
Computer Science Technical Report

Swarm Synthesis of Convergence for

Symmetric Protocols
Ali Ebnenasir and Aly Farahat

Michigan Technological University

Computer Science Technical Report

CS-TR-11-02

May 2011

Department of Computer Science

Houghton, MI 49931-1295

www.cs.mtu.edu

Swarm Synthesis of Convergence for Symmetric Protocols

Ali Ebnenasir and Aly Farahat

May 2011

Abstract

Due to their increasing complexity, today’s distributed systems are subject to a variety of transient
faults (e.g., loss of coordination, soft errors, bad initialization), thereby making self-stabilization a highly
important property of such systems. However, designing Self-Stabilizing (SS) network protocols is a
complex task in part because a SS protocol should recover to a set of legitimate states from any state
in its state space; i.e., convergence. Once converged, a SS protocol should remain in its set of legitimate
states as long as no faults occur; i.e., closure. The verification of SS protocols is even harder as developers
have to prove the interference-freedom of closure and convergence. To facilitate the design and verification
of SS protocols, previous work proposes techniques that take a non-stabilizing protocol and automatically
add convergence while guaranteeing interference-freedom. Nonetheless, such algorithmic methods must
search an exponential space of candidate sequences of transitions that could be included in a SS protocol.
This paper presents a novel method for exploiting the computational resources of computer clusters and
search diversification towards increasing the chance of success in automated design of finite-state self-
stabilizing symmetric protocols. We have implemented our approach in a software tool that enables an
embarrassingly parallel platform for the addition of convergence. Our tool has automatically synthesized
several SS protocols that cannot be designed by extant automated techniques.

1

1 Introduction

Self-Stabilizing (SS) network protocols have increasingly become important as today’s complex systems
are subject to different kinds of transient faults (e.g., soft errors, loss of coordination, bad initialization).
Nonetheless, design and verification of SS protocols are difficult tasks [1–3] mainly for the following reasons.
First, a SS protocol must converge (i.e., recover) to a set of legitimate states from any state in its state
space (when perturbed by transient faults). Once converged, a SS protocol should remain in its set of
legitimate states as long as no faults occur; i.e., closure. Second, since a protocol includes a set of processes
communicating via network channels, the convergence should be achieved with the coordination of several
processes while each process is aware of only its locality; locality of a process includes a set of processes whose
state is readable by that process. Third, proving the interference-freedom of closure and convergence is a
hard problem. An automated method for augmenting an existing non-stabilizing protocol with convergence
(i.e., adding convergence) facilitates the generation of SS protocols that are correct by construction, thereby
eliminating the need for their proof of correctness. However, while the problem of adding convergence is
known to be in NP [4], we are not aware of any algorithm that adds convergence in polynomial time (in
protocol state space).

Existing automated techniques either present algorithms that add convergence to specific families of non-
stabilizing protocols [2, 5–7] or focus on sound heuristics that add convergence (possibly to a wider range
of protocols) at the expense of completeness [8]. That is, if the heuristics succeed, then the generated
protocol is SS; otherwise, the heuristics declare failure while a SS version of the non-stabilizing protocol
might exist. For instance, Awerbuch-Varghese [2, 5] present compilers that generate SS versions of non-
interactive protocols where correctness criteria are specified as a relation between the input and the output
of the protocol (e.g., given a graph, compute its spanning tree). Furthermore, the input to their compilers is a
synchronous and deterministic non-stabilizing protocol. Abujarad and Kulkarni [6,7] present an algorithmic
method for the addition of convergence to locally-correctable protocols where processes can correct the global
state of the protocol by correcting their local states to a legitimate state without corrupting the state of their
neighbors. By contrast, our previous work [8] provides a family of sound heuristics that add convergence
to non-stabilizing protocols that could be non-locally correctable, interactive and non-deterministic. Each
heuristic is a deterministic strategy for searching an exponential problem space for a SS solution. For
example, in a unidirectional token passing network protocol, there is a unique token in the network that gets
circulated by each process copying it from its predecessor (if the predecessor has the token). Since a process
is aware of only its own state and the state of its predecessor, copying a token may seem like a legitimate local
action. However, in a perturbed global state where multiple tokens exist, a subset of processes may create a
non-terminating sequence of token passing actions amongst themselves (called a non-progress cycle), thereby
preventing global recovery to legitimate states where there is at most one token. We currently have several
heuristics to deal with such cases. For instance, a heuristic randomly prohibits one of the participating
actions in a cycle while another one prohibits all of them and then activates them one by one to check their
impact on other recovery actions taken by other processes. Our experience [8] shows that a heuristic that
succeeds in adding convergence to a protocol may fail to do so for another protocol. Thus, one has to use a
diverse set of heuristics. Moreover, applying the steps of a heuristic in different orders sometimes generates
different results. Thus, the success and failure of adding convergence depends on two major factors: search
strategy and randomization.

This report presents a novel method that adds convergence to finite-state protocols by exploiting search
diversification and parallelism. The proposed method includes three phases. Starting with a non-stabilizing
protocol p and its set of legitimate states I (see Figure 1), the proposed method first partitions ¬I to disjoint
sets of states based on the least number of recovery actions that can recover the state of the protocol from
any state s ∈ ¬I to I, called the rank of s. Thus, Rank j includes all states whose rank is equal to j > 0 (see
Figure 1). States in I have rank 0, and there is no recovery path from states with rank infinity. If all states
in ¬I get a finite rank, then including the corresponding recovery paths in p would generate a protocol pws

that is weakly stabilizing; i.e., from every state in ¬I there exists an execution path that reaches a state in
I [9]. In other words, pws provides an approximation for a SS version of p. If pws does not exist, then p does
not have a SS version. In Phase 2, the proposed method orders each possible recovery action based on the
smallest rank from which that action can be executed, called the rank of the recovery action. For example,

Figure 1: Ranking and approximating stabilization.

the rank of the bold transitions in Figure 1 is 2. The output of Phase 2 is an array Groups whose size is
equal to the number of ranks/partitions of ¬I. Each array element Groups[i] is an ordered list of candidate
recovery actions whose rank is i.

