRV) heuristic in PickActions. MRV
is classically applied to constraint satisfaction problems by assigning a value to a variable which has the
minimal remaining candidate values. In our setting, we pick an action which resolves a deadlock with the
minimal number of remaining actions which can resolve it.

Algorithm 4 shows the details of PickAction that keeps an array deadlock sets, where each element
deadlock sets[i] contains all the deadlocks that are resolved by exactly i candidate actions. We initially
start with array size |deadlock sets| = 1 and with deadlock sets[0] containing all unresolved deadlocks.
We then loop through all candidate actions, shifting deadlocks to the next highest element in the array
(bubbling up) for each candidate action which resolves them. After building the array, we find the lowest
index i for which the deadlock set deadlock sets[i] is nonempty, and then return an action which can
resolve some deadlock in that set. Line 21 can only be reached if either the remaining deadlocks cannot be
resolved (but ReviseActions catches this earlier) or all deadlocks are resolved.
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Algorithm 4 Pick an action using the most-constrained variable heuristic.

PickAction(p, E , delegates, candidates, I ′)

Output: Next candidate action to pick.
1: let deadlock sets be a single-element array, where deadlock sets[0] holds a set of deadlocks in
¬I ′ ∪Pre(E(δp)) which actions in delegates do not resolve.

2: for all action ∈ candidates do
3: let i := |deadlock sets|
4: while i > 0 do
5: i := i− 1
6: let resolved := deadlock sets[i] ∩Pre(action)
7: if resolved 6= ∅ then
8: if i = |deadlock sets| − 1 then
9: let deadlock sets[i+ 1] := ∅ {Grow array by one element}

10: end if
11: deadlock sets[i] := deadlock sets[i] \ resolved
12: deadlock sets[i+ 1] := deadlock sets[i+ 1] ∪ resolved
13: end if
14: end while
15: end for
16: for i = 1, . . . , |deadlock sets| − 1 do
17: if deadlock sets[i] 6= ∅ then
18: return An action from candidates which resolves a deadlock in deadlock sets[i].
19: end if
20: end for
21: return An action from candidates. {This line may never execute!}

4.4 Optimizing the Decision Tree

This section presents the technique that we use to improve the efficiency of our backtracking algorithm.
Forward Checking. Forward checking can be used to prune candidate actions from the over-approximation
and infer actions to add to the under-approximation. A classical implementation of CheckForward would
try to add each candidate action to the delegates list, using the approach in ReviseActions to check for
validity. We have tried this, and it is expectedly slow due to the large number of candidate actions combined
with the high cost of cycle detection and reachability analysis.
Conflicts. Our approach instead uses sets of actions which conflict with each other. During the search,
whenever ReviseActions detects an inconsistency, we record a minimal set of actions from the under-
approximation which form a cycle or cause the over-approximation to be insufficient to provide weak stabi-
lization. For larger systems where cycle detection is costly, the minimization phase should be skipped. Even
without minimization, checking against conflict sets is much cheaper than the classical forward checking
approach and allows us to avoid duplicate work.
Randomization and Restarts. When using the standard control flow of a depth-first search, a bad
choice near the top of the decision tree can lead to infeasible runtime. This is the case since the bad decision
exists in the partial solution until the search backtracks up the tree enough to change the decision. To
limit the search time in these branches, we employ a method outlined by Gomes et al. [18] which combines
randomization with restarts. In short, we limit the amount of backtracking to a certain height (we use 3). If
the search backtracks past the height limit, it forgets the current decision tree and restarts from the root. To
avoid trying the same unfruitful decisions after a restart, PickAction is implemented to randomly select a
candidate action after the MRV heuristic is applied.
Parallel Search. When a protocol is difficult to find, many AddStabilization tasks can run in parallel
to increase the chance of finding a solution. The tasks avoid overlapping computations naturally due to
the randomization used in PickAction. Further, the search tasks share conflicts with each other, allowing
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CheckForward to leverage knowledge obtained by other tasks. In our MPI implementation, conflict
dissemination occurs between tasks using a virtual network topology formed by a generalized Kautz graph [25]
of degree 4. This topology has a diameter logarithmic in the number of nodes and is fault-tolerant in that
multiple paths between two nodes ensure message delivery. That is, even if some nodes are performing costly
cycle detection and do not check for incoming messages, they will not necessarily slow the dissemination of
new conflicts.

