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Abstract

This paper presents a method supported by a software framework for the model checking of Unified
Parallel C (UPC) programs. The proposed framework includes a front-end compiler that generates finite
models of UPC programs in the modeling language of the SPIN model checker. The model generation
is based on a set of sound abstraction rules that transform the UPC synchronization primitives to
semantically-equivalent code snippets in SPIN’s modeling language. The back-end includes SPIN that
verifies the generated model. If the model checking succeeds, then the UPC program is correct with
respect to properties of interest such as data race-freedom and/or deadlock-freedom. Otherwise, the
back-end provides feedback as sequences of UPC instructions that lead to a data race or a deadlock

from initial states, called counterexamples. Using the UPC-SPIN framework, we have detected design
flaws in several real-world UPC applications, including a program simulating heat flow in metal rods,
parallel bubble sort, parallel data collection, and an integer permutation program. More importantly,
for the first time (to the best of our knowledge), we have mechanically verified data race-freedom and
deadlock-freedom in a UPC implementation of the Conjugate Gradient (CG) kernel of the NAS Parallel
Benchmarks (NPB). We believe that UPC-SPIN provides a valuable tool for developers towards increasing
their confidence in the computational results generated by UPC applications.

∗This work was sponsored by the NSF grant CCF-0950678.
†This work was sponsored by the NSF grant CCF-0950678.
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1 Introduction

The dependability of High Performance Computing (HPC) software is of paramount importance as re-
searchers and engineers use HPC in critical domains of application (e.g., weather simulations, bio-
electromagnetic modeling of human body, etc.) where design flaws may mislead scientists’ observations.
As such, we need to increase the confidence of developers in the accuracy of computational results. One way
to achieve this goal is to devise techniques and tools that facilitate the detection and correction of concur-
rency failures1 such as data races, deadlocks and livelocks. Due to the inherent non-determinism of HPC
applications, software testing methods often fail to uncover concurrency failures as it is practically expensive
(if not impossible) to check all possible interleavings of threads of execution. An alternative method is model
checking [2–4] where we generate finite models of programs that represent a specific behavioral aspect (e.g.,
inter-thread synchronization functionalities), and exhaustively verify all interleavings of the finite model with
respect to a property of interest (e.g., data race/deadlock-freedom). If the model is correct, then the program
executions are also correct. Otherwise, the failure of the model may be a spurious error. In such cases, the
model can be further refined and model checked again (see Figure 1). This paper presents a novel method
(see Figure 1) and a framework (see Figure 2) for the model checking of the Partitioned Global Address
Space (PGAS) applications developed in Unified Parallel C (UPC).

While many HPC applications are developed using the Message Passing Interface (MPI) [5], there are
important science and engineering problems that can be solved more efficiently in a shared memory model in
part because the pattern of data access by independent threads of execution is irregular (e.g., the weighted
matching problem [6–8]). As such, while there are tools for the model checking of MPI applications [9–13], we
would like to enable the model checking of PGAS applications. The PGAS memory model aims to simplify
programming and to increase applications’ performance by exploiting data locality in a shared address space.

This paper presents a method (see Figure 1) supported by a framework, called UPC-SPIN (see Figure 2),
for the model checking of UPC applications using the SPIN model checker [3], thereby facilitating/automating
the debugging of concurrency failures. UPC is a variant of the C programming language that supports the
Single Program Multiple Data (SPMD) computation model with the PGAS memory model. UPC has been
publicly available for many years and so many HPC users have experience with it. For example, Berkeley’s
UPC implementation runs on the widest variety of platforms of any PGAS language and so the results
of the proposed approach will have the greatest possible audience. The proposed method (see Figure 1)
requires programmers to manually specify abstraction rules as a Look-Up Table. Such abstraction rules are
property-dependent in that for the same program and different properties, we may need to specify different
abstraction rules. The abstraction rules specify how relevant UPC constructs are captured in the modeling
language of SPIN. After creating a LUT, UPC-SPIN automatically extracts finite models from the source
code and model checks the models with respect to properties of interest. The abstraction LUTs should be
kept synchronized with any changes made in the source code. Our experience shows that after creating the
first version of an LUT, keeping it synchronized with the source code has a very low overhead. Overall, the
proposed method significantly facilitates the debugging of UPC programs as UPC-SPIN has revealed errors
in programs believed to be correct (see Section 4 and [14]).

The proposed framework includes two components (see Figure 2): a front-end compiler, and a back-end
model checker. The front-end, called UPC Model Extractor (UPC-ModEx), extends the ModEx model ex-
tractor of ANSI C programs [15–17] in order to support the UPC grammar. UPC-ModEx takes a UPC
program along with a set of abstraction rules and automatically generates a Promela model (see Figure
2).2 Promela [18] is the modeling language of SPIN, which is an extension of C with additional keywords
and abstract data types for modeling concurrent computing systems. We expect that the commonalities of
UPC and Promela will simplify the transformation of UPC programs to Promela models and will decrease

1In the context of dependable systems [1], faults are events that cause a system to reach an error state from where system
executions may deviate from its specification; i.e., a failure may occur.

2An executable copy of UPC-ModEx is available at http://asd.cs.mtu.edu/projects/pgasver/index_files/upc-modex.

html.



Figure 1: A method for the model checking of UPC programs.

the loss of semantics in such transformations. We present a set of built-in abstraction rules for the most
commonly-used UPC synchronization primitives. After generating a finite model in Promela, developers
specify properties of interest (e.g., data race-freedom) in terms of either simple assertions or more sophisti-
cated Linear Temporal Logic [19] expressions. SPIN verifies whether or not all executions of the model from
its initial states satisfy the specified properties. If the model fails to meet the properties, then a sequence of
the UPC program instructions that lead to the failure from the initial states is generated for the programmer
(see Figure 2).

We have used UPC-SPIN to detect and correct concurrency failures in small instances (i.e., programs with
a few threads) of real-world UPC programs including parallel bubble sort, heat flow in metal rods, integer
permutation and parallel data collection. More importantly, for the first time (to the best of our knowledge),
we have generated a finite model of a UPC implementation of the Conjugate Gradient (CG) kernel of the NAS
Parallel Benchmarks (NPB) [20]. We have model checked small instances of the extracted model of CG for
data race-freedom and deadlock-freedom, thereby demonstrating its correctness. While the success of model
checking means a model is correct, model checking can only be applied to small/moderate size models (see
Section 8) due to the state space explosion problem. This may seem like a significant limitation considering
the common belief amongst developers that some defects manifest themselves only when an application
is scaled up (in terms of the number of processes and domain size of the input variables/parameters).
Nonetheless, there is ample experimental evidence [21,22] that most concurrency failures also exist in small
instances of concurrent applications. A model checker that exhaustively verifies all possible interleavings
can detect such failures in small instances of HPC applications. Thus, we believe that model checking can
significantly increase the confidence of researchers in the dependability of HPC applications and the scientific
conclusions that they draw out of computational results.
Organization. Section 2 provides a background on UPC, model extraction and model checking. Section
3 discusses how the UPC-ModEx front-end extends ModEx to support the UPC constructs. Subsequently,
Section 4 illustrates how we model check the Promela models of UPC programs with SPIN. Section 5 presents
the model checking of an UPC implementation of the CG kernel of the NPB benchmarks [20]. Section 6
discusses the verification of a parallel bubble sort, and a parallel data collection application is model checked
in Section 7. Section 8 presents the time costs of model checking for our case studies. Finally, Section 9
makes concluding remarks and discusses future work.



Figure 2: An overview of the UPC-SPIN framework.

2 Preliminaries

This section provides the basic concepts of UPC [23, 24] (Subsection 2.1), finite models of UPC programs
(Subsection 2.2), concurrency failures and properties of interest (Subsection 2.3) and an overview of model
checking using SPIN [3] (Subsection 2.4). Subsection 2.5 briefly discusses the internal working of the ANSI
C Model Extractor (ModEx).

2.1 UPC: An Overview

UPC extends ANSI C by a SPMD model of computation where the same piece of code (e.g., Figure 3) is
replicated in distinct threads of execution to process different data streams. The memory model of UPC
(i.e., PGAS) divides its address space into shared and private parts. The shared area of the memory space is
partitioned into THREADS sections, where THREADS is a system constant representing the total number
of threads. Each thread has a private memory space and is also uniquely associated with a shared section,
called its affinity; e.g., A[MYTHREAD] in Line 10 of Figure 3, where MYTHREAD denotes thread’s own thread
number. To support parallel programming, UPC augments C with a set of synchronization primitives,
a work-sharing iteration statement upc forall and a set of collective operations. Figure 3 demonstrates an
integer permutation application that takes an array of distinct integers (see array A in Line 2 of Figure 3)
and randomly generates a permutation of A without creating any duplicate/missing values. Shared data
structures are explicitly declared with a shared type modifier. A shared array of THREADS locks (of type
upc lock t) is declared in Line 3. Each thread initializes A[MYTHREAD] (Line 10) and randomly chooses an
array element (Line 14) to swap with the contents of A[MYTHREAD].

