
Computer Science Technical Report

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Predicting Remote Reuse Distance Patterns in
Unified Parallel C Applications

by

Steven Vormwald, Steven Carr,
Steven Seidel and Zhenlin Wang

Computer Science Technical Report
CS-TR-09-02

December 18, 2009

ABSTRACT*

Productivity is becoming increasingly important in high performance computing. Parallel
systems, as well as the problems they are being used to solve, are becoming dramatically larger
and more complicated. Traditional approaches to programming for these systems, such as MPI,
are being regarded as too tedious and too tied to particular machines. Languages such as Unified
Parallel C attempt to simplify programming on these systems by abstracting the communication
with a global shared memory, partitioned across all the threads in an application. These
Partitioned Global Address Space, or PGAS, languages offer the programmer a way to specify
programs in a much simpler and more portable fashion.

However, performance of PGAS applications has tended to lag behind applications implemented
in a more traditional way. It is hoped that cache optimizations can provide similar benefits to
UPC applications as they have given single-threaded applications to close this performance gap.
Memory resuse distance is a critical measure of how much an application will benefit from a
cache, as well as an important piece of tuning information for enabling effective cache
optimization.

This research explores extending existing reuse distance analysis to remote memory accesses in
UPC applications. Existing analyses store a very good approximation of the reuse distance
histogram for each memory access in a program efficiently. Reuse data are collected for small
test runs, and then used to predict program behavior during full runs by curve fitting the patterns
seen in the training runs to a function of the problem size. Reuse data are kept for each UPC
thread in a UPC application, and these data are used to predict the data for each UPC thread in a
larger run. Both scaling up the problem size and the increasing the total number of UPC threads
are explored for prediction. Results indicate that good predictions can be made using existing
prediction algorithms. However, it is noted that choice of training threads can have a dramatic
effect on the accuracy of the prediction. Therefore, a simple algorithm is also presented that
partitions threads into groups with similar behavior to select threads in the training runs that will
lead to good predictions in the full run.

*This work is partially supported by NSF grant CCF-0833082.

CHAPTER 1Introdution1.1 MotivationHigh performane omputing is beoming an inreasingly important part ofour daily lives. It is used to determine where oil ompanies drill for oil, to �gureout what the weather will be like for the next week, to design safer buildingsand vehiles. Companies save millions of dollars every year by simulating produtdesigns instead of reating physial prototypes. The movie industry relies heavilyon speial e�ets rendered on large lusters. Sientists rely on simulations tounderstand nulear reations without having to perform dangerous experimentswith nulear materials.In addition, the mahines used to arry out these omputations are beomingdrastially larger and more ompliated. The Top500 list laims that the fastestsuperomputer in the world has over 200000 ores [1℄. It is made up of thou-sands of six-ore opteron proessors in ompute blades networked together. Theompute blades an eah be onsidered a omputer in its own right, working to-gether with the others to at as one large superomputer. This lustering modelof superomputer is now the dominant fore in high performane omputing.Traditionally, appliations written for these lusters required the programmerto expliitly manage the ommuniation needs of the program aross the variousnodes of the luster. It was thought that the performane needs of suh appliationsould only be met by a human programmer arefully designing the program tominimize the neessary ommuniation osts. This approah to programming forsuperomputers is quikly beoming unwieldy. The produtivity ost of requiringthe appliation programmer to manage and tune an appliation's ommuniationfor these omplex systems is simply too high.Partitioned global address spae languages, suh as Co-Array Fortran [2℄ andUni�ed Parallel C [3℄, attempt to address these produtivity onerns by buildinga shared memory programming model for programmers to work with, delegatingthe task of optimizing the neessary ommuniation to the language implementor.While these languages do o�er produtivity improvements, implementationshaven't been able to math the performane of more traditional message passingsetups. Various approahes to athing up have been tried. The UPC imple-mentation from the University of California Berkeley [4℄ uses the GASNet networklibrary [5℄, whih attempts to optimize ommuniation using various methods suhas message oalesing [6℄. Many implementations try to split synhronous opera-tion into an asynhronous operation and a orresponding wait, then spread theseas far apart as possible to hide ommuniation lateny. These optimizations an
1

lead to impressive performane gains, but there is still a performane gap for someappliations.One approah hasn't been ommonly used in implementations is softwareahing of remote memory operations. Cahing has been used to great e�et inmany situations to hide the ost of expensive operations. Programmers are alsoaustomed to working with ahes, sine they are so prevalent in today's CPUs.As Mar Snir pointed out in his keynote address to the PGAS2009 onferene [7℄,programmers would like to see some kind of ahing in these languages' imple-mentations. He demoed a ahing sheme implemented entirely in the appliation.However, it is desirable that the ahing be done at the level of the language im-plementation to avoid foring the programmer to deal with the omplexities ofommuniation that these languages were designed to hide.This researh takes an initial look at the possibility of using existing algorithmsfor single threaded appliations designed to predit patterns in the reuse distanesfor memory operations to predit patterns in the reuse distanes for remote memoryoperations in Uni�ed Parallel C appliations. It is hoped that this informationould be used to tune ahe behavior for ahing remote referenes, and to enableother optimizations that rely on this information and have been suessfully usedwith single-threaded appliations to work with multi-threaded UPC appliations.
1.2 Thesis OutlineThe rest of this doument is organized as follows. Chapter 2 gives a broadbakground in instrution-based reuse distane analysis and Uni�ed Parallel C.Chapter 3 introdues the instrumentation, test kernels and models used to preditremote memory behavior. Chapter 4 shows the predition results obtained. FinallyChapter 5 summarizes the results, looks at ways this predition model an be used,and possible future work to overome some of this model's weaknesses.

2

CHAPTER 2Bakground2.1 Parallel ComputationWhen one wishes to solve problems faster, there are generally only three thingsto do. First, one an try to �nd a better algorithm to solve the problem at hand.While this an lead to massive performane bene�ts, most ommon problems al-ready have known optimal solutions. Seond, one an inrease the rate at whiha program exeutes. If a program requires the exeution of 10000 instrutions, amahine that an exeute an instrution every milliseond will �nish the programmuh sooner than one that an only exeute an instrution every seond. Finally,one an exeute the program in parallel{solving multiple piees of the problem atthe same time. Just as having multiple hekout lanes speed onsumers throughtheir purhases, having the ability to work on multiple piees of a problem anspeed its solution.There are many di�erent ways to think about solving a problem in parallel.Flynn's taxonomy lassi�es parallel programming models up along two axes, onebased on the program's ontrol, the other based on its data [8, 9℄. This reatesfour lasses of programs: single instrution single data, multiple instrution sin-gle data, single instrution multiple data, and multiple instrution multiple data.These are heneforth referred to by the aronyms SISD, MISD, SIMD, and MIMDrespetively.The SISD model is the lassi, non-parallel programming model where eahinstrution is exeuted serially and works on a single piee of data. While modernarhitetures atually do work in parallel, this remains the most ommonly usedabstration for software developers.The MISD model is widely onsidered nonsensial, as it refers to multipleinstrutions being exeuted in parallel operating on the same data. While thisusually makes little sense, the term has been used to refer to redundant systems,whih use parallelism not to speed up a omputation, but rather to prevent pro-gram failures.The SIMD model sees widespread use in many speial purpose aelerators.In this model, a single instrution is exeuted in parallel aross large hunks ofdata. The most well-known use of this is probably in the graphis proessingunits, or GPUs, that have beome standard on modern personal omputers. Manyarhitetures also inlude SIMD extensions to their SISD instrution set that enableertain types of appliations to perform muh better.The MIMD model is the most general, where multiple instrutions are run inparallel, eah on di�erent data. This model is perhaps the most ommonly used
3

abstration for software developers writing parallel appliations, as this model isused in the threading libraries inluded with many operating systems.
2.1.1 SPMD ModelThe Single Program, Multiple Data, or SPMD model of parallel programmingis a subset of the MIMD model from Flynn's taxonomy. The MIMD model an bethought of as multiple SISD threads exeuting in parallel that have some meansof ommuniating amongst themselves. The SPMD model is a speial ase whereeah thread is exeuting the same program, only working with di�erent data. Thethreads need not operate in lok-step, nor all follow the same ontrol-ow throughthe program.
2.1.2 Communiation and the Shared Memory ModelFlynn's taxonomy desribes how a problem an be broken up and solved inparallel. It does not speify how the various threads of exeution that are being runin parallel ommuniate. From a programmer's perspetive, there are two majormodels of parallel ommuniation, message passing and shared memory.The message passing model, as its name suggests, requires that threads sendmessages to one another to ommuniate. In general, these messages must bepaired in that the sender must expliitly send a message and the reeiver mustexpliitly reeive that message.In the shared memory model, all threads share some amount of memory,and ommuniation ours through this shared memory. This naturally simpli�esommuniation as the programmer no longer needs to expliitly send data bak andforth between threads. The programmer is also no longer responsible for ensuringthreads send messages in the orret order to avoid deadloks, nor to hek forerrors in ommuniation.However, as memory is a shared resoure, the programmer must be aware ofthe onsisteny that the model allows. In the most simple ase, there is a strit or-dering on all memory aesses aross all threads, whih is easy for the programmerto understand, but is usually quite expensive for the implementation to enfore.There are various ways of relaxing the semantis to improve the performane ofthe program by permitting threads to see operations our in di�erent orders,eliminating unneessary synhronization.
2.1.3 Partitioned Global Address SpaeWhile the shared memory programming model o�ers the programmer manyadvantages, it is often diÆult to implement eÆiently on today's large distributedsystems. One major diÆulty omes from the fat that it is usually orders ofmagnitude more expensive to aess shared memory that is o�-node than it is to

4

aess on-node memory. If the programmer has no way of di�erentiating betweenon-node and o�-node memory, it beomes diÆult to write programs that runeÆiently on these modern mahines.Partitioned Global Address Spae, PGAS, languages try to address this prob-lem by introduing the onept of aÆnity [10℄. The shared memory spae is parti-tioned up among the threads suh that every objet in shared memory has aÆnityto one and only one thread. This allows programmers to write ode that takesadvantage of the loation of the objet.
2.1.4 Uni�ed Parallel CUni�ed Parallel C, heneforth UPC, is a parallel extension to the C program-ming language [3℄. It uses the SPMD programming model, where a �xed numberof UPC threads exeute the same UPC program. Eah UPC thread has its ownloal stak and loal heap, but there is also a global memory spae that all threadshave aess to. As UPC is a PGAS language, this global memory is partitionedamongst all the UPC threads.It is important to note that aesses to shared memory in UPC appliations donot require any speial libraries or syntax. One a variable is delared as shared, itan be referened just as any loal variable, at least from the programmer's pointof view. In many implementations, inluding MuPC, these aesses are diretlytranslated into runtime library alls that perform the read or write as neessary.For example, the program in Figure 2.1 prints hello from eah UPC thread,reords how many haraters eah thread printed, and exits with EXIT FAILUREif any thread had an error (printf() returns a negative value on errors).One important performane feature of UPC is the ability to speify that mem-ory aesses use relaxed memory onsisteny. The default, strit, memory onsis-teny requires that all shared memory aesses be ordered, and that all threadssee the same global order of memory aesses. In partiular, if two threads writeto the same variable at the same time, all threads will see the same written valueafter both threads have ourred. Consider the ode segment in Figure 2.2.For threads other than thread 0, there are only three possible outputs at the endof the ode: a = 0; b = 0 or a = 1; b = 0 or a = 1; b = 2.By ontrast, relaxed memory onsisteny provides no suh guarantee. Di�er-ent threads may see operations our in di�erent orders. Consider the same odesegment using relaxed variables instead of strit ones shown in Figure 2.3.For threads other than thread 0, there are now four possible outputs at the endof the ode: a = 0; b = 0 or a = 1; b = 0 or a = 1; b = 2 or a = 0; b = 2. Theadditional value, a = 0; b = 2 is permitted beause the relaxed semantis allowthreads other than thread 0 to see the assignment to sb our before the assignmentto sa, while the strit semantis require they our in program order.Sine implementation is allowed to reorder relaxed operations, it is also permit-