In the third phase, for each i from 1 to the total number of ranks/partitions of ¬I, the proposed method
traverses the ordered list Groups[i] and includes an action A in the stabilizing protocol if and only if A
resolves some deadlock states in ¬I without forming cycles with previously included recovery actions. A
deadlock state has no outgoing transitions (see Figure 1). If cycles are formed, then A is excluded from
the stabilizing protocol and the subsequent actions in the list Groups[i] are similarly considered. If at the
end of the third phase there are still some deadlock states, then we permute the candidate recovery actions
in each Groups[i] and re-do the third phase. This will increase the likelihood of finding a SS version of p
by exploiting randomization. Moreover, we create several parallel instances of the proposed method. Each
instance permutes the actions in each rank until either a solution is found or an upper bound (specified for
the time/space of synthesis) is reached.

We have designed and implemented the proposed approach in a software tool, called the parallel STabi-
lization Synthesizer (pSTSyn). Using pSTSyn, we have generated the SS versions of several symmetric SS
protocols including maximal matching, graph coloring, agreement and leader election on a ring. pSTSyn has
generated new SS protocols that we could not synthesize with extant heuristics (see Section 5).
Organization. Section 2 provides preliminary concepts. Section 3 formulates the problem of adding conver-
gence. Section 4 present a new method that enables the addition of convergence in an embarrassingly parallel
fashion, called the swarm synthesis of convergence. Section 5 demonstrates some case studies synthesized by
pSTSyn and provides the experimental results on time/space efficiency of swarm synthesis. Section 6 makes
concluding remarks and discusses future work.

2 Preliminaries

In this section, we present the formal definitions of finite-state symmetric protocols, our distribution model
(adapted from [4]), convergence and self-stabilization. Protocols are defined in terms of their set of variables,
their transitions and their processes. The definitions of convergence and self-stabilization is adapted from [9–
12]. To simplify our presentation, we use a protocol for 3-coloring on a ring (adapted from [13]) as a running
example.
Symmetric protocols as (non-deterministic) finite-state machines. A symmetric protocol p includes
a finite set of K > 1 similar processes {P0, · · · , PK−1} such that for every pair of processes Pi and Pj , where
0 ≤ i, j ≤ K − 1, the code of Pj can be obtained from Pi by a simple renaming (re-indexing) of variables,
and vice versa [14]. As such, the protocol p can be identified by a representative process Pr that captures the
functionalities of the symmetric processes. The representative process Pr is a tuple 〈Vr , Rr,Wr, δr〉, where
Vr is a finite set {v0, · · · , vN−1} of N variables. The set of variables of p, denoted Vp, is the union of Vr, for

0 ≤ r ≤ K − 1. All variables in Vr (also denoted Rr) are readable for Pr, and Wr is a subset of Vr that Pr is
allowed to write. Each variable vi ∈ Vr, for 0 ≤ i ≤ N−1, has a finite non-empty domain Di. The local state
of Pr is a unique valuation of the variables in Vr. The global state of p is a snapshot of the local states of Pr

for 0 ≤ r ≤ K − 1. For brevity, we use the terms state and global state interchangeably throughout the paper.
The state space of p, denoted Sp, is the set of all possible states of p, and |Sp| denotes the size of Sp. The
locality/neighborhood of Pr is determined by Rr, which also defines the underlying communication topology
of p. For a variable v and a state s, v(s) denotes the value of v in s. A transition t is an ordered pair of
states, denoted (s0, s1), where s0 is the source and s1 is the target/destination state of t. δr represents the
set of transitions of Pr (0 ≤ r ≤ K − 1). Moreover, δp is the union of δr for 0 ≤ r ≤ K − 1. We use p and δp
interchangeably. A state predicate is any subset of Sp specified as a Boolean expression over variables of Vp.
We say a state predicate X holds in a state s (respectively, s ∈ X) if and only if (iff) X evaluates to true at
s.

We use Dijkstra’s guarded commands language [15] as a shorthand for representing the set of transitions
of Pr (i.e., δr). A guarded command (i.e., action) is of the form L : grd → stmt, where L is a label, grd
is a Boolean expression in terms of variables in Vr and stmt is a statement that updates variables of Wr

atomically. Formally, an action grd → stmt includes a set of transitions (s0, s1) such that grd holds in s0
and the atomic execution of stmt results in state s1. An action grd → stmt is enabled in a state s iff grd
holds at s. The process Pr is enabled in s iff there exists an action of Pr that is enabled at s.

Example: Three Coloring (TC). The Three Coloring (TC) protocol (adapted from [13]) has K processes located
on a ring. The representative process Pr has a variable cr with a domain Dr = {0, 1, 2} representing three
distinct colors that can be assigned to cr. Thus, we have VTC = {c0, · · · , cK−1} and the state space of TC,
denoted STC , has 3K states. Process Pr can read and write cr, but it can only read the colors of its left
and right neighbors. That is, Rr = {cr−1, cr, cr+1} and Wr = {cr}. The representative process includes the
following action (addition and subtraction are performed in modulo K):

Ar : (cr = cr−1) ∨ (cr = cr+1) → cr := other(cr−1, cr+1)

If the color of Pr is equal to any of its neighbors, then Pr sets cr to a color different from both of its
neighbors. The function other(x, y) non-deterministically returns either (x + 1) mod 3 or (x + 2) mod 3 if
x = y. Otherwise, other(x, y) returns the third remaining value. C