2.2 Finite Models of UPC Programs

Let p be a UPC program with a fixed number of threads, denoted N > 1. A model of p is a non-deterministic
finite state machine denoted by a triple 〈Vp, δp, Ip〉 representing the inter-thread synchronization functionali-
ties of p, called the synchronization skeleton of p. Vp represents a finite set of synchronization variables with
finite domains. A synchronization variable is a shared variable (e.g., locks) between multiple threads used
for synchronizing access to shared resources/variables. A control variable (e.g., program counter) captures
the execution control of a thread. A state is a unique valuation of synchronization and control variables.
An ordered pair of states (s0, s1) denotes a transition. A thread contains a set of transitions, and δp denotes
the union of the set of transitions of threads of p. Ip represents a set of initial states. The state space of p,



denoted Sp, is equal to the set of all states of p. A state predicate is a subset of Sp; i.e., defines a function
from Sp to {true, false}. A state predicate X is true (i.e., holds) in a state s iff (if and only if) s ∈ X .
A computation (i.e., synchronization trace) of p is a maximal sequence σ = 〈s0, s1, · · ·〉 of states si, where
s0 ∈ Ip and each transition (si, si+1) is in δp, i ≥ 0. That is, either σ is infinite, or if σ is a finite sequence
〈s0, s1, · · · , sf 〉, then no thread is enabled for execution at sf .

2.3 Concurrency Failures and Properties of Interest

Intuitively, a safety property stipulates that nothing bad ever happens in any computation. Data race-
freedom and deadlock-freedom are instances of safety properties. A data race occurs when multiple threads
access shared data simultaneously, and at least one of those accesses is a write [25]. A block of statements
accessing shared data is called a critical section of the code; e.g., Lines 19-21 and 29-31 in Figure 3 where
threads perform the swapping. A data race could occur when two or more threads are in their critical
sections. However, the upc lock statements in Lines 17-18 and 27-28 ensure that each thread gets exclusive
access to its critical section so no data races occur. The section of the code where a thread tries to enter its
critical section is called its trying section (e.g., Lines 17-18 and 27-28). A program is deadlocked when no
thread can make progress in entering its critical section. Deadlocks occur often due to circular-wait scenarios
when a set of threads T1, · · · , Tk wait for one another in a circular fashion (e.g., T1 waits for T2, T2 waits
for T3 and so on until Tk which waits for T1). Formally, a deadlock state has no outgoing transitions. The
two if-statements in Lines 16 and 26 of Figure 3 impose a total order on the way lock variables are acquired
in order to break circular waits.

In the UPC program of Figure 3, a safety property stipulates that it is always the case that at most one
thread is in its critical section in any computation. In model checkers, such properties are formally specified
using the always operator in Temporal Logic (TL) [19], denoted �. The example UPC code of Figure 3
ensures that the safety property �¬(CSi ∧ CSj) is met by acquiring locks (0 ≤ i, j < THREADS), where
CSi is a state predicate representing that thread i is in its critical section.

A progress property states that it is always the case that if a predicate P becomes true, then another
predicate Q will eventually hold. We denote such progress properties by P  Q (read it as ‘P leads to
Q’) [19]. For example, in the example UPC program of Figure 3, we specify progress for each thread i
(0 ≤ i < THREADS) as TSi  CSi; i.e., it is always the case that if thread i is in its trying section
(represented by the predicate TSi), then it will eventually enter its critical section (i.e., CSi holds).

2.4 Model Checking, SPIN and Promela

Explicit-state model checkers (e.g., SPIN [3]) create models as finite-state machines represented as directed
graphs in memory, where each node captures a unique state of the model and each arc represents a state
transition. Symbolic model checkers create models as Binary Decision Diagrams (BDDs) (e.g., SMV [4]) and
are mostly used for hardware verification. If model checking succeeds, then the model is correct. Otherwise,
model checkers provide scenarios as to how an error is reached from initial states, called counterexamples.
SPIN is a explicit-state model checker with a C-like modeling language, called Promela [18]. The syntax of
Promela is based on the C programming language. A Promela model comprises (1) a set of variables, (2) a
set of (concurrent) processes modeled by a predefined type, called proctype, and (3) a set of asynchronous and
synchronous channels for inter-process communications. The semantics of Promela is based on an operational
model that defines how the actions of processes are interleaved. An action (a.k.a guarded command) is of
the form grd → stmt, where the guard grd is an expression in terms of program variables and the statement
stmt updates program variables. When the guard grd holds (i.e., the action is enabled), the statement stmt
can be executed, which accordingly updates some variables. Actions can be atomic or non-atomic, where
an atomic action (denoted by the atomic {} blocks in Promela) ensures that the guard evaluation and the
execution of the statement is uninterrupted.

2.5 ModEx: Model Extractor of ANSI C Programs

Since in Section 3 we extend the front-end compiler of the ANSI C Model Extractor (ModEx) [15–17]
to support the UPC grammar, this section presents an overview of ModEx, which is a software tool for



1 // Declaring shared global variables

2 shared int A[THREADS];

3 upc_lock_t *shared lk[THREADS];

4

5 // Declaring thread local variables

6 int i, s, temp;

7

8 // The body of each thread starts

9 // Initialize the array A with distinct integers

10 A[MYTHREAD] = MYTHREAD;

11 upc_barrier;

12 for (i = MYTHREAD; i < MYTHREAD + 1; i++) {
13 // Randomly generate a swap index

14 s = (int)lrand48() % (THREADS);

15

16 if (s<i) {
17 upc_lock(lk[i]); // Acquire locks

18 upc_lock(lk[s]);

19 temp = A[i]; // Swap

20 A[i] = A[s];

21 A[s] = temp;

22 upc_unlock(lk[s]); // Release locks

23 upc_unlock(lk[i]);

24 }
25

26 if (i<s) {
27 upc_lock(lk[s]); // Acquire locks

28 upc_lock(lk[i]);

29 temp = A[i]; // Swap

30 A[i] = A[s];

31 A[s]] = temp;

32 upc_unlock(lk[i]); // Release locks

33 upc_unlock(lk[s]);

34 }
35 } // For loop

Figure 3: Excerpts of the integer permutation program in UPC.

extracting finite models from ANSI C programs.
ModEx generates finite models of C programs in three phases, namely parsing, interpretation using

abstraction rules and optimization for verification. In the parsing phase, ModEx generates an uninterpreted
parse tree of the input source code that captures the control flow structure of the source code and the type
and scope of each data object. All basic linguistic constructs of C (e.g., declarations, assignments, conditions,
function calls, control statements) are collected in the parse tree and remain uninterpreted. The parse tree
also keeps some information useful for representing the results of model checking back to the level of source
code (e.g., association between the lines of source code and the lines of code in the model). The essence
of the interpretation phase is based on a tabled-abstraction method that pairs each parse tree construct
with an interpretation in the target language. ModEx can perform such interpretation based on either a
default set of abstraction rules or programmer-defined abstraction rules. Different types of abstractions can
be applied to the nodes of the parse tree including local slicing and predicate abstraction. In local slicing,
data objects that are irrelevant to the property of interest (e.g., local variables that have no impact on inter-
thread synchronizations) are sliced away. Any operation (e.g., assignments, functional calls) performed on or
dependent upon irrelevant data objects are sliced away and replaced with a null operation in the model. In
predicate abstraction, if there are variables in the source code whose domains carry more information than
necessary for model checking, then they can be abstracted as Boolean variables in the model. For example,
consider a variable 0 ≤temp ≤ 100 that stores the temperature of a boiler tank (in Celsius), and the program
should turn off a burner if the temperature is 95 degrees or above. For verifying whether the burner is off
when temp ≥ 95, a Boolean variable can capture the value of a predicate representing whether or not temp

is below 95. In the optimization phase, ModEx uses a set of rewrite rules to simplify some generated
statements in Promela and to eliminate statements that have no impact on verification. For example, the



guarded command false → x = 0 in Promela can be omitted without any impact on the result of model
checking because the guard is always false and the action is never enabled/executed.

3 UPC Model Extractor (UPC-ModEx)

This section discusses how we extend ModEx to support the parsing (Section 3.1) and the interpretation
(Section 3.2) of UPC constructs in UPC-ModEx. Since our focus is on the most commonly-used UPC
constructs, we skip UPC collectives (except for upc forall, upc wait and upc notify) in this paper. Section 3.3
discusses how we abstract read/write accesses to shared date, and Section 3.4 demonstrates model extraction
in the context of the integer permutation program in Figure 3.

