
Computer Science Technical Report

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Predicting Remote Reuse Distance Patterns in
Unified Parallel C Applications

by

Steven Vormwald, Steven Carr,
Steven Seidel and Zhenlin Wang

Computer Science Technical Report
CS-TR-09-02

December 18, 2009

ABSTRACT*

Productivity is becoming increasingly important in high performance computing. Parallel
systems, as well as the problems they are being used to solve, are becoming dramatically larger
and more complicated. Traditional approaches to programming for these systems, such as MPI,
are being regarded as too tedious and too tied to particular machines. Languages such as Unified
Parallel C attempt to simplify programming on these systems by abstracting the communication
with a global shared memory, partitioned across all the threads in an application. These
Partitioned Global Address Space, or PGAS, languages offer the programmer a way to specify
programs in a much simpler and more portable fashion.

However, performance of PGAS applications has tended to lag behind applications implemented
in a more traditional way. It is hoped that cache optimizations can provide similar benefits to
UPC applications as they have given single-threaded applications to close this performance gap.
Memory resuse distance is a critical measure of how much an application will benefit from a
cache, as well as an important piece of tuning information for enabling effective cache
optimization.

This research explores extending existing reuse distance analysis to remote memory accesses in
UPC applications. Existing analyses store a very good approximation of the reuse distance
histogram for each memory access in a program efficiently. Reuse data are collected for small
test runs, and then used to predict program behavior during full runs by curve fitting the patterns
seen in the training runs to a function of the problem size. Reuse data are kept for each UPC
thread in a UPC application, and these data are used to predict the data for each UPC thread in a
larger run. Both scaling up the problem size and the increasing the total number of UPC threads
are explored for prediction. Results indicate that good predictions can be made using existing
prediction algorithms. However, it is noted that choice of training threads can have a dramatic
effect on the accuracy of the prediction. Therefore, a simple algorithm is also presented that
partitions threads into groups with similar behavior to select threads in the training runs that will
lead to good predictions in the full run.

*This work is partially supported by NSF grant CCF-0833082.

CHAPTER 1Introdu
tion1.1 MotivationHigh performan
e
omputing is be
oming an in
reasingly important part ofour daily lives. It is used to determine where oil
ompanies drill for oil, to �gureout what the weather will be like for the next week, to design safer buildingsand vehi
les. Companies save millions of dollars every year by simulating produ
tdesigns instead of
reating physi
al prototypes. The movie industry relies heavilyon spe
ial e�e
ts rendered on large
lusters. S
ientists rely on simulations tounderstand nu
lear rea
tions without having to perform dangerous experimentswith nu
lear materials.In addition, the ma
hines used to
arry out these
omputations are be
omingdrasti
ally larger and more
ompli
ated. The Top500 list
laims that the fastestsuper
omputer in the world has over 200000
ores [1℄. It is made up of thou-sands of six-
ore opteron pro
essors in
ompute blades networked together. The
ompute blades
an ea
h be
onsidered a
omputer in its own right, working to-gether with the others to a
t as one large super
omputer. This
lustering modelof super
omputer is now the dominant for
e in high performan
e
omputing.Traditionally, appli
ations written for these
lusters required the programmerto expli
itly manage the
ommuni
ation needs of the program a
ross the variousnodes of the
luster. It was thought that the performan
e needs of su
h appli
ations
ould only be met by a human programmer
arefully designing the program tominimize the ne
essary
ommuni
ation
osts. This approa
h to programming forsuper
omputers is qui
kly be
oming unwieldy. The produ
tivity
ost of requiringthe appli
ation programmer to manage and tune an appli
ation's
ommuni
ationfor these
omplex systems is simply too high.Partitioned global address spa
e languages, su
h as Co-Array Fortran [2℄ andUni�ed Parallel C [3℄, attempt to address these produ
tivity
on
erns by buildinga shared memory programming model for programmers to work with, delegatingthe task of optimizing the ne
essary
ommuni
ation to the language implementor.While these languages do o�er produ
tivity improvements, implementationshaven't been able to mat
h the performan
e of more traditional message passingsetups. Various approa
hes to
at
hing up have been tried. The UPC imple-mentation from the University of California Berkeley [4℄ uses the GASNet networklibrary [5℄, whi
h attempts to optimize
ommuni
ation using various methods su
has message
oales
ing [6℄. Many implementations try to split syn
hronous opera-tion into an asyn
hronous operation and a
orresponding wait, then spread theseas far apart as possible to hide
ommuni
ation laten
y. These optimizations
an
1

lead to impressive performan
e gains, but there is still a performan
e gap for someappli
ations.One approa
h hasn't been
ommonly used in implementations is software
a
hing of remote memory operations. Ca
hing has been used to great e�e
t inmany situations to hide the
ost of expensive operations. Programmers are alsoa

ustomed to working with
a
hes, sin
e they are so prevalent in today's CPUs.As Mar
 Snir pointed out in his keynote address to the PGAS2009
onferen
e [7℄,programmers would like to see some kind of
a
hing in these languages' imple-mentations. He demoed a
a
hing s
heme implemented entirely in the appli
ation.However, it is desirable that the
a
hing be done at the level of the language im-plementation to avoid for
ing the programmer to deal with the
omplexities of
ommuni
ation that these languages were designed to hide.This resear
h takes an initial look at the possibility of using existing algorithmsfor single threaded appli
ations designed to predi
t patterns in the reuse distan
esfor memory operations to predi
t patterns in the reuse distan
es for remote memoryoperations in Uni�ed Parallel C appli
ations. It is hoped that this information
ould be used to tune
a
he behavior for
a
hing remote referen
es, and to enableother optimizations that rely on this information and have been su

essfully usedwith single-threaded appli
ations to work with multi-threaded UPC appli
ations.
1.2 Thesis OutlineThe rest of this do
ument is organized as follows. Chapter 2 gives a broadba
kground in instru
tion-based reuse distan
e analysis and Uni�ed Parallel C.Chapter 3 introdu
es the instrumentation, test kernels and models used to predi
tremote memory behavior. Chapter 4 shows the predi
tion results obtained. FinallyChapter 5 summarizes the results, looks at ways this predi
tion model
an be used,and possible future work to over
ome some of this model's weaknesses.

2

CHAPTER 2Ba
kground2.1 Parallel ComputationWhen one wishes to solve problems faster, there are generally only three thingsto do. First, one
an try to �nd a better algorithm to solve the problem at hand.While this
an lead to massive performan
e bene�ts, most
ommon problems al-ready have known optimal solutions. Se
ond, one
an in
rease the rate at whi
ha program exe
utes. If a program requires the exe
ution of 10000 instru
tions, ama
hine that
an exe
ute an instru
tion every millise
ond will �nish the programmu
h sooner than one that
an only exe
ute an instru
tion every se
ond. Finally,one
an exe
ute the program in parallel{solving multiple pie
es of the problem atthe same time. Just as having multiple
he
kout lanes speed
onsumers throughtheir pur
hases, having the ability to work on multiple pie
es of a problem
anspeed its solution.There are many di�erent ways to think about solving a problem in parallel.Flynn's taxonomy
lassi�es parallel programming models up along two axes, onebased on the program's
ontrol, the other based on its data [8, 9℄. This
reatesfour
lasses of programs: single instru
tion single data, multiple instru
tion sin-gle data, single instru
tion multiple data, and multiple instru
tion multiple data.These are hen
eforth referred to by the a
ronyms SISD, MISD, SIMD, and MIMDrespe
tively.The SISD model is the
lassi
, non-parallel programming model where ea
hinstru
tion is exe
uted serially and works on a single pie
e of data. While modernar
hite
tures a
tually do work in parallel, this remains the most
ommonly usedabstra
tion for software developers.The MISD model is widely
onsidered nonsensi
al, as it refers to multipleinstru
tions being exe
uted in parallel operating on the same data. While thisusually makes little sense, the term has been used to refer to redundant systems,whi
h use parallelism not to speed up a
omputation, but rather to prevent pro-gram failures.The SIMD model sees widespread use in many spe
ial purpose a

elerators.In this model, a single instru
tion is exe
uted in parallel a
ross large
hunks ofdata. The most well-known use of this is probably in the graphi
s pro
essingunits, or GPUs, that have be
ome standard on modern personal
omputers. Manyar
hite
tures also in
lude SIMD extensions to their SISD instru
tion set that enable
ertain types of appli
ations to perform mu
h better.The MIMD model is the most general, where multiple instru
tions are run inparallel, ea
h on di�erent data. This model is perhaps the most
ommonly used
3

abstra
tion for software developers writing parallel appli
ations, as this model isused in the threading libraries in
luded with many operating systems.
2.1.1 SPMD ModelThe Single Program, Multiple Data, or SPMD model of parallel programmingis a subset of the MIMD model from Flynn's taxonomy. The MIMD model
an bethought of as multiple SISD threads exe
uting in parallel that have some meansof
ommuni
ating amongst themselves. The SPMD model is a spe
ial
ase whereea
h thread is exe
uting the same program, only working with di�erent data. Thethreads need not operate in lo
k-step, nor all follow the same
ontrol-
ow throughthe program.
2.1.2 Communi
ation and the Shared Memory ModelFlynn's taxonomy des
ribes how a problem
an be broken up and solved inparallel. It does not spe
ify how the various threads of exe
ution that are being runin parallel
ommuni
ate. From a programmer's perspe
tive, there are two majormodels of parallel
ommuni
ation, message passing and shared memory.The message passing model, as its name suggests, requires that threads sendmessages to one another to
ommuni
ate. In general, these messages must bepaired in that the sender must expli
itly send a message and the re
eiver mustexpli
itly re
eive that message.In the shared memory model, all threads share some amount of memory,and
ommuni
ation o

