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Abstract

Correcting concurrency failures (e.g., data races and deadlocks/livelocks) is a difficult task in part due
to the non-deterministic nature of multithreaded programs, and the fact that a correction often involves
multiple threads. As such, manually fixing a failure often results in introducing new flaws, which in turn
requires a regression verification step after every fix. Most existing methods for detection and correction
of data races rely on code annotation (e.g., atomic sections) or linguistic constructs (e.g., coordination
models) that enable programmers to introduce non-determinism in a controlled fashion at the expense
of degraded performance. In this report, we present an alternative paradigm for the correction of data
races and non-progress failures, where we systematically search for a subset of inter-thread synchronization
traces of faulty programs that is data race-free and meets progress requirements, called a satisfying subset

of traces. To evaluate the effectiveness of satisfying subsets in the correction of concurrency failures, we
have developed explicit-state and symbolic implementations of our algorithms. Our software tools have
facilitated the correction of data races and non-progress failures in several Unified Parallel C (UPC) and
Java programs that programmers have failed to correct in a reasonable amount of time.
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1 Introduction

Designing and debugging inter-thread synchronization mechanisms in multithreaded programs are complex
tasks in part due to the inherent non-determinism and the crosscutting nature of data race-freedom and
progress (i.e., deadlock/livelock-freedom). As such, manually fixing concurrency failures1 often results in in-
troducing new design flaws, which in turn requires a regression verification step after every fix. Thus, given
a program that has data races or non-progress failures for some threads, it is desirable to automatically cor-
rect the failures while preserving the correctness of other threads. The motivation behind such automation
is multi-fold. An algorithmic correction method (i) provides a systematic way for pruning (unnecessary)
non-determinism; (ii) facilitates designing and debugging of multithreaded programs; (iii) separates syn-
chronization from functional concerns; (iv) reuses the computations of an existing program towards fixing
it, thereby potentially preserving its quality of service (e.g., performance), and (v) preserves the liberty of
programmers in designing/controlling concurrency using existing synchronization primitives (e.g., locks).

Numerous approaches exist for detection/correction of concurrency failures, most of which have little
support for automatic correction of non-progress failures and require new linguistic constructs (e.g., atomic
sections). For example, several researchers present techniques for automatic detection of low-level [38] and
high-level [8, 15, 40, 28] data races. Many researchers use type systems [27, 25, 26] to enable atomicity and to
detect atomicity violations [18]. Automatic locking techniques [36, 17] generate lock-based synchronization
functionalities from annotated code to ensure data race-freedom at the expense of limiting programmers’
control over thread concurrency and performance. Atomic blocks [5] and software transactional memory [30,
19] present optimistic methods based on the concept of atomic transactions, where a concurrent access
to the shared data causes a roll-back for a transaction. Specification-based synthesis approaches [24, 37,
20, 32] generate synchronization functionalities from formal specifications with little chance of reuse if new
requirements are added to an existing program. Wang et al. [43] apply control-theoretic methods for deadlock
avoidance, nonetheless, it is unclear how their approach could be used for correcting livelocks/starvations.
Program repair methods [32] use game-theoretic techniques to synthesize correct synchronization mechanisms
from formal specifications. Vechev et al. [41] infer synchronization mechanisms from safety requirements.
While the aforementioned approaches inspire our work, they often lack a systematic method for the correction
of both data races and non-progress failures.

We propose an alternative paradigm, where we start with a program with data races and/or non-progress
failures, and we systematically search for a subset of its inter-thread synchronization traces that is data race-
free and ensures deadlock/livelock-freedom, called a Satisfying Subset (SS) of traces. Figure 1 illustrates
this paradigm. We initially perform a static analysis on the faulty program to generate a slice of it in
Promela [31, 4]2 representing a projection of program behaviors on synchronization variables. We call the
sliced program, the synchronization skeleton. Then we systematically generate a behavioral model of the
synchronization skeleton represented as either a reachability graph or a symbolic model in terms of Binary
Decision Diagrams (BDDs) [14]. Subsequently, we use two families of algorithms: one for finding data
race-free SSs and the other for identifying SSs that meet progress requirements. If there is a SS, then our
algorithms generate a revised version of the synchronization skeleton (in Promela). We then translate the
corrections back to the level of source code.

In order to evaluate the effectiveness of satisfying subsets in automatic correction of concurrency failures,
we have developed explicit-state and symbolic implementations of our correction algorithms. As we illustrate
in Section 8, our experience shows that a hybrid use of different data structures provides better scalability.
Using our software tools, we have corrected data races and non-progress failures in several Java and Unified
Parallel C (UPC) programs that programmers have failed to correct in a reasonable amount of time. For
instance, the symbolic implementation of our approach enabled the correction of starvation in a barrier
synchronization protocol with 150 threads (with almost 3150 reachable states) on a regular PC in half an
hour.

The contributions of this report are as follows: We apply our previous work [21, 12] on the theory of
program revision for Linear Temporal Logic (LTL) [23] properties to two real-world programming languages,

1We follow the dependability community [9] in calling data races and deadlocks/livelocks failures since they are manifestations
of design flaws/faults in program behaviors.

2The choice of Promela as an intermediate language is to benefit from verification and visualization features of SPIN in
debugging.
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Figure 1: Overall view of Satisfying Subset approach.

namely UPC and Java. Specifically, we enable the algorithmic correction of a classic family of data races in
legacy programs, where a data race occurs when multiple threads access a shared datum concurrently and
at least one of the threads performs a write operation [38]. Moreover, we present an improved version of
the algorithm presented in [21] for correction of non-progress failures. Our improved algorithm illustrates an
average 27% run-time improvement in the experiments we have conducted thus far. More importantly, our
algorithm corrects non-progress failures without any fairness assumptions. This is a significant contribution
as experimental evidence [1, 2, 3] points to failures that may manifest themselves only on some schedulers
due to different fairness policies implemented by schedulers. Moreover, recent research illustrates that
implementing fair schedulers is a hard problem [34] (and sometimes even impossible). As a testimony to the
significance of this problem, we quote Joshua Bloch (see Pages 286-287 of [11]) on the Java thread scheduler:
“Do not depend on the thread scheduler for the correctness of your program. The resulting program will
be neither robust nor portable.” As such, we enable systematic correction of non-progress failures in a
scheduler-independent manner; i.e., corrected programs are portable.
Organization. The organization of the report is as follows: Section 2 presents preliminary concepts. Section
3 states the problem of algorithmic correction. Then, Section 4 discusses how we extract the synchronization
skeleton of programs. Section 5 presents an algorithm for the correction of non-progress failures, and Section
6 focuses on the correction of data races. Section 7 presents thress example for fixing safety violation and
non-progress property in programs.Subsequently, Section 8 presents our experimental results. A discussion
on the limitations of our approach appears in Section 9. Finally, we make concluding remarks and discuss
future work in Section 10.

2 Preliminaries

In this section, we present formal definitions of synchronization skeletons of multi-threaded programs, safety
and leads-to properties, specifications (adapted from [7]) and the fairness assumption that we consider in
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this report.
Synchronization skeletons. Consider a multithreaded program p with a fixed number of threads, de-
noted N . The synchronization skeleton of p is a non-deterministic finite state machine denoted by a triple
〈Vp, δp, Ip〉, where Vp represents a finite set of synchronization variables with finite domains. A synchro-
nization state is a unique valuation of synchronization variables. Throughout this report, we use the terms
state and synchronization state interchangeably. An ordered pair of states (s0, s1) denotes a transition. A
thread contains a set of transitions, and δp denotes the union of the set of transitions of threads of p. Ip

represents a set of initial states. The state space of p, denoted Sp, is equal to the set of all states of p. A
state predicate is a subset of Sp. A state predicate X is true (i.e., holds) in a state s iff (if and only if) s ∈ X .
A computation (i.e., synchronization trace) is a maximal sequence σ = 〈s0, s1, · · · 〉 of states si, where each
transition (si, si+1) is in δp, i ≥ 0. That is, either σ is infinite, or if σ is a finite sequence 〈s0, s1, · · · , sf 〉,
then no transition in δp originates at sf . A computation prefix is a finite sequence σ = 〈s0, s1, · · · , sk〉 of
states, where each transition (si, si+1) is in δp, 0 ≤ i < k.
Example: Swapping program. As an example, consider an excerpt of a Unified Parallel C (UPC) program in
Figure 2. The UPC language [22] is an extension of the C programming language that supports the Single
Program Multiple Data (SPMD) model in a Partitioned Global Address Space (PGAS) shared memory
model. Several groups of researchers (e.g., Berkeley’s Lawrence Lab) use UPC on a variety of cluster [10]
and multicore [6] platforms to implement and run High Performance Computing (HPC) applications.

Consider a shared integer array A of THREADS elements and THREADS UPC threads (Line 1 in Figure 2). In
UPC, processes are called threads and the system constant THREADS is the number of threads. Each thread’s
own thread number is denoted MYTHREAD. Shared data structures are explicitly declared with a shared type
modifier. Each thread repeatedly initializes A[MYTHREAD] and randomly chooses an array element to swap
with the contents of A[MYTHREAD]. A shared array of THREADS locks lk is declared in Line 2. Each thread Ti

uses lk[i] and lk[s] to lock the two elements it wants to swap so no data races occur. A block of instructions
accessing shared data is called a critical section of the code (Lines 12-14 in Figure 2). The section of the
code where a thread is trying to acquire the locks for entering its critical section is called a trying section
(Lines 10-11 in Figure 2). Section 4 explains how we extract the synchronization skeleton of the swapping
program (illustrated in Listing 1).

1 shared int A[ THREADS ] ;
2 upc lock t ∗shared l k [ THREADS ] ;
3 int i , s , temp ;
4

5 A[ MYTHREAD] = MYTHREAD;
6 i = MYTHREAD; // Var iab l e i i s a thread index .
7 for ( ; ; ) { // For loop
8 // Randomly generat e an index to swap with
9 s = ( int ) l rand48 ( ) % ( THREADS) ;

10 upc lock ( l k [ i ] ) ; // Acquire the necessary l oc k s
11 upc lock ( l k [ s ] ) ;
12 temp = A[ i ] ; // Swap
13 A[ i ] = A[ s ] ;
14 A[ s ] = temp ;
15 upc unlock ( l k [ s ] ) ; // Unlock
16 upc unlock ( l k [ i ] ) ;
17 } // For loop

Figure 2: Swapping program in UPC.