5

#inlude <s t d i o . h>#inlude <s t d l i b . h>#inlude <up . h>/� Eah UPC thread has 1 element o f t h i s array . �/shared [1 ℄ int pr inted [THREADS℄ ;int main ()f int i , e x i t v a l u e = EXIT SUCCESS ;/� I n i t i a l i z e l o a l par t o f p r in t ed array to 0 . �/pr inted [MYTHREAD℄ = 0 ;/� Wait f o r everyone to f i n i s h i n i t i a l i z a t i o n . �/up ba r r i e r (1) ;/� Reord the number o f hara t e r s p r in t ed . �/pr inted [MYTHREAD℄ = p r i n t f ("He l l o from UPC thread %d o f %d .nn" ,MYTHREAD, THREADS) ;/� Wait f o r everyone to f i n i s h p r in t i n g . �/up ba r r i e r (2) ;/� Veri fy a l l the threads pr in t ed something . �/for (i =0; i<THREADS;++ i)f i f (pr in ted [i ℄<0) e x i t v a l u e = EXIT FAILURE;ge x i t (e x i t v a l u e) ;g
Figure 2.1. Hello World in UPC

ted to ahe the values without having to worry about keeping the ahes oherentuntil a strit aess or olletive ours. Despite this apability, relatively fewUPC implementations ahe remote aesses, and those that do use relatively sim-ple ahes. At the time of this writing, only the MuPC referene implementationfrom Mihigan Tehnologial University [11℄ and the ommerial implementationfrom Hewlett Pakard [12℄ are known to implement ahing of remote referenes.
2.1.5 MuPCMuPC is a referene UPC implementation that is built on top of MPI andPOSIX threads. It urrently supports Intel x86 and x86-64 based lusters runningLinux, as well as alpha lusters running Tru64. Eah UPC thread is implementedas a single OS proess using two pthreads, one for managing ommuniation, theother to run the UPC program's omputation. The ompile sript �rst translatesthe UPC ode into C ode with alls into the MuPC runtime library to handleommuniation and synhronization. This is then ompiled with the system MPIompiler and the resulting binary an be run as if it were an MPI program.

6

s t r i t shared int sa=0, sb=0;int l a =0, lb =0;i f (MYTHREAD==0)f sa=1;sb=2;gelsef lb=sb ;l a=sa ;p r i n t f ("Thread %d : a = %d , b = %dnn" , la , lb) ;g
Figure 2.2. Example of Strit Semantis in UPCr e l axed shared int sa=0, sb=0;int a=0, b=0;i f (MYTHREAD==0)f sa=1;sb=2;gelsef b=sb ;a=sa ;p r i n t f ("Thread %d : a = %d , b = %dnn" , a , b) ;g
Figure 2.3. Example of Relaxed Semantis in UPC

MuPC implements a ahe for remote referenes in the ommuniation thread.The ahe is divided into THREADS�1 setions, one for eah non-loal UPCthread. The size of the ahe is determined by the user via a on�guration �le.The user an also hange the size of a ahe line. The defaults setup a 2mb ahewith 64-byte ahe lines.
2.2 Reuse Distane AnalysisReuse distane is de�ned as the number of distint memory loations that areaessed between two aesses to a given memory address. This information isgenerally used to determine, predit, or optimize ahe behavior.Forward reuse distane answers the question "How many distint memoryloations will be aessed before the next time this address is aessed?". It sansforward in an exeution, ounting the number of memory loations aessed untilthe given address is found. This information an be useful for determining whetheror not ahing should be performed for a memory referene, among other things.

7

Bakward reuse distane answers the question "How many distint memoryloations were aessed sine the last time this address was aessed?". It sansbakward in an exeution, ounting the number of memory loations aessed untilthe given address is found. This information an be useful for determining whetheror not a memory referene should be prefethed, among other things.A[1 ℄ = 1 ;A[2 ℄ = 2 ;A[1 ℄ = 3 ;A[2 ℄ = 4 ;A[3 ℄ = 5 ;A[1 ℄ = 6 ;A[2 ℄ = 7 ;
Figure 2.4. Reuse Distane ExampleFor example, onsider the seond referene to A[2℄ in the short ode segmentin Figure 2.4. Beause only A[1℄ was aessed sine the last aess to A[2℄, thebakward reuse distane is 1. The forward reuse distane is 2, beause both A[1℄and A[3℄ are aessed before A[2℄ is aessed again.There is also a distintion between temporal reuse and spatial reuse. Temporalreuse refers to reuse of a single loation in memory, as in the example above. Spatialreuse onsiders larger setions of memory, as the ahe in many systems pulls inmore than one element at a time. Assuming the ahe lines in the system anhold two array elements and that A[1℄ is aligned to the start of a ahe line, thebakwards spatial reuse distane of the seond aess to A[2℄ is 0, beause theirwere no intervening aesses to di�erent ahe lines sine the last aess. Theforward reuse distane is 1 however, beause A[3℄ does not share a ahe line withA[1℄ and A[2℄.

2.2.1 Instrution Based Reuse DistaneAnalyses generally reate histograms of either the forward or bakward reusedistanes enountered in a program trae. The histograms are generally assoiatedeither with a partiular memory address or with a partiular memory operation.When assoiated with a memory operation, the data are referred to as instrutionbased reuse distanes [13, 14℄.Studying the reuse distanes assoiated with operations an provide manyuseful insights into an appliation's behavior. For example, the maximum reusedistane seen by any operation an tell how large a ahe will be bene�ial to theappliation. Critial instrutions, operations that su�er from a disproportionatelylarge number of the ahe misses in a program, an be identi�ed as well [14℄.It is generally expensive to reord the reuse distanes over an entire programexeution exatly, as there an be trillions of memory operations enountered.
8

However, it has been shown that highly aurate approximations of the reuse dis-tane an be stored eÆiently using a splay tree to reord when memory loationsare enountered [15℄. This information an then be used to reate histogramsdesribing the reuse distanes for a given appliation.
2.2.2 Prediting Reuse Distane Patternsinput: the set of memory-distane bins Boutput: the set of loality patterns Pfor eah memory referene r fPr = ;; down = false; p = null;for (i = 0; i < numBins; i++)if (Bir.size > 0)if (p == null k(Bir:min� p:max > p:max�Bir:min)k(down&&Bi�1r :freq < Bir:freq)) fp = new pattern; p.mean = Bir.mean;p.min = Bir.min; p.max = Bir.max;p.freq = Bir.freq; p.maxf = Bir.freq;Pr = Pr [p; down = false;gelse fp.max = Bir.max; p.freq += Bir.freq;if (Bir.freq > p.maxf) fp.mean = Bir.mean; p.maxf = Bir.maxf;gif (!down && Bi�1r :freq > Bir:freq)down = true;gelsep = null;g Figure 2.5. Pattern-formation AlgorithmUsing pro�ling data, it has been shown that the memory behavior of a programan be predited by using urve �tting to model the reuse distane as a funtionof the data size of an appliation [14℄.First, patterns are identi�ed for eah memory operation in the instrumentedtraining runs. Histograms storing the reuse data for memory operations are usedto identify these patterns. For eah bin in the histogram, a minimum distane,maximum distane, mean distane, and frequeny are reorded. Then, adjaentbins are merged using the algorithm in Figure 2.5. The loality patterns for anoperation are de�ned as the sets of merged bins. Finally, the predition algorithmuses urve �tting with eah of a memory operation's patterns in two training runsto predit the orresponding pattern in the predited run [14℄.

9

2.2.3 Predition Auray ModelThere are two important measures of the reuse distane preditions. First isthe overage, whih is de�ned as the perentage of operations in the referene runthat an be predited. An operation an be predited if it ours in both trainingruns, and all of its patterns are regular. A pattern is regular if it ours in bothtraining runs and the reuse distane does not derease as the problem size grows.The auray then is the perentage of overed operations that are preditedorretly. An operation is predited orretly if the predited patterns exatlymath the observed patterns, or they overlap by at least 90%. The overlap for twopatterns A and B is de�ned asA:max�max(A:min;B:min)max(B:max� B:min;A:max� A:minThe overlap fator of 90% was used in this work beause this fator workedwell in prior work with sequential appliations [14℄.

10

CHAPTER 3Prediting Remote Reuse Distane3.1 InstrumentationIn order to get the raw ahe reuse data for the preditions, it was importantto have a working base ompiler from whih to add instrumentation to generatethe raw ahe reuse data. The MuPC ompiler and runtime was used for the dataolletion, with a number of modi�ations to support runtime remote reuse dataolletion.Initially, it was neessary to update MuPC to add support for x86-64 systemsto ensure MuPC ontinues to funtion in the future, as well as to support our newluster. Beause the vender-provided MPI libraries were 64-bit only, it was notpossible to simply use the 32-bit support in the OS. Therefore, the MuPC ompilerwas modi�ed to generate orret ode for the new platform. The bulk of this workwas merely inreasing the size of primitive types and enabling 64-bit maros andtypedefs in the EDG front-end.The other hanges were all to support reording ahe reuse in UPC programs.First, generi instrumentation was added to many of the runtime funtions. Theseallow a programmer to register funtions that get alled whenever a partiularruntime funtion is alled. This enables a programmer to inspet the program'sruntime behavior. To test this instrumentation, a simple funtion was written toreate a log of all remote memory aesses, reording the operation (put or get),the remote address, the size of the aess, and the loation in the program sourethat initiated the aess.One this funtionality was working, existing instrumentation for the Atomsimulator [16℄ was modi�ed for use with MuPC. This ode uses splay trees to storeahe reuse data per instrution. Sine it was originally designed to work withahe reuse in hardware, assoiating the reuse data with an instrution works �ne.However, for this projet, there is no simple instrution to assoiate the reuse datawith, as remote aesses are ompliated operations. It was �nally deided thatthe return address (bak into the appliation ode) would work as a substitute,sine it would produe the desired mapping bak to the appliation soure.Additionally, the Atom instrumentation had to be modi�ed to deal with dif-fering sizes of addresses. In partiular, shared memory addresses are a strut inMuPC, ontaining a 64-bit address, a thread, and a phase. The phase was notimportant to this researh, but both the thread and the address were. To properlystore these values, the instrumentation was modi�ed to store addresses as 64-bitvalues instead of 32-bit values, and the thread was stored in the upper six bits ofthe address, sine they were unused due to memory alignment.
11

Unfortunately, the implementation does require modi�ations to the soureprogram. The modi�ations are quite small, and an easily be disabled with thepreproessor. The maros and global variables shown in Figure 3.1 were de�nedin the up.h header./�� Added to support t r a in g remote ae s s e s .�/extern har � mup trae fun ;har � mup get fun name () ;#define TRACE FUNC nhar � mup t rae fun prev ; nmup t rae fun prev= mup t rae fun ; nmup trae fun= mup get fun name ()#define TRACE FUNC RET mup t rae fun= mup t rae fun prev/�� Maros fo r t r a ing . Must be used e x a t l y one per program ! ��/#define MUPCTRACENONE nvoid (� mup t r a e i n i t) () = NULL;#define MUPC TRACE FILE nvoid mup t r a e i n i t f i l e () ; nvoid (� mup t r a e i n i t) () = mu p t r a e i n i t f i l e ;#define MUPCTRACERD nvoid mup t r a e i n i t r d () ; nvoid (� mup t r a e i n i t) () = mup t r a e i n i t r d ;
Figure 3.1. Added MuPC MarosThese maros setup information in global variables that is used by speialfuntions that wrap alls into the MuPC runtime. The alls save the return addressof the all and the name of the funtion that it was alled from so they an bereorded by the instrumentation.The maros TRACE FUNC and TRACE FUNC RET should be used at thebeginning and end of all funtions with remote aesses. While these maros arenot stritly neessary, they enable the instrumentation to trak the funtion namethat an operation originated from without having to �gure it out from the returnaddress.The MUPC TRACE * maros initialize the traing ode. TheMUPC TRACE RD maro on�gures the traing to store per instrution sharedmemory reuse data. It must be inluded exatly one in the program's soure.During an instrumented run, all remote aesses are logged, and eah plaethere is a all into the runtime gets assoiated with a reuse distane histogram.Barriers and strit aesses ause the last use data to be dropped to fore alllater referenes to at as if no addresses had yet been seen. When the programompletes, these histograms are written out to disk, one �le per thread.