urs through this shared memory. This naturally simpli�es
ommuni
ation as the programmer no longer needs to expli
itly send data ba
k andforth between threads. The programmer is also no longer responsible for ensuringthreads send messages in the
orre
t order to avoid deadlo
ks, nor to
he
k forerrors in
ommuni
ation.However, as memory is a shared resour
e, the programmer must be aware ofthe
onsisten
y that the model allows. In the most simple
ase, there is a stri
t or-dering on all memory a

esses a
ross all threads, whi
h is easy for the programmerto understand, but is usually quite expensive for the implementation to enfor
e.There are various ways of relaxing the semanti
s to improve the performan
e ofthe program by permitting threads to see operations o

ur in di�erent orders,eliminating unne
essary syn
hronization.
2.1.3 Partitioned Global Address Spa
eWhile the shared memory programming model o�ers the programmer manyadvantages, it is often diÆ
ult to implement eÆ
iently on today's large distributedsystems. One major diÆ
ulty
omes from the fa
t that it is usually orders ofmagnitude more expensive to a

ess shared memory that is o�-node than it is to

4

a

ess on-node memory. If the programmer has no way of di�erentiating betweenon-node and o�-node memory, it be
omes diÆ
ult to write programs that runeÆ
iently on these modern ma
hines.Partitioned Global Address Spa
e, PGAS, languages try to address this prob-lem by introdu
ing the
on
ept of aÆnity [10℄. The shared memory spa
e is parti-tioned up among the threads su
h that every obje
t in shared memory has aÆnityto one and only one thread. This allows programmers to write
ode that takesadvantage of the lo
ation of the obje
t.
2.1.4 Uni�ed Parallel CUni�ed Parallel C, hen
eforth UPC, is a parallel extension to the C program-ming language [3℄. It uses the SPMD programming model, where a �xed numberof UPC threads exe
ute the same UPC program. Ea
h UPC thread has its ownlo
al sta
k and lo
al heap, but there is also a global memory spa
e that all threadshave a

ess to. As UPC is a PGAS language, this global memory is partitionedamongst all the UPC threads.It is important to note that a

esses to shared memory in UPC appli
ations donot require any spe
ial libraries or syntax. On
e a variable is de
lared as shared, it
an be referen
ed just as any lo
al variable, at least from the programmer's pointof view. In many implementations, in
luding MuPC, these a

esses are dire
tlytranslated into runtime library
alls that perform the read or write as ne
essary.For example, the program in Figure 2.1 prints hello from ea
h UPC thread,re
ords how many
hara
ters ea
h thread printed, and exits with EXIT FAILUREif any thread had an error (printf() returns a negative value on errors).One important performan
e feature of UPC is the ability to spe
ify that mem-ory a

esses use relaxed memory
onsisten
y. The default, stri
t, memory
onsis-ten
y requires that all shared memory a

esses be ordered, and that all threadssee the same global order of memory a

esses. In parti
ular, if two threads writeto the same variable at the same time, all threads will see the same written valueafter both threads have o

urred. Consider the
ode segment in Figure 2.2.For threads other than thread 0, there are only three possible outputs at the endof the
ode: a = 0; b = 0 or a = 1; b = 0 or a = 1; b = 2.By
ontrast, relaxed memory
onsisten
y provides no su
h guarantee. Di�er-ent threads may see operations o

ur in di�erent orders. Consider the same
odesegment using relaxed variables instead of stri
t ones shown in Figure 2.3.For threads other than thread 0, there are now four possible outputs at the endof the
ode: a = 0; b = 0 or a = 1; b = 0 or a = 1; b = 2 or a = 0; b = 2. Theadditional value, a = 0; b = 2 is permitted be
ause the relaxed semanti
s allowthreads other than thread 0 to see the assignment to sb o

ur before the assignmentto sa, while the stri
t semanti
s require they o

ur in program order.Sin
e implementation is allowed to reorder relaxed operations, it is also permit-

5

#in
lude <s t d i o . h>#in
lude <s t d l i b . h>#in
lude <up
 . h>/� Ea
h UPC thread has 1 element o f t h i s array . �/shared [1 ℄ int pr inted [THREADS℄ ;int main ()f int i , e x i t v a l u e = EXIT SUCCESS ;/� I n i t i a l i z e l o
 a l par t o f p r in t ed array to 0 . �/pr inted [MYTHREAD℄ = 0 ;/� Wait f o r everyone to f i n i s h i n i t i a l i z a t i o n . �/up
 ba r r i e r (1) ;/� Re
ord the number o f
hara
 t e r s p r in t ed . �/pr inted [MYTHREAD℄ = p r i n t f ("He l l o from UPC thread %d o f %d .nn" ,MYTHREAD, THREADS) ;/� Wait f o r everyone to f i n i s h p r in t i n g . �/up
 ba r r i e r (2) ;/� Veri fy a l l the threads pr in t ed something . �/for (i =0; i<THREADS;++ i)f i f (pr in ted [i ℄<0) e x i t v a l u e = EXIT FAILURE;ge x i t (e x i t v a l u e) ;g
Figure 2.1. Hello World in UPC

ted to
a
he the values without having to worry about keeping the
a
hes
oherentuntil a stri
t a

ess or
olle
tive o

urs. Despite this
apability, relatively fewUPC implementations
a
he remote a

esses, and those that do use relatively sim-ple
a
hes. At the time of this writing, only the MuPC referen
e implementationfrom Mi
higan Te
hnologi
al University [11℄ and the
ommer
ial implementationfrom Hewlett Pa
kard [12℄ are known to implement
a
hing of remote referen
es.
2.1.5 MuPCMuPC is a referen
e UPC implementation that is built on top of MPI andPOSIX threads. It
urrently supports Intel x86 and x86-64 based
lusters runningLinux, as well as alpha
lusters running Tru64. Ea
h UPC thread is implementedas a single OS pro
ess using two pthreads, one for managing
ommuni
ation, theother to run the UPC program's
omputation. The
ompile s
ript �rst translatesthe UPC
ode into C
ode with
alls into the MuPC runtime library to handle
ommuni
ation and syn
hronization. This is then
ompiled with the system MPI
ompiler and the resulting binary
an be run as if it were an MPI program.

6

s t r i
 t shared int sa=0, sb=0;int l a =0, lb =0;i f (MYTHREAD==0)f sa=1;sb=2;gelsef lb=sb ;l a=sa ;p r i n t f ("Thread %d : a = %d , b = %dnn" , la , lb) ;g
Figure 2.2. Example of Stri
t Semanti
s in UPCr e l axed shared int sa=0, sb=0;int a=0, b=0;i f (MYTHREAD==0)f sa=1;sb=2;gelsef b=sb ;a=sa ;p r i n t f ("Thread %d : a = %d , b = %dnn" , a , b) ;g
Figure 2.3. Example of Relaxed Semanti
s in UPC

MuPC implements a
a
he for remote referen
es in the
ommuni
ation thread.The
a
he is divided into THREADS�1 se
tions, one for ea
h non-lo
al UPCthread. The size of the
a
he is determined by the user via a
on�guration �le.The user
an also
hange the size of a
a
he line. The defaults setup a 2mb
a
hewith 64-byte
a
he lines.
2.2 Reuse Distan
e AnalysisReuse distan
e is de�ned as the number of distin
t memory lo
ations that area

essed between two a

esses to a given memory address. This information isgenerally used to determine, predi
t, or optimize
a
he behavior.Forward reuse distan
e answers the question "How many distin
t memorylo
ations will be a

essed before the next time this address is a

essed?". It s
ansforward in an exe
ution,
ounting the number of memory lo
ations a

essed untilthe given address is found. This information
an be useful for determining whetheror not
a
hing should be performed for a memory referen
e, among other things.

7

Ba
kward reuse distan
e answers the question "How many distin
t memorylo
ations were a

essed sin
e the last time this address was a

essed?". It s
ansba
kward in an exe
ution,
ounting the number of memory lo
ations a

essed untilthe given address is found. This information
an be useful for determining whetheror not a memory referen
e should be prefet
hed, among other things.A[1 ℄ = 1 ;A[2 ℄ = 2 ;A[1 ℄ = 3 ;A[2 ℄ = 4 ;A[3 ℄ = 5 ;A[1 ℄ = 6 ;A[2 ℄ = 7 ;
Figure 2.4. Reuse Distan
e ExampleFor example,
onsider the se
ond referen
e to A[2℄ in the short
ode segmentin Figure 2.4. Be
ause only A[1℄ was a

essed sin
e the last a

ess to A[2℄, theba
kward reuse distan
e is 1. The forward reuse distan
e is 2, be
ause both A[1℄and A[3℄ are a

essed before A[2℄ is a

essed again.There is also a distin
tion between temporal reuse and spatial reuse. Temporalreuse refers to reuse of a single lo
ation in memory, as in the example above. Spatialreuse
onsiders larger se
tions of memory, as the
a
he in many systems pulls inmore than one element at a time. Assuming the
a
he lines in the system
anhold two array elements and that A[1℄ is aligned to the start of a
a
he line, theba
kwards spatial reuse distan
e of the se
ond a

ess to A[2℄ is 0, be
ause theirwere no intervening a

esses to di�erent
a
he lines sin
e the last a

ess. Theforward reuse distan
e is 1 however, be
ause A[3℄ does not share a
a
he line withA[1℄ and A[2℄.

