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Abstract

Even though the maximum weighted matching problem can be solved in polynomial
time, there are many real world problems for which this is still too costly. As a result,
there is a need for fast approximation algorithms for this problem. Manne and Bissel-
ing presented a parallel greedy algorithm which is well suited to distributed memory
computers. This paper discusses the implementation of the Manne-Bisseling algorithm
using the partitioned global address space (PGAS) model. The PGAS model is a union
of the shared address space and distributed models which aims to provide the program-
ming conveniences and performance benefits of these models. Four variations of the
algorithm are presented which explore the design constructs available in the PGAS
model. The algorithms are expressed using a generic PGAS description, however the
experiments and empirical performance numbers were obtained from an implementa-
tion written in Unified Parallel C with atomic memory operation extensions.
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1 Introduction

Let G = (V, E) be an undirected graph with vertices V and edges E. A matching M in a
graph G is a subset of edges such that no two edges in M are incident to the same vertex. If
G is a weighted graph with edge weights w : E → R

+, the weight of the matching is defined

as w(M) :=
∑

e∈M

w(e).

The goal of the MWM problem is to find a matching which maximizes the total weight
of the edges in M . Edges in M are considered matched while the remainder are free or
unmatched. Vertices incident to matched edges are also considered matched and vertices
incident to free edges are considered free.

In 1965, Edmonds presented the first known exact polynomial time algorithm for the
MWM problem. It runs in O(n2m) [5], where n represents the number of vertices in a
graph and m is the number of edges. Since then, Gabow has developed the fastest known
implementation which runs in O(nm + n2 log n) [6]. Although considerable work has been
done on the serial MWM problem, there is much left in the area of parallel algorithms. It is
still an open problem to find a MWM using a polylogarithmic time parallel algorithm with
polynomially many processors [9].

Even though the serial exact algorithm for MWM is polynomial, there is still a need for
fast and simple approximation algorithms. The quality of an approximation algorithm is
measured by its approximation ratio which is a lower bound on the quality of the solutions
the algorithm produces. The greedy algorithm is by far the simplest approximation algorithm
for the MWM problem. First, the edges in the graph are sorted by weight, then the heaviest
edge e is removed and added to the matching. All edges adjacent to e are then discarded
since they are no longer candidates for the matching. This process continues until the graph
is empty. The algorithm is guaranteed to find a matching with a weight at least 1

2
of the

optimal solution. The running time is O(m log n) since the edges of G need to be sorted [4].

Since the running time of the greedy algorithm is dominated by sorting, Preis [13] de-
veloped a variant called LAM which eliminates sorting the edges. Instead of choosing the
heaviest edge, a locally heaviest edge is chosen and added to the matching. A locally heaviest
edge or dominating edge is one which has a weight greater than all of its neighbors. Just
like the greedy algorithm this process continues until there are no more edges left. The ap-
proximation ratio for this algorithm is also 1

2
and the running time is O(m) since the locally

heaviest edge can be found in amortized constant time [4].

Hoepman [8] developed a linear distributed protocol derived from the LAM algorithm.
It assigns one processor to each vertex of the graph and by passing messages to neighbor-
ing processors, determines which two processors are adjacent to a dominating edge. Manne
and Bisseling [12] showed how this protocol could be used in an efficient parallel matching
algorithm that is suitable for distributed memory computers. They developed an MPI imple-
mentation which scales well on both complete and sparse graphs. This paper presents four
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implementation variants of the Manne-Bisseling algorithm using the partitioned global ad-
dress space (PGAS) model. It explores the distributed and shared address space constructs
offered by the PGAS model and compares the usability and performance implications of
them.

2 Parallel Greedy Matching

The parallel version of the greedy algorithm uses the concept of locally dominating edges
to concurrently add edges to the matching. A locally dominating edge is an edge which is
heavier than all of its neighbors. At the beginning of each iteration, the sequential greedy
matching algorithm selects the heaviest available edge, so each edge added to the matching is
locally dominant in the iteration it is chosen. Since locally dominant edges are non-adjacent,
they can be easily found in parallel, added to the matching, then removed from the graph
along with their neighbors. This continues until all edges have been removed from the graph.
Algorithm 1 gives an outline of this procedure.