12

3.2 Test KernelsSine there are no standard benhmark appliations for UPC, a small numberof kernels were written or modi�ed from existing appliations to model programbehavior. These are desribed below.
3.2.1 Matrix MultipliationMatrix multipliation is a well studied problem in parallel omputation. Eahindex (i; j) in the resulting matrix is de�ned as the sum of the produts of theelements of row i from the �rst matrix with the orresponding elements of olumnj from the seond. A simple UPC implementation to solve C = A � B where A,B, and C are N �N matries is shown in Figure 3.2.for (int i =0; i<N;++ i) fu p f o r a l l (int j =0; j<N;++j ;&C[i ℄ [j ℄) fC[i ℄ [j ℄ = 0 ;for (int k=0;k<N;++k) fC[i ℄ [j ℄ += A[i ℄ [k ℄ � B[k ℄ [j ℄ ;ggg

Figure 3.2. Matrix Multipliation in UPCThe Matrix Multipliation kernel simply multiplies two large (square) arraystogether. The nodes are arranged in a 2-d grid, and eah node has an NxN blokof the array. The multipliation is performed using a naive implementation witha triple-nested loop, where eah thread alulates its portion of the �nal matrix,working a blok at a time. The problem size in this kernel is the loal size of thethree matries. In testing, this kernel was run with 4, 9, and 16 threads with 4elements per thread up to 262144 elements per thread, in inreasing powers of 4.The omplete soure for the kernel used an be found in Appendix A.1.
3.2.2 JaobiThe Jaobi method is an iterative method that �nds an approximate solutionto a series of linear equations. While it does not �nd exat solutions, it an givea solution that is within a desired delta of the exat solution for most problems.However, its most important feature is its numerial stability, whih is ritialwhen working with inexat values. Sine the oating point format most ommonlyused to represent real numbers is inexat, this stability makes the Jaobi methodquite useful in a variety of appliations.The Jaobi kernel simulates a Jaobi iterative solver for a large array dis-tributed in a blok yli fashion. The kernel only simulates the remote aesspattern for a Jaobi solver, it does not atually attempt to solve the generated

13

Figure 3.3. LU Deomposition of a Matrix
array. Like the Matrix Multipliation kernel, every thread performs essentially thesame task. The problem size in this kernel is the number of iterations the solverruns for. In testing, this kernel was run with 2 through 24 threads, with iterationounts as a power of 2 up to 8192. The omplete soure for the kernel used an befound in Appendix A.2.
3.2.3 LU DeompositionLU deomposition is another important operation for many sienti� applia-tions. It deomposes a matrix into the produt of a lower triangular matrix withan upper triangular matrix, as shown in Figure 3.3. This an be used to �nd boththe determinant and inverse of a matrix, as well as to solve a system of linearequations.The LU kernel, whih omes from the test suite from Berkeley's UPC om-piler [4℄ based on a program from Stanford University [17℄, performs an LU-deomposition on a large array that is distributed aross nodes in a blok ylifashion. Square bloks of B � B (B = 8; 16; 32 were tested) are distributed toeah thread until the entire array has been alloated. The problem size is the totalsize of the array. In testing, this kernel was run with 2 through 36 threads, withproblem sizes from 1024 elements to 16777216 elements. The omplete soure forthe kernel used an be found in Appendix A.3.
3.2.4 StenilStenil problems are problems where elements of an array are iteratively up-dated based on the pattern of its neighbors. A ommon example of this is JohnConway's Game of Life, where the life or death of a ell at a given time step isdetermined by the life or death of neighboring ells in the previous time step. Thestenil desribes whih neighboring ells are used to update a given ell. This isoften used in engineering when modeling the ow of heat or air.

14

The stenil kernels are a family of kernels that apply a 2-d or 3-d stenil toan array. These kernels were added as an example of a lass of problems wherethreads displayed di�ering behavior based on the logial layout of threads. Theproblem size for these is the total size of the array the stenil operates over. Thesekernels were developed later than the others and did not have as many test runsas the other kernels due to time and hardware onstraints. Therefore, exhaustiveresults are not available for these kernels, results are available only for the fourand eight point 2d stenil kernels.While initially instrumenting the stenil ode, it was observed that in someases, there were additional unexpeted remote memory aesses that did notmath up to the theoretial ommuniation behavior of the programs.void s t e n i l (int i , int j)f A(i , j) += A(i �1, j) ;A(i , j) += A(i +1, j) ;A(i , j) += A(i , j �1);A(i , j) += A(i , j +1);A(i , j) /= 5 . 0 ;g
Figure 3.4. Failing Stenil CodeAssuming that A(i; j) is loal to the alling thread, one would expet that thestenil funtion in Figure 3.4 generates at most four operations (alls to the run-time) that ould be remote aesses. Without that assumption, at most four-teen operations ould be remote aesses. The ode generated atually has atmost twenty-three operations that ould be remote aesses. This was ausing thethread-saling predition to fail, as the pattern of whih of these operations is usedvaries with thread ount.The ulprit was determined to be the '+=' operator and its interation witha shared variable. Changing the stenil ode sample from Figure 3.4 to the thatshown in Figure 3.5 eliminates the superuous operations.This �xed the problem beause the UPC to C translator uses nested ondi-tional operators to hek for loal aesses when working with shared variables.This nesting aused multiple aesses to be generated for a single soure aesswhen there are multiple aesses to shared variables in a statement. Sine this is alimitation of the MuPC ompiler and ommon pratie is to use loal temporariesto avoid multiple remote aesses, the stenil ode was updated to use the latterform. The omplete soure for the kernel used an be found in Appendix A.4.

15

void s t e n i l (int i , int j)f double t ;t = A(i , j) ;t += A(i �1, j) ;t += A(i +1, j) ;t += A(i , j �1);t += A(i , j +1);t /= 5 . 0 ;A(i , j) = t ;g
Figure 3.5. Correted Stenil Code

3.3 Thread PartitioningSine a predition is being performed for eah UPC thread in a run, thehoie of whih thread's data are used to train beomes important. If the numberof threads is kept onstant, the obvious hoie is to use the same thread's data forthe training. However, that doesn't work when the number of threads inreases.Therefore, it was neessary to ome up with a way of seleting the threads used inthe preditions.In searhing for a suitable algorithm for partitioning threads for training, itwas noted that all of the kernels tested worked with large square arrays, and theommuniation pattern was based on the distribution of these arrays. Beause theommuniation pattern is based on the geometri layout of the data, an algorithmwas used that mathes the training data with a pattern desribing this geometrilayout, and then hooses threads for predition based on it. As a speial exeption,thread 0 is assumed to be used for various extraneous tasks, suh as initialization,and is therefore always predited with thread 0 from eah of the training runs.The algorithm is split into three parts. The threads in the two training runsare partitioned into groups based on their ommuniation behavior, as shown inFigure 3.6. It is assumed that data for eah thread in eah training run hasassoiated with it the pattern data, represented as t.patterns, the instrutionsenountered (patterns are assoiated with an instrution) represented as t.inst.Eah thread's patterns are tested against those in the existing groups. The threadis inluded in the group if all the patterns are present in both, and there is atmost 5% di�erene between the min, max, freq, and mean values for the threadand the average of the values for all the threads in the group. Eah group traksthe number of members and the running arithmeti average min, max, freq, andmean of eah pattern. One the patterns are generated, they are assoiated withthe run as T .groups.Then these groups are mathed against a funtion desribing the expeted
16

input: the set of training runs ontaining pattern data for eah thread in the runoutput: the set of training runs is updated with the set of groups Gfor eah training run TT .groups = ;for eah thread t 2 Tt.group = NULLfor eah group g 2 T .groupsif patterns math(g,t)t.group = gbreakif t.group == NULLt.group = new groupt.group.vals = NULLt.group.inst = t.instt.group.patterns = t.patternst.group.nthr = 1T .groups = T .groups [t.groupelsefor eah pattern pg 2 t.group.patternslet pt be the orresponding pattern in t.patternspg.min = (pg.min�t.group.nthr+pt.min)=(t.group.nthr+1)pg.max = (pg.max�t.group.nthr+pt.max)=(t.group.nthr+1)pg.freq = (pg.freq�t.group.nthr+pt.freq)=(t.group.nthr+1)pg.mean = (pg.mean�t.group.nthr+pt.mean)=(t.group.nthr+1)t.group.nthr = t.group.nthr+1Figure 3.6. Partitioning Algorithm
input: a group g and a thread toutput: true if the patterns of t math those of g, false otherwiseif g.inst6= t.inst return falsefor eah pattern pg 2 g.patternslet pt be the orresponding pattern in t.patternsif no suh pt return falseif (pg.min�pt.min)/max(pg.min,pt.min)> 0:05 return falseif (pg.max�pt.max)/max(pg.max,pt.max)> 0:05 return falseif (pg.freq�pt.freq)/max(pg.freq,pt.freq)> 0:05 return falseif (pg.mean�pt.mean)/max(pg.mean,pt.mean)> 0:05 return falsereturn true Figure 3.7. patterns math() Funtion

17

partitioning of threads, as shown in Figure 3.8. The pattern funtion is used togenerate the set of values assoiated with threads in the group. The training runmathes the pattern funtion if the set of values assoiated with eah group isdisjoint from ever other group. Additionally, a map mapping values with one ofthe threads assoiated with it (the lowest if the threads are tested in asendingorder) is kept for eah training run, for later use when piking whih threads touse in the predition.input: the set T of training runs with the assoiated group assignmentsoutput: true if training runs math the pattern, false otherwisefor eah training run Tifor eah thread t 2 Tit.group.vals = t.group.vals[f(t; T .numthreads)if !Mi.ontainsKey(f(t; T .numthreads))Mi.insert(f(t; T .numthreads),t)for eah unordered pair of groups g1; g2 2 T .groupsif (g1.vals\g2.vals) 6= ; return falsereturn true Figure 3.8. Mathing AlgorithmUnfortunately, the pattern itself is not automatially deteted, but was hosenbeause the kernels tested all used a square thread layout. The pattern funtionused is shown in Figure 3.9. Note that the pattern partitions a square into regionsbased on geometri properties. Beause the algorithm merges regions based onobserved behaviors, the pattern atually de�nes a large number of subpatterns,whih are automatially mathed by the algorithm. The ability to automatiallygenerate a pattern funtion for a given problem would inrease the generality ofthis analysis greatly, an important avenue for future work. However, it is possibleto reate general patterns that math a wide variety of problems by utilizing thesubsetting inherent to this algorithm.Finally, if both training runs math the pattern, threads are predited withthreads from the training runs who share the same group as determined by themathed funtion. The algorithm seleting the pairs is shown in Figure 3.10. Ituses the maps generated while mathing the pattern to hoose threads in thetraining runs with the same value returned by the pattern funtion.As an example, onsider using equation 3.1 as a pattern to math against theLU kernel run with 16 threads in the test dataset, 25 threads in the train dataset,and 36 threads in the referene dataset with a �xed per-thread data size. In thisase, the threads with data on the diagonal of the array have to do extra work.Equation 3.1 returns 0 for threads on the diagonal and 1 for threads not on thediagonal, assuming the threads are laid out in a square grid. This should perfetlymath the thread layout of the LU kernel when run with a number of threads that
18