2.2.1 Instru
tion Based Reuse Distan
eAnalyses generally
reate histograms of either the forward or ba
kward reusedistan
es en
ountered in a program tra
e. The histograms are generally asso
iatedeither with a parti
ular memory address or with a parti
ular memory operation.When asso
iated with a memory operation, the data are referred to as instru
tionbased reuse distan
es [13, 14℄.Studying the reuse distan
es asso
iated with operations
an provide manyuseful insights into an appli
ation's behavior. For example, the maximum reusedistan
e seen by any operation
an tell how large a
a
he will be bene�
ial to theappli
ation. Criti
al instru
tions, operations that su�er from a disproportionatelylarge number of the
a
he misses in a program,
an be identi�ed as well [14℄.It is generally expensive to re
ord the reuse distan
es over an entire programexe
ution exa
tly, as there
an be trillions of memory operations en
ountered.
8

However, it has been shown that highly a

urate approximations of the reuse dis-tan
e
an be stored eÆ
iently using a splay tree to re
ord when memory lo
ationsare en
ountered [15℄. This information
an then be used to
reate histogramsdes
ribing the reuse distan
es for a given appli
ation.
2.2.2 Predi
ting Reuse Distan
e Patternsinput: the set of memory-distan
e bins Boutput: the set of lo
ality patterns Pfor ea
h memory referen
e r fPr = ;; down = false; p = null;for (i = 0; i < numBins; i++)if (Bir.size > 0)if (p == null k(Bir:min� p:max > p:max�Bir:min)k(down&&Bi�1r :freq < Bir:freq)) fp = new pattern; p.mean = Bir.mean;p.min = Bir.min; p.max = Bir.max;p.freq = Bir.freq; p.maxf = Bir.freq;Pr = Pr [p; down = false;gelse fp.max = Bir.max; p.freq += Bir.freq;if (Bir.freq > p.maxf) fp.mean = Bir.mean; p.maxf = Bir.maxf;gif (!down && Bi�1r :freq > Bir:freq)down = true;gelsep = null;g Figure 2.5. Pattern-formation AlgorithmUsing pro�ling data, it has been shown that the memory behavior of a program
an be predi
ted by using
urve �tting to model the reuse distan
e as a fun
tionof the data size of an appli
ation [14℄.First, patterns are identi�ed for ea
h memory operation in the instrumentedtraining runs. Histograms storing the reuse data for memory operations are usedto identify these patterns. For ea
h bin in the histogram, a minimum distan
e,maximum distan
e, mean distan
e, and frequen
y are re
orded. Then, adja
entbins are merged using the algorithm in Figure 2.5. The lo
ality patterns for anoperation are de�ned as the sets of merged bins. Finally, the predi
tion algorithmuses
urve �tting with ea
h of a memory operation's patterns in two training runsto predi
t the
orresponding pattern in the predi
ted run [14℄.

9

2.2.3 Predi
tion A

ura
y ModelThere are two important measures of the reuse distan
e predi
tions. First isthe
overage, whi
h is de�ned as the per
entage of operations in the referen
e runthat
an be predi
ted. An operation
an be predi
ted if it o

urs in both trainingruns, and all of its patterns are regular. A pattern is regular if it o

urs in bothtraining runs and the reuse distan
e does not de
rease as the problem size grows.The a

ura
y then is the per
entage of
overed operations that are predi
ted
orre
tly. An operation is predi
ted
orre
tly if the predi
ted patterns exa
tlymat
h the observed patterns, or they overlap by at least 90%. The overlap for twopatterns A and B is de�ned asA:max�max(A:min;B:min)max(B:max� B:min;A:max� A:minThe overlap fa
tor of 90% was used in this work be
ause this fa
tor workedwell in prior work with sequential appli
ations [14℄.

10

CHAPTER 3Predi
ting Remote Reuse Distan
e3.1 InstrumentationIn order to get the raw
a
he reuse data for the predi
tions, it was importantto have a working base
ompiler from whi
h to add instrumentation to generatethe raw
a
he reuse data. The MuPC
ompiler and runtime was used for the data
olle
tion, with a number of modi�
ations to support runtime remote reuse data
olle
tion.Initially, it was ne
essary to update MuPC to add support for x86-64 systemsto ensure MuPC
ontinues to fun
tion in the future, as well as to support our new
luster. Be
ause the vender-provided MPI libraries were 64-bit only, it was notpossible to simply use the 32-bit support in the OS. Therefore, the MuPC
ompilerwas modi�ed to generate
orre
t
ode for the new platform. The bulk of this workwas merely in
reasing the size of primitive types and enabling 64-bit ma
ros andtypedefs in the EDG front-end.The other
hanges were all to support re
ording
a
he reuse in UPC programs.First, generi
 instrumentation was added to many of the runtime fun
tions. Theseallow a programmer to register fun
tions that get
alled whenever a parti
ularruntime fun
tion is
alled. This enables a programmer to inspe
t the program'sruntime behavior. To test this instrumentation, a simple fun
tion was written to
reate a log of all remote memory a

esses, re
ording the operation (put or get),the remote address, the size of the a

ess, and the lo
ation in the program sour
ethat initiated the a

ess.On
e this fun
tionality was working, existing instrumentation for the Atomsimulator [16℄ was modi�ed for use with MuPC. This
ode uses splay trees to store
a
he reuse data per instru
tion. Sin
e it was originally designed to work with
a
he reuse in hardware, asso
iating the reuse data with an instru
tion works �ne.However, for this proje
t, there is no simple instru
tion to asso
iate the reuse datawith, as remote a

esses are
ompli
ated operations. It was �nally de
ided thatthe return address (ba
k into the appli
ation
ode) would work as a substitute,sin
e it would produ
e the desired mapping ba
k to the appli
ation sour
e.Additionally, the Atom instrumentation had to be modi�ed to deal with dif-fering sizes of addresses. In parti
ular, shared memory addresses are a stru
t inMuPC,
ontaining a 64-bit address, a thread, and a phase. The phase was notimportant to this resear
h, but both the thread and the address were. To properlystore these values, the instrumentation was modi�ed to store addresses as 64-bitvalues instead of 32-bit values, and the thread was stored in the upper six bits ofthe address, sin
e they were unused due to memory alignment.
11

Unfortunately, the implementation does require modi�
ations to the sour
eprogram. The modi�
ations are quite small, and
an easily be disabled with theprepro
essor. The ma
ros and global variables shown in Figure 3.1 were de�nedin the up
.h header./�� Added to support t r a
 in g remote a

e s s e s .�/extern
har � mup
 tra
e fun
 ;
har � mup
 get fun
 name () ;#define TRACE FUNC n
har � mup
 t ra
e fun
 prev ; nmup
 t ra
e fun
 prev= mup
 t ra
e fun
 ; nmup
 tra
e fun
= mup
 get fun
 name ()#define TRACE FUNC RET mup
 t ra
e fun
= mup
 t ra
e fun
 prev/�� Ma
ros fo r t r a
 ing . Must be used e x a
 t l y on
e per program ! ��/#define MUPCTRACENONE nvoid (� mup
 t r a
 e i n i t) () = NULL;#define MUPC TRACE FILE nvoid mup
 t r a
 e i n i t f i l e () ; nvoid (� mup
 t r a
 e i n i t) () = mu p
 t r a
 e i n i t f i l e ;#define MUPCTRACERD nvoid mup
 t r a
 e i n i t r d () ; nvoid (� mup
 t r a
 e i n i t) () = mup
 t r a
 e i n i t r d ;
Figure 3.1. Added MuPC Ma
rosThese ma
ros setup information in global variables that is used by spe
ialfun
tions that wrap
alls into the MuPC runtime. The
alls save the return addressof the
all and the name of the fun
tion that it was
alled from so they
an bere
orded by the instrumentation.The ma
ros TRACE FUNC and TRACE FUNC RET should be used at thebeginning and end of all fun
tions with remote a

esses. While these ma
ros arenot stri
tly ne
essary, they enable the instrumentation to tra
k the fun
tion namethat an operation originated from without having to �gure it out from the returnaddress.The MUPC TRACE * ma
ros initialize the tra
ing
ode. TheMUPC TRACE RD ma
ro
on�gures the tra
ing to store per instru
tion sharedmemory reuse data. It must be in
luded exa
tly on
e in the program's sour
e.During an instrumented run, all remote a

esses are logged, and ea
h pla
ethere is a
all into the runtime gets asso
iated with a reuse distan
e histogram.Barriers and stri
t a

esses
ause the last use data to be dropped to for
e alllater referen
es to a
t as if no addresses had yet been seen. When the program
ompletes, these histograms are written out to disk, one �le per thread.