Algorithm 1: Parallel Greedy Matching

Input: G = (V,E,w)
Result: M contains a matching

M ← ∅
while E �= ∅ do

let D be the set of locally dominating edges in E
add D to M
let N be the edges adjacent to D
remove D and N from E

end

3 Luby’s MIS Algorithm

The parallel greedy matching algorithm given is similar to Luby’s maximal independent set
algorithm (MIS) [11] run on the edges of the graph instead of the vertices. Luby’s MIS
algorithm begins by assigning a random value to each vertex in the graph then selects those
vertices which have a value larger than all of its neighbors. The chosen vertices are added
to the MIS, then removed along with its neighbors from the graph. This process continues
until there are no more vertices remaining in the graph. On average, Luby’s algorithm
converges after O(log n) rounds if the weights on the vertices are randomly generated and
assigned [7, 11]. Algorithm 2 gives an overview of this procedure.
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Algorithm 2: Luby’s MIS Algorithm

Input: G = (V,E)
Result: I contains a maximal independent set

I ← ∅
while V �= ∅ do

assign a random value to each u ∈ V
barrier
let D be the set of locally dominating vertices in V
add D to I
let N be the vertices adjacent to D
remove D and N from V
barrier

end

To find an approximated weighted matching of a graph G, we can run Luby’s MIS
algorithm on the line graph of G [12]. A line graph L(G) is a graph which describes the
adjacencies of the edges in G. Each vertex in L(G) represents an edge in G and the vertex is
labeled using the weight of the edge in G. Vertices in L(G) are adjacent if their corresponding
edges in G are also adjacent. The edges of L(G) are therefore unweighted.

The main difference between the parallel greedy matching algorithm and Luby’s MIS
algorithm is that Luby’s algorithm regenerates random values for the vertices at the begin-
ning of each iteration [7]. In L(G), the vertex labels do not change since they represent the
weights of the edges of G.

4 Partitioned Global Address Space Model

Implementing the parallel greedy matching algorithm on a distributed or shared memory
platform is not a trivial task. Some of the details which need to be considered are communi-
cation, synchronization and data consistency. In order to exploit the advantages of both the
shared memory and distributed platforms, the implementation details are presented using
the partitioned global address space (PGAS) model.

The PGAS model is a union of the shared memory and distributed models which aims
to provide the programming conveniences of the shared memory model alongside the per-
formance benefits of the distributed model. Like the shared address space model, PGAS
languages have a global space to which all processors can read and write. This space is also
logically partitioned so that a portion of it is local to each process. This allows a programmer
to exploit memory locality by placing data close to the processes that manipulate it.
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Each process has a private address space in addition to affinity to a portion of the shared
address space. Data objects in the shared address space are visible to all processes, however
latency is reduced for objects in a process’s portion. Current PGAS languages follow the
single program multiple data (SPMD) execution model. Examples of these languages include
Unified Parallel C (UPC) [14], Co-Array Fortran [15] and X10 [2]. Figure 1 shows an example
of a shared array in the PGAS model.

Figure 1: PGAS Memory View. Example of a shared array of n elements distributed across
THREADS processes with a blocking factor of 3.

4.1 PGAS Notation

PGAS languages, such as UPC, provide programming constructs for denoting shared and
private variables, data partitioning and affinity. In the pseudocode presented, all variables
are declared as shared, local or private. Shared variables are visible to all processes, local
variables are shared variables with affinity to a particular process, and private variables
are visible only to the owning process. Data partitioning is also accomplished easily in the
PGAS model. Given a shared array A, the elements with affinity to the specified process will
be denoted as myA. If the affinity of a data element is not known, the function owner(x)
returns the id of the owning process.