Properties and specifications. Intuitively, a safety property stipulates that nothing bad ever happens.
Formally, we represent a safety property as a state predicate that must always be true in program com-
putations, called invariance properties. In the UPC program of Figure 2, a safety property stipulates that
it is always the case that at most one thread is in its critical section. We formally specify such properties
using the always operator in LTL [23], denoted 2. The example UPC code ensures that the safety property
2¬(CS0 ∧CS1) is met by acquiring locks, where CSi (i = 0, 1) is a state predicate representing that thread
i is in its critical section, where THREADS= 2.
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A progress property states that it is always the case that if P becomes true in some program computation,
then Q will eventually hold in that computation, where P and Q are state predicates. We denote such progress
properties by P ; Q (read it as ‘P leads to Q’) [23]. For example, in the swapping program of Figure 2,
we specify progress for each thread i (i = 0, 1) as TSi ; CSi; i.e., it is always the case that if thread i is in
its trying section, denoted by a state predicate TSi, then it will eventually enter its critical section CSi. We
define a specification spec as an intersection of a set of safety and leads-to properties.

A computation σ = 〈s0, s1, · · · 〉 satisfies (i.e., meets) a safety property 2S from an initial state s0 iff the
state predicate S holds in si, for all i ≥ 0. A computation σ = 〈s0, s1, · · · 〉 satisfies (i.e., meets) a leads-to
property P ; Q from an initial state s0 iff for any state sj , where j ≥ 0, if P holds in sj , then there exists
a state sk, for k ≥ j, such that Q is true in sk. A program p = 〈Vp, δp, Ip〉 meets a property L from Ip iff all
computations of p meet L from Ip. A program p = 〈Vp, δp, Ip〉 meets its specification spec from Ip iff p meets
all properties of spec from Ip. Whenever it is clear from the context, we abbreviate ‘p meets spec from Ip’
by ‘p meets spec’.
Non-progress and fairness. Several approaches present formal definitions for livelocks and starvations [33,
39]. A livelock occurs when a continuous sequence of interactions amongst a subset of threads prevents other
non-deadlocked threads from making progress in completing their tasks. We define a livelock/starvation as
a failure to meet a leads-to property P ; Q under no fairness assumptions. Our motivation for assuming
no fairness is multifold. First, we would like to develop correction algorithms that are independent from
a specific fairness assumption so the programs they synthesize are portable. Second, correction under no
fairness generates programs that will work correctly even if the underlying scheduler fails to generate a fair
schedule of execution for threads. Third, while in the literature strong fairness is assumed to simplify the
design of livelock/starvation-free concurrent systems, designing strong schedulers is hard and in some cases
impossible [34], where a strong scheduler guarantees to infinitely often execute each thread that is enabled
infinitely often. As such, to provide portability and resilience to faulty schedulers, we make no assumption
on the fairness policy implemented by the thread scheduler.

Formally, a livelock for P ; Q occurs in a program computation σ = 〈s0, s1, · · · 〉 iff P holds in some
state sk, where 0 ≤ k, and Q is false in states sk, sk+1, · · · . We consider only infinite computations when
correcting livelocks. Since synchronization skeletons are finite state machines, some states must be repeated
in σ. Without loss of generality, we assume that σ includes the sequence 〈sk, · · · , si, si+1, · · · , sj , si, · · · 〉.
The states si, si+1, · · · , sj , si form a cycle that σ may never leave; i.e., non-progress cycle. For example, a
thread Ti (0 ≤ i ≤ THREADS−1) in the swapping program may repeatedly swap its element with another
element s, where s 6= i, thereby preventing thread Ts to make progress.

3 Problem Statement

In this section, we formulate the problem of finding SSs for safety and leads-to properties. Consider a new
property P that could be either a safety property representing data race-freedom or a leads-to property
representing progress (i.e., deadlock/livelock-freedom). Let p = 〈Vp, δp, Ip〉 be a program that satisfies its
specification spec from Ip, but does not satisfy P from Ip. We wish to generate a revised version of p, denoted
pc = 〈Vp, δc, Ic〉, within the same state space such that pc satisfies (spec ∧ P) from Ic. We want to reuse
the correctness of p with respect to spec by identifying a SS of computations of p generated from Ip. As
such, we require that Ic = Ip. Moreover, starting in Ic, the transitions of pc, denoted δc, should not include
new transitions. Otherwise, pc may exhibit new computations that do not belong to the computations of
p, making it difficult to reuse the correctness of p. Thus, we require that δc ⊆ δp. Therefore, we state the
problem of finding SSs for correction as follows:

Problem 3.1: Identifying Satisfying Subsets.

Given p = 〈Vp, δp, Ip〉, its specification spec, and a new (safety/leads-to) property P , identify pc = 〈Vp, δc, Ic〉
such that:

1. Ic = Ip,

2. δc ⊆ δp, where δc 6= ∅, and

3. pc satisfies (spec ∧ P) from Ic. 2
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Previous work [21] illustrates that this problem can be solved in polynomial time in the size of Sp (1)
if we have a high atomicity model, where each thread can read all synchronization variables in an atomic
step, and (2) if the correction takes place for only one leads-to property. However, finding SSs is known to
be NP-hard [21, 13] (in Sp) if a program should be corrected either for multiple leads-to properties, or for
one leads-to property where each thread may be unable to read the local state of other threads (i.e., threads
have read restrictions or limited observability).

In this paper, we consider a high atomicity model for several reasons. First, since this work is our first
step towards algorithmic correction of concurrency failures, we start with a simpler problem. Second, for
many programs, a high atomicity model is a realistic model as synchronization variables (e.g., locks) are
often declared as shared variables readable for all threads. Third, we use the failure of correction in the high
atomicity model as an impossibility test; i.e., the failure of correction in the high atomicity model indicates
the failure of correction under read restrictions as well.

4 Extracting Synchronization Skeletons

In this section, we present three of the commonly used synchronization primitives in UPC and present the
rules for generating Promela code for them while preserving their semantics based on UPC specification [22].
For the extraction of the synchronization skeleton of Java programs, we reuse the transformation rules
available in JavaPathFinder [29].

The syntax of Promela is based on the C programming language. A Promela model comprises (1) a set
of variables, (2) a set of (concurrent) processes modeled by a predefined type, called proctype, and (3) a set
of asynchronous and synchronous channels for inter-process communications. The semantics of Promela is
based on an operational model that defines how the actions of processes are interleaved. An action (a.k.a
guarded command) is of the form grd → stmt, where grd is an expression in terms of program variables and
stmt updates program variables. Next, we explain the synchronization constructs in UPC which are used to
manage threads interleaving.

4.1 Barriers

Semantics. All threads of a barrier must arrive at the barrier before any of them can proceed.
Syntax. upc barrier();

Transformation Rule 1.

ba r r i e r c oun t e r=THREADS; // number of thr eads
. . .
b a r r i e r c oun t e r=bar r i e r coun te r −1;
b a r r i e r c oun t e r==0;
b a r r i e r c oun t e r=THREADS;
. . .

Notice that a condition in Promela blocks a thread until it is satisfied.

4.2 Split-phase Barriers

Semantics. Split-phase barrier has been devised to reduce the impact of synchronization. The idea is that
when a thread completes its global phase of computation, instead of waiting for other threads it notifies
other threads of its completion by upc notify(). Then it starts local computations. When the thread finishes
the local processing, it waits for other threads by upc wait() to enter the next phase of computation.
Syntax.

upc notify();

upc wait();

Transformation Rule 2. upc notify();

ba r r i e r c oun t e r=THREADS; // number of thr eads
proceed=0;
. . .
/∗ upc no t i f y ∗/
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ba r r i e r c oun t e r=bar r i e r coun te r −1;
. . . /∗ l o c a l computations ∗/}

Transformation Rule 3. upc wait();

/∗ upc wai t ∗/
( b a r r i e r c oun t e r ==0||proceed==1)−>atomic{proceed=1;}
ba r r i e r c oun t e r=ba r r i e r c oun t e r +1;
( b a r r i e r c oun t e r ==5||proceed==0)−>atomic{proceed=0;}
. . . /∗ Next phase o f computation ∗/

4.3 Locks

UPC uses upc lock t as the lock data type. The following functions manipulate locks.

• upc lock(upc lock t *ptr): locks a shared variable of type upc lock t.

Transformation Rule 4.

1 bool l k ; // Lock va r i ab l e
2 atomic{( l k== ture ) −> l k=fa l se ; }

Line 2 represents an atomic guarded command in Promela that sets the lock variable lk to false (i.e.,
acquires lk) if lk is available. Otherwise, the atomic guarded command is blocked.

• upc unlock(upc lock t *ptr):unlocks a shared variable of type upc lock t.

Transformation Rule 5.

l k = true

• upc lock attemp(upc lock t *ptr) tries to lock a shared variable of type upc lock t,. If the lock is not held
by another thread, it gets lock and returns 1 otherwise it returns 0.

Transformation Rule 6.

atomic{
/∗ r e s u l t denotes the return va lue . ∗/
i f
: : ( l k == true ) −> l k= fa l se ; r e s u l t =1;
: : else−>r e s u l t =0;
f i ;}

Listing 1 illustrates the synchronization skeleton of the swapping program in Promela. Notice that we
have added the labels TS and CS to respectively denote the trying section and the critical section of threads.
We use these labels to detect whether or not a specific thread is in its trying/critical section. The variable
pid returns a unique integer as the thread identifier.

A[ p id ] = pid ;
i = pid ;
do
// Randomly generate an index to swap with
i f : : s = 0 ; : : s = 1 ;

: : . . . : : s = THREADS − 1 ; f i ;
TS : { // Acquire the neces sary l o ck s
atomic{( l k [ i ] == true ) −> l k [ i ] = fa l se ;}
atomic{( l k [ s ] == true ) −> l k [ s ] := fa l se ;}

}
CS: { . . . }
// Unlock
lk [ s ] := true ;
l k [ i ] := true ;
od // End of l oop

Listing 1: Synchronization skeleton of the swapping program of Figure 2 in Promela.
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5 Correction of Non-Progress

In our previous work [21, 12], we present a polynomial-time algorithm, called Correct NonProgress (see Figure
3), for solving Problem 3.1, where the property P is a leads-to property P ; Q. We demonstrate an intuitive
explanation of Correct NonProgress since we present a new version of this algorithm in Section 5.1. Sections
5.2 and 5.3 respectively present the correction of non-progress for the swapping program and for a classic
example in Java.

Step 1: Determine the rank of each state, 

where the rank of a state s, denoted Rank(s), is 

the length of the shortest computation prefix 

from s to some state in Q; 

Rank(s) = represents the unreachability of Q 

from s;

States in Q have rank 0

Step 2: Remove any transition ending in a state 

in P whose rank is 

Does any initial state 

become deadlocked?

Is there a reachable 

state in P with rank ?

