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Abstract

In the past decade the variational method has become an attractive alternative to the
traditional Kalman filter in data assimilation problems for atmospheric chemistry models.
From the computational point of view, its major advantage is that the gradient of the cost
function is computed fast, at the expense of few function evaluations, making the opti-
mization process very efficient. The drawbacks are the high storage requirements and the
difficulty to implement the adjoint code when sophisticated integrators are used to solve the
stiff chemistry. If the sparse structure of the models is carefully exploited Rosenbrock solvers
have been proved to be a reliable replacement to the classical methods (QSSA, CHEMEQ),...)
due to their outstanding stability properties and conservation of the linear invariants of the
system. In this paper we present an efficient implementation of the adjoint code for the
Rosenbrock type methods which can reduce the storage requirements of the forward model
and is suitable for automatization.
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1. Introduction. Consider the system of differential equations

1) { € = Fi(c) + Fy(c)

obtained after space discretization on a grid (N, Ny, N,) of an atmospheric chemistry model in a
bounded domain 2 € R?, where c(t) € R" represents the vector of concentrations of the species
involved in the model. For example F; may result from the discretization of the advection and
diffusion operators, and F> represents the stiff chemistry part with emissions and depositions,
but several other types of decompositions can be also considered [15, 22]. If the model contains
S species,the dimension of problem (1.1) is N = § x Ny x Ny x N,.

Under suitable assumptions, problem (1.1) has an unique solution and we can view this solution
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as a function of the initial conditions, ¢ = ¢(¢, z,y, 2, ¢g).
In a classical 4-D variational data assimilation problem [8] one wants to find the values of
parameters cy that minimize the cost functional

(1.2) f(Co) = %(CO — Cb)TB_l(CO - Cb) + % i((}k — Mk)TRI;l(Ck — Mk)
k=1

where the “background term” c; represents an estimate of the initial concentrations which may
results from a previous analysis,M; represents a set of observations at moment ¢;, and B and
Ry are the covariance matrices given by the errors in data for ¢; and My, respectively.

Most of the powerfull optimization techniques require the evaluation of the gradient V. F of the
cost function. In a comprehensive atmospheric chemistry model the dimension of the vector cg
can easily be of order 10% which make the optimization a very expensive computational process.
In the variational approach one computes the gradient of the functional F by using the “adjoint
method”. The general theory of adjoint equations is described in detail in [14] and the derivation
of the adjoint model for the continuous and discrete case are given in [8, 21]. Below we outline
the basic ideas:

Taking the covariance matrices to be diagonal,which correspond to the assumption that the
errors in measurements are uncorrelated in space and time the gradient of the cost function is:

Ocy,

T
6(:0) R, '(ck — My)

(1.3) VeoF(co) =B~ (co — ) + i (
k=1

T T T
. . .. OCy
Using the chain rule in its transpose form (g—g’g) = ( aéol) ( 3ggf 1)

we can deduce the algorithm to compute the necesary gradient:
Stepl. Initialize gradient =0

Step2. for k =m,1,—1do

T
gradient = (82&1) [R,;l(ck — My) + gradient

Step3. gradient = B~!(co — c3) + gradient

The main advantage of the adjoint method is that explicit computation of the Jacobian matrices
agff - is avoided and the matrix-vector products can be computed directly at Step 2. Since for
large systems constructing the adjoint code by hand can be a frustrating process,automatic tools
have been developed. For the theory and actual implementation of the adjoint computations
the reader should consult [5, 10, 11]. The algorithm described above requires the values of c
in reverse order so these values need to be stored from a previous run or recomputed.Moreover,

in practice the measurements are usually sparse and the value of ¢ is obtained from c¢g_; with




a sequence of steps cy_; — (:,1c — ... = ¢}, = c;. The computational trade-off is then between
allocating a huge amount of memory to store the states of the system during the forward run,
or frequent recomputations which increase the running time of the code. If an explicit or semi-
implicit numerical method is used to solve the stiff chemistry part of problem (1.1) then the
“trajectory” from ci_; to ¢y may become very long, increasing the cost of the adjoint code.
On another hand, if an implicit method is used then the adjoint computations may become
complicated. Ideally one would like a method capable of taking large stepsize and an efficient
adjoint implementation.