Figure 3.9. Pattern Funtion

input: the set of threads Tpred in the predition runinput: for eah training run, a map Mi mapping a return value from the pattern f(t; T)to a thread in the training run that generates that return valueoutput: for eah thread in the predition run, a pair of threads from the training runs to usefor eah thread tpred 2 Tpredt.preds = (M0.get(f(tpred; Tpred.numthreads)),M1.get(f(tpred; Tpred.numthreads)))Figure 3.10. Training Thread Seletion Algorithm

19

is a perfet square, suh as in this example. For larity, the mathing of reusepatterns is simpli�ed suh that threads with data on the diagonal perfetly mathonly other threads with data on the diagonal, and likewise for threads withoutdata on the diagonal.
f (t; n) = (0 if b tpn = (t mod pn)1 o.w. (3.1)First the threads in the test and train datasets are sorted into groups. Inboth ases there are two groups, those threads that have data on the diagonal {and therefore have extra work, and those that don't. For the test dataset, thegroups are g0 = ft5; t10; t15g and g1 = ft1; t2; t3; t4; t6; t7; t8; t9; t11; t12; t13; t14g.For the train dataset, the groups are g0 = ft6; t12; t18; t24g and g1 =ft1; t2; t3; t4; t5; t7; t8; t9; t10; t11; t12; t13; t14; t15; t16; t17; t19; t20; t21; t22; t23g. As notedearlier, t0 is exluded as a speial ase.Next, for eah group, the set vals of results of f (ti; n) where n is the numberof threads is omputed for eah ti in the group. This gives g0.vals = f0g and g1.vals= f1g for both the test and train datasets. Beause g0.vals T g1.vals is empty, thepattern is mathed in both datasets.Ref Test Train Ref Test Train0 0 0 18 1 11 1 1 19 1 12 1 1 20 1 13 1 1 21 5 64 1 1 22 1 15 1 1 23 1 16 1 1 24 1 17 5 6 25 1 18 1 1 26 1 19 1 1 27 1 110 1 1 28 5 611 1 1 29 1 112 1 1 30 1 113 1 1 31 1 114 5 6 32 1 115 1 1 33 1 116 1 1 34 1 117 1 1 35 5 6Table 3.1. Thread Grouping for 36-Thread Referene DatasetSine the pattern was mathed, it an be used to selet the pairs of threads

20

used for predition of the referene dataset. For eah thread in the referenedataset, a pair of threads from the test and train datasets are hosen based onwhih set they are in. Sine threads are grouped by behavior, it doesn't matterwhih thread in a set is used for the predition. In the solution shown in table 3.1,the lowest thread in the set is used for the preditions.

21

CHAPTER 4Predition ResultsTo determine whether or not it would be possible to model the behaviorof remote memory aesses, the four kernels were instrumented and run with anumber of di�erent data sizes and numbers of threads. All tests were run with theinstrumented MuPC ompiler on a 24-node dual dual ore opteron luster with anin�niband interonnet.Due to hardware and software limitations, the testing was restrited to amaximum of 48 UPC threads. In pratie, any more than 24 threads ran quiteslowly, thus there are relatively few results with more than 24 threads. While it isreognized that these are relatively small systems in the world of high performaneomputing, it is believed that the results would hold as the problem and threadsize inreases sine the problems enountered were due to either hanges in datalayout or using training data from runs that were too small.
4.1 Problem Size SalingAs expeted, the predition auray was very high when holding the numberof threads onstant and just inreasing the problem size. The predition followedthe same pattern as shown in earlier work, whih makes sense as there is very littleto distinguish size saling with onstant threads from size saling with one threadas far as the predition is onerned.However, problems an arise when the growth of the problem size auses thedistribution of shared data to hange, whih in turn auses the ommuniationpattern between threads to hange. This behavior is seen in the LU kernel, wherepredition auray and overage drop steeply in a few ases beause the distribu-tion of the array hanged.

Table 4.1. Problem Size Saling Auray DistributionKernel Preditions Minimum Average MaximumMatrix Multipliation 1547 3.08% 96.98% 100.00%Jaobi Solver 14234 99.87% 100.00% 100.00%LU Deomposition, 8x8 7027 6.36% 94.20% 100.00%LU Deomposition, 16x16 5809 8.54% 95.91% 100.00%LU Deomposition, 32x32 5839 0.00% 96.29% 100.00%
22

Table 4.2. Problem Size Saling Coverage DistributionKernel Preditions Minimum Average MaximumMatrix Multipliation 1547 53.45% 99.45% 100.00%Jaobi Solver 14234 38.80% 100.00% 100.00%LU Deomposition, 8x8 7027 0.00% 76.82% 100.00%LU Deomposition, 16x16 5809 0.00% 63.17% 100.00%LU Deomposition, 32x32 5839 0.00% 52.97% 100.00%
Tables 4.1 and 4.2 show that both overage and auray are quite high in mostases. In the matrix multipliation and Jaobi kernels, the low minimum auraiesare seen only when training with very small problem sizes. Of the 1612 preditionson the matrix multipliation kernel where the auray is less than 60%, 1610 ofthem our when the smallest training size is 256 or less, 1332 when the smallesttraining size is 16 or less. Likewise, the low minimum overage perentages areseen only when the training sizes are small enough that some operations disappear.The LU deomposition kernel is a bit more problemati. Consider the resultsin Table 4.3. It harts the perentage of preditions that have greater than 80,90, and 95% auray for eah of the three bloking fators tested, �rst for allpreditions, then only for those where the overage was 100%.

Table 4.3. LU Problem Size Saling Auray by CoverageKernel Preditions >80% A >90% A >95% A8x8, All Preditions 7027 56.07% 50.39% 33.56%16x16, All Preditions 5809 50.20% 49.63% 40.37%32x32, All Preditions 5839 47.58% 45.83% 45.71%8x8, 100% Coverage 3503 96.97% 85.64% 53.04%16x16, 100% Coverage 2486 97.30% 96.46% 74.82%32x32, 100% Coverage 1844 88.72% 85.36% 84.98%
The large di�erene between preditions with 100% overage and others stemsfrom the behavior of the kernel. The data distribution amongst the threads is de-termined by the problem size, thus hanging the problem size hanges the datadistribution. The data distribution in turn determines whih remote memory oper-ations a thread enounters, whih also hanges when the the problem size hanges.This results in low overage. The altered data distribution also hanges the behav-ior of a ouple remote memory operations as the number of threads enountering

23

the operation hanges. This has the e�et of reduing the auray of the predi-tion for those operations.It is lear that this model is restrited to using training data from runs thathave similar ommuniation patterns as the run being predited. An interestingquestion for future work is whether or not a model of the data distribution an beused to model how the saling will a�et the appliations ommuniation pattern,and if that an in turn be used to enable high overage and predition auraywhen the data distribution does hange.
4.2 Thread Saling

Table 4.4. Thread Saling Auray Distribution by KernelKernel Preditions Minimum Average MaximumMatrix Multipliation 61056 3.08% 97.75% 100.00%Jaobi Solver 103600 94.02% 99.87% 100.00%LU Deomposition, 8x8 862683 12.85% 94.71% 100.00%LU Deomposition, 16x16 346905 19.57% 91.73% 99.98%LU Deomposition, 32x32 94600 13.11% 82.49% 99.31%2d Stenil 18000 100.00% 100.00% 100.00%
Table 4.5. Thread Saling Coverage Distribution by KernelKernel Preditions Minimum Average MaximumMatrix Multipliation 61056 27.62% 99.29% 100.00%Jaobi Solver 103600 55.66% 91.26% 100.00%LU Deomposition, 8x8 862683 0.00% 41.73% 100.00%LU Deomposition, 16x16 346905 0.00% 37.43% 100.00%LU Deomposition, 32x32 94600 0.00% 20.96% 98.56%2d Stenil 18000 0.00% 57.99% 100.00%

Tables 4.4 and 4.5 show the predition results for varying the number ofthreads, and prediting using all possible pairs of training threads from the train-ing data available. Both overage and auray are quite high in most ases. Inthe matrix multipliation and Jaobi kernels, the low minimum auraies are seenonly when training with very small problem sizes, the same that ours when sal-ing the problem size. These results are for exhaustively prediting every thread
24

in the referene set with every possible ombination of threads in the two trainingsets. The high auray and overage in the matrix multipliation and Jaobi ker-nels in these tables indiate that the predition works well regardless of the threadshosen for training.The predition overage and auray on the LU kernel is muh more depen-dent on the hoie of threads used for the training however. Consider the aurayof the predition for thread 9 of 25, when using threads from runs with 4 and 16threads for the training. The predition auray by training pairs is shown inFigure 4.1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
c
c
u
ra

c
y

Train Thread

Prediction Accuracy for Thread 9 by Test and Train Thread

Test Thread 0
Test Thread 1
Test Thread 2
Test Thread 3

Figure 4.1. LU 32x32 4-16-25 Thread Saling Example ThreadFor most of the pairs, the predition auray is quite good. However, thereare a number of pairs that results in terrible auray. This is a result of thebehavioral di�erenes between threads in the LU kernel. Sine ertain threads(those that ontain bloks on the diagonal) have to do additional ommuniation,and thread 9 when run with 25 threads is not one of them, pairs where both threadsare on the diagonal show dramati dereases in auray.However, these results show that if the threads an be partitioned in suha way that threads with similar behaviors are in similar groups, high auraypreditions an be made. Thus onsider what happens when partitioning thetraining threads as desribed in Setion 3.3 with the pattern shown in Figure 3.9.
25

 99.5

 99.55

 99.6

 99.65

 99.7

 99.75

 99.8

 99.85

 99.9

 99.95

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
c
c
u

ra
c
y

Predicted Thread

Prediction Accuracy Using Selected Training

Figure 4.2. LU 32x32 4-16-25 Auray Using Thread Seletion Algorithm
The equation for Figure 3.9 is a ompliated funtion that simply partitionsa square into groups based on geometri loation. Eah orner is in its own group,the edges (minus the orners) are eah in their own groups. The diagonal, andthe upper and lower triangles also have their own groups. Figure 4.2 shows theauray results when using the thread partitioning to selet training pairs.As expeted, by prediting threads on the diagonal with threads also on thediagonal, it is possible to avoid the pits seen in Figure 4.1. However, it is desirablethat the pattern that is mathed not be spei� to the LU kernel. Thus, the square2-d stenils were used to verify that the pattern would also work for an appliationwith a very di�erent ommuniation pattern than the LU kernel.Like the LU kernel, the data distribution of the shared array determines theontrol ow through the program in the stenil kernels. Unlike the LU kernel,threads on the orners and edges exhibit di�ering behavior. This is due to lak-ing ommuniation on one or more sides of the stenil. In turn, this auses lowpredition overage, if threads along the edges are used to predit for threads inthe middle{thus the low minimum and average overage values in Table 4.5. Theauray of overed operations is not impated, however, beause the skipped op-erations have minimal impat on the reuse patterns. This is shown by the veryhigh auray of preditions seen in Table 4.4.