Effect of distribution on protocol representation. Every transition of Pr belongs to a group of tran-
sitions due to the inability of Pr in reading variables that are not in Rr (0 ≤ r ≤ K − 1). Consider two
processes P1 and P2 each having a Boolean variable that is not readable for the other process. That is,
P1 (respectively, P2) can read and write x1 (respectively, x2), but cannot read x2 (respectively, x1). Let
〈x1, x2〉 denote a state of this protocol. Now, if P1 writes x1 in a transition (〈0, 0〉, 〈1, 0〉), then P1 has to
consider the possibility of x2 being 1 when it updates x1 from 0 to 1. As such, executing an action in which
the value of x1 is changed from 0 to 1 is captured by the fact that a group of two transitions (〈0, 0〉, 〈1, 0〉)
and (〈0, 1〉, 〈1, 1〉) is included in P1. In general, a transition is included in the set of transitions of a pro-
cess if and only if its associated group of transitions is included. Formally, any two transitions (s0, s1) and
(s′0, s

′

1) in a group of transitions formed due to the read restrictions of Pr, meet the following constraints:
∀v : v ∈ Rr : (v(s0) = v(s′0)) ∧ (v(s1) = v(s′1)) and ∀v : v /∈ Rr : (v(s0) = v(s1)) ∧ (v(s′0) = v(s′1)).

Due to read restrictions Rr, we represent Pr as a set of transition groups {gr1, gr2, · · · , grl}, where l ≥ 1.
Due to write restrictions Wr, no transition group gri (1 ≤ i ≤ l) includes a transition (s0, s1) that updates a
variable v /∈Wr (It is known that the total number of groups is polynomial in |Sp| [4]). W (Pr) denotes the
set of transition groups that adhere to the read/write restrictions of Pr.

TC Example. Consider a transition t = (s0, s1) of Pr such that cr−1(s0) = 0, cr(s0) = 0, cr+1(s0) = 1 and
cr−1(s1) = 0, cr(s1) = 2, cr+1(s1) = 1. That is, the transition t changes the value of cr from 0 to 2.
Transition t is associated with a group of 3K−3 transitions because Pr cannot read the values of K − 3
variables, where each could take three values. C

Computations and execution semantics. A computation of a protocol p is a sequence σ =� s0, s1, · · · �
of states that satisfies the following conditions: (1) for each transition (si, si+1) (i ≥ 0) in σ, there exists an
action grd→ stmt in some process Pj (0 ≤ j ≤ K − 1) such that grd holds at si and the execution of stmt
at si yields si+1, and (2) σ is maximal in that either σ is infinite or if it is finite, then σ reaches a state sf

where no action is enabled. In other words, a computation is generated by a nondeterministic interleaving
of actions. A computation prefix of a protocol p is a finite sequence σ =� s0, s1, · · · , sm � of states, where
m ≥ 0, such that each transition (si, si+1) in σ (0 ≤ i < m) belongs to some action grd → stmt in Pr for
some 0 ≤ r ≤ K − 1. The projection of a protocol p on a non-empty state predicate X , denoted as δp|X , is
a protocol with the set of transitions {(s0, s1) : (s0, s1)∈δp ∧ s0, s1∈X}. In other words, δp|X consists of
transitions of p that start in X and end in X .
Closure. A state predicate X is closed in an action grd → stmt iff executing stmt from any state s ∈
(X ∧ grd) results in a state in X . We say a state predicate X is closed in a protocol p iff X is closed in every
action of p. In other words, closure [9] requires that every computation that starts in I remains in I.

TC Example. The state predicate Icolor captures the set of states in which any two neighboring processes have
different colors. Formally, Icolor is equal to ∀r : 0 ≤ r ≤ K − 1: (cr 6= cr+1), which is an abbreviation of the
state predicate {s | (s ∈ STC) ∧ (∀r : 0 ≤ r ≤ K − 1: (cr(s) 6= cr+1(s)))}. The predicate Icolor is closed in
the protocol TC since no action is enabled in Icolor. As such, we call TC a silent protocol in Icolor. C

Convergence and self-stabilization. Let I be a state predicate. We say that a protocol p strongly con-
verges to I iff from any state, every computation of p reaches a state in I. A protocol p weakly converges to I
iff from any state, there exists a computation of p that reaches a state in I. A protocol p is strongly (respec-
tively, weakly) self-stabilizing to a state predicate I iff (1) I is closed in p and (2) p strongly (respectively,
weakly) converges to I.

Let sd ∈ ¬I be a state with no outgoing transitions; i.e., a deadlock state. Moreover, let σ =�
si, si+1, · · · , sj, si � be a sequence of states outside I, where j ≥ i and each state is reached from its
predecessor by the transitions in δp. The sequence σ denotes a non-progress cycle. Since adding strong
convergence involves the resolution of deadlocks and non-progress cycles, we restate the definition of strong
convergence as follows:
Proposition 2.1. A protocol p strongly converges to I iff there are no deadlock states in ¬I and no non-
progress cycles in δp | ¬I.

TC Example. In any state outside Icolor there must be two processes that have the same colors. Thus, there is
at least one enabled action in any state in ¬Icolor. That is, there are no deadlock states in ¬Icolor. Moreover,
since action Ar assigns a color different from both neighbors, correcting the state of Pr does not corrupt the
state of its neighbors. As such, no cycles are formed in ¬Icolor. Thus, TC is strongly stabilizing to Icolor. C

3 Problem Statement

Consider a non-stabilizing symmetric protocol p with a representative process Pr = 〈Vr, Rr,Wr, δr〉 and a
state predicate I closed in p. Our objective is to generate a strongly stabilizing version of p, denoted pss, by
adding convergence to I while preserving the symmetry. We assume that p is correct as far as its original
specification is concerned. Accordingly, we require that, in the absence of transient faults, the behaviors of
pss from any state in I remain the same as p. With this motivation, during the addition of convergence to
p, no states (respectively, transitions) are added to or removed from I (respectively, δp|I). This way, the
behaviors of pss are exactly the same as p’s starting from any state inside I. Moreover, if pss starts in a
state outside I, pss will provide strong convergence to I.