12

3.2 Test KernelsSin
e there are no standard ben
hmark appli
ations for UPC, a small numberof kernels were written or modi�ed from existing appli
ations to model programbehavior. These are des
ribed below.
3.2.1 Matrix Multipli
ationMatrix multipli
ation is a well studied problem in parallel
omputation. Ea
hindex (i; j) in the resulting matrix is de�ned as the sum of the produ
ts of theelements of row i from the �rst matrix with the
orresponding elements of
olumnj from the se
ond. A simple UPC implementation to solve C = A � B where A,B, and C are N �N matri
es is shown in Figure 3.2.for (int i =0; i<N;++ i) fu p
 f o r a l l (int j =0; j<N;++j ;&C[i ℄ [j ℄) fC[i ℄ [j ℄ = 0 ;for (int k=0;k<N;++k) fC[i ℄ [j ℄ += A[i ℄ [k ℄ � B[k ℄ [j ℄ ;ggg

Figure 3.2. Matrix Multipli
ation in UPCThe Matrix Multipli
ation kernel simply multiplies two large (square) arraystogether. The nodes are arranged in a 2-d grid, and ea
h node has an NxN blo
kof the array. The multipli
ation is performed using a naive implementation witha triple-nested loop, where ea
h thread
al
ulates its portion of the �nal matrix,working a blo
k at a time. The problem size in this kernel is the lo
al size of thethree matri
es. In testing, this kernel was run with 4, 9, and 16 threads with 4elements per thread up to 262144 elements per thread, in in
reasing powers of 4.The
omplete sour
e for the kernel used
an be found in Appendix A.1.
3.2.2 Ja
obiThe Ja
obi method is an iterative method that �nds an approximate solutionto a series of linear equations. While it does not �nd exa
t solutions, it
an givea solution that is within a desired delta of the exa
t solution for most problems.However, its most important feature is its numeri
al stability, whi
h is
riti
alwhen working with inexa
t values. Sin
e the
oating point format most
ommonlyused to represent real numbers is inexa
t, this stability makes the Ja
obi methodquite useful in a variety of appli
ations.The Ja
obi kernel simulates a Ja
obi iterative solver for a large array dis-tributed in a blo
k
y
li
 fashion. The kernel only simulates the remote a

esspattern for a Ja
obi solver, it does not a
tually attempt to solve the generated

13

Figure 3.3. LU De
omposition of a Matrix
array. Like the Matrix Multipli
ation kernel, every thread performs essentially thesame task. The problem size in this kernel is the number of iterations the solverruns for. In testing, this kernel was run with 2 through 24 threads, with iteration
ounts as a power of 2 up to 8192. The
omplete sour
e for the kernel used
an befound in Appendix A.2.
3.2.3 LU De
ompositionLU de
omposition is another important operation for many s
ienti�
 appli
a-tions. It de
omposes a matrix into the produ
t of a lower triangular matrix withan upper triangular matrix, as shown in Figure 3.3. This
an be used to �nd boththe determinant and inverse of a matrix, as well as to solve a system of linearequations.The LU kernel, whi
h
omes from the test suite from Berkeley's UPC
om-piler [4℄ based on a program from Stanford University [17℄, performs an LU-de
omposition on a large array that is distributed a
ross nodes in a blo
k
y
li
fashion. Square blo
ks of B � B (B = 8; 16; 32 were tested) are distributed toea
h thread until the entire array has been allo
ated. The problem size is the totalsize of the array. In testing, this kernel was run with 2 through 36 threads, withproblem sizes from 1024 elements to 16777216 elements. The
omplete sour
e forthe kernel used
an be found in Appendix A.3.
3.2.4 Sten
ilSten
il problems are problems where elements of an array are iteratively up-dated based on the pattern of its neighbors. A
ommon example of this is JohnConway's Game of Life, where the life or death of a
ell at a given time step isdetermined by the life or death of neighboring
ells in the previous time step. Thesten
il des
ribes whi
h neighboring
ells are used to update a given
ell. This isoften used in engineering when modeling the
ow of heat or air.

14

The sten
il kernels are a family of kernels that apply a 2-d or 3-d sten
il toan array. These kernels were added as an example of a
lass of problems wherethreads displayed di�ering behavior based on the logi
al layout of threads. Theproblem size for these is the total size of the array the sten
il operates over. Thesekernels were developed later than the others and did not have as many test runsas the other kernels due to time and hardware
onstraints. Therefore, exhaustiveresults are not available for these kernels, results are available only for the fourand eight point 2d sten
il kernels.While initially instrumenting the sten
il
ode, it was observed that in some
ases, there were additional unexpe
ted remote memory a

esses that did notmat
h up to the theoreti
al
ommuni
ation behavior of the programs.void s t e n
 i l (int i , int j)f A(i , j) += A(i �1, j) ;A(i , j) += A(i +1, j) ;A(i , j) += A(i , j �1);A(i , j) += A(i , j +1);A(i , j) /= 5 . 0 ;g
Figure 3.4. Failing Sten
il CodeAssuming that A(i; j) is lo
al to the
alling thread, one would expe
t that thesten
il fun
tion in Figure 3.4 generates at most four operations (
alls to the run-time) that
ould be remote a

esses. Without that assumption, at most four-teen operations
ould be remote a

esses. The
ode generated a
tually has atmost twenty-three operations that
ould be remote a

esses. This was
ausing thethread-s
aling predi
tion to fail, as the pattern of whi
h of these operations is usedvaries with thread
ount.The
ulprit was determined to be the '+=' operator and its intera
tion witha shared variable. Changing the sten
il
ode sample from Figure 3.4 to the thatshown in Figure 3.5 eliminates the super
uous operations.This �xed the problem be
ause the UPC to C translator uses nested
ondi-tional operators to
he
k for lo
al a

esses when working with shared variables.This nesting
aused multiple a

esses to be generated for a single sour
e a

esswhen there are multiple a

esses to shared variables in a statement. Sin
e this is alimitation of the MuPC
ompiler and
ommon pra
ti
e is to use lo
al temporariesto avoid multiple remote a

esses, the sten
il
ode was updated to use the latterform. The
omplete sour
e for the kernel used
an be found in Appendix A.4.

15

void s t e n
 i l (int i , int j)f double t ;t = A(i , j) ;t += A(i �1, j) ;t += A(i +1, j) ;t += A(i , j �1);t += A(i , j +1);t /= 5 . 0 ;A(i , j) = t ;g
Figure 3.5. Corre
ted Sten
il Code

3.3 Thread PartitioningSin
e a predi
tion is being performed for ea
h UPC thread in a run, the
hoi
e of whi
h thread's data are used to train be
omes important. If the numberof threads is kept
onstant, the obvious
hoi
e is to use the same thread's data forthe training. However, that doesn't work when the number of threads in
reases.Therefore, it was ne
essary to
ome up with a way of sele
ting the threads used inthe predi
tions.In sear
hing for a suitable algorithm for partitioning threads for training, itwas noted that all of the kernels tested worked with large square arrays, and the
ommuni
ation pattern was based on the distribution of these arrays. Be
ause the
ommuni
ation pattern is based on the geometri
 layout of the data, an algorithmwas used that mat
hes the training data with a pattern des
ribing this geometri
layout, and then
hooses threads for predi
tion based on it. As a spe
ial ex
eption,thread 0 is assumed to be used for various extraneous tasks, su
h as initialization,and is therefore always predi
ted with thread 0 from ea
h of the training runs.The algorithm is split into three parts. The threads in the two training runsare partitioned into groups based on their
ommuni
ation behavior, as shown inFigure 3.6. It is assumed that data for ea
h thread in ea
h training run hasasso
iated with it the pattern data, represented as t.patterns, the instru
tionsen
ountered (patterns are asso
iated with an instru
tion) represented as t.inst.Ea
h thread's patterns are tested against those in the existing groups. The threadis in
luded in the group if all the patterns are present in both, and there is atmost 5% di�eren
e between the min, max, freq, and mean values for the threadand the average of the values for all the threads in the group. Ea
h group tra
ksthe number of members and the running arithmeti
 average min, max, freq, andmean of ea
h pattern. On
e the patterns are generated, they are asso
iated withthe run as T .groups.Then these groups are mat
hed against a fun
tion des
ribing the expe
ted
16

input: the set of training runs
ontaining pattern data for ea
h thread in the runoutput: the set of training runs is updated with the set of groups Gfor ea
h training run TT .groups = ;for ea
h thread t 2 Tt.group = NULLfor ea
h group g 2 T .groupsif patterns mat
h(g,t)t.group = gbreakif t.group == NULLt.group = new groupt.group.vals = NULLt.group.inst = t.instt.group.patterns = t.patternst.group.nthr = 1T .groups = T .groups [t.groupelsefor ea
h pattern pg 2 t.group.patternslet pt be the
orresponding pattern in t.patternspg.min = (pg.min�t.group.nthr+pt.min)=(t.group.nthr+1)pg.max = (pg.max�t.group.nthr+pt.max)=(t.group.nthr+1)pg.freq = (pg.freq�t.group.nthr+pt.freq)=(t.group.nthr+1)pg.mean = (pg.mean�t.group.nthr+pt.mean)=(t.group.nthr+1)t.group.nthr = t.group.nthr+1Figure 3.6. Partitioning Algorithm
input: a group g and a thread toutput: true if the patterns of t mat
h those of g, false otherwiseif g.inst6= t.inst return falsefor ea
h pattern pg 2 g.patternslet pt be the
orresponding pattern in t.patternsif no su
h pt return falseif (pg.min�pt.min)/max(pg.min,pt.min)> 0:05 return falseif (pg.max�pt.max)/max(pg.max,pt.max)> 0:05 return falseif (pg.freq�pt.freq)/max(pg.freq,pt.freq)> 0:05 return falseif (pg.mean�pt.mean)/max(pg.mean,pt.mean)> 0:05 return falsereturn true Figure 3.7. patterns mat
h() Fun
tion