4.5 Exploiting Symmetry

Parameterized Systems. For protocols which scale to many processes, each process behaves as one of
a finite number of template processes. For example, consider a bidirectional ring topology of N processes
P0, . . . , PN−1 where each Pi owns a variable xi. We might want to enforce that all processes have the same
code. That is, Pi has action xi−1 = a ∧ xi = b ∧ xi+1 = c −→ xi := d if and only if each other process Pj

has action xj−1 = a ∧ xj = b ∧ xj+1 = c −→ xj := d. In this case, all actions of this form would be treated
as one indivisible candidate action during synthesis.

This has the advantage that the set of candidate actions does not vary with the ring size N as long as the
domain of xi does not change. Since we would like to find a protocol which is self-stabilizing for arbitrary
N , we can consider multiple systems at once, perhaps those of size 3, 4, 5, 6, and 7. That is, the checks in
ReviseActions and the deadlock ranking in PickAction would apply to all systems. When a solution is
found, we can further check if it is self-stabilizing for N = 8 and beyond (up to some feasible limit). If the
check fails due to a livelock, we record a conflict and continue searching. If the check fails due to a deadlock,
it is not appropriate to add a conflict since it may be possible to add actions to resolve the deadlock. Our
implementation simply restarts if a deadlock is found during this verification phase since we feel this issue
is rare (our case studies never encounter it).
Symmetric Links. In some cases, we find it useful to enforce symmetry in how a process can modify
variables. For example, consider a bidirectional ring topology of N processes P0, . . . , PN−1 where each Pi

owns a variable xi. We might want to enforce that each Pi has action xi−1 = a∧xi = b∧xi+1 = c −→ xi := d
if and only if Pi also has the action xi−1 = c ∧ xi = b ∧ xi+1 = a −→ xi := d. In this case, both actions
would be treated as one indivisible candidate action during synthesis.

Intuitively, this models a scenario where a process Pi can communicate with its neighbors but nonde-
terministically confuses the xi−1 and xi+1 values. When carefully applied, this feature allows us to model
the topology needed for solving ring orientation, where each process Pi has two neighbors Pj and Pk where
{Pj , Pk} = {Pi−1, Pi+1}. Process Pi does not confuse which values come from Pj and Pk, but it does not
have any sense which is Pi−1 or Pi+1.

5 Case Studies

We introduce four distributed system problems: leader election, coloring, token circulation, and ring orien-
tation. In the next section, we discuss how our search algorithm performs on each problem and options we
must consider to make them feasible.

5.1 Leader Election

We use a bidirectional ring topology defined by Huang [24].
Non-Stabilizing Protocol. The non-stabilizing protocol is empty since once a leader is found, nothing
should change. For rings of size N , each process Pi owns a variable xi ∈ ZN and can read both xi−1 and
xi+1.
Invariant. The invariant is defined as ∀i ∈ ZN : ((xi−1 − xi) mod N) = ((xi − xi+1) mod N). When N is
prime, the processes hold unique values in legitimate states (i.e., {x0, . . . , xN−1} = {0, . . . , N−1}). A process
Pi can therefore consider itself the leader when its value is xi = 0. When N is composite, the invariant is
still useful in that it guarantees that each process Pi agrees on the same value ((xi−1 − xi) mod N).
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Superposed Variables. No variables are superposed, therefore I ′ = I for synthesis.