Problem 3.1: Adding Convergence

• Input: (1) a symmetric protocol p with a representative process Pr = 〈Vr, Rr,Wr, δr〉 and K processes,
and (2) a non-empty state predicate I such that I is closed in p.

• Output: A symmetric protocol pss with a representative process Prss = 〈Vr, Rr,Wr, δrss〉 and K
processes such that the following constraints are met: (1) I is unchanged; (2) (δrss 6= ∅)∧(δpss

|I = δp|I),
and (3) pss is strongly self-stabilizing to I. �

Comment. While in this report we focus on cases where the state space of pss is the same as that of p, for
the expansion of state space new variables can be manually introduced in the non-stabilizing protocol to
generate an input instance of Problem 3.1. Moreover, we assume that the transition groups of p exclude
transitions that form non-progress cycles in ¬I. Otherwise, resolving such cycles would violate the constraint

Figure 2: Overview of swarm synthesis of convergence.

δpss
|I = δp|I. Our ongoing work investigates the case where constraints (1) and (2) on the output can be

relaxed towards finding a SS version of p (which is outside the scope of this report).

4 A Method for Swarm Synthesis

In this section, we present a method for adding convergence to symmetric protocol by exploiting search diver-
sification and parallelism. The proposed approach enables the addition of convergence in an embarrassingly
parallel fashion, called swarm synthesis. To solve Problem 3.1, the proposed method (see Figure 2) includes
three phases, namely Rank and Approximate, Order Recovery Groups and Spawn Synthesizers. These three
phases are initiated by the Main component. Figure 2 illustrates an overview of the proposed method.
Phase 1: Rank and Approximate. In the rank-and-approximation phase (see Figures 2 and 3), we
compute the rank of every state s in ¬I, where Rank(s) is the length of the shortest computation prefix from
s to some state in I (see Figure 1). The computation prefixes are formed only with the transition groups of
WPr (see Line 1 of Figure 3). Note that Rank(s) = 0 iff s ∈ I. Moreover, if Rank(s) =∞, then there is no
computation prefix from s that reaches a state in I. If each state s ∈ ¬I has a finite rank, then including
the computation prefixes originated at s would result in a weakly stabilizing version of p. (Please see [8] for
a formal proof of correctness.) NumRanks denotes the total number of ranks.

Algorithm 1: Main

Input : NumThreads, NumProcesses: integer, Pr: set of representative
groups, I: set of states

Output: Prss : set of representative groups, success: boolean,Groups[..]:
array of vectors of transition groups, RankSize[..]: array of
integers (number of groups in each rank), NumRanks: integer

1 Groups, NumGroups, RankSize, NumRanks ←
Rank-Approximate-Order(W(Pr), I, NumProcesses);

2 foreach 0 ≤ Thd < NumThreads do
3 Prss , success ←Looper(Thd, Pr, I, NumProcesses, Groups,

NumGroups, RankSize, NumRanks);

4 return;

Figure 3: The ‘Main’ routine.

Phase 2: Order Recovery Groups. This phase of the proposed method takes the ranks generated by

Phase 1 and computes a partial order of all candidate Recovery Transition Groups (RTGs), where a candidate
RTG is a transition group that excludes any transition starting in I. We say that the rank of an RTG g is
i > 0 iff i is the smallest rank from where g includes a rank decreasing transition (s0, s1) such that Rank(s1) <
Rank(s0). Using such a ranking of RTGs, we generate a partial order of RTGs as an array of vectors, denoted
Groups[], where Groups[i] is an ordered list of all RTGs whose rank is i (see Line 1 of Figure 3). The array
RankSize has NumRanks elements, where RankSize[i] contains the number of RTGs whose rank is i; i.e., size
of Groups[i] (see Line 1 of Figure 3).
Phase 3: Spawn Synthesizers. After creating a partial order of RTGs based on the ranks, the Main

routine spawns a fixed number of Looper threads (see Lines 2-3 of Figure 3). Each Looper thread randomly
reorders the RTGs of each rank (using the ShuffleGroups routine in Figure 4) and invokes the AddConvergence

routine in an iterative fashion (see the for-loop in Figure 4). The ShuffleGroups routine generates permutations
that depend upon the ThreadIndex of that Looper and the iteration i of the for-loop in Figure 4, thereby
ensuring that different Loopers explore different permutations. Once a Looper thread succeeds in synthesizing
a SS protocol, a termination signal is sent to all the Loopers.

Algorithm 2: Looper

Input : ThreadIndex, NumProcesses, NumRanks, NumGroups: integer,
Pr : set of representative groups, I: set of states,
Groups[NumRanks]: array of vectors, RankSize: array of integers

Output: Prss : set of representative groups, success: boolean

1 success ← false; Prss ← Pr;
2 for i← 0 to NumGroups-1 do
3 Groupsinterm ← ShuffleGroups(Groups, RankSize[..],

NumRanks,ThreadIndex, i);
4 successinterm, Pinterm ←AddConvergence(Pr, I, NumProcesses,

Groupsinterm);
5 if (successinterm = true) then
6 Prss ← Pinterm;
7 success ← true;
8 return;

9 return;

Figure 4: The Looper routine.