No

Declare no 

satisfying subsets 

exist

Yes

No

Declare 

success
Step 5: Eliminate transitions (s0, s1) where 

(Rank(s0) 0) and (Rank(s0) Rank(s1))

Step 3: Make deadlock states unreachable

Step 4: Re-rank all remaining reachable states

Yes

Figure 3: Correct NonProgress algorithm presented in [12].

In the first step of Figure 3, we compute a rank for each reachable state s, where Rank(s) is the length
of the shortest computation prefix from s to some state in Q. The rank of a state in Q is zero and the rank
of a state from where there are no computation prefixes to Q is infinity. If there is a transition reaching
a state s in P , where Rank(s) = ∞, then that transition must be eliminated because P has become true
but there is no way Q can be reached. The removal of such transitions may make some states unreachable
or create reachable states without any outgoing transitions; i.e., deadlock states. For this reason, in Step
3, we resolve deadlock states by making them unreachable. If an initial state becomes deadlocked, then no
satisfying subsets exist that satisfy P ; Q while preserving spec. Otherwise, the ranks of remaining states
should be recomputed because some states in Q might have been eliminated due to deadlock resolution. If
there are still states in P with a rank of infinity, then the above steps should be repeated. Otherwise, a SS
exists and we exit the loop in Figure 3. In Step 5, we eliminate all transitions (s0, s1) in which Rank(s0)
is non-zero and finite, and Rank(s0) ≤ Rank(s1). Such transitions participate in non-progress cycles. Note
that the elimination of such transitions does not create deadlocks because there is at least one computation
prefix from s0 to some states in Q.

5.1 Improved Algorithm

In this section, we present a new version of the algorithm of Figure 3. First, we make two observations about
Correct NonProgress.
Observation 5.1. After Step 2, deadlock states are only in rank 0 and rank ∞.
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Proof. Let s be a state such that Rank(s) > 0 and Rank(s) 6= ∞. Thus, there is a computation prefix
originated at s. Therefore, a finitely-ranked state with a non-zero rank cannot be deadlocked; i.e., the rank
of a deadlock state must be either 0 or ∞. 2

Observation 5.2. The main loop in the algorithm always terminates in the first iteration. That is, the
algorithm never jumps back to Step 2.
Proof. If the algorithm returns to Step 2, then there must exist some infinity-ranked states in P after Step 4.
Such states are either deadlock states or states that have no computation prefix to Q. This is a contradiction
with what Steps 2 and 3 accomplish. 2

Improvements. Based on Observations 5.1 and 5.2, the algorithm Correct NonProgress can be revised by
eliminating the condition right before Step 5. More importantly, we revise Step 4 by replacing the re-
ranking of the entire set of reachable states with Algorithm 1 that only updates the ranks to the extent
necessary.

Algorithm 1: updateRank(s: state, p: program)

Input: program p =< Vp, δp, Ip > with its state space Sp and a state s

Output: Rank of s and every state from where s is reachable is updated.
1 newRank = 1 + Min{Rank(s1)|∃(s, s1) : (s, s1) ∈ δp} ;
2 if newRank 6= Rank(s) then

3 Rank(s) = newRank;
4 For every s0 for which there is a transition (s0, s) ∈ δp updateRank(s0, p);

5 end

6 return;

The updateRank algorithm is invoked for every state s if s is not deadlocked, Rank(s) 6= ∞ and has an
outgoing transition (s, sd) that reaches a state sd that has become deadlocked. To update the rank of s,
updateRank computes a newRank value that is the minimum of the ranks of the immediate successor states of
s (except sd) plus 1. If newRank 6= Rank(s), then Rank(s) is set to newRank, and the rank of any immediate
predecessor state of s is recursively updated. Section 8 illustrates the positive impact of these improvements
in the correction time.
Lemma 5.3 The first invocation of updateRank(s,p) , results in the correct rank for s.
Proof. Line 1 of Algorithm 1 guarantees the correct update of Rank(s). 2

Lemma 5.4 updateRank(s,p) terminates in polynomial time (in program state space).
Proof. Let Gs be the finite set of states including s and states si from where s can be reached by program
computation.

Induction base. Gs = {s}. In this case s has no immediate predecessor. Thus, based on Lemma 5.3,
Rank(s) is correctly updated. Since s has no immediate predecessor the algorithm terminates

Induction Hypothesis. Assume the algorithm terminates for any s when Gs = {s, s1, s2, ..., sk}, we show
it will terminate when G′

s = {s, s1, s2, ..., sk, sk+1}. We have two cases:
Case 1: Invocation of updateRank(s,p) does not cause invocation of updateRank(sk+1,p) . In this case, we

do not have any extra function call comparing to case Gs = {s, s1, s2, ..., sk}. Thus, based on our assumption,
the algorithm terminates.

Case 2: Invocation of updateRank(s,p) causes invocation of updateRank(sk+1,p) . In this case, if Rank(sk+1)
does not change, then it terminates. Otherwise, the value Rank(sk+1) is adjusted to its correct value. The
new value is propagated back to all its predecessors which is at most G′

s −{sk+1} = Gs. Thus, based on our
assumption, the algorithm will eventually terminate in this case.

To prove that the time complexity of algorithm is polynomial, intuitively observe that the maximum
number of recursive calls is the number of transitions in Gs which is less than |Gs|2 where Gs is number of
states in Gs. 2

Theorem 5.5 updateRank(s,p) returns correct ranks regarding to change in s.
Proof. Based on Lemma 5.3, the first invocation revises Rank(s) correctly. Consider an arbitrary immediate
predecessor of s on a shortest computation prefix σ0 originated from s0 that reaches Q.

Now, exactly one of the following cases can be true.
Case 1: σ0 includes s. The invocation of updateRank(s0,p) on Line 4 causes a recalculation of Rank(s0) on

Line 1. That is, the minimum amongst the ranks of immediate successors of s0, including recently updated
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s, results in updating Rank(s0) in Line 3 because the shortest computation prefix that determined the rank
of s0 passes through s. Therefore, rank of s0 is correctly updated.

Case 2: σ0 does not include s. Since the shortest computation prefix reaching Q (from s0) does not
include s, and the update on the rank of s cannot decrease Rank(s), Lines 3 and 4 are not executed due to
the invocation updateRank(s0,p) . Therefore, rank of s0 (and accordingly rank of any state from where s0 can
be reached) remains correctly unchanged. 2

5.2 Case Study: Swapping Program

In this section, we use the swapping program as a running example to demonstrate how the improved
Correct NonProgress ensures that if each one of the threads tries to swap two elements, then it will eventually
get a chance to do so irrespective of fairness policy.
Model creation. While we have implemented our correction algorithms using both an explicit-state method
and BDDs [14], for illustration purposes, we represent synchronization skeletons as reachability graphs in
this section. A Reachability Graph (RG) is a directed graph in which nodes represent synchronization states
and arcs denote atomic transitions. Figure 4 illustrates the deadlock-free RG of the synchronization skeleton
of a version of the swapping program with two threads; i.e., THREADS= 2. Each oval represents a state
in which only the values of the predicates TSi and CSi (i = 0, 1) are illustrated. We have generated the
deadlock-free RG by making deadlock states unreachable (see Step 3 of Figure 3). For brevity, we have
abstracted out the values of other variables in Figure 4. For this reason, some states appear as duplicates.
We denote the initial state by a rectangle. The labels on the transitions denote the index of the thread that
executes that transition.

TS1->CS1

TS1 TS2 !CS1 !CS2

TS1 TS2 !CS1 !CS2

 1

TS1 TS2 !CS1 !CS2

 1

TS1 TS2 !CS1 !CS2
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 2
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 1

  2  
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  1 

   1

    1

TS1 TS2 !CS1 !CS2

 2

 1
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 2

 1

 1

TS1 TS2 !CS1 !CS2

 2

 1

   1   

 2  2

 2  2

!TS1 TS2 CS1 !CS2 

 1

  2   2   1 

Figure 4: The reachability graph of the synchronization skeleton of the UPC program in Figure 2.

Step 1: Ranking. Since we first correct the swapping program for the property TS1 ; CS1, we rank each
state s based on the length of the shortest computation prefix from s to some state where CS1 holds (shaded
states in Figure 4). Figure 5 illustrates a ranked RG of the boxed part of Figure 4.
Step 2: Making infinity-ranked states unreachable. The bold states on the lower right corner of
Figure 4 constitute the set of states in TS1 from where there are no computation prefixes reaching CS1; i.e.,
infinity-ranked states. In this step, we eliminate any transition reaching infinity-ranked states.
Step 3: Making deadlock states unreachable. Making infinity-ranked states unreachable does not
introduce deadlock states for the swapping program.
Step 4: Update ranks. Since no deadlock states were created in the previous states, the ranks of the
remaining states are not updated.
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Step 5: Eliminating rank-violating transitions. The non-progress cycles causing the failure of TS1 ;

CS1 are contained in the set of dashed transitions that start in a non-zero rank and terminate in either the
same rank, or a higher rank. For example, let (s0, s1) denote the outgoing dashed red transition from the
initial state in Figure 4. The rank of the initial state s0 is 3 and the rank of s1 is also 3. The last step of
the algorithm in Figure 3 eliminates (s0, s1), thereby making all states in the non-progress cycle illustrated
with the Red unreachable. (Notice that the dashed blue transitions in Figure 5 are preserved because they
start in Rank 0.) As such, the states outside the box in Figure 4 are no longer reachable in the revised RG
of Figure 5. The solid arrows in Figure 5 illustrate a SS that satisfies TS1 ; CS1.

TS1 TS2 !CS1 !CS2

TS1 TS2 !CS1 !CS2

1

TS1 TS2 !CS1 !CS2

2

TS1 TS2 !CS1 !CS2
2
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1

1

TS1 TS2 !CS1 !CS2
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!TS1 TS2 CS1 !CS2

1

TS1 TS2 !CS1 !CS2

1

1

TS1 TS2 !CS1 !CS2

2
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2

2

!TS1 TS2 CS1 !CS2

1

TS1 TS2 !CS1 !CS2

1

1
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1

2

2

2

2

!TS1 TS2 CS1 !CS2

1

2

2

1

Rank  0

Rank 1

Rank 2

Rank 3

Rank 4

Figure 5: The revised ranked reachability graph for TS1 ; CS1 derived from Figure 4.

Our ranking algorithm is conservative as there may be a valid SS that includes some of the transitions
ruled out by our approach. For example, eliminating the red transition reaching the blue state in Figure 4
instead of the red transition originating at the initial state would resolve the red non-progress cycle without
making its states unreachable; i.e., would create a SS with more states/transitions. Ideally, we wish to
eliminate the least number of states/transitions so we can identify a maximal SS. Finding a maximal SS
would increase the chances of success for correcting other non-progress failures. While we have illustrated
that, in general, finding a maximal SS is a hard problem [12], we are currently investigating how we can
reduce the complexity of identifying maximal SSs using sound heuristics and sufficient conditions.

