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1. Introduction. Air quality models [4, 11] solve the convection-diffusion-reaction set of
partial differential equations which model atmospheric physical and chemical processes. Usually an
operator-split approach is taken: chemical equations and convection-diffusion equations are solved
in alternative steps. In this setting the integration of chemical kinetic equations is a demanding
computational task. The chemical integration algorithm should be stable in the presence of stiffness;
ensure a modest level of accuracy, typically 1%; preserve mass (otherwise, non-physical sources and
sinks may corrupt the quality of the solution); and keep the concentrations positive. Positivity is
needed

e since concentrations are non-negative quantities;

e for stability of the chemical system;

e an operator-split solution of convection-diffusion-reaction atmospheric equations alternates
chemical integration steps with advection steps; the results of each process need to be
positive; negative concentrations from chemical integration can hurt the positivity of the
following advection step, which will perturb the next chemical step etc. leading to poor
quality results, or even unstable solutions.

An extensively used method is fixed time-step integration plus clipping. Clipping means setting
to zero the negative concentration values that appear during numerical integration of a chemical
kinetics system. It enhances stability, but adds mass to the system, therefore corrupting mass
balance.

A general analysis of conservation laws and the numerical solutions of ordinary differential
equations is given by Shampine [13]. The author considers “perturbation methods” where the
computed solution is perturbed to satisfy exactly the desired invariants. The methods of this paper
belong to this “perturbation” category, but they are specific to systems with linear equality and
inequality invariants, e.g. chemical kinetic models.

There are numerical integration methods that automatically preserve mass and positivity, a
well-known example being backward Euler. However, as shown by Bolley and Crouzeix [3], positiv-
ity either restricts the order of the method to one, or restricts the step size to impractically small
values.

In this paper we try to alleviate the order and step size restrictions that come with positivity.
The idea is to obtain a mass-balanced solution using a standard integration method; if some com-
ponents are negative, we “project” this solution back onto the reaction simplex. This means that
we look for the mass-balanced, non-negative vector that is closest to our computed solution, and
make it the next step approximation. Lemma 4.1 shows that, in fact, this is a better approximation
of the true solution itself.

We believe the technique developed here is of interest not only for atmospheric chemistry, but
also for general kinetic mechanisms, whenever non-linearity makes negative solutions unstable. One
usually expects the step control mechanism to compensate for non-positivity and maintain stability;
this is most often the case but there is an efficiency penalty: very small time steps may be called
for. Projecting the solution back onto the reaction simplex (when needed) stabilizes the integration
process and allows larger time steps.

The paper is organized as follows. Section 2 presents the chemical kinetic problem and its
mass balance and positivity properties; the preservation of these properties by numerical schemes
is discussed in Section 3, with more details given in Appendix A. Section 4 develops the proposed
positivity-preserving algorithm. The optimization routine is briefly discussed in Section 5, and
implementation details are provided in Appendix B. A simpler technique to stabilize the reaction
simplex is discussed in Section 6. A test case from stratospheric chemistry is considered in Section
7, where different numerical results are analyzed. Finally, the findings and conclusions of the paper
are summarized in Section 8.



2. Mass action kinetics, linear invariants and positivity. Consider a chemical kinetic
system with s species yi, -,y interacting in r chemical reactions,

S S
Slijy; = > rijyi, i=1-,r.

Here /;; is the stoichiometric coefficient of the reactant y; in the chemical reaction 4. Similarly, r;
is the stoichiometric coefficient of the product y; in reaction i and on can build the matrices of
stoichiometric coefficients

(1) R = (ri)

Let w(y) € R" be the vector of reaction velocities,

ij LZ(&])zga S:R_LG%SXT'

(2) wiy) = ki H (yj)éij ;ot=1r
j=1

The time evolution of the system is governed by the “mass action kinetics” differential law

(3) y'=5-wly), ylto)=y".
If e € ker ST then STe =0, or 'S = 0, which implies that
Ty (t)=0 <<= e"y(t) = const,
that is e is a linear invariant of the system. If rank(S)=s — m, then the system admits m linearly
independent invariants, ej, -+, €,; consider the s x m matrix A whose columns form a basis for

the null space of ST, and the m dimensional vector b of “invariant values”, el y(t) = const = b; for
all ¢,

A:[61|€2""|€m] ) b:[bla"'abm]T .
Then the solution satisfies
ATy(t)=b=ATy" .

Simply stated, the existence of linear invariants ensures that mass is conserved during chemical
reactions.

Let us now separate the production reactions from the destruction ones in (3). The mass action
kinetic system (3) can be written in terms of the production terms P(y) and the destruction terms

D(y)

[Lw(y)]l___[Lw(y)]s) , Y =Pl)—D@)y .

Y1 Ys

The special form of the reaction speeds (2) ensures that D;(y) are polynomials in y. If at some
time moment ¢ = 7 the concentration of a certain species is zero, y;(7) = 0, then its derivative is
nonnegative, y(7) = P;(7) > 0, which implies that

P(y) = Ru(y), D(y) = diag(

(4) y(to) >0 = y(t)>0, forallt>tp.