17

partitioning of threads, as shown in Figure 3.8. The pattern fun
tion is used togenerate the set of values asso
iated with threads in the group. The training runmat
hes the pattern fun
tion if the set of values asso
iated with ea
h group isdisjoint from ever other group. Additionally, a map mapping values with one ofthe threads asso
iated with it (the lowest if the threads are tested in as
endingorder) is kept for ea
h training run, for later use when pi
king whi
h threads touse in the predi
tion.input: the set T of training runs with the asso
iated group assignmentsoutput: true if training runs mat
h the pattern, false otherwisefor ea
h training run Tifor ea
h thread t 2 Tit.group.vals = t.group.vals[f(t; T .numthreads)if !Mi.
ontainsKey(f(t; T .numthreads))Mi.insert(f(t; T .numthreads),t)for ea
h unordered pair of groups g1; g2 2 T .groupsif (g1.vals\g2.vals) 6= ; return falsereturn true Figure 3.8. Mat
hing AlgorithmUnfortunately, the pattern itself is not automati
ally dete
ted, but was
hosenbe
ause the kernels tested all used a square thread layout. The pattern fun
tionused is shown in Figure 3.9. Note that the pattern partitions a square into regionsbased on geometri
 properties. Be
ause the algorithm merges regions based onobserved behaviors, the pattern a
tually de�nes a large number of subpatterns,whi
h are automati
ally mat
hed by the algorithm. The ability to automati
allygenerate a pattern fun
tion for a given problem would in
rease the generality ofthis analysis greatly, an important avenue for future work. However, it is possibleto
reate general patterns that mat
h a wide variety of problems by utilizing thesubsetting inherent to this algorithm.Finally, if both training runs mat
h the pattern, threads are predi
ted withthreads from the training runs who share the same group as determined by themat
hed fun
tion. The algorithm sele
ting the pairs is shown in Figure 3.10. Ituses the maps generated while mat
hing the pattern to
hoose threads in thetraining runs with the same value returned by the pattern fun
tion.As an example,
onsider using equation 3.1 as a pattern to mat
h against theLU kernel run with 16 threads in the test dataset, 25 threads in the train dataset,and 36 threads in the referen
e dataset with a �xed per-thread data size. In this
ase, the threads with data on the diagonal of the array have to do extra work.Equation 3.1 returns 0 for threads on the diagonal and 1 for threads not on thediagonal, assuming the threads are laid out in a square grid. This should perfe
tlymat
h the thread layout of the LU kernel when run with a number of threads that
18

Figure 3.9. Pattern Fun
tion

input: the set of threads Tpred in the predi
tion runinput: for ea
h training run, a map Mi mapping a return value from the pattern f(t; T)to a thread in the training run that generates that return valueoutput: for ea
h thread in the predi
tion run, a pair of threads from the training runs to usefor ea
h thread tpred 2 Tpredt.preds = (M0.get(f(tpred; Tpred.numthreads)),M1.get(f(tpred; Tpred.numthreads)))Figure 3.10. Training Thread Sele
tion Algorithm

19

is a perfe
t square, su
h as in this example. For
larity, the mat
hing of reusepatterns is simpli�ed su
h that threads with data on the diagonal perfe
tly mat
honly other threads with data on the diagonal, and likewise for threads withoutdata on the diagonal.
f (t; n) = (0 if b tpn
 = (t mod pn)1 o.w. (3.1)First the threads in the test and train datasets are sorted into groups. Inboth
ases there are two groups, those threads that have data on the diagonal {and therefore have extra work, and those that don't. For the test dataset, thegroups are g0 = ft5; t10; t15g and g1 = ft1; t2; t3; t4; t6; t7; t8; t9; t11; t12; t13; t14g.For the train dataset, the groups are g0 = ft6; t12; t18; t24g and g1 =ft1; t2; t3; t4; t5; t7; t8; t9; t10; t11; t12; t13; t14; t15; t16; t17; t19; t20; t21; t22; t23g. As notedearlier, t0 is ex
luded as a spe
ial
ase.Next, for ea
h group, the set vals of results of f (ti; n) where n is the numberof threads is
omputed for ea
h ti in the group. This gives g0.vals = f0g and g1.vals= f1g for both the test and train datasets. Be
ause g0.vals T g1.vals is empty, thepattern is mat
hed in both datasets.Ref Test Train Ref Test Train0 0 0 18 1 11 1 1 19 1 12 1 1 20 1 13 1 1 21 5 64 1 1 22 1 15 1 1 23 1 16 1 1 24 1 17 5 6 25 1 18 1 1 26 1 19 1 1 27 1 110 1 1 28 5 611 1 1 29 1 112 1 1 30 1 113 1 1 31 1 114 5 6 32 1 115 1 1 33 1 116 1 1 34 1 117 1 1 35 5 6Table 3.1. Thread Grouping for 36-Thread Referen
e DatasetSin
e the pattern was mat
hed, it
an be used to sele
t the pairs of threads

20

used for predi
tion of the referen
e dataset. For ea
h thread in the referen
edataset, a pair of threads from the test and train datasets are
hosen based onwhi
h set they are in. Sin
e threads are grouped by behavior, it doesn't matterwhi
h thread in a set is used for the predi
tion. In the solution shown in table 3.1,the lowest thread in the set is used for the predi
tions.

21

CHAPTER 4Predi
tion ResultsTo determine whether or not it would be possible to model the behaviorof remote memory a

esses, the four kernels were instrumented and run with anumber of di�erent data sizes and numbers of threads. All tests were run with theinstrumented MuPC
ompiler on a 24-node dual dual
ore opteron
luster with anin�niband inter
onne
t.Due to hardware and software limitations, the testing was restri
ted to amaximum of 48 UPC threads. In pra
ti
e, any more than 24 threads ran quiteslowly, thus there are relatively few results with more than 24 threads. While it isre
ognized that these are relatively small systems in the world of high performan
e
omputing, it is believed that the results would hold as the problem and threadsize in
reases sin
e the problems en
ountered were due to either
hanges in datalayout or using training data from runs that were too small.
4.1 Problem Size S
alingAs expe
ted, the predi
tion a

ura
y was very high when holding the numberof threads
onstant and just in
reasing the problem size. The predi
tion followedthe same pattern as shown in earlier work, whi
h makes sense as there is very littleto distinguish size s
aling with
onstant threads from size s
aling with one threadas far as the predi
tion is
on
erned.However, problems
an arise when the growth of the problem size
auses thedistribution of shared data to
hange, whi
h in turn
auses the
ommuni
ationpattern between threads to
hange. This behavior is seen in the LU kernel, wherepredi
tion a

ura
y and
overage drop steeply in a few
ases be
ause the distribu-tion of the array
hanged.

Table 4.1. Problem Size S
aling A

ura
y DistributionKernel Predi
tions Minimum Average MaximumMatrix Multipli
ation 1547 3.08% 96.98% 100.00%Ja
obi Solver 14234 99.87% 100.00% 100.00%LU De
omposition, 8x8 7027 6.36% 94.20% 100.00%LU De
omposition, 16x16 5809 8.54% 95.91% 100.00%LU De
omposition, 32x32 5839 0.00% 96.29% 100.00%
22

Table 4.2. Problem Size S
aling Coverage DistributionKernel Predi
tions Minimum Average MaximumMatrix Multipli
ation 1547 53.45% 99.45% 100.00%Ja
obi Solver 14234 38.80% 100.00% 100.00%LU De
omposition, 8x8 7027 0.00% 76.82% 100.00%LU De
omposition, 16x16 5809 0.00% 63.17% 100.00%LU De
omposition, 32x32 5839 0.00% 52.97% 100.00%
Tables 4.1 and 4.2 show that both
overage and a

ura
y are quite high in most
ases. In the matrix multipli
ation and Ja
obi kernels, the low minimum a

ura
iesare seen only when training with very small problem sizes. Of the 1612 predi
tionson the matrix multipli
ation kernel where the a

ura
y is less than 60%, 1610 ofthem o

ur when the smallest training size is 256 or less, 1332 when the smallesttraining size is 16 or less. Likewise, the low minimum
overage per
entages areseen only when the training sizes are small enough that some operations disappear.The LU de
omposition kernel is a bit more problemati
. Consider the resultsin Table 4.3. It
harts the per
entage of predi
tions that have greater than 80,90, and 95% a

ura
y for ea
h of the three blo
king fa
tors tested, �rst for allpredi
tions, then only for those where the
overage was 100%.