3.1 Parsing UPC Constructs

The ANSI C ModEx lacks support for the UPC extension of C including type qualifiers, unary expressions,
iteration statements, synchronization statements and UPC collectives. This section discusses how we have
augmented ModEx to parse UPC constructs in the UPC-ModEx front-end.
Type qualifiers. UPC includes three type qualifiers, namely shared, strict and relaxed. The shared type
qualifier is used to declare data objects in the shared address space. We augment the grammar using the
following rules in the BNF form [26]:

- type qual: CONST | VOLATILE | shared type qual | reference type qual

- shared type qual: “shared” | “shared” ‘[’ opt const expr ‘]’ | “shared” ‘[*]’

The reference type qualifiers strict and relaxed are used to declare variables that are accessed based on the
strict or relaxed memory consistency model.

- reference type qual: “relaxed” | “strict”

Unary expressions. UPC includes three unary expressions, namely upc localsizeof, upc elemsizeof and
upc blocksizeof. upc localsizeof applies to shared objects/types and returns the size of the local portion of
its operand in bytes. The returned value is the same value for all threads. upc blocksizeof applies to shared
objects/types and returns the block size of its operand. upc elemsizeof applies to shared objects/types and
returns the size of the leftmost type that is not in an array. The revised and new grammar rules in BNF are
as follows:

- unary expr: sizeof expr | upc localsizeof expr | upc blocksizeof expr | upc elemsizeof expr

- upc localsizeof expr: “upc localsizeof” ’(’ type name ’)’ | “upc localsizeof” unary expr

- upc elemsizeof expr: “upc elemsizeof” ’(’ type name ’)’ | “upc elemsizeof” unary expr

- upc blocksizeof expr: “upc blocksizeof” ’(’ type name ’)’ | “upc blocksizeof” unary expr

Iteration statements. In addition to regular iteration statements of C, UPC has a work-sharing itera-
tion statement, denoted upc forall. The upc forall statement enables programmers to distribute independent
iterations of a for-loop across distinct threads. The grammar of upc forall in BNF is as follows:

- forall stemnt: “upc forall” ’(’ opt expr ’;’ opt expr ’;’ opt expr ’;’ opt expr ’)’ stemnt | “upc forall” ’(’ opt expr

’;’opt expr ’;’ opt expr ’;’ affinity expr ’)’ stemnt

- affinity expr: “continue” | opt expr

The affinity expression affinity expr determines which thread executes which iteration of the loop depending
on the affinity of the data objects referred in affinity expr. If affinity expr is an integer expression expr, then
each thread executes the body of the loop when MYTHREAD is equal to (expr mod THREADS). If affinity expr

is continue or not specified, then each thread executes every iteration of the loop body.

Synchronization statements. The most commonly used synchronization statements in UPC include
upc barrier, upc wait and upc notify statements. Moreover, UPC has a new type upc lock t that enables pro-
grammers to declare lock variables for synchronizing access to shared resources/data. The two functions



upc lock() and upc unlock() are used to acquire and release shared variables of type upc lock t. The grammar
of the new synchronization statements is as follows:

- upc barrier stemnt: “upc barrier” opt expr ’;’

- upc wait stemnt: “upc wait” opt expr ’;’

- upc notify stemnt: “upc notify” opt expr ’;’

We extend the lexical analyzer and the parser of ModEx to support the compilation of UPC-specific
constructs discussed above.

3.2 Interpreting UPC Constructs Using Abstraction

This section presents a set of abstraction rules that we have developed for model extraction from UPC
programs. After defining the abstractions, we use the ModEx commands [15–17] for the specification of such
rules. After parsing a UPC program, UPC-ModEx generates an abstract parse tree whose nodes are UPC
constructs in an uninterpreted form. To interpret UPC constructs, we use sound rules that generate Promela
code corresponding to the nodes of the parse tree. Each rule is of the form:

left-hand side right-hand side

The left-hand side is a UPC statement and the right-hand side could be either a piece of Promela code
that should be generated corresponding to the left-hand side or an abstraction command that specifies how
the left-hand side should be treated in the model (see Table 1 for some example commands). For example,
the skip command generates a null operation in the Promela model corresponding to the left-hand side, the
hide command conceals the left-hand side in the model; i.e., nothing is generated, and the keep command
preserves the left-hand side in the Promela model. Some abstraction commands enable string matching and
replacement, such as the Substitute command. For example, the command

“Substitute MYTHREAD pid”

replaces any occurrence of MYTHREAD in the UPC code with pid in the model, where pid captures a
unique identifier for each proctype in Promela. There is also an Import command that includes the data
objects name from the UPC source code inside the Promela model with the global scope or the scope of a
specific proctype in Promela.

Table 1: Sample Abstraction Commands

Command Meaning

skip Replace with a null operation

hide Conceal in the model

keep Preserve in the model

Substitute P1 P2 Substitute any occurrence of P1 with P2

Import name scope Include name with a scope of scope

We present the following abstraction rules for model generation from UPC programs (see [14] for more
rules):

Rule 1: upc lock() The upc lock(upc lock t *lk) function locks a shared variable of type upc lock t. If the
lock is already acquired by some thread, the calling thread waits for the lock to be released. Otherwise, the
calling thread acquires the lock *lk atomically. The corresponding Promela code is as follows:
1 bool lk; // Lock variable

2 atomic{ !lk -> lk=true; }

Line 2 represents an atomic guarded command in Promela that sets the lock variable lk to true (i.e.,
acquires lk) if lk is available. Otherwise, the atomic guarded command is blocked.

Rule 2: upc unlock() The upc unlock(upc lock t *lk) is translated to an assignment lk = false in Promela.



Assignments are executed atomically in Promela.

Rule 3: upc lock attempt(upc lock t *lk) The upc lock attempt(upc lock t *lk) tries to get the lock
lk if available; otherwise, it will not wait on it. The following Promela code represents a translation of
upc lock attempt(). The atomic guarded command assigns true to lk if it is false; otherwise, the atomic
statement exits. A Promela ‘if statement’ checks the guard of each action starting with :: and non-
deterministically selects one of them that is true. If there are no true guards, then the entire ‘if statement’
is blocked.

1atomic{ if :: (lk == false) -> lk= true;

2 :: else->skip; fi; }

In round-based computations, all threads include an alternating sequence of upc notify and upc wait state-
ments. A synchronization phase (i.e., round) starts with the execution of a upc wait statements and ends
with the start of the next upc wait. By executing a upc notify statement a thread informs other threads that
it is about to reach the next synchronization point, and when it reaches the upc wait statements it waits until
all threads have reached their upc notify statement in the current phase. Next, we illustrate the abstraction
rules corresponding to upc notify and upc wait.

Rule 4: upc notify We use two global integer variables barr and proc to implement the semantics of
upc notify in Promela. Initially, the value of barr is equal to THREADS. To demonstrate that it has reached a
notify statement, each thread atomically decrements the value of barr and sets the flag proc to zero. Notice
that barr and proc are updated atomically because they are shared variables in the model and a non-atomic
update may cause data races.

1 atomic{ barr = barr -1; proc=0;}

Rule 5: upc wait Once reached a upc wait statement, a thread waits until the value of barr becomes zero;
i.e., all threads have reached their notify statement in the current synchronization phase. The value of proc
is set to 1 indicating that some thread has observed that barr has become zero. Afterwards, each thread
increments barr and waits until all threads increment barr or some thread has witnessed that barr has become
equal to THREADS in the current phase (i.e., proc has been set to 0).

1 (barr == 0) || (proc == 1) -> proc = 1;

2 barr = barr + 1;

3 (barr == THREADS) || (proc == 0) -> proc = 0;

Rule 6: upc barrier The upc barrier is in fact the union of a pair of upc notify and upc wait statements.
Separate use of upc notify and upc wait implements the split-phase barrier synchronization. Split-phase barrier
can reduce the busy-waiting overhead of barrier synchronizations by allowing each thread to perform some
local computations between the time it reaches a notify statement and the time it reaches a wait statement.

Rule 7: upc fence The upc fence statement enforces a strict consistency model ensuring that all shared
memory references issued before upc fence are complete before any references after upc fence are issued. Since
currently UPC-ModEx generates models only for strict memory references, at any point of execution we
are guaranteed that all references to shared variables in the Promela model have been completed before
subsequent accesses take place. Thus, UPC-ModEx generates a null statement corresponding to upc fence.