In short, the concentrations cannot become negative during chemical reactions.
Linear invariants and positivity mean that the solution of (3) remains all the time within the
reaction simplex

(5) yit)eSforallt >, S= {ye R s.t. ATy =0band y; >0 for allz’} .
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3. Numerical preservation of the linear invariants and of positivity. A general prin-
ciple in scientific computing says that the numerical solution must capture (as much as possible)
the qualitative behavior of the true solution. Good numerical methods for integrating chemical
reaction models (3) should therefore

e be unconditionally stable, as the system is usually stiff. This requires implicit integration
formulas;
e preserve the linear invariants. One certainly wants to avoid artificial mass creation or
destruction during integration;
e preserve solution positivity. Negative concentrations are non-physical; in addition, for
negative concetrations the whole kinetic system may become unstable.
A simple example of negative concentrations and instability is provided by Verwer et. al. [14]. The
chemical reaction

c+c -5 products
gives the following time evolution of C

/ 9 0 if Co=0,
C=—k0", Cl=G = cW)= { (k(t —to) +1/Co)~" if Co#0.
Note that if Cy > 0 the solution is bounded (0 < C(t) < C) and decreases monotonically, but if
Coy < 0 the solution “explodes” in finite time, C(¢) = —oco as t — tg + 1/(—Cyk).

Fortunately, the most popular integration methods (Runge-Kutta, Rosenbrock and Linear Mul-
tistep) preserve exactly® all the linear invariants of the system. Moreover, the (modified) Newton
iterations used to solve the nonlinear systems - which define implicit solutions - preserve exactly all
linear invariants during each iteration. This is briefly reminded in Appendix A. Therefore the only
errors in the linear invariants are given by roundoff. With linear-preserving integration methods
the errors in the individual species concentrations are given by the truncation errors (e.g. having a
magnitude 10™4), while the accuracy of the linear invariants is only affected by the roundoff errors
(having a much smaller magnitude, e.g. 10714).

Positivity of the numerical solution is much harder to achieve. Bolley and Crouzeix [3] showed
that (in the linear case) ensuring positivity limits the order of the numerical method to one.
Hundsdorfer [9] proves that the implicit Euler method is positivity preserving. In practice, even
implicit Euler may produce negative values; the reason is that the implicit equations are solved
with a modified Newton process, which is halted after a finite number of iterations; while the exact
solution of implicit Euler equations is guaranteed to be non-negative, the succesive approximations
computed by (modified) Newton are not.

The most common method to avoid negative concentrations (and possible unstable behavior)
is clipping. If the solution vector has negative components, they are simply set to zero. The
problem with clipping is that it destroys the preservation of linear invariants; more exactly, the
linear invariants are corrupted by errors comparable in magnitude to the errors in the individual
components; instead of roundoff magnitude we have truncation error magnitude. The situation
is worsened by the fact that all clipping errors act in the same direction, namely increase mass;
therefore they accumulate over time and may lead to significant global errors, especially if the time
interval of interest is long. The net result is adding non-physical sources of material.

! If the computations are performed in infinite arithmetic precision.



4. Solution projection method. Suppose the system (3) is solved with a linear-preserving
numerical method ®. Let t” denote the discrete time value at n'" step, y™ the computed solution
and A" = t"t1 — " the next step size. The numerical solution is represented as

Yyt =) (") -
As noted before, we consider only methods which preserve linear invariants, i.e.
ATyn—H _ ATyn —b.

Positivity is not preserved, however, and at the new moment t"*! some numerical concentrations
may become negative Positivity is not preserved, however, and at the new moment t"*! several
numerical concentrations may become negative

yitt <0 e yitt <o

We want to perform “clipping” without modifying the linear invariants. The idea is to project
the numerical solution y™*' back onto the simplex {y; > 0 for all i} N {ATy = b}. The projected
value should approximate the true solution y(¢"*1); therefore it has to be chosen as close as possible
to the calculated solution y™*1.

We reformulate the clipping problem as a linearly constrained, quadratic optimization problem.
Given the “computed value” y™*! find the “projected value” z"*+! which

1 2
(6) min 5 Hz""’l — y”+1HG subject to ATt =b, 2"t >0.

The norm used here is

lylle = \/yTGy ,

with G a positive definite matrix to be specified later.

Adjustable step ODE solvers compute the solution y"T! together with an estimate of the
(component-wise) truncation error ¢"t1. For example, a Runge-Kutta formula is paired with an
“embedded formula” that gives a second, lower order approximation to the solution §"*'; the
truncation error estimate is then e"*! = "+ — "+, We will denote the error estimator by
en—|—1 — CI)E (f; yn . ynfk,tn, hn . h}nsz—|—1> )

The step size control is based on user-prescribed relative (rtol) and absolute (atol) error toler-
ances; the following measure of the truncation error is computed

n+1 2
B = li = :
s atol + rtol [y

=1

The current value y"*! is accepted if E"T! < 1 and rejected otherwise. It can be easily seen that

En+1 — Hen—l—lH

. 1
) where G(y) = diag) <;<, L ]

(atol + rtol |y;])*

Since step control mechanism tries to keep the truncation-error norm ||€n+1||G(yn+l) small, it is
natural to formulate the projection problem (6) in terms of the same G-norm; that is, we try to
find z in the reaction simplex (5) that the projection-error norm ||z"+!