5 Parallel Implementations

We will now present four different ways to implement the parallel greedy matching algorithm
given in Algorithm 1 using the PGAS model. The main differences in these implementa-
tions are synchronous vs. asynchronous execution, and notification vs. polling based work
scheduling.

Here is a brief overview of the notations used in the pseudocode. Given a weighted graph
G = (V, E, w), let Nu be the set of vertices that are neighbors of u. Let Cu, the set of
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candidate vertices of u, be the unmatched vertices in Nu. Let u’s mate be the endpoint
of the heaviest unmatched edge incident to u. This endpoint is denoted as mateu and is
computed by the function h(Cu). If u has chosen v as its mate then u wants to match with
v. If two neighboring edges have the same weight, ties are broken using the vertex id, i.e. if
w(u, v) = w(v, x), the edge (u, v) would be considered heavier if u > x. Tie-breaking is only
needed when two edges share a common endpoint.

5.1 sync-poll

In sync-poll each process begins by computing the mate values for its vertices then synchro-
nizes with the other processes. Next each process revisits the vertices in its subgraph to find
the vertices that are incident to dominating edges. For each vertex u, if its mate v chose u
as a mate, then u and v are endpoints of a dominating edge.

The dominating edges found are added to the matching and their vertices are removed
from the graph. Any neighboring edges are also removed from the graph. Since the graph
changes at this point, edges which were previously dominated are now locally dominant. To
locate these edges, the processes revisit the remaining vertices in their subgraphs. Once the
new dominating edges are found they are added to the matching and the procedure repeats
until the graph is empty. Algorithm 3 provides a detailed description of this procedure. Of
the four variants presented, sync-poll is closest in structure to the traditional shared memory
implementation of Luby’s MIS algorithm.

5.2 async-poll

Since the weights of the edges do not change like the vertex values in Luby’s MIS algorithm,
it is not necessary to synchronize the processes before they revisit their subgraphs to search
for dominating edges. Once a vertex has chosen a mate, it does not change its selection
until the mate is matched with another vertex. Therefore, a process can continuously poll
the mates of it vertices to check their statuses and update its vertices accordingly. After
the initialization step, this procedure has no dependencies and can therefore be completely
asynchronous.

In the async-poll variation, a process stays active until all of its vertices are either matched
or have no candidates left. As processes make updates to their vertices, these changes allow
other processes to make progress. In a non-empty graph, it is guaranteed that at least
one edge will be dominating, which prevents this algorithm from deadlocking. Algorithm 4
describes async-poll in further detail.
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Algorithm 3: sync-poll

Input: G = (V,E,w)
Result: Vertices marked as “matched” constitute a matching

shared G, matev, matchedv, S
local myV, Cu, Nu, mateu, matchedu

private u, v

foreach u ∈ myV do
Cu ← Nu

matchedu ← false
mateu ← h(Cu)

barrier
repeat

S ← ∅
foreach u ∈ myV do

v ← mateu

if v = null then
myV ← myV \ {u}

else
if matev = u then

matchedu ← true
myV ← myV \ {u}
if owner(v) = myID then

matchedv ← true
myV ← myV \ {v}

barrier
foreach u ∈ myV do

mateu ← h(Cu)

S ← S ∪myV
barrier

until S = ∅

5.3 sync-notify

In both of the poll variations presented, a process needs to repeatedly check the graph to
find work. Another approach would be to notify a process when it has work to do. If a
vertex u is matched, then any neighbor x which wants to match with it needs to be updated.
If u and x are assigned to different processes then the process that owns x needs to be
notified to update it. Similarly, if a vertex u changes its mate and is matched with a remote
neighbor v, then v needs to be notified of the match. In the synchronous version of this
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Algorithm 4: async-poll

Input: G = (V,E,w)
Result: Vertices marked as “matched” constitute a matching

shared G, matev, matchedv

local myV, Cu, Nu, mateu, matchedu

private u, v

foreach u ∈ myV do
Cu ← Nu

matchedu ← false
mateu ← h(Cu)

barrier
while myV �= ∅ do

foreach u ∈ myV do
mateu ← h(Cu)
v ← mateu

if v = null then
myV ← myV \ {u}

else
if matev = u then

matchedu ← true
myV ← myV \ {u}
if owner(v) = myID then

matchedv ← true
myV ← myV \ {v}

algorithm, notifications are aggregated locally then written to shared memory in one bulk
step. Algorithm 5 describes this procedure in further detail.