5.2 Four-Coloring on Kautz Graphs

Kautz graphs have many applications in peer-to-peer networks due to their constant degree, optimal diame-
ter, and low congestion [33]. Recall that in our parallel search algorithm, we use a generalized Kautz graph
of degree 4 to disseminate conflicting sets of actions.
Non-Stabilizing Protocol. The non-stabilizing protocol is empty since once a valid coloring is found,
nothing should change. This case study uses generalized Kautz graphs of degree 2. Each process Pi owns
a variable xi ∈ Z4 which denotes its color. From [25], an arc exists from vertex i to vertex j if and only if
j = −(2i+ q + 1) mod N for some q ∈ {0, 1}. We interpret this as a topology, letting Pj read the color of Pi

when an arc exists from i to j in the graph. Some generalized Kautz graphs contain self-loops which would
make a coloring protocol impossible. In such a case, where vertex j has a self-loop an arc from vertex i, we
simply remove the self loop and add another arc from vertex i.

Specifically, Pi reads xj′ and xk′ which are computed from the following indices j and k. When N
is even, these are computed as j = bN−1−i2 c mod N and k = (j + N

2 ) mod N . When N is odd, they are

j = N−1
2 (i+ 1) mod N and k = N−1

2 (i+ 2) mod N . The indices j′ and k′ are equal to j and k respectively if
j 6= i and k 6= i. Otherwise, j = i or k = i, then j′ = k′ = k or k′ = j′ = j respectively.
Invariant. We desire a silent coloring protocol, where no two adjacent processes have the same color. As
such, the invariant is defined as I ≡ ∀i ∈ ZN , q ∈ Z2 : ((i = −(2 ∗ i+ q + 1) mod N) ∨ (xi 6= x−(2i+q+1))).
Superposed Variables. No variables are superposed, therefore I ′ = I for synthesis.

5.3 Token Rings of Constant Space

Using the four-state token ring of Example 3.2, we consider small modifications to obtain a six-state version
and the well-known three-bit version from Gouda and Haddix [21].
Non-Stabilizing Protocol. The non-stabilizing protocol uses a single bit to circulate a token around a
unidirectional ring. Each process Pi can write a binary variable ti and read ti−1. The distinguished process
P0 behaves differently from each other process Pi where i > 0.

P0 : tN−1 = t0 −→ t0 := 1− t0;

Pi : ti−1 6= ti −→ ti := ti−1;

Invariant. The invariant is defined as exactly one process in the non-stabilizing protocol being able to act.
Formally this is written I ≡ ∃! i ∈ ZN : ((i = 0∧ ti−1 = ti)∨ (i 6= 0∧ ti−1 6= ti)). Even though we superpose
variables, we choose to enforce I ′ = I during synthesis since the token ring of Gouda and Haddix [21] is
self-stabilizing for this invariant.
Superposed Variables. In the six-state token ring, we give each process Pi a superposed variable xi ∈ Z3

to write and allow Pi to read xi−1. In the three-bit token ring, we give each process Pi two superposed
binary variables ei and ready i to write and allow Pi to read ei−1. As is the case with the non-stabilizing
protocol, we distinguish process P0 but enforce symmetry on P1, . . . , PN−1.

5.4 Ring Orientation

If anonymous processes have some method of finding each other, it is easy for them to form a ring topology.
However, a problem arises when they must decide on a common direction around the ring. Israeli and
Jalfon [26] give general solution for this protocol, though we focus on a version for odd-sized rings from
Hoepman [23]. Hoepman’s protocol uses token circulation to determine a common direction around the ring.
By only considering rings of odd size, the number of tokens can be forced to be odd. Eventually, tokens of
opposing directions will cancel and leave at least one token circulating.
Non-Stabilizing Protocol. The non-stabilizing protocol is empty since once the ring is oriented, nothing
should change. Each process Pi is given two binary variables way2i and way2i+1 to write and cannot read
variables of other processes.
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Invariant. The invariant states that all processes must decide on a common direction. We say that Pi

has chosen a direction pointing to Pi−1 (anticlockwise) if way2i = 1 ∧ way2i+1 = 0, and Pi has chosen a
direction pointing to Pi+1 (clockwise) if way2i = 0 ∧ way2i+1 = 1. Simply we can write the invariant as
I ≡ ∀j ∈ Z2N : wayj−1 6= wayj .
Superposed Variables. We use a topology adapted from [23]. Each process Pi in the ring of size N is
given two superposed binary variables color i and phasei. Process Pi can read color i−1 and phasei−1 from
Pi−1 along with color i+1 and phasei+1 from Pi+1.