3.3 Abstracting Shared Data Accesses

In the model checking of concurrent programs for data race-freedom, the objective is to check whether or
not multiple threads have simultaneous access to shared data where at least one thread performs a write
operation. Thus, the contents of shared variables are irrelevant to verification; rather it is the type of access
to shared data that should be captured in a model. For this reason, corresponding to each shared variable
x, we consider two bits in the Promela model; one represents whether a read operation is being performed
on x and the other captures the fact that x is being written. Accordingly, if a shared array is used in the
UPC program, its corresponding model will include two bit-arrays. For example, corresponding to the array
A in Figure 3, we consider the following bit arrays:



1 bit read_A[THREADS];

2 bit write_A[THREADS];

The bit read A[i] (for 0 ≤ i ≤ THREADS−1) is 1 if and only if a read operation is performed on A[i].
Likewise, write A[i] is 1 if and only if A[i] is written. Thus, corresponding to any read (respectively, write)
operation on A[i] in the UPC code, we set read A[i] (respectively, write A[i]) to 1 in the Promela model.

3.4 Example: Promela Model of Integer Permutation Program

This section illustrates how UPC-ModEx generates a Promela model corresponding to the Permute program
of Figure 3. For model extraction, UPC-ModEx needs two input files: the input UPC program and a text
file that contains the abstraction LUT. Figure 4 illustrates the abstraction Look-Up Table (LUT) for the
program in Figure 3:

1 %F Locks.c

2 %X -L main.lut

3 %L

4 Import i main

5 Import s main

6 Substitute MYTHREAD _pid

7 A[MYTHREAD]=MYTHREAD hide

8 upc_barrier atomic barr = barr -1; proc=0;

9 (barr == 0) || (proc == 1) -> proc = 1;

10 barr = barr + 1 ;

11 (barr == THREADS)||(proc == 0)-> proc = 0;

12 s=((int )lrand48()... if

13 :: true -> s = 0;

14 :: true -> s = 1;

15 :: true -> s = 2;

16 :: true -> s = 3;

17 fi

18 upc_lock(lk[i]) atomic{ !lk[i] -> lk[i] = true }
19 upc_lock(lk[s]) atomic{ !lk[s] -> lk[s] = true }
20 upc_unlock(lk[i]) lk[i] = false

21 upc_unlock(lk[s]) lk[s] = false

22 t=A[i] read_A[i]=1;

23 read_A[i]=0;

24 A[i]=A[s] read_A[s]=1;

25 read_A[s]=0;

26 write_A[i]=1;

27 write_A[i]=0;

28 A[s]=t write_A[s]=1;

29 write_A[s]=0;

Figure 4: The abstraction file for the program in Figure 3, where THREADS = 4.

While the commands used in this file are taken from ModEx, the abstraction rules that specify how a
model is generated from the UPC program are our contribution. The first line in Figure 4 (i.e., command
%F) specifies the name of the source file from which we want to extract a model. Line 2 (i.e., command %X)
expresses that UPC-ModEx should extract a model of the main function using the subsequent abstraction
rules. Line 3 (i.e., command %L) denotes the start of the look-up table that is used for model extraction.
Lines 4 and 5 define that the variables i and s should be included as local variables in the proctype that is
generated corresponding to the main function of the source code. Since the contents of array A is irrelevant
to the verification of data race/deadlock-freedom, we hide the statement A[MYTHREAD] =MYTHREAD in
the model. We apply Rule 6 (presented in Section 3.2) for the abstraction of upc barrier (Lines 8-11 in
Figure 4). Line 14 of Figure 3 (i.e., s = (int)lrand48() % (THREADS)) assigns a randomly–selected integer
(between 0 and THREADS−1) to variable s. To capture the semantics of this assignment, we generate a
non-deterministic if-statement in the Promela model (Lines 12-17 in Figure 4). Since the guard of every
action in this if-statement is true, one action is randomly selected for execution by SPIN at verification time,



thereby assigning a random value to s. The value of the variable s determines the array cell with which the
value of A[i] should be swapped by thread i. Lines 18-21 include the rules for the abstraction of upc lock()

and upc unlock() functions. Lines 22-29 illustrate the rules used to abstract read/write accesses to shared
data (as explained in Section 3.3). For example, the assignment A[i] = A[s] in UPC is translated to four
assignments demonstrating how A[s] is read and A[i] is written.

Taking the program in Figure 3 and the abstraction file of Figure 4, UPC-ModEx generates the Promela
model in Figure 5. Lines 1-5 have been added manually. Line 1 defines a macro that captures the system
constant THREADS; in this case 4 threads. Lines 2-6 declare global shared variables that are accessed by all
proctypes in the model. The prefix active in Line 8 means that a set of processes are declared that are active
(i.e., running) in the initial state of the model. The array suffix [THREADS] specifies the number of instances
of the main proctype that are created by SPIN. The body of the main proctype is a translation of the UPC
program based on the abstraction rules defined in Figure 4. Lines 11-14 implement upc barrier. The for-loop

in Line 12 of Figure 3 is transformed to a do-od loop in Lines 17-59 in Figure 5. This do-od loop terminates
in Line 59 if the condition (i < pid+1) evaluates to false. Each proctype randomly assigns a value between 0
and THREADS−1 to variable s (Lines 19-23) and then performs the swapping in either one of the if-statements

in Lines 24 or 40. Line 56 increments the loop counter. Lines 60-63 implement another upc barrier. The
automatically-generated line numbers that are written as comments in the model associate the instructions
in the source code with the statements in the model.

4 Model Checking with SPIN

In order to verify a model with respect to a property, we first have to specify the property in terms of the
data flow or the control flow of the model (or both). For example, to verify the model of Figure 5 for data
race-freedom, we first determine the conditions under which a shared datum is read and written by multiple
threads at the same time. Using the abstractions defined for shared data accesses in Section 3.3, we define
the following macros for the Promela model of Figure 5:

1 #define race_0 (read_A[0] && write_A[0])

The macro race 0 defines conditions under which the array cell A[0] is read and written at the same time;
i.e., there is a race condition on A[0]. Likewise, we define macros representing race conditions for other cells
of array A. To express data race-freedom in SPIN, we specify the temporal logic expression � !race 0 meaning
that it is always the case that the condition race 0 is false. The data race-freedom in this case is guaranteed
by the use of upc lock statements in Lines 17-18 and 27-28 in Figure 3, which are translated as Lines 25-26
and 41-42 in Figure 5. Nonetheless, the use of locks often causes deadlocks in concurrent programs due to
circular waiting of threads for shared locks. To verify deadlock-freedom, we must make sure that each thread
eventually terminates; i.e., eventually reaches Line 64 of Figure 5. To specify this property, we define the
following macros:

1 #define fin_0 (main[0]@P)

The macro fin 0 is defined in terms of the control flow of the first instance of the main proctype, denoted
main[0], which means that thread 0 is at the label P (inserted in Line 64). Thus, if thread 0 eventually
reaches its last statement (which is a null operation in Promela denoted by skip), then it is definitely not
deadlocked. Such a property is specified as the temporal logic expression ♦ fin 0, where ♦ denotes the
eventuality operator in temporal logic. SPIN successfully verifies the integer permutation program with
respect to data race-freedom and deadlock-freedom properties.

4.1 Example: Heat Flow

The Heat Flow (HF) program includes THREADS>1 threads and a shared array t of size THREADS×regLen,
where regLen > 1 is the length of a region vector accessible to each thread. That is, each thread i (0 ≤ i ≤
THREADS−1) has read/write access to array cells t[i ∗ regLen] up to t[((i + 1) ∗ regLen)− 1]. The shared



1 #define THREADS 4

2 int barr = THREADS;

3 int proc = 0;

4 bool lk[THREADS];

5 bit read_A[THREADS];

6 bit write_A[THREADS];

7

8 active [THREADS] proctype main() {
9 int i, s;

10

11 atomic{ barr = barr -1; proc=0; } /* line 39 */

12 (barr == 0) || (proc == 1) -> proc = 1;

13 barr = barr + 1;

14 (barr == THREADS) || (proc == 0) -> proc = 0;

15 /* line 44 */

16 i=_pid; /* line 50 */

17 L_0: do

18 :: (i<((_pid+1))) -> { /* line 50 */

19 if :: true -> s = 0;

20 :: true -> s = 1;

21 :: true -> s = 2;

22 :: true -> s = 3;

23 fi; /* line 53 */

24 if :: (s<i) -> { /* line 54 */

25 atomic{ !lk[i] -> lk[i] = 1 }; /* line 59 */

26 atomic{ !lk[s] -> lk[s] = 1 }; /* line 60 */

27 read_A[i]=1; /* line 62 */

28 read_A[i]=0;

29 read_A[s]=1; /* line 63 */

30 read_A[s]=0;

31 write_A[i]=1;

32 write_A[i]=0;

33 write_A[s]=1; /* line 64 */

34 write_A[s]=0;

35 lk[i] = 0; /* line 66 */

36 lk[s] = 0; /* line 67 */

37 }
38 :: else; /* line 67 */

39 fi;

40 if :: (s>i) -> { /* line 67 */

41 atomic{ !lk[s] -> lk[s] = 1 }; /* line 70 */

42 atomic{ !lk[i] -> lk[i] = 1 }; /* line 71 */

43 read_A[i]=1; /* line 73 */

44 read_A[i]=0;