Notifications for a process are posted to a shared array which acts like a queue. The entries
in the queue are vertices which the process needs to update. Each process maintains a shared
variable count that reflects the number of items currently in its queue. To post notifications
to a process’ queue, count is first incremented using the atomic memory operation fetch-
and-add, then the values are written in the reserved space. Since the processes synchronize
between the reading and writing steps, a process is guaranteed that no other process is
posting while it is reading.
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5.4 async-notify

In this version, notifications are not aggregated locally, but posted right away using atomic
memory operations. This means that processes read and write notifications concurrently.
After the initialization step, this variation is completely asynchronous. As in sync-notify,
processes post notifications by first increasing count for the queue. The owning process reads
items at the front of the queue and marks them as −1 to prevent re-reading later. The owner
also needs to keep track of the last location that was read because this marks the front of
the queue. Since posting processes increase count before actually writing their values, it is
possible for the reading process to consume values which have not already been written. To
account for this, the queue is initialized to −1 so the reader can detect unwritten values
within the bounds of count.

Since the front of the queue is constantly incremented, and processes add items at the
end, it is possible for the queue to run out of space. To prevent this, the owning process
periodically resets the front of the queue. This reset operation cannot be performed while
another process is writing. To accomplish this, the owning process resets the queue after
reading when the value of count is the same as before the read. This indicates that no
process has altered the queue while the owner was reading. The reset is done using the atomic
memory operation compare-and-swap. Algorithm 6 describes this procedure in further detail.

6 Experiments

The four variations discussed were implemented using Unified Parallel C (UPC) [14] on a
Cray X1 and Cray XT4. The Cray X1 is a shared memory vector processor supercomputer
and the Cray XT4 is a distributed memory massively parallel supercomputer. UPC is a
parallel extension of ANSI C for partitioned global address space programming and is sup-
ported on almost every parallel architecture available today. The algorithms presented rely
on atomic memory operations (AMO), however UPC does not offer AMOs as a language
feature. They are available on the Cray X1 as intrinsic procedures, and on the Cray XT4 as
part of the Berkeley implementation of UPC [1].

Each variation of the algorithm was run on 3 graphs. The first graph is a grid of size
256x256. It has 65, 536 vertices and 130, 560 edges. The grid graph was chosen because it
represents a graph with high locality. Each vertex can have at most 4 neighbors which are
most likely within the same subgraph after partitioning. This means that remote references
are less likely to occur.

The second graph is a complete bipartite graph with 2, 048 vertices and 130, 560 edges.
The graph is partitioned so that each edge is a crossing edge. A crossing edge is one whose
endpoints do not belong to the same subgraph. The bipartite graph was chosen because it
contains no locality, which means that whenever a process examines the desired mate of one
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of its vertices, it will perform a remote reference.

The third graph is a sparse graph called crankseg that was generated from real-world data.
The graph has 52, 804 vertices and 5, 280, 703 edges and can be found in the University of
Florida Sparse Matrix Collection [3]. This graph represents the middle-ground test case
since it will produce both remote and local references. Since the structure of the grid and
bipartite graphs are known beforehand, they are partitioned by hand. The sparse graph,
however, is partitioned using the Metis Graph Partitioning library [10]. Figures 2 and 3
show the results generated from both machines.

7 Conclusion

7.1 Machine Comparison

Overall all four variations of the algorithm perform better on the Cray X1 than the Cray
XT4, which is not surprising. Each variation is fine-grained with poor locality and is better
suited to a supercomputer like the X1. The X1 is a real shared memory machine which
uses loads and stores and therefore has finer granularity and lower latency than the XT4.
The XT4 favors algorithms that require conventional serial performance and generate more
coarse-grained memory traffic.