To reduce the number of candidate actions, we forbid Pi from acting when it has not chosen a direction
(i.e., when way2i = way2i+1). In cases where Pi has not chosen a direction, we model it making an arbitrary
choice by introducing new processes to make that arbitrary choice (since Pi is not allowed to act in this
case). This allows a synthesis procedure to focus only on how each Pi will change its chosen direction, rather
than how Pi will choose a direction when it has not yet chosen (which should be a trivial matter).

To model an unoriented ring, we enforce symmetry on the links between processes. That is, a process Pi

has an action (color i−1 = α0 ∧ color i+1 = β0 ∧ phasei−1 = α1 ∧ phasei+1 = β1 ∧ way2i = α2 ∧ way2i+1 =
β2 ∧ color i = γ0 ∧ phasei = γ1 −→ way2i := α3; way2i+1 := β3; color i := γ2; phasei := γ3; ) if and only
if it also has an action where the α and β values are respectively swapped (color i−1 = β0 ∧ color i+1 =
α0 ∧ phasei−1 = β1 ∧ phasei+1 = α1 ∧ way2i = α2 ∧ way2i+1 = α2 ∧ color i = γ0 ∧ phasei = γ1 −→ way2i :=
β3; way2i+1 := α3; color i := γ2; phasei := γ3; ). In this way, process Pi cannot use any implicit knowledge
from the input topology to determine direction. Rather, it must treat color i−1, phasei−1, and way2i exactly
the same as color i+1, phasei+1, and way2i+1, only differentiating them by their values. Effectively those
links are differentiated by the directional information specified by way2i and way2i+1.
Alternative Version. The general ring orientation protocol from Israeli and Jalfon [26] can be posed
with some slight modifications. First increase the domain of each color i and phasei variable by one, giving
color i, phasei ∈ Z3. Next, each process needs to know the direction of its neighbors, therefore we allow each
process Pi to read way2i−1 and way2∗i−2 from Pi−1 and read way2∗i+2 and way2∗i+3 from Pi+1. These new
readable variables should be bundled with the other variables in links to Pi−1 and Pi+1 respectively. We
omit this version from our case studies due to a high number of candidate actions.

6 Experimental Results

Leader Election / Agreement. Huang’s leader election protocol gives an agreement protocol for rings
of composite size. We consider a ring of size 6 for synthesis as it is somewhat difficult for our randomized
backtracking search to find a stabilizing protocol. Conversely, the ring of size 5 is usually solved within
8 restarts (using a backtracking height limit of 3). For the ring of size 6, we ran 25 trials of the parallel
search using different numbers of MPI processes to measure the effect of parallelism on runtime. Averaging
the times for taken by 8, 16, 32, and 64 processes, we get 2468.36, 1120.76, 659.96, and 371.96 seconds
respectively. Figure 3 shows all time measurements and how they vary.
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Figure 3: Runtimes of leader election synthesis, varying the MPI process count.

Four-Coloring on Kautz Graphs. On generalized Kautz graphs, we found that substantial knowledge
can be gained when the readable variables of a process have a certain ordering. When Pi reads xj′ and xk′

in order as defined in Section 5.2, we are able to find a four-coloring protocol which is self-stabilizing for
N = 2, . . . , 13. However, if Pi must treat the xj′ and xk′ as symmetric links or without order (as with ring
orientation), then a four-coloring protocol exists for N = 2, . . . , 7 but not N = 8. The result holds if we allow
Pi to also read the variables of processes which can read xi, yet we preserve the symmetric link restriction.
Token Rings of Constant Space. As stated of the four-state token ring in Example 3.2, we found that
no version exists which stabilizes for all rings of size N = 2, . . . , 8. This trial was completed in 7451 seconds
without restarts. Using the modified token ring topologies in Section 5.3, we were able to find a stabilizing
protocols. Figures 4 and 5 show the search time for the six-state three-bit and token ring topologies. Each
trial considers rings from size 2 up to some maximum size. To simplify analysis, restarts were not used in the
search. Further, due to high cost, we do not consider rings of sizes 8 and 9 during the conflict minimization
phase.