5
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The computed solution y™*! approximates the true solution y(¢"!); apparently, projection
introduces an extra error, such that ||zt —y(t"t)|l¢ < [ly" Tt =y ) |lg + ||2" T =y TH|q. A
closer look reveals that

LEMMA 4.1. The projected vector is a better (G-norm) approzimation to the true solution then
1s the computed vector,

n+l n+1 < H n+l n+1 H
[t =yt < [yt — v,

n+1

Proof. If y"*!1 > 0 then z"*! = y"™! and we have norm equality. If y**' < 0 for some i

consider the vectors Y = G2yt 7 = G1/2 ;71 W = G1/2y (¢*+1). We have that
ATG™'2Y =b and W eSS, where &= {X c ATGT2X =, X > o} .
The problem (6) is equivalent to
.1 2 : =
min §||Z —Y|5 subjectto Ze€S.

Since S is a convex set, Y ¢ S, and Z is the point in S that is closest to Y, the hyperplane
perpendicular to the direction Y Z and which passes through Z separates S and Y. For any W € S
the angle (Y ZW) is larger than 90°, therefore YW is the largest edge in the triangle YZW. In
particular,

Y =Wl>Z-Wl: = [y"* =yt e > ly"™ -yl

Schematically, one step of the method reads

yn—|—1 — yn—|—1 — (I)i (yn) :
G=GE);
v { 7" < 0 for some i } THEN
min ||z — Y| subject to ATl =10, > 0;

1 _ 1.
y =
ELSE
‘ yn+1 — gn—f—l .
7
END IF

We will call this method the positive-projection method, since at each step the numerical solution
is “projected” back onto the reaction simplex (5). A direct consequence of Lemma 4.1 is that the
consistency order of the projection method (7) is the order of the underlying time discretization
®, since projection step does not increase the truncation error. The same convergence analysis
apply. In this particular sense the positive projection method (7) overcomes the order one barrier
of Bolley and Crouzeix [3].

The idea can be combined with a variable time step strategy. If e"*! is the truncation error
estimate and E"t! = ||e"*!||g, the step is accepted for E"T! < 1 and rejected otherwise. We
check positivity only for accepted solutions, and if negative we project them. Since projection
does not increase the error norm (Lemma 4.1) the optimal value can be accepted as the new
approximation. If the optimum in (6) is not attained, but rather we are contempt with a value
2"t € S that is “reasonably close” to 7" t!, then a conservative approach makes sense; estimate
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Ftl = ||z —yn*l| 5 and check that E™T! + F™F! < 1; if not, reject the step and continue with
a reduced step size. This ensures that ||2"T! — y(¢t"*1)||g < 1. Also, if the optimization algorithm
does not converge (which is possible in the presence of numerical errors, or if 7" is “very wrong”,
for example due to an exagerate step size) then reject the step and continue with a reduced step

size.

5. The optimization algorithm. It only remains to find a suitable way of computing z"*1,

i.e. a way to solve the quadratic minimization problem (6). Note that the reaction simplex (5)
is never empty - it contains at least the intial conditions. Therefore, the theoretical minimization
problem (6) is always feasible - we compute the minimal distance between a point and a non-empty
convex set, plus the closest point in the convex set. In principle, numerical errors may render the
problem infeasible; in this case, the whole step is rejected, and the step size reduced.

The optimization algorithm needs to have the following properties:

e Find a solution or indicate that the problem is infeasible in a finite number of steps;

e Since the number of equality constraints is much smaller than the dimension of the system,
m < s, we want to work with m-dimensional problems;

e A good starting point for the optimization routine is offered by 7"t!; we have ATg"1 = b
and the negative part (7"*1)” is small - of the order of truncation error. Therefore, we
want to be able to initialize the optimization algorithm at an infeasible point.

The primal-dual algorithm of Goldfarb and Idnani [6] fullfills all the above criteria. This algorithm
has been adapted to our particular problem (6), which contains equality constraints, and for which
the inequality constraints have the simplest form possible.

Let £ = {1,---,s + m} be the set of constraints of problem (6) - {1,---,m} are equality and
{m +1,---,m + s} are inequality constraints. For a vector z with ATz = b the set of active
constraints is A = {1,---,m} U {m +i| z; = 0}. The basic approach of the algorithm is [6]

Step 0. "Tl=gtl  A={1,---,m}
Step 1. Repeat until all constraints are satisfied
(a) Choose a violated constraint p € K — A (zgj}; < O)
(8) (b) If (6) with constraints AU {p} infeasible STOP;
(¢) Find unnecessary constraints r € A and set A <~ AU {p} — {r};
(d) Solve (6) with equality constraints A only to get the new 2"*1;
Step 2. STOP , z"t! is the optimal solution.

A detailed presentation is given in Appendix B.