The AddConvergence (see Figure 5) routine takes a representative process Pr, a state predicate I that
is closed in the symmetric protocol represented by Pr, the number of processes, and the partial order of
RTGs in the array Groups[]. The objective of AddConvergence is to check whether or not convergence can be
designed by incremental inclusion of RTGs of Groups[i] in order, for 1 ≤ i ≤ NumRanks (see the for-loops

in Lines 4-5 of Figure 5). Initially, we assign Pr to a representative process Prss that is updated during the
inclusion of RTGs (Line 1 in Figure 5). The Unfold routine instantiates Prss for all 0 ≤ r ≤ NumProcess to
generate the transition system of an intermediate synthesized protocol pinterm. Starting from Groups[1], an
RTG g is included iff g resolves some deadlock states in ¬I and the inclusion of g preserves the cycle-freedom
of transitions starting in ¬I (Lines 6-9 in Figure 5). We reuse a symbolic cycle detection algorithm due
to Gentilini et al. [16] that we have implemented in the DetectCycles routine (see Line 8 in Figure 5). If an
RTG creates a cycle, then we skip its inclusion and check the feasibility of including the next RTG in the
list Groups[1]. Upon the inclusion of an RTG in Prss (Line 9), we unfold the structure of Prss to update the
intermediate protocol pinterm, which will be used to recalculate the deadlock states (Lines 10-11 in Figure
5).

After all RTGs in Groups[1] are checked for inclusion, then we respectively perform the same analysis on
the RTGs in Groups[2], Groups[3], · · · , Groups[NumRanks]. The success of adding convergence depends upon
the order based on which RTGs of each Groups[i] are included. As such, a different order of traversing the
RTGs of Groups[i] might provide a different result. To increase the likelihood of generating a solution, the
Looper threads generate a new random permutation of the RTGs in Groups[] before invoking AddConvergence.

Theorem 4.1 AddConvergence is sound and has a polynomial-time complexity in |Sp|.
Proof. If AddConvergence declares success by returning a solution, then its exit point is Line 14 and this
is only possible if Deadlocks=∅. In Line 11, Deadlocks is assigned the set of deadlocks of pinterm. Lines

Algorithm 3: AddConvergence

Input : Pr: set of transition groups, I: set of states, NumProcesses:
integer, Groups[NumRanks]: array of vectors of groups

Output: Prss : set of transition groups, success: boolean

1 Prss ← Pr ;
2 pinterm ← Unfold(Prss, NumProcesses) ; /* generates the whole

transition system by instantiating Prss for all processes */

3 Deadlocks ←
{s : (s ∈ ¬I) ∧ (∀g, s1, s2 : g ∈ pinterm ∧ (s1, s2) ∈ g ∧ (s1 6= s)};

4 for i← 1 to NumRanks do
5 for j ← 1 to RankSize[i] do
6 Pre ← {s: ∃(s1, s2) : (s1, s2) ∈ Groups[i][j] ∧ (s1 = s)};
7 if Pre ∩ Deadlocks 6= ∅ then
8 if DetectCycles(pinterm,Groups[i][j])=false then

/* Detects cycles created due to including the

transition group Groups[i][j] */

9 Prss ← Prss∪ Groups[i][j];
10 pinterm ← Unfold(Prss, NumProcesses);
11 Deadlocks ← {s : (s ∈ ¬I) ∧ (∀g, s1, s2 : g ∈

pinterm ∧ (s1, s2) ∈ g ∧ (s1 6= s)};
12 if Deadlocks = ∅ then
13 success ← true;
14 return;

15 success ← false;
16 return;

Figure 5: The AddConvergence routine.

9-11 are executed iff the inclusion of the last candidate transition group does not cause non-progress cycles.
Consequently, pinterm has no cycles and no deadlocks. Thus, Prss represents a symmetric protocol that has
no deadlocks and is cycle-free in ¬I; i.e., Prss represents a self-stabilizing symmetric protocol (see Proposition
2.1).

The nested for-loop in AddConvergence runs for at most the number of all possible groups in a process.
Kulkarni and Arora show that the total number of groups is polynomial in |Sp|. Moreover, we use Gentilini
et al.’s [16] algorithm for symbolic cycle detection. The time-complexity of this algorithm is linear in |Sp|
too. �

5 Case Studies

In this section, we present some of the case studies that we have conducted with pSTSyn, which is a software
tool that implements the proposed swarm synthesis method. The implementation of pSTSyn is in C++ and
we use Binary Decision Diagrams (BDDs) [17] to represent state and transition predicates in memory. We
have deployed pSTSyn on a computer cluster with 24 nodes, where each node is an Intel(R) Xeon(R) CPU
5120 @ 1.86GHz (4 cores) with 4GB RAM and the Linux operating system (kernel 2.6.9-42.ELsmp). The
Looper threads are created using the MPICH2-1.3.2p1 run-time system. Section 5.1 discusses how swarm
synthesis simultaneously generates multiple solutions of a Maximal Matching protocol that would have been
impossible to generate with existing approaches. Section 5.2 presents a SS agreement protocol, and Section
5.3 provides an alternative solution for leader election on a ring. The 3-cloring SS protocol presented in
Section 2 is different from the manually-designed 3-coloring protocol in [13].

5.1 Maximal Matching

The Maximal Matching (MM) protocol (adapted from [13]) has K > 3 processes {P0, · · · , PK−1} located
on a ring, where P(i−1) and P(i+1) are respectively the left and right neighbors of Pi, and addition and
subtraction are in modulo K (1 ≤ i < K). The left neighbor of P0 is PK−1 and the right neighbor of PK−1 is
P0. Each process Pi has a variable mi with a domain of three values {left, right, self} representing whether

or not Pi points to its left neighbor, right neighbor or itself. Process Pi is matched with its left neighbor
P(i−1) (respectively, right neighbor P(i+1)) iff mi = left and m(i−1) = right (respectively, mi = right and
m(i+1) = left). When Pi is matched with its left (respectively, right) neighbor, we also say that Pi has a left
match (respectively, has a right match). Each process Pi can read the variables of its left and right neighbors.
Pi is also allowed to read and write its own variable mi. The non-stabilizing protocol is empty; i.e., does
not include any transitions. Our objective is to automatically generate a strongly stabilizing protocol that
converges to a state in IMM = ∀i : 0 ≤ i ≤ K − 1 : LCi, where LCi is a local state predicate of process Pi

as follows

LCi ≡ (mi = left⇒ m(i−1) = right) ∧ (mi =right⇒ m(i+1) =left)∧
(mi =self ⇒ (m(i−1) = left ∧ m(i+1) =right))