26

Table 4.6. Thread Saling Auray Distribution with PartitioningKernel Minimum Average MaximumMatrix Multipliation 92.38% 99.44% 100.00%Jaobi Solver 94.69% 99.87% 100.00%LU Deomposition, 8x8 51.07% 91.24% 99.86%LU Deomposition, 16x16 56.26% 80.36% 99.33%LU Deomposition, 32x32 48.95% 91.67% 99.31%2d Stenil 100.00% 100.00% 100.00%
Table 4.7. Thread Saling Coverage Distribution with PartitioningKernel Minimum Average MaximumMatrix Multipliation 100.00% 100.00% 100.00%Jaobi Solver 100.00% 100.00% 100.00%LU Deomposition, 8x8 97.45% 98.79% 99.90%LU Deomposition, 16x16 97.56% 98 97% 100.00%LU Deomposition, 32x32 96.34% 98.26% 98.56%2d Stenil 100.00% 100.00% 100.00%

Using thread partitioning, the threads in the orners, on eah edge, and inthe middle are separately grouped. This provides 100% overage for all threads,as threads in the training runs that skip operations are used to predit for threadsthat will also skip those instrutions due to the data distribution.Tables 4.6 and 4.7 show the results of using the partitioning algorithm pre-sented to selet training threads for all kernels. As expeted, the overage andauray both show marked improvement for all kernels. The only unexpeted re-sult is the deline in the average auray for the lu kernels. On loser inspetion,this beause the results in Table 4.4 are padded by the large number of ombina-tions that math threads not on the diagonal. Additionally, beause the numberof preditions is so muh smaller, the minimums have more weight.

27

CHAPTER 5ConlusionsIn summary, it has been shown that it is possible to predit the remote reusedistane for UPC appliations with a high degree of auray and overage, thoughthere are a number of important limitations.First, it is neessary to hoose training data that math behavior of the de-sired predition size to ahieve high auray and overage. Changes in the datadistribution aused by inreases in the problem size or number of threads an ausesigni�ant drops in both auray and overage.Choie of training threads is also ritially important for predition whensaling up the number of threads. The predition results an vary from extremelypoor to exellent merely by the hoie of whih threads were used for the predition.It is therefore neessary to math threads' behaviors in the training data to patternsthat predit whih threads will perform similarly in the saled-up runs.
5.1 AppliationsOne promising appliation of this researh is automatially adjusting aheparameters suh as size and thread aÆnity of ahe lines. This inludes thingslike bypassing the ahe for operations that are likely to result in a ahe miss,or disabling the ahe entirely for appliations that won't make muh use of it.Consider the ode segment in Figure 5.1. Assume do something is a funtion thatperforms no ommuniation.void example sub (shared f loat �p1 , shared f loat �p2 , int l en)f int i , j ;u p f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<l en ;++j) fdo something (p1 [i ℄ , p2 [j ℄ , i , j) ;ggg

Figure 5.1. Sample UPC FuntionSine elements of p2 are aessed in order, repeatedly for eah element of p1,this partiular segment of ode would work well with a ahe large enough to holdat least len elements. This work ould be used to predit how large a ahe isneeded for the appliation to ahe all the elements this funtion sees based on thereuse distane patterns seen.
28

Another option is warning the user about operations that show poor aheperformane, perhaps as part of a larger performane analysis/pro�ling tool. Goingbak to the previous ode, assume this time that the maximum size the ahe angrow to in an implementation is CACHE LEN. If the predition indiates that lenis likely to be larger than this, it might warn the user that the aesses to elementsof p2 are likely to result in ahe misses beause the ahe is too small. Then theuser ould hange the ode, perhaps to something like the ode in Figure 5.2 totake better advantage of the ahe, or perhaps simply hange the ompiler optionsused to tell the ompiler to do so automatially.void example sub (shared f loat �p1 , shared f loat �p2 , int l en)f int i , j , k ;for (k=0;k<l en /CACHE LEN;++k) fu p f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<CACHE LEN;++j) fdo something (p1 [i ℄ , p2 [k�CACHE LEN+j ℄ , i , k�CACHE LEN+j) ;gggu p f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<l en%CACHE LEN;++j) fdo something (p1 [i ℄ , p2 [k�CACHE LEN+j ℄ , i , k�CACHE LEN+j) ;ggg
Figure 5.2. Sample UPC Funtion Tuned for Cahe SizeInserting prefethes prior to operations that are likely to result in a ahe miss,and likewise avoiding putting in unneessary prefethes, would also be a good useof these preditions. Sine network ongestion an ause dramati performanepenalties on large lusters, avoiding unneessary ommuniation an be just asimportant as requesting data before it is atually needed.

5.2 Future WorkThis researh shows that it is possible to predit the remote reuse distanebehavior of UPC appliations. There are a number of weaknesses that should beaddressed in future work. Foremost among these is the ability to model the datadistribution of an appliation, and use that model to avoid problems suh as areseen with the LU kernel where hanging the data distribution between trainingruns auses poor auray. Sine the data distribution is known at runtime, itshould be possible to store it and use it to tune the predition by modeling howthe distribution will hange with an inrease in problem size.Another weakness of this researh is that the funtion used as a pattern duringthread partitioning must be hosen manually. As the thread grouping is largely
29

based on the data distribution, it seems natural to expet that a model of how datadistribution hanges when the number of threads grows would also enable a betterpartitioning of threads for improved predition auray. Another possibility islooking at the program in a more abstrat fashion, hoosing a pattern based onthe type of problem being solved. A list of suh abstrat problem types, and theassoiated ommuniation patterns, suh as Berkeley's Dwarfs [18℄ ould be usedas a starting point.Sine UPC is meant to inrease produtivity on large systems, it will alsobe neessary to improve the salability of this work. In partiular, storing reusepatterns for every thread in the two training sets, and prediting for every threadgenerated a large amount of data even for the relatively small test appliationsused. If this were to be used in a prodution environment, there would need to besome way of ompressing the data or skipping threads whose patterns are similarto another thread's. This ould perhaps extend into exploring a global view ofahe behavior, where the data is not kept on a per-thread basis, but rather takenover all the threads in an appliation.Finally, this work only explored temporal reuse. Spatial reuse, where "nearby"data is pulled in along with requested data provides quite a bit of performane formany serial appliations. It is likely that it would work similarly for many UPCappliations. The same predition sheme used for temporal reuse was shown towork well for spatial reuse in serial appliations as well. However, spatial loalityin UPC shared memory an be ross thread or on the same thread, depending onhow the appliation steps through memory and the way the data is laid out.

30

LIST OF REFERENCES
[1℄ TOP500.Org. \ORNLs Jaguar Claws its Way to Number One,Leaving Reon�gured Roadrunner Behind in Newest TOP500List of Fastest Superomputer." Nov. 2009. [Online℄. Available:http://top500.org/lists/2009/11/press-release[2℄ R. Numwih and J. Reid, \Co-Array Fortran for parallel programming,"Rutherford Appleton Laboratory, Teh. Rep. RAL-TR-1998-060, 1998.[3℄ The UPC Consortium. \UPC language spei�ation, v1.2." June 2005.[Online℄. Available: http://www.gwu.edu/�up/dos/up spes 1.2.pdf[4℄ University of California Berkeley. \The Berkely UPC Compiler." 2002.[Online℄. Available: http://up.lbl.gov[5℄ University of California Berkeley. \GASNet Communiation System." 2002.[Online℄. Available: http://gasnet.s.berkeley.edu/[6℄ W.-Y. Chen, C. Ianu, and K. Yelik, \Communiation optimizations for �ne-grained up appliations," in PACT '05: Proeedings of the 14th InternationalConferene on Parallel Arhitetures and Compilation Tehniques. Washing-ton, DC, USA: IEEE Computer Soiety, 2005, pp. 267{278.[7℄ M. Snir, \Shared memory programming on distributed memory sys-tems," 2009, keynote address at PGAS 2009. [Online℄. Available:http://www2.hpl.gwu.edu/pgas09/tutorials/PGAS Snir Keynote.pdf[8℄ M. J. Flynn, \Very high-speed omputing systems," in Proeedings of theIEEE, vol. 54, no. 12. IEEE Computer Soiety, De. 1966, pp. 1901{1909.[9℄ M. J. Flynn, \Some opmuter organizations and their e�etiveness," IEEETransations on Computers, vol. C-21, no. 9, pp. 948{960, Sept. 1972.[10℄ B. Carlson, T. El-Ghazawi, R. Numrih, and K. Yelik. \Programming inthe Partitioned Global Address Spae Model." 2003. [Online℄. Available:http://rd.lbl.gov/UPC/images/b/b5/PGAS Tutorial s2003.pdf[11℄ J. Savant and S. Seidel, \MuPC: A Run Time System for Uni�ed ParallelC," Mihigan Tehnologial University, Teh. Rep. CS-TR-02-03, Sept. 2002.[Online℄. Available: http://up.mtu.edu/papers/CS.TR.2.3.pdf[12℄ Hewlett Pakard. \HP Uni�ed Parallel C."

31

http://top500.org/lists/2009/11/press-release
http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf
http://upc.lbl.gov
http://gasnet.cs.berkeley.edu/
http://www2.hpcl.gwu.edu/pgas09/tutorials/PGAS_Snir_Keynote.pdf
http://crd.lbl.gov/UPC/images/b/b5/PGAS_Tutorial_sc2003.pdf
http://upc.mtu.edu/papers/CS.TR.2.3.pdf

[13℄ C. Fang, S. Carr, S. Onder, and Z. Wang, \Reuse-distane-based miss-ratepredition on a per instrution basis," in Proeedings of the 2nd ACM Work-shop on Memory System Performane, June 2004, pp. 60{68.[14℄ C. Fang, S. Carr, S. Onder, and Z. Wang, \Instrution based memory distaneanalysis and its appliation to optimization," in In Proeedings of the 14 thInternational Conferene on Parallel Arhitetures and Compilation, 2005.[15℄ C. Ding and Y. Zhong, \Prediting whole-program loality through reusedistane analysis," SIGPLAN Not., vol. 38, no. 5, pp. 245{257, 2003.[16℄ A. Srivastava and A. Eustae, \Atom: A system for building ustomizedprogram analysis tools." ACM, 1994, pp. 196{205.[17℄ Stanford University. \Parallel dense bloked LU fatorization." 1994.[18℄ University of California Berkeley. \The Landsape of Parallel Com-puting Researh: A View From Berkeley." [Online℄. Available:http://view.ees.berkeley.edu/wiki/Main Page"

32

http://view.eecs.berkeley.edu/wiki/Main_Page"