45 read_A[s]=1; /* line 74 */

46 read_A[s]=0;

47 write_A[i]=1;

48 write_A[i]=0;

49 write_A[s]=1; /* line 75 */

50 write_A[s]=0;

51 lk[i] = 0; /* line 77 */

52 lk[s] = 0; /* line 78 */

53 }
54 :: else; /* line 78 */

55 fi;

56 i = i + 1; /* line 78 */

57 }
58 :: else -> break /* line 78 */

59 od;

60 atomic{ barr = barr -1; proc=0;} /* line 83 */

61 (barr == 0) || (proc == 1) -> proc = 1;

62 barr = barr + 1 ;

63 (barr == THREADS) || (proc == 0) -> proc = 0;

64 P: skip; }

Figure 5: The Promela model generated for the program in Figure 3.



array t captures the transfer of heat in a metal rod and the HF program models the heat flow in the rod.
We present an excerpt of the UPC code of HF as follows:

1 shared double t[regLen*THREADS];

2 double tmp;

3

4 . . . // Perform some local computations
5 upc_barrier;

6 base = MYTHREAD*regLen;

7 for (j =0; j < regLen+1; j++) {
8 if (MYTHREAD == 0) { tmp[0] = t[0]; }
9 else {

10 tmp[0] = (t[base-1] + t[base] + t[base+1])/3.0;

11 e = fabs(t[base]-tmp[0]); }
12 for (i=base+1; i<base+regLen-1; ++i) {
13 tmp = (t[i-1] + t[i] + t[i+1]) / 3.0;

14 etmp = fabs(t[i]-tmp[1]);

15 t[i-1] = tmp[0];

16 }
17 if (MYTHREAD < THREADS-1) {
18 tmp = (t[base+regLen-2] +

19 t[base+regLen-1] +

20 t[base+regLen]) / 3.0;

21 etmp = fabs(t[base+regLen-1]-tmp[1]);

22 t[base+regLen-1] = tmp[1];

23 }
24 upc_barrier;

25 t[base+regLen-2] = tmp[0];

26 }

Figure 6: Excerpt of the Heat Flow (HF) program in UPC.

Each thread performs some local computations and then all threads synchronize with the upc barrier in
Line 5. The base of the region of each thread is computed by MYTHREAD∗ regLen in Line 6. Each thread
continuously executes the code in Lines 7 to 26. In Lines 8-11, the local value of tmp[0] is initialized. Then, in
Lines 12 to 16, each thread i, where 0 ≤ i ≤ THREADS−1, first computes the heat intensity of the cells t[base]
to t[base+ regLen− 3] in its own region. Subsequently, every thread, except the last one, updates the heat
intensity of t[base+regLen−1] (see Lines 17-23). Before updating t[base+regLen−2] in Line 25, all threads
synchronize using upc barrier. Then they compute an expression that is assigned to t[base+ regLen−2]. Our
objective is to verify whether or not there are any data races in HF. The significance of this example is that
the access to shared data is changed dynamically as each thread updates the value of heat flow. Moreover,
despite the small number of lines of code in this example, it is difficult to manually identify where the data
races may occur.

Abstraction Look-Up Table (LUT) for HF. We present the abstraction LUT of the HF program below.
Lines 1-7 of the table include the local data and simple mapping rules. The rest of the abstraction table
includes 11 entries located in Lines 8, 10, 14, 21, 24, 31, 33, 35, 38, 40 and 42. Each entry includes a left-hand
side and a right-hand side defined based on the rules presented in Sections 3.2 and 3.3. Hence, we omit the
explanation of the abstraction rules of the HF program. Notice that the arrays read t and write t have been
declared for the abstraction of data accesses to the shared array t (as explained in Section 3.3).

1 %F fwup.c

2 %X -L main.lut

3 %L

4 Import i main

5 Import j main

6 Import base main

7 Substitute MYTHREAD _pid

8 tmp[0]=t[0] read_t[0]=1;

9 read_t[0]=0;

10 upc_barrier atomic barr = barr -1; proc=0;

11 (barr == 0) || (proc == 1) -> proc = 1;



12 barr = barr + 1 ;

13 (barr==THREADS)||(proc==0) -> proc = 0;

14 tmp[0]=(((t[(base-1)]+t[base])+t[(base+1)])/3)

15 read_t[base-1] = 1;

16 read_t[base-1] = 0;

17 read_t[base] = 1;

18 read_t[base] = 0;

19 read_t[base+1] = 1;

20 read_t[base+1] = 0;

21 e=fabs((t[base]-tmp[0])) read_t[base]=1;

22 read_t[base]=0;

23

24 tmp[1]=(((t[(i-1)]+t[i])+

25 t[(i+1)])/3) read_t[i-1] = 1;

26 read_t[i-1] = 0;

27 read_t[i] = 1;

28 read_t[i] = 0;

29 read_t[i+1] = 1;

30 read_t[i+1] = 0;

31 etmp=fabs((t[i]-tmp[1])) read_t[base]=1;

32 read_t[base]=0;

33 t[(i-1)]=tmp[0] write_t[i-1] = 1;

34 write_t[i-1] = 0;

35 etmp=fabs((t[((base+regLen)-1)]-tmp[1]))

36 read_t[((base+regLen)-1)]=1;

37 read_t[((base+regLen)-1)]=0;

38 t[((base+regLen)-1)]=tmp[1] write_t[((base+regLen)-1)]=1;

39 write_t[((base+regLen)-1)]=0;

40 t[((base+regLen)-2)]=tmp[0] write_t[base+regLen-2]=1;

41 write_t[base+regLen-2]=0;

42 tmp[1]=(((t[((base+regLen)-2)]+ t[((base+regLen)-1)])

43 +t[(base+regLen)])/3) read_t[((base+regLen)-2)] = 1;

44 read_t[((base+regLen)-2)] = 0;

45 read_t[((base+regLen)-1)] = 1;

46 read_t[((base+regLen)-1)] = 0;

47 read_t[(base+regLen)] = 1;

48 read_t[(base+regLen)] = 0;

The Promela model of HF. UPC-ModEx generates the following Promela model for the HF program
using its abstraction LUT. This is an instance with 3 threads and region size of 3 for each thread. The
SPIN model checker creates THREADS instances of the main proctype as declared in Line 8. We omit the
explanation of the Promela model of HF as it has been generated with the rules defined in Sections 3.2 and
3.3.

1 #define regLen 3

2 #define THREADS 3

3 int barr = THREADS;

4 int proc = 0;

5 bit read_t[9];

6 bit write_t[9];

7

8 active [THREADS] proctype main() {
9 int base ; /* mapped */

10 int i ; /* mapped */

11 int j ; /* mapped */

12 atomic{ barr = barr -1; proc=0; } /* line 50 */

13 (barr == 0) || (proc == 1) -> proc = 1;

14 barr = barr + 1 ;

15 (barr == THREADS) || (proc == 0) -> proc = 0;

16 base = _pid * regLen; /* line 55 */

17 j=0; /* line 60 */

18L_0: do

19 :: (j<(regLen +1)) -> { /* line 60 */

20 if :: (_pid==0) /* line 60 */



21 read_t[0]=1; read_t[0]=0; /* line 64 */

22 :: else; /* line 64 */

23 read_t[base-1] = 1; read_t[base-1] = 0;

24 read_t[base] = 1; read_t[base] = 0;

25 read_t[base+1] = 1; read_t[base+1] = 0;

26 /* line 68 */

27 read_t[base]=1; read_t[base]=0; /* line 69 */

28 fi;

29 i = base +1; /* line 71 */

30L_1: do

31 :: (i < base+regLen-1) -> {
32 read_t[i-1] = 1; read_t[i-1] = 0;

33 read_t[i] = 1; read_t[i] = 0;

34 read_t[i+1] = 1; read_t[i+1] = 0;

35 /* line 73 */

36 read_t[base]=1; read_t[base]=0; /* line 74 */

37 write_t[i-1] = 1; write_t[i-1] = 0; /* line 76 */

38 i = i +1; /* line 76 */

39 }
40 :: else -> break /* line 76 */

41 od;

42 if :: (_pid<(THREADS-1)) /* line 76 */

43 read_t[((base+regLen)-2)] = 1; /* line 81 */

44 read_t[((base+regLen)-2)] = 0;

45 read_t[((base+regLen)-1)] = 1;

46 read_t[((base+regLen)-1)] = 0;

47 read_t[(base+regLen)] = 1;

48 read_t[(base+regLen)] = 0;

49 read_t[((base+regLen)-1)]=1; /* line 83 */

50 read_t[((base+regLen)-1)]=0;

51 write_t[((base+regLen)-1)]=1; /* line 87 */

52 write_t[((base+regLen)-1)]=0;

53 :: else; /* line 87 */

54 fi;