6. A simpler projection method. We try to find a simpler alternative to the optimization
routine. Given y with y;1,--+,v;p < 0 denote

B=[Alei]--|ep] ,

where e; is the 4 unit vector. B is a collection of active constraint normals, in the sense that we
look for z to satisfy

AT b
T
e; 0
BTZ — ?1 z =
el 0



The solution z is the orthogonal projection of y onto the manifold { Bz = [b,0]7 }. The proposed
method is then
(9) yn-f—l = @ﬁ(yn)v B:[A|ei1|"'|eip]f0r @?1+1<0,---,@§;+1<0,
AT (7 =)
-1 gt
yn—l—l — yn—|—1 _ B (BTB) 'L‘

—n+1
yip

Since step control mechanism tries to keep the truncation-error norm ||e™*? lg(yn+1y small, it is
natural to use a G-orthogonal projection

AT (gn—l—l _ yO)

-1 ??H — €1
(10) y =gt _ g 'B (BT a1 B) o —0.
y;'hg—l — €ip

The numbers ¢; are small and guarantee that y?lﬂ...yzuﬂ do not become negative due to roundoff

errors. In fact, it is easy to see that the solution satisfies
T ntl T,0 1 1
Ayt = AT it =y, oo yzj =€p -
If ®/ preserves the linear invariants (as it should) we can replace AT (771 — %) =0 in (10). The
implementation is done in a numerically-stable fashion using a reduced QR decomposition:

—1
G 2B =QR= QR , (BT a1 B) = R{'R;T.

The method does not guarantee positivity, since the projection step may render other com-
ponents negative (i.e. y;-H'l < 0 for j # il...ip). To guarantee positivity we can extend B by
appending the column e;, B <+ [Ble;], and repeat the projection step 10, etc. This is just the
Goldfarb and Idnani algorithm, minus the relaxation of unneeded active constraints.

However, even the non-iterative version can have a beneficial effect on maintaining positivity.
We justify this informally by noting the relationship with the invariant stabilization method of
Ascher et. al. [1]. The kinetic system together with the invariants in explicit form is

AT _ .0
V=10 v =4, hy) = [ wov) ] -0,
BT is a reduced form of the Jacobian matrix H = 6h/dy, obtained by removing the rows and
columns which correspond to non-negative components y; > 0. In the spirit of [1] the method (9)
can be viewed as a discretization of the “stabilized” system

y' = fly)—H"(HH") "h(y)

(with reduced h, H). The correction term is zero if the solution lies within the simplex; if the solu-
tion is outside the reaction simplex the correction terms is such that it “pulls back” the trajectory
toward the symplex; for example, if some component becomes negative, the correction term will
tend to increase its concentration. Therefore, the simplex becames “attractive”; the solution cannot
drift away so occasional negative concentrations do not lead to instability. For these reasons, we
will reffer to the above method as the stabilization method.
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7. Numerical Results. Consider the basic stratospheric reaction mechanism (adapted from
NASA HSRP/AESA [10])

rl) O, + hv % 20 (k1 = 2.643 x 10710 . 53)
r2) 0 + 0, 2 04 (ks = 8.018 x 10717
r3) O3 + hv % 0+ 0y (ks3=6.120x10"%.0)
rd) O + 05 4% 20, (kg = 1.576 x 10715)
1) r5) O3 + hv % 0P + 0, (ks=1.070x 107942
r6) O'P + M =% O + M (k¢=7.110x 107"
r7) 0 4+ 05 4 20, (k7 = 1.200 x 10~10)
r8) NO + O3 2% NOy + 0, (ks=6.062x 1071)
r9) NO, + O % NO + 0, (ke=1.069x10"1)
r10) NOy + hv £% NO + O (kp=1.289x10"2.0)

Here o(t) is the normalized sunlight intensity, equal to 1 at noon at equal to 0 at nighttime.
It is easy to see that along any trajectory of the system (11) the number of oxygen and the
number of nitrogen atoms are constant,

[OlD] + [O] + 3[03] + 2[O2] + [NO] 4+ 2[NO3] = const , [NO]+ [NO2] = const ,
therefore if we denote the concentration vector
1D T
y=[[0'], [0], 03], [05] ,[NO],[NOs] |,

the linear equality constraints have the matrix A below and a right hand side b given by the initial
conditions

11321 2
ATZ[O 0001 1]= Aly(t) = ATy(to) =b..

The simulation starts at noon and continues for 72 hours. The initial conditions are give in Table
1. Figure 1 shows the evolution of concentrations in time; one notices three distinct diurnal cycles.

We implemented the numerical examples in MATLAB. Throughout the tests the minimal
values in the optimization routine were set to ¢; = 1 molec/cm® (which is, physically, a zero
concentration, but numerically prevents the optimal solution to become negative due to roundoft).
Reference solutions were obtained with the MATLAB integration routine ODE15S (variable order
numerical differentiation formula); the control parameters were rtol = 10~¢ and atol = 1072, with
analytic Jacobian.

The integration is performed first with ROS-2 (19), fixed step h = 30min. Verwer et. al.
[15, 2] advocated the favorable positivity properties of this method. The concentrations evolution
is shown in Figure 1. ROS-2 seldom produces negative concentrations. Therefore, the optimization
routine is called only a few times and the overhead is small. Note that, although O'? is the only
negative concentration produced, the optimization routine also adjusts the values of NO and O
(which are positive but smaller than ¢; = 1 molec/cm?).

The integration is also performed with the BDF-2 method (15) started with a backward Euler
first step. The stepsize of the integration is fixed, h = 30 min. If the concentration of species ¢ is
small and drops sharply we may have that Y;” < 0, and also f; < 0; Figure 2 shows that this is
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precisely what happens with the numerical concentrations of O, O and NO, which take negative
values right after strong decreases.

For this example the optimal projection positive version is almost 50% more costly than the
original integration, since the optimization routine is caled many times. The positive trajectory
is not distinguishible from the uncorrected one; both reproduce very well the reference trajectory.
The invariants relative errors (aly—b;)/b; have the same order of magnitude as the double precision
roundoff errors.