Some of the protocols from our experiments are (or appear to be) stabilizing for all ring sizes. We have
verified these cases up to rings of size 12 using asynchronous execution and up to size 25 using synchronous
execution, as cycle detection is faster. These generalizable cases were found from all searches, including trials
involving rings of sizes 2 and 3. Some of these protocols converge to states with exactly one enabled process
as in Dijkstra’s token ring [12] but unlike three-bit token ring of Gouda and Haddix [21]. For these, we can
redefine a token as the ability to act, but convergence time may suffer.
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Figure 4: Runtimes of six-state token ring synthesis, varying the maximum ring size.

 1

 10

 100

 1000

 10000

 2  3  4  5  6  7  8  9  10

R
u
n
ti
m

e
 (

s
)

Maximum Number of Processes

2

3

13

56

236

634

1987

Figure 5: Runtimes of three-bit token ring synthesis, varying the maximum ring size.

For completeness, we give the actions of a stabilizing six-state token ring protocol. This protocol converges
to having one process enabled, works under asynchronous and synchronous schedulers, and has one of the
fastest convergence times of the six-state token rings that we synthesized. The distinguished process has
20 local transitions, while the other processes have 23 local transitions. These are represented below in a
somewhat condensed form using 12 and 13 actions respectively.

20



P0 : tN−1 = 0 ∧ xN−1 6= 2 ∧ t0 = 0 ∧ x0 = 0 −→ t0 := 0; x0 := 2;

P0 : tN−1 = 0 ∧ xN−1 = 0 ∧ t0 = 1 ∧ x0 6= 2 −→ t0 := 1; x0 := 2;

P0 : tN−1 = 0 ∧ xN−1 = 1 ∧ x0 = 1 −→ t0 := 1; x0 := 2;

P0 : tN−1 = 0 ∧ xN−1 = 2 ∧ t0 = 0 ∧ x0 = 0 −→ t0 := 1; x0 := 0;

P0 : tN−1 = 0 ∧ xN−1 = 2 ∧ t0 = 0 ∧ x0 = 1 −→ t0 := 1; x0 := 1;

P0 : tN−1 = 0 ∧ xN−1 = 2 ∧ x0 = 2 −→ t0 := 1; x0 := 0;

P0 : tN−1 = 1 ∧ xN−1 6= 2 ∧ t0 = 0 ∧ x0 = 0 −→ t0 := 0; x0 := 1;

P0 : tN−1 = 1 ∧ xN−1 6= 2 ∧ t0 = 1 ∧ x0 = 1 −→ t0 := 0; x0 := 1;

P0 : tN−1 = 1 ∧ xN−1 = 0 ∧ t0 = 1 ∧ x0 = 0 −→ t0 := 0; x0 := 2;

P0 : tN−1 = 1 ∧ xN−1 = 2 ∧ t0 = 0 ∧ x0 6= 2 −→ t0 := 0; x0 := 2;

P0 : tN−1 = 1 ∧ xN−1 = 2 ∧ t0 = 1 ∧ x0 = 2 −→ t0 := 0; x0 := 2;

P0 : xN−1 = 1 ∧ t0 = 1 ∧ x0 = 0 −→ t0 := 1; x0 := 2;

Pi : ti−1 = 0 ∧ xi−1 6= 2 ∧ ti = 0 ∧ xi 6= 1 −→ ti := 0; xi := 1;