We apply Correct NonProgress to the intermediate program resulting from the correction of non-progress
for TS1 ; CS1 in order to correct non-progress failures for TS2 ; CS2. The code in Listing 4 Appendix A
represents the final corrected UPC code.

The revised code utilizes two shared arrays s and setS to make local state of a thread observable to other
threads. Shared variable setS[i] represents the state of thread i. Value setS[i]=0 denotes that thread i is not
in its try section (i.e. ¬TSi). Otherwise, thread i either is trying to enter the critical section, or it is already
in the critical section. We use upc mem get() function to access shared values, because the UPC run-time
system does not guarantee to return the latest values of a shared variable located in another thread’s affinity.
In the program, SS1 and SS2 keep local copies of setS[1] and setS[2] . Variable s[i] denotes the target element
to swap with thread i. Line 27 shows that thread 1 swaps its shared data with thread 2 and respectively
Line 46 shows that thread 2 swaps its shared data with thread 1.

Line 26 blocks execution of thread 1 when thread 2 is in its trying section. The initial value s[1] =0 allows
thread 1 to enter its trying section first. In addition, Line 45 of thread 2, gives the priority to thread 1 to try
the critical section and enter it. Respectively, while loop, in Line 32 in thread 1, ensures thread 2 to proceed
to its trying section. This way, when thread 1 exits the critical section (Line 35), thread 2 enters the critical
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section and vice-versa. Thus, both threads satisfy their progress properties.
We use the following transformation rule to translate the busy waiting conditions in Promela to the

corresponding UPC statements.
Syntax: shareVar==condition

Semantics: It blocks execution of the thread until shareVar is equal to condition.
Transformation Rule 7.

int l ocalCopy ; /∗ l o c a l copy of a shared v a r i a b l e sharedVar i ∗/
upc memget(&localCopy , &sharedVar [ i ] , s izeof ( ) ) ;
while ( localCopy != cond i t i on ) upc memget(&localCopy , &sharedVar [ i ] , s izeof ( ) ) ;

5.3 Single Lane Bridge

In this section, we illustrate the algorithmic correction of non-progress failures in a concurrency example
adapted from [35]. Consider a bridge, modeled by a Java class Bridge, over a river that has only one lane,
i.e. at any time cars can move in only one direction; otherwise a crash could occur. There are two types of
cars, namely the Red and the Blue cars; red cars move from right to the left on the bridge, and blue cars
move in the opposite direction. The Single Lane Bridge (SLB) program includes two threads, namely RedCar

and BlueCar, that model the cars. The Bridge class has the following state variables: an integer variable nred

that captures the number of red cars on the bridge, a variable nblue that denotes the number of blue cars
on the bridge, a variable capacity that represents the capacity of the bridge, a variable onbridge representing
the total number of cars on the bridge, and a random variable choice that represents the decision of a car for
leaving or staying on the bridge. The RedCar thread (respectively, BlueCar) continuously invokes the redEnter

method (Lines 1-5 in Figure 6) and redExit method in Lines 6-9 in Figure 6 (respectively, blueEnter and blueExit

methods). Listing 6 in Appendix B shows the synchronization skeleton of program in Figure 6.

1 synchronized void redEnter ( )
2 throws Inter ruptedExcept i on {
3 i f ( ( capaci ty >onbr idge ) ) {
4 ++nred ; onbr idge++; }
5 }
6 synchronized void redExit ( ){
7 i f ( nred >0)\{ cho i ce=generator . next Int ( 2 ) ;
8 i f ( cho i ce==1) −−nred ; }
9 }

10 synchronized void blueEnter ( )
11 throws Inter ruptedExcept i on {
12 i f ( ( capaci ty >onbr idge ) ) {
13 ++nblue ; onbr idge++; }
14 }
15 synchronized void blueExi t ( ) {
16 i f ( nblue >0){ cho i ce=generator . next Int ( 2 ) ;
17 i f ( cho i ce==1) −−nblue ; }

Figure 6: The methods of the Bridge class SLB program.

Correction for ensuring safety. To enforce safety to the program, the values of nred and nblue must
not be more than 0 at same time. Thus we applied �!(nred > 0 ∧ nblue > 0) as the safety property. The
result is shown in Figure 7. The bold texts in this figure show the changes to the original program to make
it safe. This safety property can be assumed as a mutual exclusion problem.

While the SLB program guarantees mutual exclusion; i.e., no crashes occur on the bridge, one thread
may take over the bridge by continuously sending cars to the bridge, thereby depriving the other type of cars
to cross the bridge. To address this non-progress failure, we use the improved Correct NonProgress algorithm
to ensure that the leads-to properties true ; (nblue > 0) and true ; (nred > 0) hold respectively for the
BlueCar and RedCar threads.
Correction for true ; (nred > 0). In this step, the resulting program blocks thread BlueCar from using
the bridge, thus guaranteeing progress for RedCar thread.
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1 synchronized void redEnter()

2 throws InterruptedException {
3 if ((capacity>onbridge) && (nblue==0) ) {
4 ++nred; onbridge++; }
5 }
6 synchronized void redExit(){
7 if(nred>0){ choice=generator.nextInt(2);

8 if(choice==1) --nred; }
9 }

10 synchronized void blueEnter()

11 throws InterruptedException {
12 if ((capacity>onbridge) && (nred==0) ) {
13 ++nblue; onbridge++; }
14 }
15 synchronized void blueExit() {
16 if(nblue>0){ choice=generator.nextInt(2);

17 if(choice==1) --nblue; }
18 }

Figure 7: The methods of the Bridge class SLB program after correction of safety violation.

Correction for true ; (nblue > 0). The correction of the resulting program from the previous step fails
for true ; (nblue > 0).

There are two main causes for the failure of correcting multiple non-progress failures. First, for some
programs and leads-to properties, the order of correcting different non-progress failures may impact the
success of correction because some transitions eliminated for the correction of a non-progress failure might
be useful for the correction of other failures. Second, for some programs and leads-to properties, there may
not exist a SS in program state space that meets the requirements of all progress properties the program is
supposed to satisfy, no matter which order of correction we select. This is the case for the SLB program.
Next, we explain a heuristic we use to address this problem by expanding the state space of SLB and adding
computational redundancy.
Heuristic for finding SSs in an expanded state space. One cause of the failure of Correct NonProgress

in correcting multiple non-progress failures is the lack of sufficient computational redundancy and non-
determinism in the faulty program. In fact, while non-determinism may be a cause of concurrency failures, the
chance of successful correction of a concurrency failure depends on the degree of non-determinism available
in the faulty program; the more non-determinism the higher chance of successful correction! With this
intuition, we present the following heuristic for cases where correction of multiple non-progress failures fails.

First, we manually add new variables and/or instructions to the failed program based on the principle
of computation superimposition proposed in [16]. Then, we algorithmically correct the failures in the super-
imposed program. The new variables and instructions just monitor the computations of the faulty program
without interfering with them. In the case of SLB, we add a new shared variable, denoted procStamp, to
the Bridge class. The procStamp variable is used to keep a record of the last thread that entered its critical
section. Each thread is assigned a unique stamp; the stamp of RedCar is 1 and the stamp of BlueCar is 2. The
superimposed code appears in Lines 5 and 6 below.

1 synchronized void redEnter()

2 throws InterruptedException {
3 if ((capacity>onbridge) && (nblue==0) ) {
4 ++nred; onbridge++;

5 if(procStamp==1) procStamp=3;

6 else procStamp=2; }
7 }

If RedCar (respectively, BlueCar) enters its critical section and procStamp is equal to 1 (respectively, 2),
then it sets procStamp to 3 illustrating that RedCar (respectively, BlueCar) just made progress by entering its
critical section. Otherwise, RedCar (respectively, BlueCar) gives priority to BlueCar (respectively, RedCar) by
setting procStamp to 2 (respectively, 1). Note that the superimposed SLB program still has the non-progress
failures.
Theorem 5.6. The corrected SLB program satisfies (true ; (procStamp = 3)) iff the corrected SLB program
satisfies true ; (nred > 0) and true ; (nblue > 0).
Proof.
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⇒. If true ; (procStamp = 3) holds then predicates true ; (nred > 0) and true ; (nblue > 0) are
satisfied. By contradiction, assume one of the predicates does not hold; e.g., true ; (nblue > 0). Thus,
RedCar continuously uses the bridge while BlueCar starves. In this case, infinite invocation of redEnter implies
that procStamp remains 2, which contradicts true ; (procStamp = 3). The same reasoning is correct when
true ; (nblue > 0) does not hold. Therefore, ⇒ part holds.

⇐. true ; (nBlue > 0) and true ; (nRed > 0) hold, then true ; (procStamp = 3) holds. By
contradiction, assume true ; (procStamp = 3) does not hold. Since procStamp = 3 denotes the resource
alternation, at least one of threads should fail to progress and it contradicts the assumption that both
threads proceed using the bridge. Therefore, the the proof follows. 2

Correction of the superimposed SLB for (true ; (procStamp = 3)). To ensure that both threads
RedCar and BlueCar make progress, we use Correct NonProgress to correct the superimposed SLB program for
the leads-to property (true ; (procStamp = 3)). First, the condition of the ‘if statement’ on Line 3 in Figure
6 is replaced with the condition (onbridge==0); i.e., RedCar can enter the bridge only when there are no cars.
Second, the condition on the choice variable in Line 8 is eliminated. That is, a red car that invokes the
redExit has no choice of deciding whether to leave the bridge or not; it has to leave the bridge. Third, a busy
waiting is synthesized in the synchronization skeleton of the RedCar to ensure that a blue car can use the
bridge before another red car does so. The translation of this busy waiting is the following method added
to the Bridge class.

1synchronized void redWait(){
2 while(procStamp!=1) wait(); }
3synchronized void blueWait(){
4 while(procStamp!=2) wait(); }

Moreover, the corrected RedCar thread continuously invokes redEnter, redExit and redWait methods instead
of just redEnter and redExit. (Symmetric revisions occur for the BlueCar thread.) Listings 5- 8 in Appendix B
shows the complete body of Bridge, RedCar and BlueCar.

6 Correction of Data Races

In this section, we discuss the correction of data races in the context of two case studies. Starting from
initial states, the Correct Safety algorithm presented in [21] first eliminates any transition that reaches a bad
state; i.e., a state not in S for a safety property 2S. Such removal of transitions may create some deadlock
states. Subsequently, Correct Safety ensures that no deadlock state is reached by the computations of p from
Ip. If an initial state becomes deadlocked, then the algorithm declares failure in correcting the program.
Otherwise, a corrected program is returned.