2. Operator splitting. A popular way to solve problem (1.1) is to use operator splitting,which
has the advantage that different processes can be treated with different numerical methods.In a
second order accurate Strang splitting [20] approach the solution c(tx41) is obtained from c(#)
as follows:

(2.1) %cl(t) = Fi(c'(t), te St <tpp1, ¢ (t) = c(ty)

(2:2) D86 = BEW), e <<ty )= lh)
(2.3) %c?’(t) = F (), bt <t <tpgr, c3(tk+%) = c2(tpy1)
(2.4) c(ter1) = c (tr)

If the numerical solution of (2.1-2.4) is written as:

Cl(tk+%) = F1" (c(tr)) 5 (tey1) = FSZ(Cl(tH%)) i c(tps1) = F1P((tkt))

one has for the adjoint computations:

[ac(tk+1)r _ [aFﬁl(c(tk))]T _

BFZM(cl(tH%)) g OF (c?(tr41)) !
ac(ty) dc(tk) el

¢! (tyr1) 0c?(tg+1)

Usually the advection-diffusion equations (2.1,2.3) are solved using explicit methods,while
the stiff chemistry requires an implicit integrator.The computational cost of solving problem
(2.1-2.4) is then concentrated in the chemistry part which takes in practice as much as 90% of
the CPU time. Since the adjoint method requires several integrations of the direct model, the
storage of (part of) the forward trajectory and the (jacobian)! -vector products, the performance
of the adjoint model is dominated by the implementation of the direct and adjoint method used
to solve equation (2.2). Fisher and Lary[8] show the adjoint computations for the semi-implicit
midpoint rule, and Elbern et al.[7] use the adjoint model for the QSSA integration.In the next
section we present the adjoint formulas for a general 2-stages Rosenbrock method and an efficient



implementation which is suitable for automatization. Extension to a s-stages method [12] is
straightforward.

3. Adjoint computations and implementation for a 2-stages Rosenbrock method.
i) Derivation of the adjoint formulas. We consider now the problem

(3.1) { a =/

c(to) = co

with ¢(t),co € R and f : R" — R, f = (f1, fo,--- fu)T.
One step from ¢y to t; with h = ¢; — ¢y of a 2-stages Rosenbrock method as presented in [12]
reads:

(3:2) (ml Jo)ki = f(co)
(3.4) c1 = cg+ miky +moke

where Jj is the Jacobian matrix of f evaluated at co, Jy = (g—(@)mc:co and the coefficients
Y11, Y22, @, 3, M1, Mo are chosen to obtain a desired order of consistency and numerical stability
Since of special interest are the methods that require only one LU decomposition of I Jo
per step, we consider the case when 11 = 20 = 7.

For the adjoint computations we have from (3.2), (3.3):

s (Y () ()

ks Oky . p r B k1 (8J0 )T ( 1 T) -1
— I Ji k —1I—J
(acO) <( Fge) I e T o ¥ 2) ) (GaT =)
where J; is the Jacobian evaluated at ¢y + aki, and the terms (géo xki),i=1,2arenxn

matrices whose j column is (gg(’ )k;, i = 1,2. We want to stress here the fact that these matrices

0
are not symmetric and we will return to the computation of these terms later.
Using (3.4), for an arbitrary seed vector u € R" we have:

(a—co> u-u+m1(J0 +(8—(j()><k1) )((%I—JO) ) u-+

m (<I+ a(G)T) I+ BT+ (52 kQ)T> ((%I_JO)T)Iu



Step 1. Solve for v the linear system (%I — Jy)”v =u . Then,
vh

g\ T dJy T T Oki 1 r B
et = 90 vk bt =
(8c0) u u+m (JO +(8c0 x ki) >v+m2J1 V+m2(8c0) (ad] + hI)v-I—

0J;
+m2(a—(j:)) X kQ)TV

Step 2. Compute w = J{ (mav) ; wl = aw + mTQﬁV'

T
(3.6) (%) u=u+w+m (Jér-l—(% ><k1)T)V+(i)Tw1+m2(a— x ko)Tv
dcg dcg ¢

Using (3.5) we get next :
Step 3. Solve for @ the linear system (,%hI —Jo)T0 = w;.