Pi : ti−1 = 0 ∧ xi−1 = 0 ∧ ti = 1 ∧ xi = 2 −→ ti := 1; xi := 0;

Pi : ti−1 = 0 ∧ xi−1 = 1 ∧ ti = 1 −→ ti := 0; xi := 1;

Pi : ti−1 = 0 ∧ xi−1 = 2 ∧ ti = 1 −→ ti := 0; xi := 2;

Pi : ti−1 = 0 ∧ xi−1 = 2 ∧ xi = 0 −→ ti := 0; xi := 2;

Pi : ti−1 = 1 ∧ xi−1 = 0 ∧ ti = 0 ∧ xi = 0 −→ ti := 1; xi := 0;

Pi : ti−1 = 1 ∧ xi−1 = 0 ∧ ti = 0 ∧ xi = 1 −→ ti := 1; xi := 1;

Pi : ti−1 = 1 ∧ xi−1 = 0 ∧ xi = 2 −→ ti := 1; xi := 1;

Pi : ti−1 = 1 ∧ xi−1 = 1 ∧ ti = 0 ∧ xi = 2 −→ ti := 0; xi := 0;

Pi : ti−1 = 1 ∧ xi−1 = 1 ∧ ti = 1 ∧ xi = 2 −→ ti := 1; xi := 0;

Pi : ti−1 = 1 ∧ xi−1 = 2 ∧ ti = 1 ∧ xi = 1 −→ ti := 1; xi := 2;

Pi : ti−1 = 1 ∧ xi−1 = 2 ∧ xi = 0 −→ ti := 1; xi := 2;

Pi : xi−1 = 2 ∧ ti = 0 ∧ xi = 1 −→ ti := 0; xi := 2;

Ring Orientation. This search used 32 MPI processes and considered rings of size 3, 5, and 7 simulta-
neously. As with large token rings, we did not perform conflict minimization for the ring of size 5. For the
ring of size 7, we automatically ran verifications after finding a stabilizing protocol for the smaller rings.
If this verification failed, then the search continued as if the ReviseActions function returned false. A
stabilizing protocol was found in 281 seconds (0.078 hours), and most MPI search tasks restarted 4 times
after exceeding the backtracking limit of 3. After obtaining the solution, we verified that is stabilizing for
rings of sizes 9 and 11 in 509 seconds (0.14 hours) and 26880 seconds (7.47 hours) respectively.

7 Related Work and Discussion

This section discusses related work on manual and auotmated design of fault tolerance in general and self-
stabilization in particular. Manual methods are mainly based on the approach of design and verify, where one
designs a fault-tolerant system and then verifies the correctness of (1) functional requirements in the absence
of faults, and (2) fault tolerance requirements in the presence of faults. For example, Liu and Joseph [34]
provide a method for augmenting fault-intolerant systems with a set of new actions that implement fault
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tolerance functionalities. Katz and Perry [27] present a general (but expensive) method for global snapshot
and reset towards adding convergence to non-stabilizing systems. Varghese [38] and Afek et al. [4] provide
a method based on local checking for global recovery of locally correctable protocols. Varghese [39] also
proposes a counter flushing method for detection and correction of global predicates.

Methods for automated design of fault tolerance can be classified into specification-based and incremental
addition techniques. In specification-based methods [7] the inter-process synchronization mechanisms of
programs are derived from formal specifications often specified in some variant of temporal logic. By contrast,
in addition methods one incorporates fault tolerance functionalities in an existing system while ensuring that
the resulting program would still satisfy its specifications in the absence of faults. For example, Kulkarni
and Arora [32] study the addition of three different levels of fault tolerance, namely failsafe, nonmasking and
masking fault tolerance. A failsafe protocol meets its safety specifications under all circumstances (i.e., in
the absence and in the presence of faults), whereas a nonmasking protocol ensures recovery to invariant from
the set of states that are reachable in the presence of faults (but not necessarily equal to the entire state
space). A masking fault-tolerant program is both failsafe and nonmasking. Ebnenasir [14] has investigated
the automated addition of recovery to distributed protocols for types of faults other than transient faults.
Nonetheless, their method has the option to remove deadlock states by making them unreachable. A similar
choice is utilized in Bonakdarpour and Kulkarni’s work [9] on adding progress properties to distributed
protocols. This is not an option in the addition of self-stabilization; recovery should be provided from any
state in protocol state space.