APPENDIXTest Kernel SouresA.1 Matrix Multipliation#inlude <s t d l i b . h>#inlude <s t d i o . h>#inlude <math . h>#inlude <a s s e r t . h>#inlude <up . h>#inlude <up re laxed . h>#ifdef MUPCTRACERDMUPCTRACERD#endifshared [℄ int � shared [1 ℄ � A;shared [℄ int � shared [1 ℄ � B;shared [℄ int � shared [1 ℄ � C;#define a r r i d x (arr , i , j) � ((a r r) [((i)/N)�n+((j)/N) ℄+((i)%N)�N+((j)%N))/� I n i t i a l i z e w i l l s e t t h i s to s q r t (THREADS) , the number� o f olumns and rows o f THREADS. Threads are l a i d out� as a n x n array . Eah thread l o a l l y has an NxN element .�/int n ,N;void i n i t i a l i z e (har �argv)f int i , j , k ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Seed the random number generator . �/srand (MYTHREAD) ;/� Veri fy t ha t the number o f threads i s a square . �/n = (int) f l o o r (s q r t ((double)THREADS)) ;a s s e r t ((n�n)==THREADS) ;/� Read in the s i z e o f the l o a l elment . �/N = ato i (argv) ;i f (MYTHREAD==0) p r i n t f ("Using l o a l b loks o f s i z e %dx%dnn" ,N,N) ;/� Al l oa t e memory fo r the arrays . �/A = (shared [℄ int � shared [1 ℄ �)u p a l l a l l o (THREADS, s izeof (shared [℄ int �)) ;B = (shared [℄ int � shared [1 ℄ �)u p a l l a l l o (THREADS, s izeof (shared [℄ int �)) ;C = (shared [℄ int � shared [1 ℄ �)u p a l l a l l o (THREADS, s izeof (shared [℄ int �)) ;a s s e r t ((A!=NULL)&&(B!=NULL)&&(C!=NULL)) ;A[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p a l l a l l o (THREADS,N�N� s izeof (int)))+MYTHREAD) ;
33

B[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p a l l a l l o (THREADS,N�N� s izeof (int)))+MYTHREAD) ;C[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p a l l a l l o (THREADS,N�N� s izeof (int)))+MYTHREAD) ;/� F i l l in arrays A and B. �/u p f o r a l l (i =0; i<THREADS; i++; i)f a s s e r t (A[i ℄ !=NULL) ;a s s e r t (B[i ℄ !=NULL) ;a s s e r t (C[i ℄ !=NULL) ;for (j =0; j<N; j++)f for (k=0;k<N; k++)f �(A[i ℄+ j �N+k) = i ;�(B[i ℄+ j �N+k) = i ;�(C[i ℄+ j �N+k) = 0 ;ggg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid p r i n t a r r a y (shared [℄ int � shared [1 ℄ �A)f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Only thread 0 p r i n t s . Everyone e l s e j u s t re turns . �/i f (MYTHREAD!=0) return ;for (i =0; i<n�N; i++)f p r i n t f ("n t%d" , i) ;gputhar (' nn ') ;for (i =0; i<n�N; i++)f p r i n t f ("%d" , i) ;for (j =0; j<n�N; j++)f // p r i n t f ("n t%d" ,�(A[(i /N)�n+(j /N)℄+(i%N)�N+(j%N))) ;p r i n t f ("n t%d" , a r r i d x (A, i , j)) ;gputhar (' nn ') ;gputhar (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid a l b l o k (int idx)
34

f int i , j , k , rowt , o l t ;#ifdef TRACE FUNCTRACE FUNC;#endifrowt=(MYTHREAD/n)�n+idx ; o l t=(MYTHREAD%n)+(idx �n) ;for (i =0; i<N; i++)f for (j =0; j<N; j++)f for (k=0;k<N; k++)f �(C[MYTHREAD℄+ i �N+k) += (� (A[rowt ℄+ i �N+j))� (� (B[o l t ℄+ j �N+k)) ;ggg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid mult kerne l ()f int i , j ;u p f o r a l l (i =0; i<THREADS; i++; i)f for (j =0; j<n ; j++)f a l b l o k (j) ;gggint main(int arg , har �� argv)f /� Must have 1 argument � s i z e o f N. �/i f (arg !=2) e x i t (EXIT FAILURE) ;/� I n i t i a l i z e arrays . �/i n i t i a l i z e (argv [1 ℄) ;up ba r r i e r (0) ;/� Print out A and B. �/p r i n t a r r a y (A) ;p r i n t a r r a y (B) ;up ba r r i e r (1) ;/� Compute C=A�B. �/mult kerne l () ;up ba r r i e r (2) ;/� Print out the r e s u l t . �/p r i n t a r r a y (C) ;
35

return 0 ;g

36

A.2 Jaobi Solver#inlude <s t d l i b . h>#inlude <s t d i o . h>#inlude <math . h>#inlude <a s s e r t . h>#inlude <up . h>#inlude <up re laxed . h>#ifdef MUPCTRACERDMUPCTRACERD#endif/� Defau l t number o f unknowns per thread . �/#ifndef N#define N 100#endif#define SIZE N�THREADSshared [N℄ double A[SIZE ℄ [SIZE ℄ ;shared [N℄ double X[2 ℄ [SIZE ℄ ;shared [N℄ double B[SIZE ℄ ;shared [N℄ double D[SIZE ℄ ;double maxD;// doub le ep s i l on ;long int MAX ITER;void i n i t i a l i z e (har �argv)f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Seed the random number generator . �/srandom (MYTHREAD) ;/� Read in the de s i r ed ep s i l on . �/// ep s i l on = a to f (argv) ;MAX ITER = ato i (argv) ;// i f (MYTHREAD==0) p r i n t f ("Using ep s i l on = %gnn" , ep s i l on) ;i f (MYTHREAD==0) p r i n t f ("Using MAX ITER = %ld nn" ,MAX ITER) ;/� F i l l in A and B. I n i t i a l i z e X[i ℄ to B[i ℄ . �/u p f o r a l l (i =0; i<SIZE ; i++;&B[i ℄)f X[0 ℄ [i ℄=X[1 ℄ [i ℄=B[i ℄=((double) THREADS) � (((double) random ()) / ((double) RANDMAX)) ;for (j =0; j<SIZE ; j++)f A[j ℄ [i ℄=((double) random ()) / ((double) RANDMAX) ;i f (j==i) A[j ℄ [i ℄+=(double) SIZE ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifg
37

unsigned int j a o b i k e r n e l ()f unsigned int i t e r ;int i , j ;double sum ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i t e r =0; i t e r<MAX ITER; i t e r++)f /� Update X[℄ �/u p f o r a l l (i =0; i<SIZE ; i++;&B[i ℄)f sum=0.0 ;for (j =0; j<i ; j++) sum+=A[i ℄ [j ℄�X[i t e r %2℄[j ℄ ;for (j=i +1; j<SIZE ; j++) sum+=A[i ℄ [j ℄�X[i t e r %2℄[j ℄ ;X[(i t e r +1)%2℄[i ℄=(B[i ℄�sum)/A[i ℄ [i ℄ ;gup ba r r i e r ;/� Compute maximum de l t a s on eah thread . �/u p f o r a l l (i =0; i<SIZE ; i++;&D[i ℄)f sum=0.0 ;for (j =0; j<SIZE ; j++) sum+=(A[i ℄ [j ℄�X[(i t e r +1)%2℄[j ℄) ;D[i ℄= fabs (sum�B[i ℄) ;gup ba r r i e r ;/� Chek fo r terminat ion . �/for (maxD=i =0; i<SIZE ; i++) maxD=(D[i ℄>maxD)?D[i ℄ : maxD;i f (MYTHREAD==0) f p r i n t f (s tde r r , "maxD: %8gnn" ,maxD) ;// i f (maxD<ep s i l on) re turn i t e r ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifreturn i t e r ;gvoid pr int A ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("A [℄ [℄ : ") ;for (i =0; i<SIZE ; i++)f for (j =0; j<SIZE ; j++)f
38

p r i n t f ("n t%8g" ,A[i ℄ [j ℄) ;gputhar (' nn ') ;gputhar (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid pr int B ()f int i ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("B [℄ : ") ;for (i =0; i<SIZE ; i++)f p r i n t f ("n t%8gnn" ,B[i ℄) ;gputhar (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid pr int X (int i t e r)f int i ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("X [℄ : ") ;for (i =0; i<SIZE ; i++)f p r i n t f ("n t%8gnn" ,X[i t e r %2℄[i ℄) ;gputhar (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint main(int arg , har �� argv)f int i t e r ;/� Must have 1 argument � des i r ed p r e i s i on . �/i f (arg !=2) e x i t (EXIT FAILURE) ;
39

/� I n i t i a l i z e arrays . �/i n i t i a l i z e (argv [1 ℄) ;up ba r r i e r (1) ;/� Print out the randomly generated A and B. �/pr int A () ;pr int B () ;up ba r r i e r (2) ;/� Find X suh t ha t AX=B. �/i t e r = j a o b i k e r n e l () ;up ba r r i e r (3) ;/� Print out the r e s u l t . �/pr int X (i t e r) ;return 0 ;g

40

A.3 LU Deomposition/���//� �//� Copyright () 1994 Stanford Unive r s i t y �//� �//� Al l r i g h t s reserved . �//� �//� Permission i s g iven to use , opy , and modify t h i s so f tware fo r any �//� non�ommerial purpose as long as t h i s opyr i gh t no t i e i s not �//� removed . A l l o ther uses , i n l ud ing r e d i s t r i b u t i o n in whole or in �//� part , are forb idden wi thout p r i o r wr i t t en permiss ion . �//� �//� This so f tware i s prov ided with a b s o l u t e l y no warranty and no �//� support . �//� �//���//���//� �//� Pa r a l l e l dense b l oked LU f a t o r i z a t i o n (no p i v o t i n g) �//� �//� This vers ion onta ins one dimensional arrays in whih the matrix �//� to be f a t o r ed i s s t o red . �//� �//� Command l i n e op t ions : �//� �//� �nN : Deompose NxN matrix . �//� �pP : P = number o f proessors . �//� �bB : Use a b l o k s i z e o f B. BxB elements shou ld f i t in ahe fo r �//� good performane . Small b l o k s i z e s (B=8, B=16) work we l l . �//� �s : Print i n d i v i d u a l proessor t iming s t a t i s t i s . �//� �t : Test output . �//� �o : Print out matrix va lue s . �//� �h : Print out ommand l i n e op t ions . �//� �//� Note : This vers ion works under both the FORK and SPROC models �//� �//���/#inlude <s t d i o . h>#inlude <math . h>#inlude <s t d l i b . h>#inlude <sys / time . h>#inlude "up . h"#inlude " lu . h"//MAIN ENV#define MAXRAND 32767.0#define DEFAULT N 128#define DEFAULT P 1#define DEFAULT B 16#define min(a , b) ((a) < (b) ? (a) : (b))#ifdef MUPCTRACERDMUPCTRACERD#endif//Everthing in globalmemory orrspond to shared typesshared double t i n s o l v e [THREADS℄ ;shared double t in mod [THREADS℄ ;shared double t i n b a r [THREADS℄ ;shared double t i n f a [THREADS℄ ;
41