Comparing the runtime of each variation on both machines is not as straightforward since
it involves considering the latency, bandwidth and granularity of remote references on each
machine. However it is fair to compare how each variation scales on both machines.

The grid graph represents the best case scenario for the algorithm since there is a lot of
locality. There is some speedup on both machines but each variation scales better on the
X1. This test case shows that even with a low number of remote references, the X1 is still
more amenable to this type of algorithm.

The bipartite graph represents the worst case since all edges are crossing edges. Even
though there is some speedup on the X1 it is not ideal. On the XT4 each variation degrades
in performance as more processes are added. This graph demonstrates how the XT4 suffers
from excessive fine-grained remote references since it cannot take advantage of local memory
latency.

The sparse graph, like the grid graph, scales well on the X1. However, like the bipartite
graph, it is also degrades on the XT4. This is to be expected as the sparse graph produces
more remote references than the grid graph.
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Figure 2: Running time on the Cray X1

7.2 Algorithm Comparison

Overall, the poll versions perform better than the notify versions on both architectures. The
poll versions are implemented in a straightforward manner in UPC and the resulting code
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Figure 3: Running time on the Cray XT4

looks very similar to the pseudocode presented in this paper. The notify versions involve
more parallel overhead to prepare notifications, communicate, and maintain the queues. In
the poll versions, the polling process bears the burden of finding work. However, in the
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notify versions, this work is transferred to the notifying thread. From the results presented,
it seems that the polling versions are more efficient on these architectures when using the
PGAS model.

8 Future Work

In the future, an investigation will be conducted to compare the notify versions to equiva-
lent MPI implementations, to compare performance and determine what optimizations each
version takes advantage of. The algorithms will also be tested on a wider array of graphs to
observe how different characteristics affect running time.
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Algorithm 5: sync-notify

Input: G = (V,E,w)
Result: Vertices marked as “matched” constitute a matching

shared G, matev, matchedv, S
local myV, Cu, Nu, mateu, matchedu

private u, v, D
foreach u ∈ myV do

Cu ← Nu

mateu ← h(Cu)
matchedu ← false

barrier
repeat

S ← ∅
while myV �= ∅ do

let u ∈ myV
mateu ← h(Cu)
v ← mateu

if v �= null and matev = u then
matchedu ← true
myV ← myV ∪ update(u, Cu \ {v})
if owner(v) = myID then

matchedv ← true
myV ← myV ∪ update(v, Cv \ {u})

else
if matchedv = false then

prepare notification for owner(v) about v

myV ← myV \ {u}
post all prepared notifications
barrier
read all notifications and append to myV
barrier
S ← S ∪myV

until S = ∅
function update(u,Cu) :
begin

D ← ∅
foreach x ∈ Cu s.t. matex = u do

if owner(x) = myID then
D ← D ∪ x

else
prepare notification for owner(x) about x

return D
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Algorithm 6: async-notify

Input: G = (V,E,w)
Result: Vertices marked as “matched” constitute a matching

shared G, matev, matchedv

local myV, Cu, Nu, mateu, matchedu

private u, v, D
foreach u ∈ myV do

Cu ← Nu

mateu ← h(Cu)
matchedu ← false

barrier
repeat

while myV �= ∅ do
let u ∈ myV
mateu ← h(Cu)
v ← mateu

if v = null then
V ← V \ u

else
if matev = u then

matchedu ← true
myV ← myV ∪ update(u, Cu \ {v})
V ← V \ u
if owner(v) = myID then

matchedv ← true
myV ← myV ∪ update(v, Cv \ {u})
V ← V \ v

else
if matchedv = false then

notify owner(v) about v

myV ← myV \ {u}
read all notifications and append to myV

until V = ∅
function update(u,Cu) :
begin

D ← ∅
foreach x ∈ Cu s.t. matex = u do

if owner(x) = myID then
D ← D ∪ x

else
notify owner(x) about x

return D
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