In Figure 2 we see that the O'” concentration falls frequently below zero and is “projected”
back to 1 molec/cm?; small positive concentrations, of the order 10~!5 molec/cm? (which are not
corrected) alternate with small negative concentrations (which are corrected to 1 molec/cm?); this
gives the pattern in the figure. To eliminate this curious behaviour we could correct all the values
that fall below 1 molec/cm?, but this will require more calls to the optimization routine, and an
increased overhead.

Next, we integrate the system with RODAS-3 (18) with a fixed step h = 30 min. We do not
give the actual solution plots, but will compare the results with other methods later on.

The minimal concentrations throughout the standard trajectories are given in Table II. Both
optimally projected and the stabilization methods produce positive concentrations only. Note that
for ROS-2 only O'P becomes negative its minimal value —5F — 315 suggests that this is the result
of roundoff rather then algorithmic error. This conclusion is further strengthen by the results
obtained with the equivalent formulation (20), which does not produce negative values at all (the
minimal concentration of O'P along the trajectory is +5.8E — 36). In conclusion, ROS-2 favours
positivity (more details are presented in Appendix A).

The number of floating point operations needed for the standard and the positive versions of
the codes to complete the integration are given in Table III. Stabilization is cheaper than optimal
projection and produces similar results. Both positivity-preserving techniques have to be paired
with a numerical scheme that favors positivity in order to reduce the overhead; a suitable such
integration method is ROS-2.

Note that in the reduced stratospheric system (11) the destruction reactions of the “possibly-
negative” species O, O'P” and NO involve just 1 molecule of them; for example, the destruction
term for oxygen is —Djq [O], where Do) does not depend on any “possibly-negative” concentration

D[O] = ko[O2] + k4][O3] + kg[NOs] ;

this means Djo; > 0 throughout the simuation, and for [O] < 0 the destruction term —Dj;[0] > 0
(both production and destruction reactions now produce O). Since y; < 0 = f; > 0 when y;
becomes negative its derivative becomes positive, and the system pulls itself back to the quadrant
{y > 0}; this auto-corrects the trajectory in case of negative values and explains why the standard
and projected trajectories are undistinguishible.

Not all chemical systems have the auto-correction property; in fact, the projection technique
is useful for systems which do not autocorrect. Consider the kinetic scheme (11) and append the
(hypothetical) reaction

(12) rll) NO + 0 % No, (ki = 1.0E — 8)

In this case there is no auto-correction for negative values; reaction (12) will continue to destroy
NO and O even when their concentrations become negative.

The results of integrating the extended system (11)—(12) with the fixed-step ROS-2, h = 30
min, are shown in Figure 3. The standard solution “explodes”. This behavior can be explained as

10



follows: at some moment the concentrations NO, O become negative reaction (12) continues at an
accelerated pace, which will trigger the accumulation of NO,, etc.

In contrast, the positive optimally projected solution is bounded, and is very close to the
reference solution. This is shown in Figure 4. Stabilization gives a similar solution to optimal
projection. Some errors in NO and NOs are present at the night-day transitions, but they do not
accumulate in time. In addition the invariant errors are also very small.

Additional experiments (not shown here) revealed that BDF-2 with A = 30 min also has
unstable behavior. For h = 5 min both BDF-2 and ROS-2 produce stable trajectories. RODAS-3
produces stable, but very distorted trajectories for A = 15 min, and we have to go down to h =5
min to obtain an accurate picture. Positive optimally projected RODAS-3 produces reasonably
accurate trajectories for h = 15 min.

An accurate solution is also produced by the variable-step ROS-2 with the modest error toler-
ances rtol = 0.01, atol = 0.01 molec/cm?; however, the chosen step-sizes are quite small (average
h = 3.4 min). Table IV shows the number of foating point operations needed by each method; in
particular, the variable step version is 12 times more expensive then the fixed step (h = 30 min)
positive version. We tested the positively projected variable step ROS-2 with two different error
controller techniques: one, the solution is projected onto the reaction simplex only after the step
was accepted, and two, the computed solution is first projected and then the error estimation is
computed and the decision to accept/reject is made. For our example the first variant is slightly
more efficient. The variable-step ROS-2 and its positive version give almost identical results for
rtol = 0.01; for the larger rtol = 0.1 the positive version chooses an average time step of 3.8 min,
vs. 3.45 min for the standard version. In many atmospheric simulations it is customary to impose
a minimal step size, for example h > hpin = 1 min. Experiments not reported here showed that if
a minimal step size is used positive projection can improve the quality of the solution.

At this point it is natural to ask whether simple clipping can stabilize the solution at a lower
cost than the full projection. Figure (4) shows the exact evolution of of species for the extended
system (11)—(12), the evolution with clipping, optimal projection and stabilization, for a step size
h = 30 min. Indeed, clipping stabilizes the solution, but it also introduces large errors; these errors
accumulate in time until all meaningfull information is lost.

Lumping does not improve the stability problem either. We integrated the lower-dimensional
equivalent system obtained by substituting [O'P] = b; — [O] — 3[03] — 2[02] — [NO] — 2[N O3] and
[NO|] = by — [NO3]. There still are negative concentrations produced, and the behavior is similar
to the one of the non-lumped system.