55 atomic{barr = barr -1; proc=0;} /* line 89 */

56 (barr == 0) || (proc == 1) -> proc = 1;

57 barr = barr + 1 ;

58 (barr == THREADS) || (proc == 0) -> proc = 0;

59 write_t[base+regLen-2]=1;

60 write_t[base+regLen-2]=0; /* line 91 */

61 j = j +1 ; /* line 91 */

62 }
63 :: else -> break /* line 91 */

64 od;

65}

Model checking for data race-freedom. We specify data race conditions as the following macros that
must always be false:

1 #define race_0 (read_t[0] && write_t[0])

To verify data race-freedom, we use SPIN to check whether or not the following property is correct: it
is always the case that there are no simultaneous reads and writes on array cell t[i]. This parameterized
property is formally expressed as �¬ race i. We verify the model of the HF program for data race-freedom
on all memory cells of array t; i.e., 0 ≤ i ≤ THREADS∗regLen−1. For an instance of the model where
THREADS= 3 and regLen= 3, SPIN finds data races on the boundary array cells. That is, there are data
races on t[2], t[3], t[5] and t[6]. For instance, in the source code of HF (see Figure 6), a data race occurs on
t[2] when thread 0 is writing t[2] in Line 22 and thread 1 is reading t[2] in Line 10. Another data race occurs
when thread i is writing its t[base] in Line 15 of Figure 6 in the first iteration of the for-loop of Line 12, and
thread i − 1 is reading t[base+regLen] in Line 20, for 0 ≤ i ≤ THREADS−1. This example illustrates how
model checking could simplify the detection of data races. These data races can be corrected by using lock
variables in appropriate places in the code.



5 Case Study: Model Checking the Conjugate Gradient Kernel
of NPB

This section presents a case study on verifying the data race-freedom and deadlock-freedom of a UPC
implementation of the CG kernel of the NPB benchmark (taken from [20]). The NPB benchmarks provide a
set of core example applications, called kernels, that are used to evaluate the performance of highly parallel
supercomputers. The kernels of NPB test different types of applications in terms of their patterns of data
access and inter-thread communication. Since the PGAS model is appropriate for solving problems that have
irregular data accesses, we select the CG kernel of NPB that implements the conjugate gradient method by
the inverse power method (which has an irregular data access pattern). Another interesting feature of CG
is the use of a two-dimensional array in the affinity of each thread and the way array cells are accessed. To
the best of our knowledge, this section presents the first attempt at mechanical verification of CG. Figure 7
demonstrates the inter-thread synchronization functionalities of CG.

1 struct cg_reduce_s { double v[2][NUM_PROC_COLS]; };
2 typedef struct cg_reduce_s cg_reduce_t;

3 shared cg_reduce_t sh_reduce[THREADS];

4

5 int main(int argc, char **argv) {
6 // declaration of local variable
7 // Initialization
8 upc_barrier;

9 // Perform one (untimed) iteration to
10 // initialize code and data page tables
11 /* The call to the conjugate gradient routine */

12 conj_grad( . . . );

13 reduce_sum_2( . . . );

14 // post-processing
15 upc_barrier;

16 /* Main Iteration for inverse power method */

17 for (it = 1; it <= NITER; it++) {
18 conj_grad( . . . );

19 reduce_sum_2( . . . );

20 // post-processing
21 }
22 upc_barrier;

23 // Thread 0 prints the results
24}
25

26 void reduce_sum_2( double rs_a, double rs_b ) {
27 int rs_i;

28 int rs_o;

29

30 upc_barrier;

31 rs_o = (nr_row * NUM_PROC_COLS);

32 for( rs_i=rs_o; rs_i<(rs_o+NUM_PROC_COLS); rs_i++ ){
33 sh_reduce[rs_i].v[0][MYTHREAD-rs_o] = rs_a;

34 sh_reduce[rs_i].v[1][MYTHREAD-rs_o] = rs_b; }
35 upc_barrier;

36}

Figure 7: Inter-thread synchronization functionalities of the Conjugate Gradient (CG) kernel of the NPB benchmarks.

The first three lines in Figure 7 define a data structure that is used to store the results of computations
in a collective reduce fashion. The cg reduce s structure captures a two dimensional vector, and the shared
array sh reduce defines a two dimensional vector in the affinity of each thread. After performing some local
initializations, all threads synchronize using upc barrier in Line 8 of Figure 7. Then an untimed iteration of
the inverse power method is executed (Lines 9-10) before all threads synchronize again. The reduce sum 2

routine distributes the results in the shared address space. The for-loop in Line 17 implements the inverse



power method. Afterwards all threads synchronize in Line 22, and then Thread 0 prints out the results. The
main difficulty is in the way we abstract the pattern of data accesses in reduce sum 2.

Abstraction. To capture the way write operations are performed, we consider the following abstract data
structures in the Promela model corresponding to sh reduce:

1 typedef bitValStruc { bit b[NUM_PROC_COLS] };
2 typedef bitStruc { bitValStruc v[2] };
3 bitStruc write_sh_reduce[THREADS];

Lines 1-2 above define a two dimensional bit array (of type bitStruc) in Promela and Line 3 declares a bit
array of bitStruc with size THREADS. Next, we abstract the for-loop of reduce sum 2 in Promela as follows:

1 rso = (_pid / NUM_PROC_COLS) * NUM_PROC_COLS;

2 rsi = rso;

3 do

4 :: (rsi < rso + NUM_PROC_COLS) -> {
5 write_sh_reduce[rsi].v[0].b[_pid-rso] = 1;

6 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0;

7 write_sh_reduce[rsi].v[1].b[_pid-rso] = 1;

8 write_sh_reduce[rsi].v[1].b[_pid-rso] = 0;

9 rsi = rsi + 1; }
10 :: !(rsi < _pid + NUM_PROC_COLS) -> break;

11 od;

Observe that the for-loop in the reduce sum 2 function in Figure 7 has been captured by a do-od loop in the
Promela model of CG and any write operation has been modeled by setting and resetting the corresponding
bit in the array write sh reduce.

Model checking CG for data race-freedom. To model check CG for data race-freedom, we have to
ensure no two threads simultaneously write on the same memory cell. In other words, we should verify that
before setting a bit in the array write sh reduce, that bit is not already set by another thread. We insert an
assert statement (Lines 3 and 7 below) that verifies data race-freedom. While model checking, SPIN verifies
that the assertions hold. In the case of CG for 2, 3 and 4 threads, we found no data races.

1 do

2 :: (rsi < rso + NUM_PROC_COLS) -> {
3 assert(write sh reduce[rsi].v[0].b[ pid-rso] != 1);
4 write_sh_reduce[rsi].v[0].b[_pid-rso] = 1;

5 write_sh_reduce[rsi].v[0].b[_pid-rso] = 0;

6

7 assert(write sh reduce[rsi].v[1].b[ pid-rso] != 1);
8 write_sh_reduce[rsi].v[1].b[_pid-rso] = 1;

9 write_sh_reduce[rsi].v[1].b[_pid-rso] = 0;

10 rsi = rsi + 1; }
11 :: !(rsi < _pid + NUM_PROC_COLS) -> break;

12 od;

Model checking CG for deadlock-freedom. To make sure that each thread eventually terminates, we
insert a label “fin:” for a null operation skip as the last operation in the body of each thread (similar to the
label P in Line 64 of Figure 5). Then we define the following macro:

1 #define fin_0 (main[0]@fin)

We use similar macros to specify a progress property as ♦ fin i for each thread i stating that each thread
will eventually terminate; i.e., will not deadlock. SPIN verified that each thread terminates for instances of
the CG kernel with 2, 3 and 4 threads.



6 Case Study: Parallel Bubble Sort

This section presents the model extraction and model checking of a parallel bubble sort algorithm imple-
mented in UPC. The significance of this example is two-fold. First, we illustrate how we make abstractions
of conditional if-statements for model checking. Second, the nature of critical section is dynamic in this case;
i.e., depending on the run-time value of the array indices in each thread, the place of the critical section of
the code changes. Line 1 below declares a shared array for the unsorted array of integers, and Line 2 declares
two lock variables for each memory cell. The affinity of each thread includes N integers, which is partitioned
into two sections (i.e., sectionSize= N/2). That is, each thread has two sections. curlock and oldlock are two
lock variables that keep track of the array cell that is being relocated for sorting. The variables mc, firsttime

and done are used as Boolean flags. Each thread starts the bubble sort at N∗ MYTHREAD and scans the
entire array to the end. The scanning repeats until the entire array is sorted. The local variables i and l in
each thread hold the indices of the array cells that are compared with each other and swapped if necessary
(see Lines 43-48). The variable j is a counter that keeps track of the array elements in the current section.
Once the elements of a section have been all visited, the next section is locked (see Lines 30-36 and Lines
49-52). The way variables i and l are incremented ensures that threads are synchronized in a pair-wise fashion
and they do not pass each other during sorting (Lines 40-42 and 55-57). Observe that since the values of i
and l are determined at run-time, the critical section of each thread moves to different places in the array.