shared double omplet ion [THREADS℄ ;shared strut t imeva l r f ;shared strut t imeva l r s ;shared strut t imeva l done ;shared int id ;up l o k t � i d l o k ;/�s t r u t GlobalMemory f// doub le � t i n f a ;shared doub le � t i n s o l v e ;shared doub le � t in mod ;doub le � t i n b a r ;doub le � omplet ion ;s t r u t t imeva l s t a r t t ime ;s t r u t t imeva l r f ;s t r u t t imeva l rs ;s t r u t t imeva l done ;i n t id ;//BARDEC(s t a r t)//LOCKDEC(i d l o k)u p l o k t � i d l o k ;g ;�/// shared s t r u t GlobalMemory �Global ;strut LoalCopies fdouble t i n f a ;double t i n s o l v e ;double t in mod ;double t i n b a r ;g ;shared int n ; /� The s i z e o f the matrix �/shared int b l o k s i z e ; /� Blok dimension �/int nbloks ; /� Number o f b l o k s in eah dimension �/int num rows ; /� Number o f proessors per row of proessor g r i d �/int num ols ; /� Number o f proessors per o l o f proessor g r i d �/// doub le �a ; /� a = lu ; l and u both p laed bak in a �/shared double �a ;// doub le � rhs ;shared double � rhs ;int � pro byte s ; /� Bytes to mal lo per proessor to ho ld b l o k so f A�/int t e s t r e s u l t = 0 ; /� Test r e s u l t o f f a t o r i z a t i o n ? �/int dopr int = 0 ; /� Print out matrix va lue s ? �/int dos ta t s = 0 ; /� Print out i n d i v i d u a l proessor s t a t i s t i s ? �/void In itA () ;void S laveSta r t () ;void OneSolve (int , int , shared double � , int , int) ;void lu0 (shared double � , int , int) ;void bdiv (shared double � , shared double � , int , int , int , int) ;void bmodd(shared double � , shared double� , int , int , int , int) ;void bmod(shared double � , shared double � , shared double � , int , int , int , int) ;void daxpy (shared double � , shared double � , int , double) ;int BlokOwner (int , int) ;void lu (int , int , int , strut LoalCopies � , int) ;double TouhA(int , int) ;void PrintA () ;
42

void ChekResult () ;void p r i n t e r r (onst har �) ;#define CLOCK(x) gett imeofday(&(x) , NULL)f loat a l t ime (strut t imeva l tp 1s t , strut t imeva l tp 2nd) ff loat d i f f = (tp 2nd . tv se�t p 1 s t . t v s e) � 1000000.0 +(tp 2nd . tv use�t p 1 s t . t v u s e) ;return d i f f / 1000000 . 0 ;gint main(int arg , har� argv [℄)f int i , j ;int h ;double mint , maxt , avgt ;double min fa , min so lve , min mod , min bar ;double max fa , max solve , max mod , max bar ;double avg fa , avg so lve , avg mod , avg bar ;int pro num ;strut t imeva l s t a r t ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD==0)fn=DEFAULTN; b l o k s i z e=DEFAULT B;gCLOCK(s t a r t) ;i f (!MYTHREAD) fwhile ((h = getopt (arg , argv , "n : p : b : s toh ")) != �1) fswith (h) fase ' n ' : n = a t o i (optarg) ; break ;ase ' b ' : b l o k s i z e = a t o i (optarg) ; break ;ase ' s ' : do s ta t s = 1 ; break ;ase ' t ' : t e s t r e s u l t = ! t e s t r e s u l t ; break ;ase ' o ' : dopr int = ! dopr int ; break ;ase ' h ' :p r i n t f ("Usage : LU <opt ions>nnnn") ;p r i n t f (" opt ions :nn") ;p r i n t f (" �nN : Deompose NxN matrix .nn") ;p r i n t f (" �bB : Use a blok s i z e o f B. BxB elements should f i t in ahe nf o r nn") ;p r i n t f (" good performane . Small b lok s i z e s (B=8, B=16) work we l l .nn") ;p r i n t f (" � : Copy non� l o a l l y a l l o a t e d b loks to l o a l memory be fo r e nuse .nn") ;p r i n t f (" �s : Pr int i nd i v i dua l p r o e s s o r t iming s t a t i s t i s .nn") ;p r i n t f (" �t : Test output .nn") ;p r i n t f (" �o : Pr int out matrix va lues .nn") ;p r i n t f (" �h : Pr int out ommand l i n e opt ions .nnnn") ;p r i n t f ("Defau l t : LU �n%1d �p%1d �b%1dnn" ,DEFAULT N,DEFAULT P,DEFAULT B) ;e x i t (0) ;break ;ggp r i n t f ("nn") ;
43

p r i n t f ("Bloked Dense LU Fa to r i z a t i on nn") ;p r i n t f (" %d by %d Matrixnn" ,n , n) ;p r i n t f (" %d Proe s so r s nn" , THREADS) ;p r i n t f (" %d by %d Element Bloks nn" , b l o k s i z e , b l o k s i z e) ;p r i n t f ("nn") ;gup no t i f y ;num rows = (int) s q r t ((double) THREADS) ;for (; ;) fnum ols = THREADS/num rows ;i f (num rows�num ols == THREADS)break ;num rows��;gnbloks = n/ b l o k s i z e ;i f (b l o k s i z e � nbloks != n) fnbloks++;gi f (!MYTHREAD) fp r i n t f (" num rows = %dnn" , num rows) ;p r i n t f (" num ols = %dnn" , num ols) ;p r i n t f (" nb loks = %dnn" , nb loks) ;p r i n t f ("nn") ;p r i n t f ("nn") ;gup wait ;//a = (doub le �) GMALLOC(n�n� s i z e o f (doub le)) ;a = (shared double �) u p a l l a l l o (n�n , s izeof (double)) ;// rhs = (doub le �) GMALLOC(n� s i z e o f (doub le)) ;rhs = (shared double�) u p a l l a l l o (n , s izeof (double)) ;//Globa l = (s t r u t GlobalMemory �) GMALLOC(s i z e o f (s t r u t GlobalMemory)) ;/�Global�>t i n f a = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t in mod = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t i n s o l v e = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t i n b a r = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>omplet ion = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;�//� POSSIBLE ENHANCEMENT: Here i s where one might d i s t r i b u t e the amatrix data aross p h y s i a l l y d i s t r i b u t e d memories in around�rob in fa sh ion as de s i r ed . �///BARINIT(Global�>s t a r t) ;//LOCKINIT(Global�>i d l o k) ;i d l o k = u p a l l l o k a l l o () ;//Global�>i d = 0;i f (MYTHREAD == 0)id = 0 ;//Fork o f f ode i s unneessary due to spmd model/�f o r (i =1; i<P; i++) fCREATE(S l a v eS t a r t)g
44

�/In itA () ;i f (MYTHREAD == 0 && dopr int) fp r i n t f ("Matrix be f o r e deompos it ion :nn") ;PrintA () ;g// S l a v eS t a r t (MyNum) ;S laveSta r t () ;up ba r r i e r ;//WAIT FOR END(P�1)i f (MYTHREAD == 0) fi f (dopr int) fp r i n t f ("nnMatrix a f t e r deompos it ion :nn") ;PrintA () ;gi f (do s ta t s) fmaxt = avgt = mint = omplet ion [0 ℄ ;for (i =1; i<THREADS; i++) fi f (omplet ion [i ℄ > maxt) fmaxt = omplet ion [i ℄ ;gi f (omplet ion [i ℄ < mint) fmint = omplet ion [i ℄ ;gavgt += omplet ion [i ℄ ;gavgt = avgt / THREADS;min fa = max fa = avg fa = t i n f a [0 ℄ ;min so lve = max solve = avg so lve = t i n s o l v e [0 ℄ ;min mod = max mod = avg mod = t in mod [0 ℄ ;min bar = max bar = avg bar = t i n b a r [0 ℄ ;for (i =1; i<THREADS; i++) fi f (t i n f a [i ℄ > max fa) fmax fa = t i n f a [i ℄ ;gi f (t i n f a [i ℄ < min fa) fmin fa = t i n f a [i ℄ ;gi f (t i n s o l v e [i ℄ > max solve) fmax solve = t i n s o l v e [i ℄ ;gi f (t i n s o l v e [i ℄ < min so lve) fmin so lve = t i n s o l v e [i ℄ ;gi f (t in mod [i ℄ > max mod) fmax mod = t in mod [i ℄ ;gi f (t in mod [i ℄ < min mod) fmin mod = t in mod [i ℄ ;gi f (t i n b a r [i ℄ > max bar) fmax bar = t i n b a r [i ℄ ;gi f (t i n b a r [i ℄ < min bar) f
45

min bar = t i n b a r [i ℄ ;gavg fa += t i n f a [i ℄ ;avg so lv e += t i n s o l v e [i ℄ ;avg mod += t in mod [i ℄ ;avg bar += t i n b a r [i ℄ ;gavg fa = avg fa /THREADS;avg so lv e = avg so lve /THREADS;avg mod = avg mod/THREADS;avg bar = avg bar /THREADS;gp r i n t f (" PROCESS STATISTICSnn") ;p r i n t f (" Total Diagonal Per imeter I n t e r i o r nBar r i e r nn") ;p r i n t f (" Pro Time Time Time Time nTimenn") ;p r i n t f (" 0 %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,omplet ion [0 ℄ , t i n f a [0 ℄ ,t i n s o l v e [0 ℄ , t in mod [0 ℄ ,t i n b a r [0 ℄) ;i f (do s ta t s) ffor (i =1; i<THREADS; i++) fp r i n t f (" %3d %4.6 f %4.6 f %4.6 f %4.6 f %4.6 f nn" ,i , omplet ion [i ℄ , t i n f a [i ℄ ,t i n s o l v e [i ℄ , t in mod [i ℄ ,t i n b a r [i ℄) ;gp r i n t f (" Avg %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,avgt , avg fa , avg so lve , avg mod , avg bar) ;p r i n t f (" Min %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,mint , min fa , min so lve , min mod , min bar) ;p r i n t f (" Max %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,maxt , max fa , max solve ,max mod , max bar) ;gp r i n t f ("nn") ;p r i n t f (" TIMING INFORMATIONnn") ;// p r i n t f (" S ta r t time : %16dnn" ,// s t a r t t ime) ;// p r i n t f (" I n i t i a l i z a t i o n f i n i s h time : %16dnn" ,// rs) ;// p r i n t f (" Overa l l f i n i s h time : %16dnn" ,// r f) ;p r i n t f ("Total time with i n i t i a l i z a t i o n : %4.6 f nn" , a l t ime (s ta r t , r f)) ;p r i n t f ("Total time without i n i t i a l i z a t i o n : %4.6 f nn" , a l t ime (rs , r f)) ;p r i n t f ("nn") ;i f (t e s t r e s u l t) fp r i n t f (" TESTING RESULTSnn") ;ChekResult () ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifreturn 0 ;g
46

void S laveSta r t ()f/� POSSIBLE ENHANCEMENT: Here i s where one might pin proesses toproessors to avoid migrat ion �/OneSolve (n , b l o k s i z e , a , MYTHREAD, dos ta t s) ;gvoid OneSolve (n , b l o k s i z e , a , MyNum, dos ta t s)shared double �a ;int n ;int b l o k s i z e ;int MyNum;int dos ta t s ;f unsigned int i ;strut t imeva l myrs , myrf , mydone ;strut LoalCopies � l ;#ifdef TRACE FUNCTRACE FUNC;#endifl = (strut LoalCopies �) mal lo (s izeof (strut LoalCopies)) ;i f (l == NULL) ff p r i n t f (s tde r r , "Pro %d ould not mal lo memory f o r l nn" ,MyNum) ;e x i t (�1);gl �>t i n f a = 0 . 0 ;l �>t i n s o l v e = 0 . 0 ;l �>t in mod = 0 . 0 ;l �>t i n b a r = 0 . 0 ;/� b a r r i e r to ensure a l l i n i t i a l i z a t i o n i s done �///BARRIER(Global�>s t a r t , P) ;up ba r r i e r ;/� to remove old�s t a r t misses , a l l p roes sors beg in by touhing a [℄ �/TouhA(b l o k s i z e , MyNum) ;//BARRIER(Global�>s t a r t , P) ;up ba r r i e r ;/� POSSIBLE ENHANCEMENT: Here i s where one might r e s e t thes t a t i s t i s t ha t one i s measuring about the p a r a l l e l exeu t ion �/i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(myrs) ;glu (n , b l o k s i z e , MyNum, l , do s ta t s) ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(mydone) ;g
47