In a state in IMM , each process is in one of these states: (i) matched with its right neighbor, (ii) matched
with left neighbor or (iii) points to itself, and its right neighbor points to right and its left neighbor points to
left. The MM protocol is silent in that after stabilizing to IMM , the actions of the synthesized MM protocol
should no longer be enabled. Figure 6 illustrates a new solution to the MM problem synthesized by pSTSyn.
For example, action Bself,1 means that a process sets mi to self if it is not pointing to itself, its left neighbor
points to left and its right neighbor points to right. Other actions can be interpreted similarly.

Pi: Bself,1: (mi−1=left) ∧ (mi 6=self) ∧ (mi+1=right) −→ mi:=self

Bleft,1: (mi−1 6=left) ∧ (mi=self) ∧ (mi+1 =self) −→ mi:=left

Bleft,2: (mi−1=right) ∧ (mi 6=left) ∧ (mi+1=right) −→ mi:=left

Bleft,3: (mi−1=right)∧(mi=right)∧(mi+1 6=right) −→ mi:=left

Bright,1: (mi=self)∧(mi+1=left) −→ mi:=right

Bright,2: (mi−1 6=right)∧(mi=left)∧(mi+1 6=right) −→ mi:=right

Bright,3: (mi−1=left)∧(mi 6=right)∧(mi+1 6=right) −→ mi:=right

Figure 6: Synthesized self-stabilizing Maximal Matching

The Appendix includes three more solutions of the MM problem (generated by pSTSyn). The diversity of
solutions we have generated demonstrates the effectiveness of exploiting search diversification and parallelism
in automating the design of self-stabilization. We have synthesized the protocol in Figure 6 for 5 ≤ K ≤
14. Figures 7 and 8 respectively represent the time and space costs of synthesis, where memory costs are
represented in terms of BDD nodes. Notice that pSTSyn synthesizes the SS version of MM in less than 10
minutes. While the ranking time is significant, it is performed only once as a preprocessing phase. Figure
8 demonstrates that as we scale up the number of processes the space cost of cycle detection becomes
a bottleneck due to the large size of BDDs. We are currently working on more efficient cycle detection
methods.

���������������������������
� � � � � � � � � 	 �� �� �� �� �� ��
��������������� � �� ����� � !�!

Execution Time of Matching "#$%&$' (&)*+,-.* /*0*-0&1$ (&)*2,$03*4&4 (&)*
Figure 7: Time spent for adding convergence to matching
versus the number of processes

56555755585559555:5555:6555
5 : 6 ; 7 < 8 = 9 > :5 :: :6 :; :7 :<?@ABCCD@EFG H IJ KLIMNOONO PKP

Memory Usage of Matching QRSTU VUWUSWXYZ [\]SU[RZW^U_X̀ Ua bcYWYSYT[\]SU
Figure 8: Space usage for adding convergence to matching
versus the number of processes

5.2 Agreement

We present a symmetric protocol on a bidirectional ring where the processes need to agree on a specific
value: from an initial arbitrary state, all the variables should eventually be equal to one another. The ring

has K processes Pi (0 ≤ i ≤ K−1). Each process Pi can write its local variable ai where ai ∈ {0, · · · , L−1}.
Each process Pi can read its left ai−1, right ai+1 and its own variable ai (operations on process and variable

indices are modulo K). The set of legitimate states is Iagreement =
∧i=K−1

i=1 (ai−1 = ai). The protocol is not
locally correctable: the establishment of ai−1 = ai by an action of Pi can invalidate ai = ai+1. This fact
complicates the search for a solution with similar processes. Nonetheless, pSTSyn generates the following
protocol with 6 processes from an empty protocol.

Pi: Aamt,1: (ai >ai−1)∨(ai >ai+1) −→ ai:=min(ai−1,ai+1)

Figure 9: Self-Stabilizing agreement protocol.

Figures 10 and 11 respectively illustrate the impact of the domain size of ai values (denoted L) on
time/space efficiency of synthesis. (|P | denotes the number of processes.) Notice that synthesis time grows
slowly (note the scale of the y axe in Figure 10), whereas memory costs increase exponentially as we increase
the domain of ai. The reason behind this is that the size of transition groups (respectively, the size of BDDs
representing them) increases, thereby raising the number of cycles and the time needed for cycle detection
exponentially.

ddefdegdehdeijjefjegjehjei
d j f k g l h mnopqrstuvwtxpyz{| }~��~���� ���~�� ���� ���
Execution Times of Agreement |P|=6 ������� ��������� ��������� ������������� ����

Figure 10: Time spent for adding convergence to agree-
ment versus the size of the variable domain

� ��¡���¡ ��¢���¢ ��£���£ ��¤���
� ¡ ¢ £ ¤ ¥ ¦§̈©ª««¬̈®̄ °±²³±´µ¶· ¸¹º±³» ¼³½¶ ¾̧ ¾
Memory Usage of Agreement |P|=6 ¿ÀÁÂÃ ÄÃÅÃÁÅÆÇÈ ÉÊËÁÃÉÀÈÅÌÃÍÆÎÃÏ ÐÑÇÅÇÁÇÂÉÊËÁÃ

Figure 11: Space usage for adding convergence to agree-
ment versus the size of the variable domain

Keeping the domain size constant (equal to 3), we can scale up the synthesis up to 22 processes (see
Figures 12 and 13). We observe that the super linear jump in the synthesis time is due to the thrashing
phenomenon when the BDD sizes go beyond a threshold and secondary memory has to be used. (|D| denotes
the domain size of ai.)