1 shared int * shared array;

2 shared upc_lock_t * shared locks[THREADS*2];

3

4 int main(int argc, char *argv) {
5 /* local variables per thread */

6 int curlock, N, oldlock, sectionSize, temp;

7 int mc, firsttime, done;

8 int i, j, l; // Loop counters

9 // Initialization and memory allocation

10 curlock = MYTHREAD*2;

11 /* initialize array */

12 upc_barrier;

13 /* Thread 0 prints out the unsorted array */

14 /* start of sorting */

15 i = MYTHREAD; // start of this thread’s section

16 j = N*MYTHREAD; mc = 0;

17 firsttime = 1; done = 0;

18 upc_lock(locks[curlock]);

19 do {
20 /* if back where I started, see if I should terminate */

21 if (j == N*MYTHREAD) {
22 if (firsttime) firsttime = 0;

23 else {
24 if (mc == 0) { done = 1;

25 upc_unlock(locks[curlock]); }
26 mc = 0;

27 }
28 }
29 if (!done) {
30 if (j%sectionSize == sectionSize-1) {
31 /* if at the end of a section... */

32 oldlock = curlock;

33 curlock = (curlock+1)%(THREADS*2);

34 /* obtain lock of next section */

35 upc_lock(locks[curlock]);

36 }
37 /* check to see if last element in current section *

38 * is greater than the first element of the next *

39 * section, if so, swap. */

40 l = i + THREADS;

41 if (l >= N*THREADS)

42 l = l%(N*THREADS)+1;



43 if (array[i] > array[l]) {
44 temp = array[i];

45 array[i] = array[l];

46 array[l] = temp;

47 mc = 1;

48 }
49 if (j%sectionSize == sectionSize-1) {
50 /* release lock of current section */

51 upc_unlock(locks[oldlock]);

52 }
53 /* increment counter, wrap to beginning of array *

54 * when at the last element. */

55 i += THREADS;

56 if (i >= N*THREADS) i = i%(N*THREADS)+1;

57 if (i == N*THREADS-1) i = 0;

58 j = (j+1)%(N*THREADS);

59 if (j == N*THREADS-1) j = 0;

60 }
61 } while (!done);

62 /* synchronize before Thread 0 prints sorted array */

63 upc_barrier;

64 /* Thread 0 prints out the sorted array */

65}

Abstraction and model extraction. Since most of the abstraction rules are similar to the ones used
for previous examples, we omit the abstraction LUT and present the extracted Promela model. The below
Promela code is for an instance of the parallel bubble sort where N = 6 and THREADS= 3. The only new
abstraction we have in this example is the abstraction corresponding to the conditions of the if-statements

(e.g., the if-statements in Line 43 of the source code of the parallel bubble sort) that either the then part or
the else part or both include a critical section of the code where shared data is read/written. In the case
of bubble sort, when the entire array is sorted, the if-statements in Line 43 will never become true anymore.
That is, the variable mc will never be set to 1; i.e., remains 0 for at least two consecutive iterations of the
do-while loop. Thus, the condition of the if-statements in Line 24 will eventually become true; i.e., done will
eventually be set to 1. That is, the algorithm will eventually terminate. Now, to model the if-statements

in Line 43, we consider a down counter variable cnt in the Promela model. As long as cnt is non-zero the
modeled condition (in Line 63 below) evaluates to true. Once cnt becomes zero, it captures the scenario in
the UPC code where the array is sorted and no more swapping is performed in Lines 43-48 of the UPC code.

1 #define N 6 /* number of elements in each thread’s region */

2 #define THREADS 3

3 #define sectionSize 3 /* is N/2 */

4 int barr = THREADS;

5 int proc = 0;

6 bit read_a[18]; /* (N * THREADS) */

7 bit write_a[18]; /* (N * THREADS) */

8 bool locks[6]; /* (2 * THREADS) */

9

10 active [THREADS] proctype main() {
11 int i; /* mapped */

12 int j; /* mapped */

13 int l; /* mapped */

14 int mc; /* mapped */

15 int firsttime; /* mapped */

16 int done; /* mapped */

17 int curlock; /* mapped */

18 int oldlock; /* mapped */

19 int cnt = 1;

20 curlock=_pid*2; /* line 50 */

21 i=_pid; /* line 83 */

22 j=(N*_pid); /* line 84 */

23 mc=0; /* line 84 */



24 firsttime=1; /* line 85 */

25 done=0; /* line 85 */

26 /* line 86 */

27 atomic{!locks[curlock] -> locks[curlock] = 1};
28 atomic{ barr = barr -1; proc=0;} /* line 94 */

29 (barr == 0)||(proc == 1)-> proc = 1;

30 barr = barr + 1;

31 (barr == THREADS)||(proc == 0)->proc = 0;

32L_0: { /* do-while */

33 if :: (j==(N*_pid))-> /* line 100 */

34 if :: firsttime -> /* line 100 */

35 firsttime=0; /* line 103 */

36 :: else -> { /* line 103 */

37 if :: (mc==0)->{ /* line 103 */

38 done=1; /* line 106 */

39 locks[curlock] = 0; /* line 107 */

40 }
41 :: else -> skip; /* line 107 */

42 fi;

43 mc=0; /* line 109 */

44 }
45 fi;

46 :: else -> skip;

47 fi;

48 if :: (!done) -> {
49 if :: ((j%sectionSize)==(sectionSize-1)) -> {
50 oldlock = curlock; /* line 116 */

51 curlock=((curlock+1)%(THREADS*2));

52 /*line 117*/

53 atomic{ !locks[curlock] -> locks[curlock] = 1};
54 /* line 120 */ }
55 :: else -> skip; /* line 120 */

56 fi;

57 l= i+THREADS; /* line 126 */

58 if

59 :: (l >= (N*THREADS)) -> /* line 126 */

60 l=((l%(N*THREADS))+1); /* line 128 */

61 :: else -> skip; /* line 128 */

62 fi;

63 if :: (cnt > 0) -> {
64 read_a[i]=1; read_a[i]=0; /* line 131 */

65 read_a[l]=1; read_a[l]=0;

66 write_a[i]=1; write_a[i]=0; /* line 132 */

67 write_a[l]=1; write_a[l]=0; /* line 133 */

68 mc=1; /* line 134 */

69 cnt = cnt -1;

70 }
71 :: else-> skip;

72 fi;

73 if /* line 134 */

74 ::((j%sectionSize)==(sectionSize-1)) ->

75 locks[oldlock] = 0; /* line 139 */

76 :: else-> skip; /* line 139 */

77 fi;

78 i = i + THREADS; /* line 144 */

79 if :: (i >= (N*THREADS)) -> /* line 144 */

80 i=((i%(N*THREADS))+1); /* line 146 */

81 :: else-> skip; /* line 146 */

82 fi;

83 if :: (i==((N*THREADS)-1)) -> /* line 146 */

84 i=0; /* line 147 */

85 :: else-> skip; /* line 147 */

86 fi;

87 j=((j+1)%(N*THREADS)); /* line 148 */

88 if :: (j==((N*THREADS)-1)) -> /* line 148 */



89 j=0; /* line 149 */

90 :: else-> skip; /* line 149 */

91 fi;

92 }
93 :: else-> skip;

94 fi;

95 if :: (!done) -> goto L_0;

96 :: else -> skip;

97 fi;

98 atomic{ barr = barr -1; proc=0;}
99 (barr == 0)||(proc == 1)-> proc = 1;

100 barr = barr + 1;

101 (barr == THREADS)||(proc == 0) -> proc = 0;

102 /*line 154 */

103 R: skip;

104 }

Property specification and model checking. We have model checked both data race-freedom and
deadlock-freedom of the model. The property specification is similar to previous examples, where for data
race-freedom we declare bit arrays for read and write operations, and for deadlock-freedom of each thread,
we use a label with a null operation as the last statement (see the label R in Line 103 below). We have
verified the bubble sort for models with 3, 4 and 5 threads, and the region size of 6. The maximum model
checking time is 77.8 seconds for data race-freedom of the instance with 5 threads.

1 #define race (read_t[0] && write_t[0])

2 #define fin0 (main[0]@R)

3 #define fin1 (main[1]@R)

4 #define fin2 (main[2]@R)

7 Case Study: Parallel Data Collection

The Parallel Data Collection (PDC) program gets samples for ITERATION times for a histogram with SIZE
bars. The function foo() in the below UPC code generates the samples based on a non-uniform probability
distribution function, and the array hist contains the histogram. After constructing the histogram, its data
is scaled and averaged in an array representing a discrete form of the signal. Our objective is to ensure
that no data races occur on the shared array hist. The following UPC code is a sliced version of the original
UPC code of PDC where any data objects (and their associated instructions) that are irrelevant to data
race-freedom of hist have been abstracted away.