//BARRIER(Global�>s t a r t , P) ;up ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(myrf) ;t i n f a [MyNum℄ = l�>t i n f a ;t i n s o l v e [MyNum℄ = l�>t i n s o l v e ;t in mod [MyNum℄ = l�>t in mod ;t i n b a r [MyNum℄ = l�>t i n b a r ;omplet ion [MyNum℄ = a l t ime (myrs , mydone) ;gi f (MyNum == 0) fr s = myrs ;done = mydone ;r f = myrf ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid lu0 (a , n , s t r i d e)shared double �a ;int n ;int s t r i d e ;f int j ;int k ;int l ength ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<n ; k++) f/� modify subsequent olumns �/for (j=k+1; j<n ; j++) fa [k+j � s t r i d e ℄ /= a [k+k� s t r i d e ℄ ;alpha = �a [k+j � s t r i d e ℄ ;l ength = n�k�1;daxpy(&a [k+1+j � s t r i d e ℄ , &a [k+1+k� s t r i d e ℄ , n�k�1, alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bdiv (a , diag , s t r i d e a , s t r i d e d i a g , dimi , dimk)shared double �a ;shared double �diag ;int s t r i d e a ;int s t r i d e d i a g ;int dimi ;
48

int dimk ;f int j ;int k ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimk ; k++) ffor (j=k+1; j<dimk ; j++) falpha = �diag [k+j � s t r i d e d i a g ℄ ;daxpy(&a [j � s t r i d e a ℄ , &a [k� s t r i d e a ℄ , dimi , alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bmodd(a , , dimi , dimj , s t r i d e a , s t r i d e)shared double �a ;shared double � ;int dimi ;int dimj ;int s t r i d e a ;int s t r i d e ;f int i ;int j ;int k ;int l ength ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimi ; k++)for (j =0; j<dimj ; j++) f [k+j � s t r i d e ℄ /= a [k+k� s t r i d e a ℄ ;alpha = � [k+j � s t r i d e ℄ ;l ength = dimi � k � 1 ;daxpy(& [k+1+j � s t r i d e ℄ , &a [k+1+k� s t r i d e a ℄ , dimi�k�1, alpha) ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bmod(a , b , , dimi , dimj , dimk , s t r i d e)shared double �a ;shared double �b ;
49

shared double � ;int dimi ;int dimj ;int dimk ;int s t r i d e ;f int i ;int j ;int k ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimk ; k++) ffor (j =0; j<dimj ; j++) falpha = �b [k+j � s t r i d e ℄ ;daxpy(& [j � s t r i d e ℄ , &a [k� s t r i d e ℄ , dimi , alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid daxpy (a , b , n , alpha)shared double �a ;shared double �b ;double alpha ;int n ;f int i ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i =0; i<n ; i++) fa [i ℄ += alpha �b [i ℄ ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint BlokOwner (I , J)int I ;int J ;f return ((I%num ols) + (J%num rows)� num ols) ;g
50

void lu (n , bs , MyNum, l , do s ta t s)int n ;int bs ;int MyNum;strut LoalCopies � l ;int dos ta t s ;f int i , i l , j , j l , k , k l ;int I , J , K;// doub le �A, �B, �C, �D;shared double �A, �B, �C, �D;int dimI , dimJ , dimK;int s t r I ;// unsigned i n t t1 , t2 , t3 , t4 , t11 , t22 ;strut t imeva l t1 , t2 , t3 , t4 , t11 , t22 ;int diagowner ;int olowner ;#ifdef TRACEFUNCTRACE FUNC;#endifs t r I = n ;for (k=0, K=0; k<n ; k+=bs , K++) fk l = k+bs ;i f (kl>n) fk l = n ;gi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t1) ;g/� f a t o r d iagona l b l o k �/diagowner = BlokOwner (K, K) ;i f (diagowner == MyNum) fA = &(a [k+k�n ℄) ;lu0 (A, kl�k , s t r I) ;gi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t11) ;g//BARRIER(Global�>s t a r t , P) ;up ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t2) ;g/� d i v i d e olumn k by d iagona l b l o k �/D = &(a [k+k�n ℄) ;for (i=kl , I=K+1; i<n ; i+=bs , I++) fi f (BlokOwner (I , K) == MyNum) f /� pare l out b l o k s �/i l = i + bs ;i f (i l > n) fi l = n ;g
51

A = &(a [i+k�n ℄) ;bdiv (A, D, s t r I , n , i l�i , kl�k) ;gg/� modify row k by d iagona l b l o k �/for (j=kl , J=K+1; j<n ; j+=bs , J++) fi f (BlokOwner (K, J) == MyNum) f /� pare l out b l o k s �/j l = j+bs ;i f (j l > n) fj l = n ;gA = &(a [k+j �n ℄) ;bmodd(D, A, kl�k , j l�j , n , s t r I) ;ggi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t22) ;g//BARRIER(Global�>s t a r t , P) ;up ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t3) ;g/� modify subsequent b l o k olumns �/for (i=kl , I=K+1; i<n ; i+=bs , I++) fi l = i+bs ;i f (i l > n) fi l = n ;golowner = BlokOwner (I ,K) ;A = &(a [i+k�n ℄) ;for (j=kl , J=K+1; j<n ; j+=bs , J++) fj l = j + bs ;i f (j l > n) fj l = n ;gi f (BlokOwner (I , J) == MyNum) f /� pare l out b l o k s �/B = &(a [k+j �n ℄) ;C = &(a [i+j �n ℄) ;bmod(A, B, C, i l �i , j l�j , kl�k , n) ;gggi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t4) ;l �>t i n f a += a l t ime (t1 , t11) ;l �>t i n s o l v e += a l t ime (t2 , t22) ;l �>t in mod += a l t ime (t3 , t4) ;l �>t i n b a r += a l t ime (t11 , t2) + a l t ime (t22 , t3) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifg
52

// void InitA (doub le � rhs)void In itA ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endifsrand48 ((long) 1) ;for (j =0; j<n ; j++) ffor (i =0; i<n ; i++) fa [i+j �n ℄ = (double) l rand48 ()/MAXRAND;i f (i == j) fa [i+j �n ℄ �= 10 ;gggu p f o r a l l (j =0; j<n ; j++; j) frhs [j ℄ = 0 . 0 ;gfor (j =0; j<n ; j++) fu p f o r a l l (i =0; i<n ; i++; i) frhs [i ℄ += a [i+j �n ℄ ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgdouble TouhA(bs , MyNum)int bs ;int MyNum;f int i , j , I , J ;double to t = 0 . 0 ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (J=0; J�bs<n ; J++) ffor (I =0; I �bs<n ; I++) fi f (BlokOwner (I , J) == MyNum) ffor (j=J�bs ; j<(J+1)�bs && j<n ; j++) ffor (i=I �bs ; i<(I+1)�bs && i<n ; i++) fto t += a [i+j �n ℄ ;ggggg#ifdef TRACE FUNC RETTRACE FUNC RET;
53

#endifreturn (to t) ;gvoid PrintA ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i =0; i<n ; i++) ffor (j =0; j<n ; j++) fp r i n t f ("%8.1 f " , a [i+j �n ℄) ;gp r i n t f ("nn") ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid ChekResult ()f int i , j , bogus = 0 ;double �y , d i f f , max d i f f ;#ifdef TRACE FUNCTRACE FUNC;#endify = (double �) mal lo (n� s izeof (double)) ;i f (y == NULL) fp r i n t e r r ("Could not mal lo memory f o r ynn") ;e x i t (�1);gfor (j =0; j<n ; j++) fy [j ℄ = rhs [j ℄ ;gfor (j =0; j<n ; j++) fy [j ℄ = y [j ℄ / a [j+j �n ℄ ;for (i=j +1; i<n ; i++) fy [i ℄ �= a [i+j �n ℄� y [j ℄ ;ggfor (j=n�1; j>=0; j��) ffor (i =0; i<j ; i++) fy [i ℄ �= a [i+j �n ℄� y [j ℄ ;ggmax di f f = 0 . 0 ;for (j =0; j<n ; j++) fd i f f = y [j ℄ � 1 . 0 ;i f (fabs (d i f f) > 0 .00001) f
54

bogus = 1 ;max d i f f = d i f f ;ggi f (bogus) fp r i n t f ("TEST FAILED: (%.5 f d i f f)nn" , max d i f f) ;g else fp r i n t f ("TEST PASSEDnn") ;gf r e e (y) ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid p r i n t e r r (onst har � s)f f p r i n t f (s tde r r , "ERROR: %s nn" , s) ;g

55

A.4 Stenil#inlude <s t d i o . h>#inlude <s t d l i b . h>#inlude <math . h>#inlude <a s s e r t . h>#inlude <up . h>#ifdef MUPCTRACERDMUPCTRACERD#endif#define N 6#define ITERS 100shared [N℄ double a [N ℄ [THREADS�N℄ ;shared [1 ℄ double dmax [THREADS℄ ;int n ;#define A(i , j) a [(i)%N℄ [((i)/N)�N�n+(j) ℄void s t e n i l (int i , int j)f double t ;#ifdef TRACE FUNCTRACE FUNC;#endift = A(i , j) ;#ifdef EIGHT PT STENCILt += A(i �1, j �1);t += A(i �1, j) ;t += A(i �1, j +1);t += A(i , j �1);t += A(i , j +1);t += A(i +1, j �1);t += A(i +1, j) ;t += A(i +1, j +1);t /= 9 . 0 ;#elset += A(i �1, j) ;t += A(i +1, j) ;t += A(i , j �1);t += A(i , j +1);t /= 5 . 0 ;#endifA(i , j) = t ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint main ()f int i , j , i t e r ;#ifdef TRACE FUNC
56

TRACE FUNC;#endif/� Ensure number o f threads i s a square . �/n = (int) s q r t ((double) THREADS) ;a s s e r t ((n�n) == THREADS) ;/� I n i t i a l i z e A. �/for (i =0; i<N;++ i)for (j =0; j<N;++j)a [i ℄ [N�MYTHREAD+j ℄ = (double) MYTHREAD;up ba r r i e r ;for (i t e r =0; i t e r<ITERS;++ i t e r)f /� Update a l l po in t s with 4/8�pt s t e n i l . �/for (i =1; i<(N�n)�1;++ i)f for (j =1; j<(N�n)�1;++ j)f i f (MYTHREAD==up threado f (&A(i , j)))f s t e n i l (i , j) ;ggg/� Update dmax . �/dmax [MYTHREAD℄ = (double) i t e r + 1 . 0 ;up ba r r i e r ;/� Chek fo r omplet ion . �/for (i =0; i<THREADS;++ i)i f (dmax [i ℄<0.0) goto end ;gend :return 0 ;g

57

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Outline

	Background
	Parallel Computation
	SPMD Model
	Communication and the Shared Memory Model
	Partitioned Global Address Space
	Unified Parallel C
	MuPC

	Reuse Distance Analysis
	Instruction Based Reuse Distance
	Predicting Reuse Distance Patterns
	Prediction Accuracy Model

	Predicting Remote Reuse Distance
	Instrumentation
	Test Kernels
	Matrix Multiplication
	Jacobi
	LU Decomposition
	Stencil

	Thread Partitioning

	Prediction Results
	Problem Size Scaling
	Thread Scaling

	Conclusions
	Applications
	Future Work

	LIST OF REFERENCES
	Test Kernel Sources
	Matrix Multiplication
	Jacobi Solver
	LU Decomposition
	Stencil