Since it is unlikely that an efficient method exists for algorithmic design of self-stabilization [28,29], most
existing techniques [1,3,16,17,40] are based on sound heuristics. For instance, Abujarad and Kulkarni [1,3]
present a heuristic for adding convergence to locally-correctable systems. Zhu and Kulkarni [40] give a
genetic programming approach for the design of fault tolerance, using a fitness function to quantify how close
a randomly-generated protocol is to being fault-tolerant. Farahat and Ebnenasir [17] provide a lightweight
method for designing self-stabilization even for non-locally correctable protocols. They also devise [16] a
swarm method for exploiting the computational power of computer clusters towards automated design of
self-stabilization. While the swarm synthesis method inspires the proposed work in this paper, it has two
limitations: it is incomplete and forbids any change in the invariant.
Applications. This work has applications in any area where convergence or equilibrium is of interest.
As an example application in economics, Gouda and Acharya [20] investigate self-stabilizing systems that
converge to legitimate states that represent Nash equilibrium. In this context, our proposed algorithm and
tool can enable automated design of agents in an economic system where achieving Nash equilibrium is a
global objective. Moreover, Protocon can be integrated in model-driven development environments (such as
Unified Modeling Language [35] and Motorola WEAVER [11]) for protocol design and visualization.
Limitations. We are currently investigating several challenges. First, due to scalability issues, Proto-
con can generate self-stabilizing protocols with a small number of processes (depending on the underlying
communication topology). To tackle this limitation, we are investigating the use of theorem proving in gen-
eralizing the small protocols synthesized by Protocon. Thus, the combination of Protocon (i.e., synthesizer)
and a theorem prover will provide a framework for automated design of parameterized self-stabilizing proto-
cols, where a protocol comprises several families of symmetric processes. Second, to mitigate the scalability
problem, we will devise more efficient cycle detection methods since our experimental results indicate that
significant resources are spent for cycle detection. Third, randomization

8 Conclusions and Future Work

This paper presents a method for algorithmic design of self-stabilization based on variable superposition
and backtracking. Unlike existing algorithmic methods [1, 3, 16, 17] the proposed approach is sound and
complete; i.e., if there is an SS solution, our algorithm will find it. We have devised sequential and par-
allel implementations of the proposed method in a software tool, called Protocon. Variable superposition
allows us to systematically introduce computational redundancy where existing heuristics fail to generate a
solution. Afterwards, we use the backtracking search to intelligently look for a self-stabilizing solution. The
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novelty of our backtracking method lies in finding and sharing design conflicts amongst parallel threads to
improve the efficiency of search. We have used Protocon to automatically generate self-stabilizing protocols
that none of the existing heuristics can generate (to the best of our knowledge). For example, we have
automatically designed an 8-state self-stabilizing token ring protocol for the same topology as the protocol
manually designed by Gouda and Haddix [21]. We have even improved this protocol further by designing
a 6-state version thereof available at http://cs.mtu.edu/~apklinkh/protocon/. Besides token rings, we
have synthesized other protocols such as coloring on Kautz graphs, ring orientation and leader election on a
ring.

We are currently investigating several extensions of this work. First, we would like to synthesize proto-
cols such as Dijkstra’s 4-state token chain and 3-state token ring [12], where the invariant and legitimate
behavior cannot be expressed using the protocol’s variables without essentially writing the self-stabilizing
version. Second, we are using theorem proving techniques to figure out why a synthesized protocol may not
be generalizable. Then, we plan to incorporate the feedback received from theorem provers in our back-
tracking method. A third extension is to leverage the techniques used in SAT solvers and apply them in our
backtracking search.
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