Our contribution in this section is that we design and implement a version of Correct Safety for algorithmic
correction of classic data races.

6.1 Case Study: Heat Flow

The Heat Flow (HF) program includes THREADS>1 threads and a shared array t of size THREADS×regLen,
where regLen > 1 is the length of a region vector accessible to each thread. That is, each thread i (0 ≤ i ≤
THREADS−1) has read/write access to array cells t[i ∗ regLen] up to t[((i + 1) ∗ regLen) − 1]. The shared
array t captures the transfer of heat in a metal rod and the HF program models the heat flow in the rod.
We present an excerpt of the UPC code of HF as follows:

1 shared double t [ regLen ∗ THREADS ] ;
2 double tmp ;
3

4 base = MYTHREAD∗ regLen ;
5 for ( ; ; ) {
6 // Perform some l o c a l computations
7 for ( i=base +1; i<base+regLen −1; ++i ) {
8 tmp = ( t [ i −1] + t [ i ] + t [ i +1]) / 3 . 0 ;
9 // Perform some l o c a l computations

10 t [ i −1] = // Assign the r e s u l t s to t [ i −1]
11 }
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12 i f ( MYTHREAD < THREADS−1) {
13 tmp = ( t [ base+regLen −2] +
14 t [ base+regLen −1] +
15 t [ base+regLen ] ) / 3 . 0 ;
16 // Perform some l o c a l computations
17 t [ base+regLen −1] = tmp ; }
18 upc barrier ;
19 t [ base+regLen−2] = // some express ion ;
20 }

Each thread continuously executes the code in Lines 6 to 20. Specifically, in Lines 7 to 11, each thread i,
where 0 ≤ i ≤ THREADS−1, first computes the heat intensity of the cells t[base] to t[base+ regLen−3] in its
own region. Subsequently, every thread, except the last one, updates the heat intensity of t[base+regLen−1]
(see Lines 12-18). Before updating t[base + regLen− 2] in Line 20, all threads synchronize using upc barrier.
Then they compute an expression that is assigned to t[base + regLen− 2]. Observe that, before each thread
i, for 0 ≤ i ≤ THREADS−2, updates the last value of its region in Line 17, it needs to read the first value of
its successor’s region in Line 15 (See figure 8 ). This is the place where a data race might occur between a
thread executing Line 10 in the first iteration of the for loop in Line 7 and its predecessor executing Line 15.

Figure 8: Data Access behavior of threads in heatflow example.

Specifying data races as safety properties. To capture data race-freedom as a safety property, we
specify a state predicate that represents an invariance condition. Towards this end, we consider two arrays
W and R with THREADS number of cells. Every time thread Ti writes t[base] in Line 10, it increments
W[i], and when the predecessor of Ti wants to read t[base] it increments R[i]. Since in this case only
one thread has access right to each one of W[i] and R[i], no race conditions occur on these shared data.
Nonetheless, in general, we perform these actions atomically in Promela to ensure that W[i] and R[i] do
not become a point of contention themselves.3 For the HF program, ensuring that the safety property
2(((W [i] = 0) ∧ (R[i] ≥ 0)) ∨ ((W [i] = 1) ∧ (R[i] = 0))) holds for 0 ≤ i ≤ THREADS − 1 guarantees data
race-freedom.

Nonetheless, for illustration, we present the translation of Lines 10 and 15 in Promela as follows:

1 int W[THREADS]=0;
2 int R[THREADS]=0;
3 active [THREADS] proctype heatFlow (){
4 . . .
5// Lines 6 and 7 correspond to Line 10 of HF
6 atomic{ W[ pid ]=W[ p id ]+1; }
7 atomic{ W[ pid ]=W[ p id ]−1; }
8 . . .
9// Lines 10 and 11 correspond to Line 15 of HF

10 atomic{R[ p id+1]=R[ p id +1]+1; }
11 atomic{R[ p id+1]=R[ p id +1]−1; }
12 . . .
13}

3Most modern programming languages support test-and-set operations on single variables (e.g., in Berkeley UPC, a family
of upc atomic() functions, and in Java, Atomic Variables).

16



Corrected Heat Flow. The corrected program uses a lock variable lk[i] for each thread Ti (1 ≤ i ≤
THREADS − 1) and its predecessor. Specifically, in the code of HF, before Ti executes Line 10, it must
acquire lk[i]. Likewise, thread Ti−1 must acquire lk[i] before it reads t[base + regLen] in Line 15.
Caveats. We are currently investigating the problem of generating synchronization skeletons for programs
where the pattern of access to shared data is dynamically changed at run-time. For example, consider a
more accurate HF program in which each thread needs to read the entire shared array to have a more precise
computation of heat intensity for its own region. As a result, depending on which cell of the shared array
a thread needs to read/write, a data race may or may not occur. For such applications, correction of data
races is more difficult.

6.2 Readers Writers

In this section, we apply our method on a classic example in concurrency. Consider a shared resource and
two reader and two writer threads . Each reader (respectively, writer) continuously reads (respectively, writes)
the data. The specification of this program has two state variables rdr and wrtr which respectively denote
the number of readers and writers at any moment. Listing 2 shows the body of threads in Promela. It is
possible that writers intervene the readers and cause a data race. Thus we added a safety property to avoid
the race condition.

int pc [ 4 ]=0 ;
int rdr=0, wrtr=0;
active [ 4 ] proctype r eade rwr i t e r ( )
{
do
: : ( pc [ p id ]==0)−>

atomic{
/∗ Threads 0 and 1 are readers and threads 2 and three are wr i t e r s ∗/
i f
: : ( p id ==0|| pid==1)−> pc [ p id ]= 1 ;
: : else −>pc [ p id ]= 5 ;
f i ;
}

: : ( pc [ p id ]==1)−>atomic {pc [ p id ]=2;}
: : ( pc [ p id ]==2)−>atomic {
/∗ When a reader s t a r t s reading shared resource increase va lue rdr ∗/
rdr=rdr +1;pc [ p id ]= 3 ;}

: : ( pc [ p id ]==3)−>atomic {
/∗ When a reader f i n i s h e s reading shared resource decreases va lue rdr ∗/
rdr=rdr −1;pc [ p id ]= 1 ;}

: : ( pc [ p id ]==5)−>atomic {
i f
: : ( p id ==2|| pid==3)−> pc [ p id ]= 6 ;
: : else−>skip ;
f i }

: : ( pc [ p id ]==6)−>atomic {pc [ p id ]=7;}
: : ( pc [ p id ]==7)−>atomic{
/∗ When a wr i t e r s t a r t s wr i t i n g shared resource increase va lue wrtr ∗/
wrtr=wrtr +1;pc [ p id ]= 8 ; }

: : ( pc [ p id ]==8)−>atomic{
/∗ When a wr i t e r f i n i s h e s wr i t i n g shared resource i t decreases va lue wrtr ∗/
wrtr=wrtr −1;pc [ p id ]= 6 ;}

od
}

Listing 2: Readers Writers Specifications in Promela .

Correction for ensuring safety. The safety property is that writers should not intervene the readers,
in addition the writers should not write shared data simultaneously. Thus we added �(rdr ≥ 0 ∧ wrtr ==
0) ∨ (rdr = 0 ∧ wrtr = 1) . Listing 3 shows the safe reader writes program. For readers, it enforces that
at most one writer can write on the shared resource and respectively a writer can write only if no reader is
reading and no writer is writing.
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int pc [ 4 ]=0 ;
int rdr=0, wrtr=0;
active proctype r eader0 ( )
{
do
: : ( pc[0]==0)−>{ pc [0 ]= 1 ;}
: : ( pc[0]==1)−>atomic {pc [ 0 ]=2 ;}
: : ( pc[0]==2)−>atomic {
( wrtr==0)/∗ This condi t i on p r oh i b i t s i n t e r f e r enc e o f wr i t e r s ∗/
−>rdr=rdr +1;pc [0 ]= 3 ;}
: : ( pc[0]==3)−>atomic { rdr=rdr −1; pc [0 ]= 1 ;}
od
}
active proctype r eader1 ( )
{
do
: : ( pc[1]==0)−>{ pc [1 ]= 1 ;}
: : ( pc[1]==1)−>atomic {pc [ 1 ]=2 ;}
: : ( pc[1]==2)−>atomic {

( wrtr==0)/∗This condi t i on p r o h i b i t s i n t e r f e r enc e o f wr i t e r s ∗/
−>rdr=rdr +1; pc [1 ]= 3 ;}

: : ( pc[1]==3)−>atomic { rdr=rdr −1; pc [1 ]= 1 ;}
od
}

active proctype wr i t e r 0 ( )
{
do
: : ( pc[2]==0)−>{pc [2 ]= 6 ;}
: : ( pc[2]==6)−>atomic {pc [ 2 ]=7 ;}
: : ( pc[2]==7)−>atomic{

( wrtr==0&&rdr==0)/∗This condi t i on p r oh i b i t s i n t e r f e r enc e with readers
or other wr i t e r ∗/

−>wrtr=wrtr +1;
pc [2 ]= 8 ;}

: : ( pc[2]==8)−>atomic{wrtr=wrtr −1;pc [2 ]= 6 ;}
od
}

active proctype wr i t e r 1 ( )
{
do
: : ( pc[3]==0)−>{pc [3 ]= 6 ;}
: : ( pc[3]==6)−>atomic {pc [ 3 ]=7 ;}
: : ( pc[3]==7)−>atomic{

( wrtr==0&&rdr==0)/∗This condi t i on p r oh i b i t s i n t e r f e r enc e with readers
or other wr i t e r ∗/

−>wrtr=wrtr +1;pc [3 ]= 8 ;}
: : ( pc[3]==8)−>atomic{wrtr=wrtr −1;pc [3 ]= 6 ;}
od
}

Listing 3: Readers Writers specifications in Promela after correction for ensuring safety.

7 Other Case Studies

In this section we demonstrate application of our tool on three other examples. Section 7.1 presents correction
for safety and progress in a HPC synchronization construct called “barrier synchronization”. Section 7.2
applies the correction method to impose a progress property in Token Ring protocol. Section 7.3 uses an
extension of SLB program called ”Two sinlgle lane bridge” to address the safety violation and non-progress
defects in this program.
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7.1 Barrier Synchronization

In this section, we use a barrier synchronization to demonstrate do-ability of our approach. BarSync is
used in HPC applications for synchronizing the results of threads in round-based computations. Consider
three threads where each of them could circularly rotate between the positions ready, execute and success

(See Listing 9 in Appendix C for detailed description.) Variable pc1, pc2 and pc3 denote the positions where
threads are in. The invariant of the Barrier specifies that at least two threads should be in the same position.