1 shared [*] int hist[SIZE];

2 int main () {
3 int trial = 1;

4 int i, s;

5 do {
6 // Initialize and compute the histogram.

7 for(i = 0; i<ITERATIONS; ++i) {
8 if (MYTHREAD == (i%THREADS)) {
9 s = foo(SIZE);

10 ++hist[s]; }
11 }
12 upc_barrier;

13 // compute error
14 ++trial;

15 } while (error > EPSILON);

16}

Abstraction and model extraction. UPC-ModEx generates the following model based on the existing
abstraction rules. This is an instance of the model where SIZE= 15 and THREADS= 3. The bit arrays read hist

and write hist (Lines 5-6 below) model read and write accesses to the shared array hist. The c code statement
blocks (see Lines 13, 17, 45 and 53 below) specify that the statements in the block are to be treated as



ANSI C statements. Likewise, c exper (see Lines 20-21) evaluates the expression in the c exper block as a C
expression.

1 #define SIZE 15

2 #define THREADS 3

3 int barr = THREADS;

4 int proc = 0;

5 bit read_hist[15];

6 bit write_hist[15];

7

8 active [THREADS] proctype main() {
9 int cnt = 3;

10 int i; /* mapped */

11 int s; /* mapped */

12 int trial; /* mapped */

13 c_code { trial=1; }; /* line 111 */

14L_1:

15 do /* do-while */

16 :: /* for-loop: */

17 c_code { i=0; }; /* line 121 */

18 L_2:

19 do

20 :: c_expr { (i<2) }; /* line 121 */

21 if :: c_expr{(_pid==(i%THREADS))};
22 /* line 121 */

23 if :: true -> s = 0;

24 :: true -> s = 1;

25 :: true -> s = 2;

26 :: true -> s = 3;

27 :: true -> s = 4;

28 :: true -> s = 5;

29 :: true -> s = 6;

30 :: true -> s = 7;

31 :: true -> s = 8;

32 :: true -> s = 9;

33 :: true -> s = 10;

34 :: true -> s = 11;

35 :: true -> s = 12;

36 :: true -> s = 13;

37 :: true -> s = 14;

38 fi; /* line 124 */

39 read_hist[s] = 1;

40 read_hist[s] = 0;

41 write_hist[s] = 1;

42 write_hist[s] = 0; /* line 124 */

43 :: else; /* line 124 */

44 fi;

45 c_code { ++i; }; /* line 124 */

46 :: else -> break

47 od;

48 atomic{ barr = barr -1; proc=0;}
49 (barr == 0)||(proc == 1)->proc = 1;

50 barr = barr + 1;

51 (barr == THREADS)||(proc == 0)

52 ->proc = 0; /* line 135 */

53 c_code { ++trial; }; /* line 135 */

54 if :: (cnt >= 0) -> cnt = cnt -1;

55 :: else -> break;

56 fi

57 od;

58}

Model checking. The model checking of PDC reveals a data race on the hist array as multiple threads
could simultaneously execute Line 10 in the UPC code (Lines 39 to 42 in the Promela model of PDC) and
cause a race condition.



8 Experimental Results

In order to give a measure of the time cost of model checking, this section presents our experimental results for
the model checking of several real-world UPC programs including the integer permutation program of Figure
3, the Heat Flow program of Figure 6 and the CG program of Figure 7. The platform of model checking
is an HP Tablet PC with an Intel Dual Core Processor T5600 (1.83 GHz) and 1GB memory available for
model checking.
Model checking of integer permutation. We have model checked the integer permutation program of
Figure 3 for data race-freedom and deadlock-freedom, where 3 ≤ THREADS ≤ 5. Verifying data race-freedom
took 0.047 and 5.11 seconds respectively for models with 3 and 4 threads. The model checking of thread
termination needs more time as we spent 0.125 and 12.4 seconds for instances with 3 and 4 threads. Since the
algorithm for the model checking of progress properties is more complex, more time is spent for the verification
of progress properties. SPIN explored 2.7 million states in the model checking of integer permutation for
4 threads. For THREADS= 5, model checking of both data race-freedom and deadlock-freedom took much
longer and eventually failed due to insufficient memory.
Model checking of heat flow. For 3 threads and region size 3, the model checking took 0.8 seconds for
cases where the model satisfied data race-freedom, called the success cases, and 0.171 Sec. for cases where the
model violates the data race-freedom, called the failure cases (e.g., accessing the array cells that are on the
boundary of two neighboring regions). Once a failure is found, SPIN stops and provides a counterexample,
thereby avoiding the exploration of the unexplored reachable states. For this reason, the verification of
failure cases takes less time. For 4 threads and region size 3, model checking took 20.5 seconds for success
cases (i.e., for array cells where no data races occur) and 0.171 for failure cases. For 5 threads, SPIN failed
to give any results due to memory constraints.

To investigate the impact of the region size on the time complexity of model checking, we increased the
region size for the case of THREADS= 3. For 3 threads and region size 4, verification took 2.14 Sec for
success cases, and for 3 threads and region size 5, SPIN verified the model in 5 Sec. The time increase
in failure cases is negligible. Observe that, increasing the number of threads raises the model checking
time exponentially, whereas the region size causes linear increases. This is because increasing the number of
threads exponentially increases the number of reachable states due to the combinatorial nature of all possible
thread interleavings.

In terms of space complexity, SPIN explored 17.1 million states for the model checking of an instance of
the heat flow model with 3 threads and the region size of 11. Nonetheless, for an instance with 4 threads
and region size 3, SPIN explored 6.7 million states. The verification of an instance with 5 threads and the
region size 3 failed due to insufficient memory.
Model checking of CG. For 2 threads, the time spent for the model checking of assertion violation
is negligible. For deadlock-freedom of each thread, SPIN needed 0.015 seconds. The model checking of
assertion violations for 3 and 4 threads respectively required 0.031 and 3.17 seconds and SPIN spent 0.4 and
17.5 for the verification of deadlock-freedom for 3 and 4 threads respectively. The model checking of the CG
model with 5 threads, was inconclusive due to memory constraints. To verify an instance with 4 threads,
SPIN explored almost 3 million states.

9 Conclusions and Future Work

We presented a method (see Figure 1) and a framework, called UPC-SPIN (see Figure 2), for the model
checking of UPC programs. The proposed method requires programmers to create a tabled abstraction file
that specifies how different UPC constructs should be modeled in the Promela [18], which is the modeling
language of the SPIN model checker [3]. Such abstractions are property-dependent in that the abstraction
rules depend on the property of interest (e.g., data race-freedom and deadlock-freedom) against which the
program should be model checked. If either the program or the property of interest changes, then a new set
of abstraction rules should be specified by developers. We presented a set of built-in rules that enable the
abstraction of UPC synchronization primitives in Promela. The UPC-SPIN framework includes a front-end
compiler, called the UPC Model Extractor (UPC-ModEx), that generates finite models of UPC programs,



and a back-end that uses SPIN to verify models of UPC programs for properties of interest. Using UPC-
SPIN, we have verified several real-world UPC programs including parallel bubble sort, heat flow in metal
rods, integer permutation and parallel data collection (see [14] for details). Our verification attempts have
both mechanically verified the correctness of programs and have also revealed several concurrency failures
(i.e., data races and deadlocks/livelocks). For instance, we have detected data races in a program that models
heat flow in metal rods (see Section 4.1). The significance of the heat flow example is in the dynamic nature
of data races that depend on the run-time read/write accesses of different threads to the memory cells of a
shared array. More importantly, we have generated a finite model of a UPC implementation of the Conjugate
Gradient (CG) kernel of the NAS Parallel Benchmarks (NPB) [20], and have mechanically demonstrated
its correctness for data race-freedom and deadlock-freedom. We have illustrated that even though we verify
models of UPC programs with a few threads, it is difficult to manually detect the concurrency failures that
are detected by the UPC-SPIN framework. Moreover, since SPIN exhaustively checks all reachable states of
a model, such failures certainly exists in model instances with larger numbers of threads.

There are several extension to this work. First, we would like to devise abstractions rules for all UPC
collectives and implement them in UPC-ModEx, which is the model extractor of UPC-SPIN. Second, to scale
up the time/space efficiency of model checking, we are currently working on integrating a swarm platform for
model checking [27] in the UPC-SPIN framework so that we can exploit the processing power of computer
clusters for the model checking of UPC applications. Third, we plan to design algorithmic methods that
can provide suggestions for developers as to how a concurrency failure should be fixed without introducing
new design flaws. Last but not least, we believe that a similar approach can be taken to facilitate the model
checking of other PGAS languages.
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