ÒÓÒÔÒÕÒÖÒ×Ò
ØÒÙÒÚÒ

Ò Ô Ö Ø Ú ÓÒ ÓÔ ÓÖ ÓØ ÓÚ ÔÒ ÔÔ ÔÖÛÜÝÞßàáâãäáåÝæçèé ê ëì íîëïðññðñ
Execution Times of Agreement|D|=3 òóôõöô÷ øöùúûüýþú ÿú�úý�ö�ô øöùú�üô��ú�ö� øöùú

Figure 12: Time spent for adding convergence to agree-
ment versus the number of processes

�������������������������	����
� �
 � � �� �� �
 �� �� �� �� �
���������� � �� ���������

Memory Usage of Agreement |D|=3 �� !" #$% "#�&'(")*"+ ,-./-%0#$% "
Figure 13: Space usage for adding convergence to agree-
ment versus the number of processes

5.3 Leader Election

We synthesize a Leader Election (LE) protocol adopted from Huang et. al. [18]. LE is defined over a
bidirectional ring with K processes. Each process Pi has a variable xi ∈ {0, 1, ...,K − 1} (0 ≤ i ≤ K − 1)
where xi is an identifier for Pi. A stable state is such that xi uniquely identifies Pi. The set of legitimate
states for LE is defined as Ileader = ∀i : 0 ≤ i ≤ K − 1 : ((xi − xi−1) = (xi+1 − xi)), where K is a prime
value and additions/subtractions of variables and indices are modulo K. For a composite K, Huang et.

al. demonstrate the impossibility of having a SS protocol. Given Ileader and an empty input protocol p,
pSTSyn synthesizes the solution in [18] up to 5 processes. pSTSyn also synthesizes an alternative solution
demonstrated in Figure 14 in almost 27 seconds; however, synthesis for K = 7 failed due to space complexity.

Pi: Aneq,1: (xi−1 6=xi+1) ∧ ¬((xi−1=0 ∧ xi+1=1)
∨ (xi−1=4 ∧ xi=0 ∧ xi+1=2)
∨ (xi−1=2 ∧ xi=3 ∧ xi+1=0)
∨ (xi−1=0 ∧ (xi=2 ∨ xi=3) ∧ xi+1=2)
∨ (xi−1=4 ∧ (xi=1 ∨ xi=3) ∧ xi+1=0)
∨ (xi−1=0 ∧ (xi=1 ∨ xi=4) ∧ xi+1=4)
∨ (xi−1=3 ∧ xi=4 ∧ xi+1=1)
∨ (xi−1=1 ∧ (xi=1 ∨ xi=3 ∨ xi=4) ∧ xi+1=3))

−→ xi:=
xi−1+xi+1

2

Aeq,0: (xi−1=xi+1) ∧ ((xi−1=3 ∧ xi=3)
∨ (xi−1=4 ∧ (xi=1 ∨ xi=3 ∨ xi=4))

−→ xi:=0

Aeq,1: (xi−1=xi+1) ∧ ((xi−1=0 ∧ ((xi=0 ∨ xi=4)
∨ (xi−1=2 ∧ xi=2)))

−→ xi:=1

Aeq,2: (xi−1=xi+1) ∧ ((xi−1=1 ∧ (xi=0∨xi=1))
−→ xi:=2

Aeq,3: (xi−1=xi+1) ∧ ((xi−1=3 ∧ xi=2)
∨ (xi−1=2 ∧ (xi=1 ∨ xi=4))

−→ xi:=0
Aeq,4: (xi−1=xi+1) ∧ ((xi−1=1 ∧ xi=3)

∨ (xi−1=3 ∧ xi=1))
−→ xi:=4

Figure 14: A new self-stabilizing protocol for Leader Election on a ring.

6 Conclusions and Future Work

We presented a swarm synthesis method that exploits search diversification and parallelism to add conver-
gence to non-stabilizing symmetric protocols. A symmetric protocol includes a set of processes with similar
functionalities where the code of a process can be obtained from the code of another by a simple re-indexing
of variables [14]. While the problem of adding convergence to non-stabilizing protocols is known to be in
NP, we are not aware of any algorithm that adds convergence in polynomial-time (in protocol state space).
We conjecture that adding convergence is most likely a hard problem due to the exponential number of the
combinations of recovery actions that could resolve deadlocks without creating non-progress cycles in the
set of illegitimate states of the protocol. Existing methods [7,8] for adding convergence perform a sequential
search in the state space of non-stabilizing protocols to synthesize necessary convergence actions that result
in a Self-Stabilizing (SS) version of the non-stabilizing protocol. However, such techniques often search
only a part of the problem space due to their sequential nature, thereby resulting in premature failures in
finding a SS protocol. The main contribution of the proposed approach is to increase the chance of success
in automated design of self-stabilization by exploiting search diversification (through randomization) and
parallelism. Specifically, we first make an approximation of stabilization by assigning a rank to any state s
based on the least number of actions that can recover the protocol to a legitimate state from s. Using such
ranking, we create a partial order of recovery actions, thereby assigning a rank to each candidate recovery
action. Then, we make an ordered list of all recovery actions in the same rank. Subsequently, we instantiate
several threads in an embarrassingly parallel fashion, where each thread investigates the addition of conver-
gence based on a distinct order of recovery actions in each rank. This way, each thread searches a portion
of problem space for SS protocol. We have designed and implemented a software tool, called the parallel
STabilization Synthesizer (pSTSyn), that has automatically generated new solutions for several well-known
protocols such as maximal matching, graph coloring, agreement and leader election on a ring. To the best

of our knowledge, pSTSyn is the first tool that enables swarm synthesis of convergence.
There are several extensions to this work that we would like to investigate. First, we plan to devise

a method for swarm synthesis of convergence for asymmetric protocols. Second, we will investigate how
pSTSyn can be used for adding convergence to protocols with dynamic topologies (e.g., overlay networks).
The design of protocols with dynamic topologies is especially challenging as the locality of each process may
change, thereby changing the transition groups that are created due to different scope of readability for
processes. As a result, in a dynamic network, for each state of the network topology we have a distinct set
of transition groups that form the transition system of the protocol. Parallelism can be especially beneficial
in tackling this problem. Finally, we are currently investigating how we can use alternative solutions for a
protocol to synthesize a generic solution for arbitrary number of processes.