8. Conclusions. We have presented a technique that ensures mass conservation and positivity
for the numerical solutions of mass action kinetics initial value problems. The first numerical
approximation is computed with one step of a linear-invariant-preserving numerical method. If
there are negative components we find the nearest vector in the reaction simplex (5) using a primal-
dual optimization routine. The optimal vector better approximates the true solution (Lemma 4.1)
and provides the next-step numerical solution.

Standard numerical methods that guarantee positivity for any stepsize, like backward Fuler,
are first order at most; higher order methods can be positive only for very small step sizes [3]. The
positive optimal projection method overcomes this barrier; its order of consistency is given by the
order of the underlying time stepping scheme, while the solutions are guaranteed to be non-negative.
In practice the technique alleviates the step size restrictions when higher order integration methods
are used, and renders a more efficient integration process.

A less expensive alternative is the stabilization method, which performs only one projection
at the end of the step if negative component concentrations appear. Although positivity is not
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guaranteed, the overall behavior is very good and the solutions comparable to the ones obtained
by optimal projection.

Both technique have to be paired with a positivity-favourable numerical integration method, for
example ROS-2 [15, 2]. Although such methods do not guarantee positivity, they seldom produce
non-positive results; this minimizes the overhead incurred by the optimization routine.

Variable step can ensure stability even when the solution becomes non-positive; sometimes very
small steps are called for. At least for the example considered, projection does not seem to improve
significantly the performance of the standard variable-step algorithm; however, improvements are
visible when a minimal step is imposed.

In air quality modeling to use fixed step integration and clipping is a popular approach; clipping,
however, constitutes a non-physical mass source which may adversely impact the quality of the
solution. Fixed step plus simplex projection ensures both positivity and mass balance. In the
example presented large values of the step size made the original solution unstable; the clipped
solution was corrupted by large errors, while the projected solution remained very similar to the
reference one. When the accuracy requirements are modest, projection may be a computationally
cheaper alternative to variable step size. In addition, in a parallel implementation of an air quality
model fixed step sizes lead to a better load balance and increased overall efficincy.

Some kinetic systems have the property of self-correcting negative concentrations; for them the
projection technique does not seem necessary; for kinetic systems which become unstable if some
concentrations are negative the technique is useful and improves the standard solution.

An apparent disadvantage of the method is that one has to compute the linear invariants
explicitly. The linear invariants, however, can be automatically generated by specialized software
that translates kinetic reactions into differential equations (e.g. KPP [5]).

Appendix A. Numerical integration methods. Consider the differential system (3) writ-
ten in the general form

(13) y(t)=fty) , ylto)=1y".
The system has the linear invariants
ATy(t) = Aly® =b=const , ATf(t,y)=0, ATJ=0 (J=0af/dy) .

In what follows we will denote by 3™ the numerical solution at n-th step (and time ¢"), and
h = t"t1 — " is the current time step. A linear k-step method [7, 8] is given by the general formula

k—2 k—2
Y'Y eyt =h Yy Bif (t”ﬂ,y””) :
i=0 i=—1
Multiplying the relation by A7 gives

k—2
ATyn—I—l 4 Z Q; AT yn—i =0.
=0

If all previous approximations satisfy the invariant THEN the new solution also does,
ATyt =, fori=0,---,k—2 =— ATy"tl—p,
since consistency requires Ef:_OQ a; = —1.
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The simplest example is the (first order) backward Euler formula,
(14) y =yt f (L)
To solve this nonlinear equation one uses modified Newton iterations,
(I hT( ) 6 = f () o = - o
Left-multiplying by AT shows preservation of linear invariants

ATJ(tn,yn) =0 , AT(5n+1 =0 ) AT n+l _ ATyz)Ll—(Il—l .

yl’leW
Another example is the second order backward differentiation formula (BDF-2)

2 4 1
n+l _ yn = n+l  n+l n_ ~,n__ —,n-1
(15) yrr =Y +3hf(t Ve N AR UANE
For variable timesteps the coefficients change. The very first step requires both ¢° and y'; the
former is given, while the latter is obtained with one backward Euler step.
An s-stage Runge-Kutta method [7] defines the solution by the formula the solution is given
by the formulas

=1 7=1

(16) yn+1 =y"+ Z bik;, ki=hf (tn +cih,y" + Z aijkj>

where s and the formula coefficients b;,c;, a;; are chosen for a desired order of consistency and
stability for stiff problems. Multypling the definition by A7 gives

AT kz =0 , ATyn+1 — ATyn ,

which shows that linear invariants are preserved during each step.
An s-stage Rosenbrock method [8] is usually defined for autonomous systems; the solution is
given by the formulas

s i—1 [
(17) yn+1 — yn + szku k; = hf <yn + Zaijkj) + hJZ’ij‘j,
=1 7=1 7=1

where s and the formula coefficients b;, a;; and «;; give the order of consistency and the stability
properties. Again, multypling the definition by A” shows the preservation of the linear invariants,

AT kz =0 , ATyn—I—l — ATyn .