After replacing in (3.6) and arranging the terms,
Step 4. Compute

801 r . T T BJ() T
(3.7) (3—co> w= e wot I (may +6) + (50 x ) (may +0) + ma( 52 x o)

We now focus on the terms of the form (g_(J;E xk)Tv whose evaluation dominate the computational
cost of the algorithm given by Step 1-4. Here k, v € R™ are arbitrary constant vectors. For the
i component we have:

T T T

9Jo T ) 9Jo 7 [ 9Jo 7 (9(J5 V) a(Jg v)

. +— xk = —k =k' [ — =k 2202} = ( 2202
(3:8) ((800 k)T : (806 ) v acp Y och dch k

Consider now the function H : R* — R™, H(cy) = J&v . Observe that the Jacobian matrix of
H is symmetric. We have

n n T
H(co) = <Z Jo,a )V s Y JO,(l,n)Vl>
=1 =1

which gives for the (i,j) entry in the Jacobian matrix :

OHi(eo) _ (011 6 . .
OH; ; = LA o T " )y, = Hy (i, 44 Hyf, (i,7)Vn
7 80{) (8(;68% Vi aC%@C% v fi (Z ])Vl f (’L j)v

where Hy, is the hessian matrix of the function f; : R" — R .

n
Then 8I;écoo) = ZI—I £;Vi , SO 8}5((:000) is symmetric. Using now (3.8) it results :
i=1



(3.9) ((g—i‘)’ x k)TV> = (61;((:50)> k

i1) Implementation of the adjoint code. The forward integration of problem (3.1) using implicit
methods together with the performance analysis is given in [17, 18, 22], proving that when the
sparsity of the system is efficiently exploited Rosenbrock methods outperform traditional explicit
methods like QSSA and CHEMEQ. Implementation is done in the symbolic kinetic preprocessor
KPP environment [6] which generates the sparse matrix factorization LU required in (3.2, 3.3)
with a minimal fill-in [16] and the routine to backsolve the linear systems without indirect
adressing. It is important to notice that the LU decomposition accounts for most of the CPU
time of the code, and there is no need to repeat it during the backward adjoint integration.
One step of the adjoint code ( from t; to ty ) requires a forward run from ty to ¢; given
by the formulas (3.2-3.4) followed by the pure adjoint computations given by Stepl-4. With
the LU decomposition of (%I — Jo) available from (3.2), Step 1 reads : UTLYv = u. We
introduce then a loop free routine tsolve for forward-backward solving this system in sparse
format avoiding indirect addressing. The computational cost of Step 1,3 can be then compared
with the corresponding part from (3.2) and (3.3) .

Step 2 requires evaluation of the product J{'v which is automatically generated using sparse
multiplications by a new routine jactrvect. This introduces some extra work (J; is evaluated at
co + aki), but its cost is relatively cheap. The efficiency of the adjoint code is then dominated
by the implementation of Step 4, given by the formula (3.7).

Using (3.9), we can rewrite (3.7) as:

(901 T i aHl(C()) aHQ(Co)
(310) (a—co> u=u+t+w-+ Hl(C()) =+ (TCO) k1 + mo (T%) k2

with H{,Hy : R — R"™, Hl(C()) = Jg(m1V+9) , HQ(C()) = ng.

In (3.10) we have then to compute the jacobian - vector products for the functions Hi, H, which
can be done by forward automatic differentiation [4, 10] of the functions genereted via routine
jactrvect. The cost is then 2-3 times the cost of evaluating Hj(cg), H2(co) and remains low due
to the sparse structure of Jy. Automatic differentiation for H; provides also the value Hy(cy),
so there is no need to compute it separately. Last but not least, these computations are inde-
pendent allowing parallel implementation.