Table 4.3. LU Problem Size S
aling A

ura
y by CoverageKernel Predi
tions >80% A

 >90% A

 >95% A

8x8, All Predi
tions 7027 56.07% 50.39% 33.56%16x16, All Predi
tions 5809 50.20% 49.63% 40.37%32x32, All Predi
tions 5839 47.58% 45.83% 45.71%8x8, 100% Coverage 3503 96.97% 85.64% 53.04%16x16, 100% Coverage 2486 97.30% 96.46% 74.82%32x32, 100% Coverage 1844 88.72% 85.36% 84.98%
The large di�eren
e between predi
tions with 100%
overage and others stemsfrom the behavior of the kernel. The data distribution amongst the threads is de-termined by the problem size, thus
hanging the problem size
hanges the datadistribution. The data distribution in turn determines whi
h remote memory oper-ations a thread en
ounters, whi
h also
hanges when the the problem size
hanges.This results in low
overage. The altered data distribution also
hanges the behav-ior of a
ouple remote memory operations as the number of threads en
ountering

23

the operation
hanges. This has the e�e
t of redu
ing the a

ura
y of the predi
-tion for those operations.It is
lear that this model is restri
ted to using training data from runs thathave similar
ommuni
ation patterns as the run being predi
ted. An interestingquestion for future work is whether or not a model of the data distribution
an beused to model how the s
aling will a�e
t the appli
ations
ommuni
ation pattern,and if that
an in turn be used to enable high
overage and predi
tion a

ura
ywhen the data distribution does
hange.
4.2 Thread S
aling

Table 4.4. Thread S
aling A

ura
y Distribution by KernelKernel Predi
tions Minimum Average MaximumMatrix Multipli
ation 61056 3.08% 97.75% 100.00%Ja
obi Solver 103600 94.02% 99.87% 100.00%LU De
omposition, 8x8 862683 12.85% 94.71% 100.00%LU De
omposition, 16x16 346905 19.57% 91.73% 99.98%LU De
omposition, 32x32 94600 13.11% 82.49% 99.31%2d Sten
il 18000 100.00% 100.00% 100.00%
Table 4.5. Thread S
aling Coverage Distribution by KernelKernel Predi
tions Minimum Average MaximumMatrix Multipli
ation 61056 27.62% 99.29% 100.00%Ja
obi Solver 103600 55.66% 91.26% 100.00%LU De
omposition, 8x8 862683 0.00% 41.73% 100.00%LU De
omposition, 16x16 346905 0.00% 37.43% 100.00%LU De
omposition, 32x32 94600 0.00% 20.96% 98.56%2d Sten
il 18000 0.00% 57.99% 100.00%

Tables 4.4 and 4.5 show the predi
tion results for varying the number ofthreads, and predi
ting using all possible pairs of training threads from the train-ing data available. Both
overage and a

ura
y are quite high in most
ases. Inthe matrix multipli
ation and Ja
obi kernels, the low minimum a

ura
ies are seenonly when training with very small problem sizes, the same that o

urs when s
al-ing the problem size. These results are for exhaustively predi
ting every thread
24

in the referen
e set with every possible
ombination of threads in the two trainingsets. The high a

ura
y and
overage in the matrix multipli
ation and Ja
obi ker-nels in these tables indi
ate that the predi
tion works well regardless of the threads
hosen for training.The predi
tion
overage and a

ura
y on the LU kernel is mu
h more depen-dent on the
hoi
e of threads used for the training however. Consider the a

ura
yof the predi
tion for thread 9 of 25, when using threads from runs with 4 and 16threads for the training. The predi
tion a

ura
y by training pairs is shown inFigure 4.1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
c
c
u
ra

c
y

Train Thread

Prediction Accuracy for Thread 9 by Test and Train Thread

Test Thread 0
Test Thread 1
Test Thread 2
Test Thread 3

Figure 4.1. LU 32x32 4-16-25 Thread S
aling Example ThreadFor most of the pairs, the predi
tion a

ura
y is quite good. However, thereare a number of pairs that results in terrible a

ura
y. This is a result of thebehavioral di�eren
es between threads in the LU kernel. Sin
e
ertain threads(those that
ontain blo
ks on the diagonal) have to do additional
ommuni
ation,and thread 9 when run with 25 threads is not one of them, pairs where both threadsare on the diagonal show dramati
 de
reases in a

ura
y.However, these results show that if the threads
an be partitioned in su
ha way that threads with similar behaviors are in similar groups, high a

ura
ypredi
tions
an be made. Thus
onsider what happens when partitioning thetraining threads as des
ribed in Se
tion 3.3 with the pattern shown in Figure 3.9.
25

 99.5

 99.55

 99.6

 99.65

 99.7

 99.75

 99.8

 99.85

 99.9

 99.95

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
c
c
u

ra
c
y

Predicted Thread

Prediction Accuracy Using Selected Training

Figure 4.2. LU 32x32 4-16-25 A

ura
y Using Thread Sele
tion Algorithm
The equation for Figure 3.9 is a
ompli
ated fun
tion that simply partitionsa square into groups based on geometri
 lo
ation. Ea
h
orner is in its own group,the edges (minus the
orners) are ea
h in their own groups. The diagonal, andthe upper and lower triangles also have their own groups. Figure 4.2 shows thea

ura
y results when using the thread partitioning to sele
t training pairs.As expe
ted, by predi
ting threads on the diagonal with threads also on thediagonal, it is possible to avoid the pits seen in Figure 4.1. However, it is desirablethat the pattern that is mat
hed not be spe
i�
 to the LU kernel. Thus, the square2-d sten
ils were used to verify that the pattern would also work for an appli
ationwith a very di�erent
ommuni
ation pattern than the LU kernel.Like the LU kernel, the data distribution of the shared array determines the
ontrol
ow through the program in the sten
il kernels. Unlike the LU kernel,threads on the
orners and edges exhibit di�ering behavior. This is due to la
k-ing
ommuni
ation on one or more sides of the sten
il. In turn, this
auses lowpredi
tion
overage, if threads along the edges are used to predi
t for threads inthe middle{thus the low minimum and average
overage values in Table 4.5. Thea

ura
y of
overed operations is not impa
ted, however, be
ause the skipped op-erations have minimal impa
t on the reuse patterns. This is shown by the veryhigh a

ura
y of predi
tions seen in Table 4.4.

26

Table 4.6. Thread S
aling A

ura
y Distribution with PartitioningKernel Minimum Average MaximumMatrix Multipli
ation 92.38% 99.44% 100.00%Ja
obi Solver 94.69% 99.87% 100.00%LU De
omposition, 8x8 51.07% 91.24% 99.86%LU De
omposition, 16x16 56.26% 80.36% 99.33%LU De
omposition, 32x32 48.95% 91.67% 99.31%2d Sten
il 100.00% 100.00% 100.00%
Table 4.7. Thread S
aling Coverage Distribution with PartitioningKernel Minimum Average MaximumMatrix Multipli
ation 100.00% 100.00% 100.00%Ja
obi Solver 100.00% 100.00% 100.00%LU De
omposition, 8x8 97.45% 98.79% 99.90%LU De
omposition, 16x16 97.56% 98 97% 100.00%LU De
omposition, 32x32 96.34% 98.26% 98.56%2d Sten
il 100.00% 100.00% 100.00%

Using thread partitioning, the threads in the
orners, on ea
h edge, and inthe middle are separately grouped. This provides 100%
overage for all threads,as threads in the training runs that skip operations are used to predi
t for threadsthat will also skip those instru
tions due to the data distribution.Tables 4.6 and 4.7 show the results of using the partitioning algorithm pre-sented to sele
t training threads for all kernels. As expe
ted, the
overage anda

ura
y both show marked improvement for all kernels. The only unexpe
ted re-sult is the de
line in the average a

ura
y for the lu kernels. On
loser inspe
tion,this be
ause the results in Table 4.4 are padded by the large number of
ombina-tions that mat
h threads not on the diagonal. Additionally, be
ause the numberof predi
tions is so mu
h smaller, the minimums have more weight.