Correction for ensuring safety. To enforce the invariant, we add the following property to the program
in Listing 9.

(∀j : 1 ≤ j ≤ 3 : (pc[j] 6= ready)) ∨ (∀j : 1 ≤ j ≤ 3 : (pc[j] 6= execute)) ∨ (∀j : 1 ≤ j ≤ 3 : (pc[j] 6=
success)) Listing 10 in Appendix C is the result of this correction.

Correction for ensuring progress. The program statement requires that, starting from the
state allR =< ready, ready, ready > all threads will eventually synchronize in the state allS =<

success, success, success > . Listing 11 of Appendix C shows the new program that imposes allR ; allS.

7.2 Token Ring

In this section, we demonstrate the application of our tool on a distributed control protocol called Token
ring. Token ring protocol is often used for ensuring mutual exclusion, where only the thread that has the
token can access shared data, and at all times at most one thread has a token. Assume three threads on a
ring. Each of thread k has a variable xk to update and they are able to read the variable of its neighbor.
Listing 12 in Appendix D shows the specification of this threads. In this case we add the progress property
that specifies that infinitely often the threads should have the same value.

Correction for ensuring progress. Program statement requires to add true ; (x1 = x2 ∧ x2 = x3)
as the progress property. Listing 13 in Appendix D illustrates the resulting program after this correction.

7.3 Two Single Lane Bridges

In this section, we extend the example in 5.3. In this example we have two threads RedCar and BlueCar as
described in 5.3 and two single lane bridge. In this example, each thread randomly decides on a bridge to
use and then it puts a car on the selected bridge. br[k] denotes the bridge that thread k is going to use.
Listing 14 in Appendix E demonstrates specification of this problem

Correction for ensuring safety. To make the bridge safe, we should guarantee that the both threads
do not collide on any bridge i, i.e. ∀i : �¬(nredi > 0 ∧ nbluei > 0) . Listing 15 in Appendix E shows the
specification of two threads after ensuring this property.

Correction for ensuring progress. To add progress to both threads, we sequentially add leads-to
property to the threads. We first add true ; total[0] > 0 and then we add true ; total[1] > 0. Listing 16
in Appendix E shows the outcome of this process.

8 Experimental Results

In this section, we summarize our experimental results. Our objective in this section is to illustrate the
feasibility of our algorithmic correction method in practice. Moreover, we demonstrate (in Table 9) that
the improved version of Correct NonProgress presented in Section 5.1 indeed provides an average 27% run-
time improvement in our case studies using an explicit-state implementation. We ran the experiments on a
machine with a DualCore Intel CPU (3.00 GHz) with 2 GB RAM and the Linux Fedora operating system.
We also have conducted a case study on an extended version of the SLB program in Section 5.3, where
there are two bridges. We did not observe a significant improvement in run-time for the swapping program
because updateRank almost explores 90% of the reachable states for correcting the non-progress failures of the
second thread. For token ring, there were no infinity-ranked states. Thus, no deadlock states were created.
The improved Correct NonProgress skips the re-ranking in Step 4 of Figure 3, whereas the original algorithm
would re-rank the entire set of reachable states. For this reason, we observe a significant improvement in the
case of token ring.

We have corrected non-progress failures of a version of BarSync with 150 threads in half an hour using a
symbolic implementation of Correct NonProgress. However, we could not scale up the correction of the token
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Figure 9: Experimental results. (Time unit is milliSec.)

ring program beyond 7 threads using the symbolic implementation, whereas with the explicit-state imple-
mentation we were able to correct a token ring program with 10 threads! We observe that the space efficiency
of BDDs [14] dramatically drops where program variables have large domains. By contrast, symbolic correc-
tion better handles programs that have variables with small domains, but a high degree of non-determinism
(i.e., large number of threads).

9 Limitations

In this section, we discuss some theoretical and practical limitations of our approach. In principal, we have
previously illustrated that finding a SS that meets the requirements of multiple leads-to properties is a hard
problem [21]. As such, if we want to have efficient tools for automatic correction of non-progress failures, then
we should develop polynomial-time sound (but incomplete) heuristics. If such heuristics succeed in correcting
non-progress failures of several leads-to properties, then the programs they generate are correct, however,
they may fail to correct programs. Another theoretical limitation of identifying SSs is when threads have
read restrictions with respect to the synchronization state of other threads. Under such read restrictions
(i.e., limited observability [42]), correcting both safety-violations and non-progress failures become hard
problems [13]. To address this challenge, we adopt a two-track approach. In the first track, we develop
sound heuristics that reduce the complexity of correction under read restrictions. In the second track, we
first correct programs in the high atomicity model (i.e., full observability) to determine how much of the
synchronization state of each thread should be exposed to other threads. Then, we leverage the existing
synchronization primitives to enable threads in reading the state of other threads. For instance, we are
investigating the use of lock variables. Consider a scenario where two threads T1 and T2 compete for a lock
lk. When T1 observes that lk is unavailable, T1 gains the knowledge that T2 is executing the piece of code
protected by lk (e.g., is trying to enter its critical section). In other words, T1 reads the synchronization
state of T2 by trying to acquire lk. However, the problem is that T1 gets blocked on lk using traditional
locking primitives (such as upc lock() function in UPC). Thus, what we need is to check whether or not lk is
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available without waiting for it. Fortunately, UPC has the function upc lock attempt() (defined in Section 4)
that permits us to detect whether or not another thread is in a specific synchronization state. Likewise, the
Lock objects in Java enable us to check the availability of a lock (using a tryLock method) without blocking
on it.

A practical caveat is the realization of automatically generated corrections in the target programming
language; not all corrections generated in Promela code are realizable in UPC and Java. We categorize the
corrections into three sets, namely additional preconditions on existing instructions, locking mechanisms and
statements that should be executed atomically. Most modern programming languages provide constructs
for realizing the second and the third sets of corrections. For example, for atomic execution of statements,
Java Concurrency API provides Atomic types (e.g., AtmoicInteger) for atomic updates of single variables.
For the realizability of preconditions, we follow the approach we explained above for dealing with limited
observability.

10 Conclusions and Future Work

We presented the concept of satisfying subsets that provides a foundation for algorithmic correction of con-
currency failures, including non-progress and data races. Given a program that has a (non-progress or data
race) failure, we first generate a slice of the program capturing inter-thread synchronization functionali-
ties, called the synchronization skeleton. Then we generate a finite model of the synchronization skeleton
and systematically search for a subset of program computations that avoid the concurrency failures; i.e.,
a Satisfying Subset (SS). The existence of a SS results in pruning the unnecessary non-determinism that
causes the failure. We have validated our approach in the context of several multithreaded programs in the
Unified Parallel C (UPC) programming language and in Java. We are currently extending this work in sev-
eral directions including (i) the development of sound heuristics for identification of SSs that meet multiple
progress requirements; (ii) the parallelization of correction algorithms towards increasing the scalability of
our approach, and (iii) algorithmic correction of high-level data races [8, 15] and consistency violation of
atomic data sets [40, 28].
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A The Corrected Swapping Program in UPC

1#inc l ude ”upc . h”
2#inc l ude <s td i o . h>

3 shared int A[ THREADS ] ;
4 upc lock t ∗shared l k [ THREADS ] ;
5 shared int s [ THREADS ] ;
6 shared int s e tS [ THREADS ] ;
7 int i , temp ;
8 int main ( )
9 { int k ;

10 i f ( MYTHREAD==0)
11 for ( k=0;k<3;k++)
12 { l k [ k]=upc global lock alloc ( ) ;
13 s [ k ]=0;
14 s e tS [ k ]=0;}
15 upc barrier ( 1 ) ;
16 // The body of each thread s t a r t s
17 A[ MYTHREAD] = MYTHREAD;
18 i = MYTHREAD; /∗ i i s a thread index . ∗/
19 i f ( MYTHREAD==0) return 0 ;
20 i f ( MYTHREAD==1)
21 {
22 int cnt0 ;
23 int SS2 ;
24 for ( cnt0 =0; cnt0 <10; cnt0++) {
25 upc memget(&SS2 , &setS [ 2 ] , s izeof ( int ) ) ;
26 while ( SS2 && ( s [ 1 ] == 2)) upc memget(&SS2 , &setS [ 2 ] , s izeof ( int ) ) ;
27 s [ 1 ] = 2 ;
28 s e tS [ 1 ] = 1 ;
29 upc lock ( l k [ 1 ] ) ; /∗ Acquire l o c k s ∗/
30 upc lock ( l k [ s [ 1 ] ] ) ;
31 upc memget(&SS2 , &setS [ 2 ] , s izeof ( int ) ) ;
32 while ( ! SS2 ) upc memget(&SS2 , &setS [ 2 ] , s izeof ( int ) ) ;
33 upc unlock ( l k [ 1 ] ) ; /∗ Unlock ∗/
34 upc unlock ( l k [ s [ 1 ] ] ) ;
35 s e tS [ 1 ] = 0 ;
36 }
37 }
38 else i f ( MYTHREAD==2)
39 {
40 int cnt1 ;
41 int SS1 ;
42 int s1 ;
43 for ( cnt1 =0; cnt1 <10; cnt1++) {
44 upc memget(&SS1 , &setS [ 1 ] , s izeof ( int ) ) ;
45 while ( ! SS1 ) upc memget(&SS1 , &setS [ 1 ] , s izeof ( int ) ) ; /∗ I t g i v e s p r i o r i t y to Thread 1∗/
46 s [ 2 ] = 1 ;
47 s e tS [ 2 ] = 1 ;
48 upc memget(&SS1 , &setS [ 1 ] , s izeof ( int ) ) ;
49 upc memget(&s1 , &s [ 1 ] , s izeof ( int ) ) ;
50 while ( ( s1 != 2) | | SS1 ) {
51 upc memget(&SS1 , &setS [ 1 ] , s izeof ( int ) ) ;
52 upc memget(&s1 , &s [ 1 ] , s izeof ( int ) ) ; }
53 upc lock ( l k [ 2 ] ) ; /∗ Acquire l o c k s ∗/
54 upc lock ( l k [ s [ 2 ] ] ) ;
55 /∗ Swap ∗/
56 upc unlock ( l k [ s [ 2 ] ] ) ; /∗ Unlock ∗/
57 upc unlock ( l k [ 2 ] ) ;
58 s e tS [ 2 ] = 0 ;
59 }
60 }
61 return 0 ;
62 }