An example Rosenbrock method is Rodas-3 [12] which, in autonomous form, reads

(18) y”+1 = y" =+ 2k‘1 + k3 + k4 ,
1
il — n
(GFI-7) k= s
1 4
— I —J) ky = n —k
(G7-7) ke = JOM+7h
(if_,])k W 2k) bk — sk
’Yh 3 = Yy 1 h 1 h 2
1 1 1 8
il — ny ok — Tk — =k — —
(Wh J)k4 R T LT
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where v = 1/2.
Another example of Rosenbrock scheme is ROS-2 [15, 2]

3 1

(19) y"t o= Y+ gRit ke,

1 1 1 1 2

(G-I b = 210 (S1-9) k=2 [f0r+h) -2k .

vh g vh v h

with v = 14+ 1/v/2. An equivalent formulation for ROS-2 can be given,
3
(20) Yt o=yt % k1 + % ko,
(iI—J)k - FY (LI—J)k W k) - ok
~h 1 = vy, ~h 2=J 1 Bl

In [15, 2] it was noted that ROS-2 have favorable positivity properties, and the method is stable for
nonlinear problems even with large fixed step sizes. It was also noted that ROS-2 provides positive
solutions for the scalar problems C' = —kC and C' = —k C?, C(tg) > 0. A possible explanation for
the good observed behavior is that the transfer function of this method and its first two derivatives
are all nonnegative for any real, negative argument (i.e. R(z), R'(z),R"(z) > 0 for any z < 0). In
the view of the theory developed in [3] this might reduce the the negative values and have a good
influence on the positivity of solutions.

Appendix B. The optimization algorithm. Consider the optimization problem (6), refor-

mulated as
(21) min %ZTGZ —yT'Gz subjectto ATz=0b, 2>¢€.
The problem has m equality constraints (alz = b;, i = 1---m, where a; is the i*" column of A)
and s inequality constraints (z; > €; for i = 1---s). The entries ¢; > 0 are small positive numbers;
their role is to keep z; > 0 even when the computation is corrupted by roundoff. We assume that

o AT has full row rank, and that

o ATy =1 (y satisfies the equality constraints).

The original algorithm of Goldfarb and Idnani is presented in [6]. We modified this algorithm

in order to

e accomodate the equality constraints A’y = b at all times, given that the starting point

satisfies them;

o take advantage of the diagonal form of G;

o take advantage of the special form of inequality constraints, z; > €;;
The algorithm of Goldfarb and Idnani preserves at all times dual feasibility. The algorithm is
started from the unconstrained optimum z = gy, which violates primal inequality constraints. Let
K = {1,---,5s + m} be the set of constraint indices. For a vector z with ATz = b the set of
active constraints is A = {1,---,m}U{m +i|z; = €;}; we will denote by ¢ the number of active
constraints. Let N ne the matrix of normal vectors of active constraints; for example, if z; = e;
and z; = e; (¢ = m + 2) this matrix is

N =[a1]--- |am|eilej] € R .

Here and below e; is the unit vector with entry i equal to 1 and all other entries equal to 0. The
active constraints are expressed as
b
NT, = [ ] tm

0| 12
14



Consider N*, the generalized inverse of N in the space of scaled variables Z = G*/2z, and the
reduced inverse Hessian operator H

-1 -1
N* = (NTG—lN) NTG™', H=G'-G'N (NTG—lN) NTG™L.
At each step the algorithm looks for a violated inequality constraint z, < €,. A step of the form
(22) 2T =2+ tHe,

will preserve all the active constraints, N'H =0 = N7TzT = N7z, The step (22) can move the
current vector toward satisfying the constraint. We have
T T T
z;L = epz+ =e,ztte,Hey, =2, +tH,,

and if H,, > 0 we can choose ¢ such that z;r = €p. This becomes a new active constraint and is
added to the set, N < [N]ep].

If z is the optimum solution with respect to the given set of active constraints, the Lagrange
multipliers satisfy

Aly) =N"G(z—vy) .

The multipliers corresponding to inequality constraints have to be non-negative, if not, the active
constraint corresponding to a negative multiplier is removed (this means that z = € is not optimal,
and we remove the constraint, allowing z > €g).

The implementation form differs somewhat from this presentation, for efficiency and stability
reasons. Define the matrices R € R?7*? and J € R*** via the following QR decomposition:

L I=GTPQ =l )
q s—q

(23) G‘1/2N=QR=[&I&]l§]

q 5—q N~ —
q

Step 0. Initializations.
z 4 y;
A—{1,---,m}; ¢ < m;
A=[0---0] (Lagrange multipliers);
N + A;
Compute R, J by (23).
Step 1. Choose a violated constraint (if any). Is z, < €, for some p ?
IF {no} THEN
z is the optimal solution. STOP
ELSE {if yes}
| AT« [X,0] (consider the violated constraint m + p)
END IF
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Step 3.