4. Performance and validation of the adjoint model. The algorithm presented in Section
3 has the benefit that the adjoint part of the chemistry integration is generated completely
automatically, taking full advantage of the sparsity of the system. This allows the user to easily
move from one model to another and makes it very attractive compared with the hand written
codes which construction for large models can be a difficult process. Moreover since symbolic
computations are used, rounding errors are avoided and the accuracy of the results goes up to



the machine precision. In Figure 1 we present the scheme of the implementation of the adjoint
code applied to the data assimilation problem for a general chemistry-transport model.

For the numerical experiments we consider the 2"¢ order 2-stages Rosenbrock method Ros2
which is obtained from (3.2-3.4) by taking a = %, g = —%, m; = %, mo = % Choosing
v = 1+1//2 the method is L-stable'. The superior stability, positivity and conservation prop-
erties of this scheme are analized by Verver et al. [22] who reports good results in the context
of various types of operator splitting even when large fixed step sizes (10 to 20 min.) are used.
i) The box model. In order to test the performance of the implementation we consider first a box
model for the problem (1.1). The chemistry part is based on the Carbon Bond Mechanism IV
(CBM-1V, [9]) with 32 chemical species involved in 70 thermal and 11 photolytic reactions. The
data assimilation problem is set using the “twin experiments ” method, with the background
term dropped and the logarithmic form of (1.2). Taking the logarithm of the concentrations has
the advantage that the positivity constraint is eliminated and scales the system. The minimiza-
tion routine used is the Quasi-Newton limited memory L-BFGS algorithm [2, 3], anticipating
extension to large scale models. The initial concentrations follow the urban scenario as described
in [17], with an initial concentration of 70 ppb for O3. Assimilation starts at the beginning of the
second day (6:00 LT) over a period of 6 hours, with measurements provided every 15 minutes.
As the initial guess for the concentrations we choose the values at the beginning of the first day.
The one day period is introduced in order to allow the system to equilibrate. The integration is
restarted every 15 minutes with a minimum stepsize of 1 sec., simulating an operator splitting
environment. In the first experiment measurements were provided for ozone only and in the sec-
ond one for ozone and NO2. As an alternative way to compute the gradient we use the second
order central difference formula [1]. Figure 2 (left 1% case, right 2"¢ case) shows the relative and
absolute differences between the computed gradients for some of the most important species in
the model, and Figure 3 (left,right) shows the results of the assimilation. It can be seen that
introducing NO2 measurements is of benefit not only for the NO2 and NO analysis, but also for
the O3 analysis. However, since additional constraints are introduced this increases the number
of iterations in the optimization routine as we will see next.

Implementation of the adjoint code uses three forward integrations per backward integration:
the first run is used to store the states of the system at the measurement moments, the second
run to store the trajectory between measurements and information about the stepsize used, and
the third run is for the forward-backward integration. The technical report of the optimization
process is outlined in the table below. It can be seen that the average ratio between the CPU
time required to compute the gradient (and cost function value) and the CPU time of a forward
run is less than four? , which makes our implementation very efficient.

!The numerical experiments presented in this section were performed with v = 1+ 1/v/2.
2All the computations were done on a HP-UX B.10.20 A 9000/778 machine. The time to read-write data to
files is not considered



Run No. iter. | ~time/iter (sec) | ~(grad.time)/(fwd.time) | F(it.0)/F(it.end)
1.(03) 97 0.36 3.82 L.eb
2.(03, NO2) | 32 0.37 3.85 2.8¢3

i1) Application to a 1-D problem. We consider now a one dimensional test problem corre-
sponding to the advection-diffusion-reaction model:

d
dt
The wind field and the diffusion coefficient are taken constant, u = 10 km/hour (left-to-right),
K =10"3Km? /sec. The advection operator is discretized using a limited k¥ = 1/3 upwind flux
interpolation as presented in [23], and the diffusion operator using central differences formula.
Concentrations are kept constant at the left boundary (x=0) and at the right boundary we
consider % = (. For a full description of the space discretization the reader should consult
[15]. Second order Strang splitting is applied according to (2.1-2.4), with a splitting interval
tg+1 — ty = 15 min. With the spatial domain [0,500] Km, and a uniform grid Az = 5 Km, the
dimension of the corresponding (1.1) problem is 3200. A highly polluted region is considered
between 200 and 300 Km, with initial concentrations and emissions as for the urban scenario and
for the rest of the domain rural concentrations and emissions are provided [17]. Interpolation
is done beetween the center (250 Km) and the urban limits. “True” initial concentrations
(then measurements) are obtained by integrating box models over the whole grid (with no
transport) for one day. Figure 4 shows the spatial distribution of the reference concentrations
at the beginning (6:00 LT) and at the end (12:00 LT) of the assimilation interval for O3 and
NO2. The perturbations are generated in the same way, but with an uniform injection of 0.1
ppb/hour over the rural area and 0.5 ppb/hour over the urban area of NO,, which accounts
for an error in emission estimates. Assimilation starts at 6:00 LT over a six hour interval, with
measurements for ozone every 15 min. and NO2 each hour, at all grid points. The adjoint code
uses three? forward integrations per backward integration as described above with the adjoint
part of the transport- difussion equations automatically generated by the adjoint model compiler
TAMC [10, 11]. The computational scheme for one split interval is described in Figure 5. The
performance of the optimization process is given below and the assimilation results are presented
in Figure 6. We note here that the previous timing results for the adjoint code are recovered,
confirming the succes of the implementation.

Run No. iter. | ~time/iter (sec) | ~(grad.time)/(fwd.time) | F(it.0)/F(it.end)
3. (03,NO2) | 34 10.8 3.76 1.2

(4.1) ci = —V(uc;) + div(KVe¢;) + fi(t,z,c1,...,¢5) + Ei(t,z), i=1...85.

5. Conclusions and further work. The development of powerfull computing machines in the
past decade made the variational data assimilation technique for large scale models an intensive

Only 21 integrations for the transport-diffusion part are taken since there are no intermediar steps



explored area. With a dimension of the systems of order 108 any attempt to provide the gradient
of the cost function using a direct method (finite differences, solving the sensitivity systems)
is eliminated, which requires an adjoint approach. In the context of stiff chemical equations
explicit integrators may take prohibitive small stepsize (or just fail), which highly affects the
performance of the adjoint code.

While several adjoint models for explicit or semi-implicit numerical methods have been con-
structed, implementation of implicit methods remains a delicate problem. In this paper we
introduced the adjoint computations and an efficient implementation of the 2-stages Rosen-
brock methods which is suitable for automatization and parallel coding. The algorithm and
the properties we described can be easily generalized to a s—stages method and it appears of
full interest to analyse how this implementation can be extended to SDIRK and IRK methods
[12]. Further work includes testing on comprehensive models, implementation in the context
of W-transformation and different types of operator splitting as well as the possibility to use
approximate gradients.
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Figure 3: Assimilation takes place from 6 to 12 LT; left 1% case, right 27¢. Solid line with dots
=true; solid line = assimilation result; dotted line= first guess

13



120

100

80

ppb

60

40

20

0.6

0.5

0.4

ppb

0.2

0.1

O3 concentrations

200 250 300

NO2 concentrations

250
location (Km)

Solid line =

Figure 4: Spatial distribution of the reference concentrations for O3 and NO2.
initial(LT=6:00), dotted line = final (LT=12:00)

14

500



Forward Integration C(t )

ot ) T
| ‘ (ADVECT ION - DIFFUSION )* ‘

‘ ADVECT ION - DIFFUSION ‘ T
‘ ADVECT ION - DIFFUSION

T

‘ ( CHEMISTRY step H1 )* ‘

‘ CHEMISTRY step H1 ‘

‘ CHEMISTRY step H2 ‘ ‘ CHEMISTRY step H1 ‘

‘ ( CHEMISTRY step H2 )*

T

‘ CHEMISTRY step H2 ‘
A

‘ CHEMISTRY step Hm ‘

?

‘ ( CHEMISTRY step Hm )*

‘ ADVECT ION - DIFFUSION ‘ T
¢ ‘ CHEMISTRY step Hm ‘
C(tk+1) T

‘ (ADVECT ION - DIFFUSION )*

CH(t k+1)

Adjoint Integration
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integration.
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