Listing 4: The corrected swapping example described in Section 5.2
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B Single Lane Bridge

byte procStamp=0;
byte occupied =0;
byte capac i ty =2;
byte nblue =0;
byte nred =0;
byte pc [ 2 ]=0 ;

active proctype RedCar (){
byte cho i ce =0;
/∗ This par t corresponds to whi l e ( t rue )

in RedCar Class . ∗/
do
: : pc[0]==0−>atomic{
i f
: :(1)−> pc [0 ]= 1 ;

: : else−> skip ;
f i ;}

: : pc[0]==1−>atomic {
/∗ Addit ion of one new red car to the b r i dg e ∗/

i f
: : ( capaci ty >occupied)−>

nred=nred +1; occupied=occupied +1;
: : else−>skip ;
f i ;
pc [0 ]= 2 ;

}
/∗The f o l l o i n g statement corresponds to RedExit ( ) ∗/
: : ( pc[0]==2)−>atomic
{
i f
: : ( nred>0)−> pc [0 ]= 3 ;
: : else−> pc [0 ]= 4 ;

f i
}
: : ( pc[0]==3)−>atomic
{
pc [0 ]= 4 ;
/∗Random dec i s i on f o r removal o f a car ∗/
i f
: :(1)−> cho i ce =1;
::(1)−> cho i ce =0;
f i ;

}
: : ( pc[0]==4)−>atomic
{
i f
/∗Actual removal o f a red car ∗/
: : ( cho i ce ==1|| capac i ty==nred)−>

nred=nred −1; occupied=occupied −1; cho i ce =0;
: : else−>skip ;
f i ;
pc [0 ]= 5 ;

}
: : ( pc[0]==5)−>{pc [ 0 ]=0 ;}
od
}
active proctype BlueCar (){
byte cho i ce =0;
do
: : pc[1]==0−>atomic{
i f
/∗ This par t corresponds to whi l e ( t rue )
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in BlueCar Class . ∗/
: :(1)−> pc [1 ]= 1 ;

: : else−> pc [1 ]= −1;
f i ;}

: : pc[1]==1−>atomic {
i f
/∗ Addit ion of a b lue car to the b r i dg e ∗/
: : ( capaci ty >occupied)−>

nblue=nblue +1; occupied=occupied +1;
: : else−>skip ;
f i ;

pc [1 ]= 2 ;
}
/∗The f o l l o i n g statement corresponds to BlueExi t ( ) ∗/
: : ( pc[1]==2)−>atomic
{
i f
: : ( nblue>0)−> pc [1 ]= 3 ;
: : else−> pc [1 ]= 4 ;

f i
}
: : ( pc[1]==3)−>atomic
{
pc [1 ]= 4 ;
/∗The f o l l ow i n g i f s t a t ement s s imula t e s the random func t ion ∗/
i f
: :(1)−> cho i ce =1;
::(1)−> cho i ce =0;
f i ;

}

: : ( pc[1]==4)−>atomic
{
/∗Actual removal o f a b lue car from the b r i dg e ∗/
i f
: : ( cho i ce ==1|| capac i ty==nblue)−>

nblue=nblue −1; occupied=occupied −1; cho i ce =0;
: : else−>skip ;
f i ;
pc [1 ]= 5 ;

}
: : ( pc[1]==5)−>{pc [ 1 ]=0 ;}
od
}

Listing 5: Synchronization Skeleton of program in Figure 6.

class CorrectBr idge extends Bridge {
. . .

synchronized void redEnter ( ) throws Inter ruptedExcept i on {
i f ( onbr idge==0)

{++nred ;
onbr idge++;
i f ( procstamp==1)
procstamp=3;

else
procstamp=2;

}
}

synchronized void redExit ( ){
−−nred ;
−−onbr idge ;
n o t i f yA l l ( ) ;

}
synchronized void redWait ( ){
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while ( procstamp !=1)
wait ( ) ; }

synchronized void blueEnter ( ) throws Inter ruptedExcept i on {
i f ( onbr idge==0)
{++nblue ;

onbr idge++;
i f ( procstamp==2)

procstamp=3;
else

procstamp=1;

}
}
synchronized void blueExi t ( ){

−−nblue ;
−−onbr idge ;
n o t i f yA l l ( ) ;

}
synchronized void blueWait ( ){

while ( procstamp !=2)
wait ( ) ; }

}

Listing 6: Corrected Bridge in Java.

class NewBlueCar implements Runnable {
Bridge con t r o l ;
. . .

public void run ( ) {
try {

while ( true ) {
con t r o l . b lueEnter ( ) ;
c on t r o l . b lueEx i t ( ) ;

c on t r o l . blueWait ( ) ;
}

} catch ( Inter ruptedExcept i on e ){}
}

}

Listing 7: Corrected BlueCar.

class NewRedCar implements Runnable {
Bridge con t r o l ;
. . . .
public void run ( ) {
try {

while ( true ) {
con t r o l . redEnter ( ) ;
c on t r o l . r edExit ( ) ;
c on t r o l . redWait ( ) ;

}
} catch ( Inter ruptedExcept i on e ){}

}
}

Listing 8: Corrected RedCar.

27



C Barrier Synchronization

mtype = { ready , exec , s u c c e s s } ;
mtype pc1=ready ;
mtype pc2= ready ;
mtype pc3= ready ;

active proctype proces s1 ( )
{
do

pc1 = exec ;
pc1 = succe s s ;
pc1 = ready ;

od

}

active proctype proces s2 ( )
{
do

pc2 = exec ;
pc2 = succe s s ;
pc2 = ready ;

od

}

active proctype proces s3 ( )
{
do

pc3 = exec ;
pc3 = succe s s ;
pc3 = ready ;

od
}

Listing 9: Barrier Synchronization in Promela.

mtype = { ready , exec , s u c c e s s } ;
mtype pc1=ready ;
mtype pc2= ready ;
mtype pc3= ready ;
active proctype proces s1 ( )
{
do
: : atomic{
( pc1 == ready ) &&

(
( pc2 == pc3 ) | |
( pc2==exec ) | | ( pc3==exec )
)

−> pc1 = exec ;
}

: : atomic{
( pc1 == exec ) &&

(
( pc2 == pc3 ) | |
( pc2==succe s s ) | | ( pc3==succe s s )
)
−> pc1 = succe s s ;

}
: : atomic{
( pc1 == succe s s ) &&

(
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( pc2 == pc3 ) | |
( pc2==ready ) | | ( pc3==ready )
)

−> pc1 = ready ;
}

od
}

active proctype proces s2 ( )
{
do
: : atomic{
( pc2 == ready ) &&
(
( pc1 == pc3 ) | |
( pc1==exec ) | | ( pc3==exec )
)
−> pc2 = exec ;
}

: : atomic{
( pc2 == exec )
(
( pc1 == pc3 ) | |
( pc1==succe s s ) | | ( pc3==succe s s )
)
−> pc2 = succe s s ;
}

: : atomic{
( pc2 == succe s s ) &&
(
( pc1 == pc3 ) | |
( pc1==ready ) | | ( pc3==ready )
)

−> pc2 = ready ;
}

od
}

active proctype proces s3 ( )
{
do
: : atomic{

( pc3 == ready ) &&
(
( pc1 == pc2 ) | |
( pc1==exec ) | | ( pc2==exec )
)

−> pc3 = exec ;
}

: : atomic{
( pc3 == exec ) &&
(
( pc1 == pc2 ) | |
( pc1==succe s s ) | | ( pc2==succe s s )
)

−> pc3 = succe s s ;
}

: : atomic{
( pc3 == succe s s ) &&
(
( pc1 == pc2 ) | |
( pc1==ready ) | | ( pc2==ready )
)
−> pc3 = ready ;

29



}
od
}

Listing 10: Barrier Synchronization in Promela after correction for ensuring safety.

mtype = { ready , exec , s u c c e s s } ;
mtype pc1=ready ;
mtype pc2= ready ;
mtype pc3= ready ;
#define inv ( ( ( pc1 != ready ) && ( pc2 != ready ) && ( pc3 != ready ) ) | | \

( ( pc1 != exec ) && ( pc2 != exec ) && ( pc3 != exec ) ) | | \
( ( pc1 != succ e s s ) && ( pc2 != succ e s s ) && ( pc3 != succ e s s ) ) )

active proctype proces s1 ( )
{
do
: : atomic{
inv && ( pc1 == ready ) &&

(
( ( pc2 != succ e s s ) && ( pc3 != succ e s s ) ) | |
( ( pc2 == succe s s ) && ( pc3==succe s s ) )

)

−> pc1 = exec ;
}

: : atomic{
inv && ( pc1 == exec ) && ( pc2 != ready ) && ( pc3 !=ready )

−> pc1 = succe s s ;
}

: : atomic{
inv && ( pc1 == succe s s ) &&

( ( ( pc2 == ready ) && ( pc3 ==ready ) ) | |
( ( pc2 == succe s s ) && ( pc3 ==succe s s ) ) )

−> pc1 = ready ;
}

od
}

active proctype proces s2 ( )
{
do
: : atomic{
inv && ( pc2 == ready ) &&

(
( ( pc1 != succ e s s ) && ( pc3 != succ e s s ) ) | |
( ( pc1 == succe s s ) && ( pc3==succe s s ) )

)
−> pc2 = exec ;
}

: : atomic{
inv && ( pc2 == exec ) && ( pc1 != ready ) && ( pc3 !=ready )

−> pc2 = succe s s ;
}

: : atomic{
inv && ( pc2 == succe s s ) &&

( ( ( pc1 == ready ) && ( pc3 ==ready ) ) | |
( ( pc1 == succe s s ) && ( pc3 ==succe s s ) ) )

−> pc2 = ready ;
}

od
}

active proctype proces s3 ( )
{
do
: : atomic{
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inv && ( pc3 == ready ) &&
(
( ( pc2 != succ e s s ) && ( pc1 != succ e s s ) ) | |
( ( pc2 == succe s s ) && ( pc1==succe s s ) )

)

−> pc3 = exec ;
}

: : atomic{
inv && ( pc3 == exec ) && ( pc2 != ready ) && ( pc1 !=ready )
−> pc3 = succe s s ;
}

: : atomic{
inv && ( pc3 == succe s s ) &&

( ( ( pc2 == ready ) && ( pc1 ==ready ) ) | |
( ( pc2 == succe s s ) && ( pc1 ==succe s s ) ) )

−> pc3 = ready ;
}

od
}

Listing 11: Barrier Synchronization in Promela after correction for ensuring of allR ; allS.
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D Token Ring

int x1 =1;
int x2 =2;
int x3 = 1 ;
active proctype proces s1 ( )
{
do

x1 = ( x3+1) % 4 ;
od

}

active proctype proces s2 ( )
{
do
x2 = x1 ;

od
}

active proctype proces s3 ( )
{
do
x3 = x2 ;

od
}

Listing 12: Token Ring in Promela.

int x1 =1;
int x2 =2;
int x3 = 1 ;
active proctype proces s1 ( )
{
do
: : atomic{

( x3 != ( ( x1+3) % 4)) −> x1 = ( x3+1) % 4 ;
}

od

}
active proctype proces s2 ( )
{
do
: : atomic{

( x1 != x2 ) −> x2 = x1 ;
}

od
}
active proctype proces s3 ( )
{
do
: : atomic{
( x3 != x2 ) −> x3 = x2 ;
}

od
}

Listing 13: Token Ring after correction to ensure true ; (x1 = x2 ∧ x2 = x3).