References

[1] M. G. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions on Computers,
40(4):448–458, 1991.

[2] G. Varghese. Self-stabilization by local checking and correction. PhD thesis, MIT/LCS/TR-583, 1993.

[3] A. Arora, M. Gouda, and G. Varghese. Constraint satisfaction as a basis for designing nonmasking
fault-tolerant systems. Journal of High Speed Networks, 5(3):293–306, 1996. A preliminary version
appeared at ICDCS’94.

[4] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 82–93, London, UK, 2000. Springer-Verlag.

[5] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In
Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, pages 268–277,
1991.

[6] Fuad Abujarad and Sandeep S. Kulkarni. Multicore constraint-based automated stabilization. In 11th
International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 47–61,
2009.

[7] Fuad Abujarad and Sandeep S. Kulkarni. Automated constraint-based addition of nonmasking and
stabilizing fault-tolerance. Journal of Theoretical Computer Science, 258(2):3–15, 2011. In Press.

[8] Ali Ebnenasir and Aly Farahat. A lightweight method for automated design of convergence. In Pro-
ceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
219–230, 2011.

[9] M. Gouda. The theory of weak stabilization. In 5th International Workshop on Self-Stabilizing Systems,
volume 2194 of Lecture Notes in Computer Science, pages 114–123, 2001.

[10] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974.

[11] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering, 19(11):1015–1027, 1993.

[12] M. Gouda. The triumph and tribulation of system stabilization. In Jean-Michel Helary and Michel
Raynal, editors, Distributed Algorithms, (9th WDAG’95), volume 972 of Lecture Notes in Computer
Science (LNCS), pages 1–18. Springer-Verlag, Le Mont-Saint-Michel, France, September 1995.

[13] Mohamed G. Gouda and Hrishikesh B. Acharya. Nash equilibria in stabilizing systems. In 11th In-
ternational Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 311–324,
2009.

[14] E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal methods in system design,
9(1):105–131, 1996.

[15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.

[16] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected components in a linear number
of symbolic steps. In the 14th Annual ACM-SIAM symposium on Discrete algorithms, pages 573–582,
2003.

[17] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions On
Computers, 35(8):677–691, 1986.

[18] Shing-Tsaan Huang. Leader election in uniform rings. ACM Transactions on Programming Languages
and Systems (TOPLAS), 15:563–573, July 1993.

7 Appendix: Alternative Self-Stabilizing Solutions for Maximal

Matching

In addition to the SS maximal matching protocol presented in Section 5.1, pSTSyn also synthesized three
other SS protocols as follows:

Pi: Aself,1: (mi−1=left) ∧ (mi+1=right) ∧ (mi 6=self) −→ mi:=self

Aself,2: (mi−1=left) ∧ (mi+1=self) ∧ (mi 6=self) −→ mi:=self

Aself,3: (mi−1 6=right) ∧ (mi+1=right) ∧ (mi=right) −→ mi:=self

Aright,1: (mi−1 6=right)∧(mi 6=right)∧(mi+1=left) −→ mi:=right

Aleft,1: (mi−1 6=left)∧(mi 6=left)∧(mi+1 6=left)
∧¬((mi−1=left) ∧ (mi=right) ∧ (mi+1=right))−→ mi:=left

Figure 15: An alternative solution to Maximal Matching

Pi: Cself,1: (mi−1=left) ∧ (mi 6=self) ∧ (mi+1=right) −→ mi:=self

Cself,2: (mi−1=left) ∧ (mi=left) ∧ (mi+1 6=left) −→ mi:=self

Cself,3: (mi−1 6=right) ∧ (mi=left) ∧ (mi+1=right) −→ mi:=self

Cleft,1: (mi−1=right) ∧ (mi 6=left) ∧ (mi+1 6=left) −→ mi:=left

Cleft,2: (mi−1=right) ∧ (mi=self) −→ mi:=left

Cleft,3: (mi−1 6=left)∧(mi=right)∧(mi+1=right) −→ mi:=left

Cright,1: (mi−1 6=right)∧(mi 6=right)∧(mi+1=left) −→ mi:=right

Cright,2: (mi−1 6=right)∧(mi=self)∧(mi+1 6=right) −→ mi:=right

Figure 16: An alternative solution to Maximal Matching

Pi: Dself,1: (mi−1=left) ∧ (mi 6=self) ∧ (mi+1 6=left) −→ mi:=self

Dleft,1: (mi−1=right) ∧ (mi 6=left) ∧ (mi+1 6=left) −→ mi:=left

Dleft,2: (mi−1=right) ∧ (mi=right) −→ mi:=left

Dleft,3: (mi−1 6=left)∧(mi=self)∧(mi+1=right) −→ mi:=left

Dright,1: (mi−1=self)∧(mi=self)∧(mi+1 6=right) −→ mi:=right

Dright,2: (mi−1 6=right)∧(mi 6=right)∧(mi+1=left) −→ mi:=right

Dright,3: (mi=self)∧(mi+1=left) −→ mi:=right

Figure 17: An alternative solution to Maximal Matching