27

CHAPTER 5Con
lusionsIn summary, it has been shown that it is possible to predi
t the remote reusedistan
e for UPC appli
ations with a high degree of a

ura
y and
overage, thoughthere are a number of important limitations.First, it is ne
essary to
hoose training data that mat
h behavior of the de-sired predi
tion size to a
hieve high a

ura
y and
overage. Changes in the datadistribution
aused by in
reases in the problem size or number of threads
an
ausesigni�
ant drops in both a

ura
y and
overage.Choi
e of training threads is also
riti
ally important for predi
tion whens
aling up the number of threads. The predi
tion results
an vary from extremelypoor to ex
ellent merely by the
hoi
e of whi
h threads were used for the predi
tion.It is therefore ne
essary to mat
h threads' behaviors in the training data to patternsthat predi
t whi
h threads will perform similarly in the s
aled-up runs.
5.1 Appli
ationsOne promising appli
ation of this resear
h is automati
ally adjusting
a
heparameters su
h as size and thread aÆnity of
a
he lines. This in
ludes thingslike bypassing the
a
he for operations that are likely to result in a
a
he miss,or disabling the
a
he entirely for appli
ations that won't make mu
h use of it.Consider the
ode segment in Figure 5.1. Assume do something is a fun
tion thatperforms no
ommuni
ation.void example sub (shared f loat �p1 , shared f loat �p2 , int l en)f int i , j ;u p
 f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<l en ;++j) fdo something (p1 [i ℄ , p2 [j ℄ , i , j) ;ggg

Figure 5.1. Sample UPC Fun
tionSin
e elements of p2 are a

essed in order, repeatedly for ea
h element of p1,this parti
ular segment of
ode would work well with a
a
he large enough to holdat least len elements. This work
ould be used to predi
t how large a
a
he isneeded for the appli
ation to
a
he all the elements this fun
tion sees based on thereuse distan
e patterns seen.
28

Another option is warning the user about operations that show poor
a
heperforman
e, perhaps as part of a larger performan
e analysis/pro�ling tool. Goingba
k to the previous
ode, assume this time that the maximum size the
a
he
angrow to in an implementation is CACHE LEN. If the predi
tion indi
ates that lenis likely to be larger than this, it might warn the user that the a

esses to elementsof p2 are likely to result in
a
he misses be
ause the
a
he is too small. Then theuser
ould
hange the
ode, perhaps to something like the
ode in Figure 5.2 totake better advantage of the
a
he, or perhaps simply
hange the
ompiler optionsused to tell the
ompiler to do so automati
ally.void example sub (shared f loat �p1 , shared f loat �p2 , int l en)f int i , j , k ;for (k=0;k<l en /CACHE LEN;++k) fu p
 f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<CACHE LEN;++j) fdo something (p1 [i ℄ , p2 [k�CACHE LEN+j ℄ , i , k�CACHE LEN+j) ;gggu p
 f o r a l l (i =0; i<l en ;++ i ; p1+i) ffor (j =0; j<l en%CACHE LEN;++j) fdo something (p1 [i ℄ , p2 [k�CACHE LEN+j ℄ , i , k�CACHE LEN+j) ;ggg
Figure 5.2. Sample UPC Fun
tion Tuned for Ca
he SizeInserting prefet
hes prior to operations that are likely to result in a
a
he miss,and likewise avoiding putting in unne
essary prefet
hes, would also be a good useof these predi
tions. Sin
e network
ongestion
an
ause dramati
 performan
epenalties on large
lusters, avoiding unne
essary
ommuni
ation
an be just asimportant as requesting data before it is a
tually needed.

5.2 Future WorkThis resear
h shows that it is possible to predi
t the remote reuse distan
ebehavior of UPC appli
ations. There are a number of weaknesses that should beaddressed in future work. Foremost among these is the ability to model the datadistribution of an appli
ation, and use that model to avoid problems su
h as areseen with the LU kernel where
hanging the data distribution between trainingruns
auses poor a

ura
y. Sin
e the data distribution is known at runtime, itshould be possible to store it and use it to tune the predi
tion by modeling howthe distribution will
hange with an in
rease in problem size.Another weakness of this resear
h is that the fun
tion used as a pattern duringthread partitioning must be
hosen manually. As the thread grouping is largely
29

based on the data distribution, it seems natural to expe
t that a model of how datadistribution
hanges when the number of threads grows would also enable a betterpartitioning of threads for improved predi
tion a

ura
y. Another possibility islooking at the program in a more abstra
t fashion,
hoosing a pattern based onthe type of problem being solved. A list of su
h abstra
t problem types, and theasso
iated
ommuni
ation patterns, su
h as Berkeley's Dwarfs [18℄
ould be usedas a starting point.Sin
e UPC is meant to in
rease produ
tivity on large systems, it will alsobe ne
essary to improve the s
alability of this work. In parti
ular, storing reusepatterns for every thread in the two training sets, and predi
ting for every threadgenerated a large amount of data even for the relatively small test appli
ationsused. If this were to be used in a produ
tion environment, there would need to besome way of
ompressing the data or skipping threads whose patterns are similarto another thread's. This
ould perhaps extend into exploring a global view of
a
he behavior, where the data is not kept on a per-thread basis, but rather takenover all the threads in an appli
ation.Finally, this work only explored temporal reuse. Spatial reuse, where "nearby"data is pulled in along with requested data provides quite a bit of performan
e formany serial appli
ations. It is likely that it would work similarly for many UPCappli
ations. The same predi
tion s
heme used for temporal reuse was shown towork well for spatial reuse in serial appli
ations as well. However, spatial lo
alityin UPC shared memory
an be
ross thread or on the same thread, depending onhow the appli
ation steps through memory and the way the data is laid out.

30

LIST OF REFERENCES
[1℄ TOP500.Org. \ORNLs Jaguar Claws its Way to Number One,Leaving Re
on�gured Roadrunner Behind in Newest TOP500List of Fastest Super
omputer." Nov. 2009. [Online℄. Available:http://top500.org/lists/2009/11/press-release[2℄ R. Numwi
h and J. Reid, \Co-Array Fortran for parallel programming,"Rutherford Appleton Laboratory, Te
h. Rep. RAL-TR-1998-060, 1998.[3℄ The UPC Consortium. \UPC language spe
i�
ation, v1.2." June 2005.[Online℄. Available: http://www.gwu.edu/�up
/do
s/up
 spe
s 1.2.pdf[4℄ University of California Berkeley. \The Berkely UPC Compiler." 2002.[Online℄. Available: http://up
.lbl.gov[5℄ University of California Berkeley. \GASNet Communi
ation System." 2002.[Online℄. Available: http://gasnet.
s.berkeley.edu/[6℄ W.-Y. Chen, C. Ian
u, and K. Yeli
k, \Communi
ation optimizations for �ne-grained up
 appli
ations," in PACT '05: Pro
eedings of the 14th InternationalConferen
e on Parallel Ar
hite
tures and Compilation Te
hniques. Washing-ton, DC, USA: IEEE Computer So
iety, 2005, pp. 267{278.[7℄ M. Snir, \Shared memory programming on distributed memory sys-tems," 2009, keynote address at PGAS 2009. [Online℄. Available:http://www2.hp
l.gwu.edu/pgas09/tutorials/PGAS Snir Keynote.pdf[8℄ M. J. Flynn, \Very high-speed
omputing systems," in Pro
eedings of theIEEE, vol. 54, no. 12. IEEE Computer So
iety, De
. 1966, pp. 1901{1909.[9℄ M. J. Flynn, \Some
opmuter organizations and their e�e
tiveness," IEEETransa
tions on Computers, vol. C-21, no. 9, pp. 948{960, Sept. 1972.[10℄ B. Carlson, T. El-Ghazawi, R. Numri
h, and K. Yeli
k. \Programming inthe Partitioned Global Address Spa
e Model." 2003. [Online℄. Available:http://
rd.lbl.gov/UPC/images/b/b5/PGAS Tutorial s
2003.pdf[11℄ J. Savant and S. Seidel, \MuPC: A Run Time System for Uni�ed ParallelC," Mi
higan Te
hnologi
al University, Te
h. Rep. CS-TR-02-03, Sept. 2002.[Online℄. Available: http://up
.mtu.edu/papers/CS.TR.2.3.pdf[12℄ Hewlett Pa
kard. \HP Uni�ed Parallel C."

31

http://top500.org/lists/2009/11/press-release
http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf
http://upc.lbl.gov
http://gasnet.cs.berkeley.edu/
http://www2.hpcl.gwu.edu/pgas09/tutorials/PGAS_Snir_Keynote.pdf
http://crd.lbl.gov/UPC/images/b/b5/PGAS_Tutorial_sc2003.pdf
http://upc.mtu.edu/papers/CS.TR.2.3.pdf

[13℄ C. Fang, S. Carr, S. Onder, and Z. Wang, \Reuse-distan
e-based miss-ratepredi
tion on a per instru
tion basis," in Pro
eedings of the 2nd ACM Work-shop on Memory System Performan
e, June 2004, pp. 60{68.[14℄ C. Fang, S. Carr, S. Onder, and Z. Wang, \Instru
tion based memory distan
eanalysis and its appli
ation to optimization," in In Pro
eedings of the 14 thInternational Conferen
e on Parallel Ar
hite
tures and Compilation, 2005.[15℄ C. Ding and Y. Zhong, \Predi
ting whole-program lo
ality through reusedistan
e analysis," SIGPLAN Not., vol. 38, no. 5, pp. 245{257, 2003.[16℄ A. Srivastava and A. Eusta
e, \Atom: A system for building
ustomizedprogram analysis tools." ACM, 1994, pp. 196{205.[17℄ Stanford University. \Parallel dense blo
ked LU fa
torization." 1994.[18℄ University of California Berkeley. \The Lands
ape of Parallel Com-puting Resear
h: A View From Berkeley." [Online℄. Available:http://view.ee
s.berkeley.edu/wiki/Main Page"

32

http://view.eecs.berkeley.edu/wiki/Main_Page"