()

Determine primal and dual step directions
gprimal — 7(1 .5 g4+1:8)-J(p,g+1:5)T
R(1:q,1:q) 6%l = J(p,1:¢)7 (triangular system)

Max dual step length (which maintains dual feasibility)
17 { 6498l < 0 or ¢ =m } THEN
‘ 7_dual = 0
ELSE

dual _ .3 + /sdual | _ \+ /sdual
‘ T = ming g sl {)\j /65 } =\, /65,

Primal step length (which makes z, = ¢,)
1F { gPrimal = 0 } THEN

‘ 7_primal = 00

ELSE

‘ 7_primal — (Ep _ zp)/(sgrimal
END IF

Step length
t = min (,rprirnal7 7_dual)

Check Infeasibility
If { (rPimal = o0) and (799! = 00) } THEN
‘ The problem is infeasible. STOP.
END IF

Primal Infeasible, step in dual space only
17 { 7Primal — oo (Primal Infeasible) } THEN
AT = At 4 t[—gdual 1)
Drop k — m* inequality constraint:
A A\{k}; g q -1
Update R, J for newly dropped constraint
Go to Step 2(a).
END IF

Step in both primal and dual space
z ¢ z + t oprimal
AT ATt [—gdual q)
17 { t = 7Primal (Fyll Step) } THEN
A At
Add p** inequality constraint:
A—AUu{m+p}, g+ q+1;
Update R, J for newly added constraint;
Go to Step 1.
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ELSE 1F { t = 7993 (Partial Step) } THEN
Drop k — m' inequality constraint:
A+ A\{k} g q—1
Update R, J for newly dropped constraint;
Go to Step 2(a).
END IF
When a constraint is added, the matrices R and J are modified to accomodate it; for clarity,
in what follows the updated versions will be marked by the superscript (4+). Adding the active
constraint {z, = e, } leads to the following changes.

1= (J(p,=>>T=[j;] )

}s—q

U = Householder reflector s.t. Ud= | o | }1

RT « lR dy ] e Rla+1x(g+1)

0 o
J+ — J1 | QU —[J1+| J2 ]
q+1 s—q— 1

When a constant is dropped, the matrices R and J are updated; for clarity, we marked the
updated versions by the superscript (—) . Dropping the active constraint {z; = e,} means deleting
the k = m + ** constraint.

[ R r} s ~ [R s Delete the kb
R = 0 r T ] = k= [ 0 T column of R
ur = }(2)2 ] (T Hessenberg, compute easily its QR decomposition)

R~ « R1 ]g ]e%(q 1)x(g—1)

J = J1\J2 —[J1|J1 | J2
Z 1 q— Z—l—l s—q
Jm e [qulvTu;]:[Jﬂ Jy ]
~— ~—— ~— ~~
-1 g—t+1 5749 g1 s—q+1

To compute quantities of the form JoUT, J® UT note that U is a composition of Householder
reflectors, U = U, - - - Uy; they are applied in succession to the rows of Jo, LU = (Uy---U,JI)T.

Acknowledgements. I thank Mihai Anitescu for a fruitful discussion regarding quadratic
optimization algorithms and the norm approximation property of the solution (Lemma 4.1).
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Figure captions
Fi1g. 2. Zoom in on concentration evolution with BDF-2, fizred h = 15min. Upper figure shows the
original solution, and lower figure shows the positive optimally projected solution.

Fia. 8. Concentration evolution for the extended system (11)-(12). Integration with ROS-2, fixed

stepsize h = 15 min, standard vs. positive methods. Note the unstable behavior of the standard
solution.

19



o'? x 10° o x 10" O3
150 10 8
B 8 75
=
S 100 7
3 6
o
2 6.5
: 4
£ 50 6
(@]
2 5.5
0 0 5
12 48 84 12 48 84 12 48 84
NO
x 10° NO x 10° 2
10 12
8 10 — Standard
& -+ Projection
5 8 - Stabilization
S 6
o
o
2 6
. 4
g 4
O
2 2
0 0
12 48 84 12 48 84
Time [hours] Time [hours]

FiG. 1. Concentration evolution for the system (11). Integration with ROS-2, fized stepsize h = 30 min, standard
method vs. optimal projection and stabilization methods. All solutions are similar.
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F1G. 2. Zoom in on concentration evolution with BDF-2, fized h = 30min. Upper figure shows the original

solution, and lower figure shows the positive optimally projected solution.
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OlD

O

O3

@)

NO

NO,

9.906E4-01

6.624E4-08

5.326E4+11

1.697E+16

8.725E408

2.240E+408

TABLE 1
Initial concentrations for the simulation (molec/cm?).
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Integrator | Min [O'P] Min [O] Min [NO]
BDF-2 —70E -8 —-3.3 —1.7E+7
RODAS-3 | —-13E-5 —17.8 —4.6E +6
ROS-2 —5.5FE — 315 | +2.9E — 112 | +4.2FE — 21
TaBLE 11

Minimal concentrations (molec/cm®) for the stratospheric test problem with various integration methods. The
step size is fized h = 30 min.
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Integrator | Standard | Optimal Projection | Overhead | Stabilization | Overhead
BDF-2 | 276 Kflops 407 Kflops 47% 352 Kflops 27%
RODAS-3 | 326 Kflops 495 Kflops 52% 420 Kflops 29%
ROS-2 | 241 Kflops 257 Kflops 6.7% 255 Kflops 5.7%
TABLE 111

The number of flops for integrating the small stratospheric test problem with various algorithms using both the
standard and the positive versions. The step size is fized h = 15 min.
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Integrator | Clipping | Optimal Projection | Stabilization | Variable step

ROS-2 272 Kflops 303 Kflops 290 Kflops | 3,798 Kflops
TABLE IV

The number of flops for integrating the extended stratospheric test problem with ROS-2 (h = 30 min.) for
clipping, optimal projection, stabilization and variable step size (rtol = 0.01).
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