32



E Two Single Lane Bridges

byte cho i ce [ 2 ]=0 ;
int br [ 2 ]=0 ;
byte t o t a l [ 2 ]=0 ;
byte nblue [ 2 ]=0 ;
byte nred [ 2 ]=0 ;
byte occupied [ 2 ]=0 ;
byte capac i ty =0;
byte pc [ 2 ]=0 ;

active [ 2 ] proctype TwoBridges ( ) {
do
: : ( pc [ p id ]==0)−> pc [ p id ]= 1 ;
: : ( pc [ p id ]==1)−>atomic
{
/∗Each a c t i v e process s imula t e s e i t h e r o f threads (RedCar or BlueCar )

i f p i d=0 i t s imu la t e s RedCar oterwi se i t s imu la t e s Bluecar ∗/
i f
: : ( p id==0)−> pc [ p id ]= 2 ;
: : else−> pc [ p id ]= 6 ;
f i

}

: : ( pc [ p id ]==2)−>atomic{
/∗random s e l e c t i o n of b r i dg e ∗/
i f

: :(1)−> br [ p id ]=0;
::(1)−> br [ p id ]=1;

f i ;
pc [ p id ]= 3 ; }

: : ( pc [ p id ]==3)−>atomic{
i f

/∗A new red car i s i n s e r t e d in to b r i dg e br [ p i d ] ∗/
: : ( capaci ty >occupied [ br [ p id ]])−>{
nred [ br [ p id ] ]= nred [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+ 1 ; ]
t o t a l [ p id ]= t o t a l [ p id ]+1;}

: : else−>skip ;
f i ;
pc [ p id ]= 4 ;

}

: : ( pc [ p id ]==4)−>atomic{
pc [ p id ]= 5 ;
/∗Random choice f o r removal form the b r i dg e ∗/
i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;

}
: : ( pc [ p id ]==5)−>atomic
{ i f
/∗Actual removal form the b r i dg e ∗/
: : ( ( cho i ce [ p id]==1&&nred [ br [ p id ] ] > 0 ) | | capac i ty==nred [ br [ p id ]])−>

{nred [ br [ p id ] ]= nred [ br [ p id ] ] −1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ;
cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;}

: : else−>skip ;
f i ;

pc [ p id ]= 1 ;
}

: : ( pc [ p id ]==6)−>atomic{ pc [ p id ]= 7 ;}
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: : ( pc [ p id ]==7)−>atomic{
pc [ p id ]= 8 ;
/∗random s e l e c t i o n of b r i dg e ∗/
i f
: :(1)−> br [ p id ]=0;
::(1)−> br [ p id ]=1;
f i ;}

: : ( pc [ p id ]==8)−>atomic{
/∗A new b lue car i s i n s e r t e d in to b r i dg e br [ p i d ] ∗/
i f

: : ( capaci ty >occupied [ br [ p id ]])−>

{nblue [ br [ p id ] ]= nblue [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+1 ;
t o t a l [ p id ]= t o t a l [ p id ]+1;}

: : else−>skip ;
f i ;
pc [ p id ]=9;
}

: : ( pc [ p id ]==9)−>atomic{
pc [ p id ]= 10 ;
/∗Random choice f o r removal form the b r i dg e ∗/
i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;
}

: : ( pc [ p id ]==10)−>atomic{
/∗Actual removal form the b r i dg e ∗/

i f
: : ( ( cho i ce [ p id]==1&&nblue [ br [ p id ] ] > 0 ) | | capac i ty==nblue [ br [ p id ]])−>

{nblue [ br [ p id ] ]= nblue [ br [ p id ] ] −1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ;
cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;}

: : else−>skip ;
f i ;
pc [ p id ]= 7 ;

}

od
}

Listing 14: Two Single Lane Bridges in Promela.

byte cho i ce [ 2 ]=0 ;
int br [ 2 ]=0 ;
byte t o t a l [ 2 ]=0 ;
byte nblue [ 2 ]=0 ;
byte nred [ 2 ]=0 ;
byte occupied [ 2 ]=0 ;
byte capac i ty =0;
byte pc [ 2 ]=0 ;
active [ 2 ] proctype TwoBridges ( ) {

do
: : ( pc [ p id ]==0)−> pc [ p id ]= 1 ;
: : ( pc [ p id ]==1)−>atomic
{

i f
: : ( p id==0)−> pc [ p id ]= 2 ;
: : else−> pc [ p id ]= 6 ;
f i

}

: : ( pc [ p id ]==2)−>atomic{
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i f
: :(1)−> br [ p id ]=0;
::(1)−> br [ p id ]=1;
f i ;

pc [ p id ]= 3 ; }

: : ( pc [ p id ]==3)−>atomic{
i f

: : ( capaci ty >occupied [ br [ p id ]]&&nblue [ br [ p id ]]==0)−>{
nred [ br [ p id ] ]= nred [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+1 ; t o t a l [ p id ]= t o t a l [ p id ]+1;}

: : else−>skip ;
f i ;
pc [ p id ]= 4 ;

}

: : ( pc [ p id ]==4)−>atomic{
pc [ p id ]= 5 ;
i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;

}
: : ( pc [ p id ]==5)−>atomic
{ i f

: : ( ( cho i ce [ p id]==1&&nred [ br [ p id ] ] > 0 ) | | capac i ty==nred [ br [ p id ]])−>

{
nred [ br [ p id ] ]= nred [ br [ p id ] ] −1 ; occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ;
cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;
}

: : else−>skip ;
f i ;

pc [ p id ]= 1 ;
}

: : ( pc [ p id ]==6)−>atomic{ pc [ p id ]= 7 ;}

: : ( pc [ p id ]==7)−>atomic{
pc [ p id ]= 8 ;
i f
: :(1)−> br [ p id ]=0;
::(1)−> br [ p id ]=1;
f i ;}

: : ( pc [ p id ]==8)−>atomic{
i f

: : ( capaci ty >occupied [ br [ p id ]]&&nred [ br [ p id ]]==0)−>

{ nblue [ br [ p id ] ]= nblue [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+1 ; t o t a l [ p id ]= t o t a l [ p id ]+1;

}
: : else−>skip ;
f i ;
pc [ p id ]=9;
}

: : ( pc [ p id ]==9)−>atomic{
pc [ p id ]= 10 ;

i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;

}
: : ( pc [ p id ]==10)−>atomic{

i f
: : ( ( cho i ce [ p id]==1&&nblue [ br [ p id ] ] > 0 ) | | capac i ty==nblue [ br [ p id ]])−>

{
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nblue [ br [ p id ] ]= nblue [ br [ p id ] ] −1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ; cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;
}

: : else−>skip ;
f i ;
pc [ p id ]= 7 ;

}

od
}

Listing 15: Two Single Lane Bridges in Promela after correction to ensure safety.

byte cho i ce [ 2 ]=0 ;
int br [ 2 ]=0 ;
byte t o t a l [ 2 ]=0 ;
byte nblue [ 2 ]=0 ;
byte nred [ 2 ]=0 ;
byte occupied [ 2 ]=0 ;
byte capac i ty =0;
byte pc [ 2 ]=0 ;
active [ 2 ] proctype TwoBridges ( ) {

do
: : ( pc [ p id ]==0)−> pc [ p id ]= 1 ;
: : ( pc [ p id ]==1)−>atomic
{

i f
: : ( p id==0)−> pc [ p id ]= 2 ;
: : else−> pc [ p id ]= 6 ;
f i

}

: : ( pc [ p id ]==2)−>atomic{
i f
: :(1)−> br [ p id ]=0;
f i ;

pc [ p id ]= 3 ; }

: : ( pc [ p id ]==3)−>atomic{
i f

: : ( capaci ty >occupied [ br [ p id ]]&&nblue [ br [ p id ]]==0)−>{
nred [ br [ p id ] ]= nred [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+1 ;
t o t a l [ p id ]= t o t a l [ p id ]+1;}

: : else−>skip ;
f i ;
pc [ p id ]= 4 ;

}

: : ( pc [ p id ]==4)−>atomic{
pc [ p id ]= 5 ;
i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;

}
: : ( pc [ p id ]==5)−>atomic
{ i f

: : ( ( cho i ce [ p id]==1&&nred [ br [ p id ] ] > 0 ) | | capac i ty==nred [ br [ p id ]])−>

{nred [ br [ p id ] ]= nred [ br [ p id ] ] −1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ;
cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;}

: : else−>skip ;
f i ;
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pc [ p id ]= 1 ;
}

: : ( pc [ p id ]==6)−>atomic{ pc [ p id ]= 7 ;}

: : ( pc [ p id ]==7)−>atomic{
pc [ p id ]= 8 ;
i f

: :(1)−> br [ p id ]=1;
f i ;}

: : ( pc [ p id ]==8)−>atomic{
i f

: : ( capaci ty >occupied [ br [ p id ]]&&nred [ br [ p id ]]==0)−>

{nblue [ br [ p id ] ]= nblue [ br [ p id ] ]+1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ]+1 ;
t o t a l [ p id ]= t o t a l [ p id ]+1;}

: : else−>skip ;
f i ;
pc [ p id ]=9;
}

: : ( pc [ p id ]==9)−>atomic{
pc [ p id ]= 10 ;
i f
: :(1)−> cho i ce [ p id ]=1;
::(1)−> cho i ce [ p id ]=0;
f i ;
}

: : ( pc [ p id ]==10)−>atomic{
i f

: : ( ( cho i ce [ p id]==1&&nblue [ br [ p id ] ] > 0 ) | | capac i ty==nblue [ br [ p id ]])−>

{nblue [ br [ p id ] ]= nblue [ br [ p id ] ] −1 ;
occupied [ br [ p id ] ]= occupied [ br [ p id ] ] −1 ;
cho i ce [ p id ]=0; t o t a l [ p id ]= t o t a l [ p id ]−1;}

: : else−>skip ;
f i ;
pc [ p id ]= 7 ;

}

od
}

Listing 16: Two Single Lane Bridges in Promela after correction to ensure progress property.
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