APPENDIXTest Kernel Sour
esA.1 Matrix Multipli
ation#in
lude <s t d l i b . h>#in
lude <s t d i o . h>#in
lude <math . h>#in
lude <a s s e r t . h>#in
lude <up
 . h>#in
lude <up
 re laxed . h>#ifdef MUPCTRACERDMUPCTRACERD#endifshared [℄ int � shared [1 ℄ � A;shared [℄ int � shared [1 ℄ � B;shared [℄ int � shared [1 ℄ � C;#define a r r i d x (arr , i , j) � ((a r r) [((i)/N)�n+((j)/N) ℄+((i)%N)�N+((j)%N))/� I n i t i a l i z e w i l l s e t t h i s to s q r t (THREADS) , the number� o f
olumns and rows o f THREADS. Threads are l a i d out� as a n x n array . Ea
h thread l o
 a l l y has an NxN element .�/int n ,N;void i n i t i a l i z e (
har �argv)f int i , j , k ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Seed the random number generator . �/srand (MYTHREAD) ;/� Veri fy t ha t the number o f threads i s a square . �/n = (int) f l o o r (s q r t ((double)THREADS)) ;a s s e r t ((n�n)==THREADS) ;/� Read in the s i z e o f the l o
 a l elment . �/N = ato i (argv) ;i f (MYTHREAD==0) p r i n t f ("Using l o
 a l b lo
ks o f s i z e %dx%dnn" ,N,N) ;/� Al l o
a t e memory fo r the arrays . �/A = (shared [℄ int � shared [1 ℄ �)u p
 a l l a l l o
 (THREADS, s izeof (shared [℄ int �)) ;B = (shared [℄ int � shared [1 ℄ �)u p
 a l l a l l o
 (THREADS, s izeof (shared [℄ int �)) ;C = (shared [℄ int � shared [1 ℄ �)u p
 a l l a l l o
 (THREADS, s izeof (shared [℄ int �)) ;a s s e r t ((A!=NULL)&&(B!=NULL)&&(C!=NULL)) ;A[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p
 a l l a l l o
 (THREADS,N�N� s izeof (int)))+MYTHREAD) ;
33

B[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p
 a l l a l l o
 (THREADS,N�N� s izeof (int)))+MYTHREAD) ;C[MYTHREAD℄ = (shared [℄ int �) (((shared [1 ℄ int �)u p
 a l l a l l o
 (THREADS,N�N� s izeof (int)))+MYTHREAD) ;/� F i l l in arrays A and B. �/u p
 f o r a l l (i =0; i<THREADS; i++; i)f a s s e r t (A[i ℄ !=NULL) ;a s s e r t (B[i ℄ !=NULL) ;a s s e r t (C[i ℄ !=NULL) ;for (j =0; j<N; j++)f for (k=0;k<N; k++)f �(A[i ℄+ j �N+k) = i ;�(B[i ℄+ j �N+k) = i ;�(C[i ℄+ j �N+k) = 0 ;ggg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid p r i n t a r r a y (shared [℄ int � shared [1 ℄ �A)f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Only thread 0 p r i n t s . Everyone e l s e j u s t re turns . �/i f (MYTHREAD!=0) return ;for (i =0; i<n�N; i++)f p r i n t f ("n t%d" , i) ;gput
har (' nn ') ;for (i =0; i<n�N; i++)f p r i n t f ("%d" , i) ;for (j =0; j<n�N; j++)f // p r i n t f ("n t%d" ,�(A[(i /N)�n+(j /N)℄+(i%N)�N+(j%N))) ;p r i n t f ("n t%d" , a r r i d x (A, i , j)) ;gput
har (' nn ') ;gput
har (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid
 a l
 b l o
 k (int idx)
34

f int i , j , k , rowt ,
 o l t ;#ifdef TRACE FUNCTRACE FUNC;#endifrowt=(MYTHREAD/n)�n+idx ;
 o l t=(MYTHREAD%n)+(idx �n) ;for (i =0; i<N; i++)f for (j =0; j<N; j++)f for (k=0;k<N; k++)f �(C[MYTHREAD℄+ i �N+k) += (� (A[rowt ℄+ i �N+j))� (� (B[
 o l t ℄+ j �N+k)) ;ggg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid mult kerne l ()f int i , j ;u p
 f o r a l l (i =0; i<THREADS; i++; i)f for (j =0; j<n ; j++)f
 a l
 b l o
 k (j) ;gggint main(int arg
 ,
har �� argv)f /� Must have 1 argument � s i z e o f N. �/i f (arg
 !=2) e x i t (EXIT FAILURE) ;/� I n i t i a l i z e arrays . �/i n i t i a l i z e (argv [1 ℄) ;up
 ba r r i e r (0) ;/� Print out A and B. �/p r i n t a r r a y (A) ;p r i n t a r r a y (B) ;up
 ba r r i e r (1) ;/� Compute C=A�B. �/mult kerne l () ;up
 ba r r i e r (2) ;/� Print out the r e s u l t . �/p r i n t a r r a y (C) ;
35

return 0 ;g

36

A.2 Ja
obi Solver#in
lude <s t d l i b . h>#in
lude <s t d i o . h>#in
lude <math . h>#in
lude <a s s e r t . h>#in
lude <up
 . h>#in
lude <up
 re laxed . h>#ifdef MUPCTRACERDMUPCTRACERD#endif/� Defau l t number o f unknowns per thread . �/#ifndef N#define N 100#endif#define SIZE N�THREADSshared [N℄ double A[SIZE ℄ [SIZE ℄ ;shared [N℄ double X[2 ℄ [SIZE ℄ ;shared [N℄ double B[SIZE ℄ ;shared [N℄ double D[SIZE ℄ ;double maxD;// doub le ep s i l on ;long int MAX ITER;void i n i t i a l i z e (
har �argv)f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endif/� Seed the random number generator . �/srandom (MYTHREAD) ;/� Read in the de s i r ed ep s i l on . �/// ep s i l on = a to f (argv) ;MAX ITER = ato i (argv) ;// i f (MYTHREAD==0) p r i n t f ("Using ep s i l on = %gnn" , ep s i l on) ;i f (MYTHREAD==0) p r i n t f ("Using MAX ITER = %ld nn" ,MAX ITER) ;/� F i l l in A and B. I n i t i a l i z e X[i ℄ to B[i ℄ . �/u p
 f o r a l l (i =0; i<SIZE ; i++;&B[i ℄)f X[0 ℄ [i ℄=X[1 ℄ [i ℄=B[i ℄=((double) THREADS) � (((double) random ()) / ((double) RANDMAX)) ;for (j =0; j<SIZE ; j++)f A[j ℄ [i ℄=((double) random ()) / ((double) RANDMAX) ;i f (j==i) A[j ℄ [i ℄+=(double) SIZE ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifg
37

unsigned int j a
 o b i k e r n e l ()f unsigned int i t e r ;int i , j ;double sum ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i t e r =0; i t e r<MAX ITER; i t e r++)f /� Update X[℄ �/u p
 f o r a l l (i =0; i<SIZE ; i++;&B[i ℄)f sum=0.0 ;for (j =0; j<i ; j++) sum+=A[i ℄ [j ℄�X[i t e r %2℄[j ℄ ;for (j=i +1; j<SIZE ; j++) sum+=A[i ℄ [j ℄�X[i t e r %2℄[j ℄ ;X[(i t e r +1)%2℄[i ℄=(B[i ℄�sum)/A[i ℄ [i ℄ ;gup
 ba r r i e r ;/� Compute maximum de l t a s on ea
h thread . �/u p
 f o r a l l (i =0; i<SIZE ; i++;&D[i ℄)f sum=0.0 ;for (j =0; j<SIZE ; j++) sum+=(A[i ℄ [j ℄�X[(i t e r +1)%2℄[j ℄) ;D[i ℄= fabs (sum�B[i ℄) ;gup
 ba r r i e r ;/� Che
k fo r terminat ion . �/for (maxD=i =0; i<SIZE ; i++) maxD=(D[i ℄>maxD)?D[i ℄ : maxD;i f (MYTHREAD==0) f p r i n t f (s tde r r , "maxD: %8gnn" ,maxD) ;// i f (maxD<ep s i l on) re turn i t e r ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifreturn i t e r ;gvoid pr int A ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("A [℄ [℄ : ") ;for (i =0; i<SIZE ; i++)f for (j =0; j<SIZE ; j++)f
38

p r i n t f ("n t%8g" ,A[i ℄ [j ℄) ;gput
har (' nn ') ;gput
har (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid pr int B ()f int i ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("B [℄ : ") ;for (i =0; i<SIZE ; i++)f p r i n t f ("n t%8gnn" ,B[i ℄) ;gput
har (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid pr int X (int i t e r)f int i ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD!=0) return ;puts ("X [℄ : ") ;for (i =0; i<SIZE ; i++)f p r i n t f ("n t%8gnn" ,X[i t e r %2℄[i ℄) ;gput
har (' nn ') ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint main(int arg
 ,
har �� argv)f int i t e r ;/� Must have 1 argument � des i r ed p r e
 i s i on . �/i f (arg
 !=2) e x i t (EXIT FAILURE) ;
39

/� I n i t i a l i z e arrays . �/i n i t i a l i z e (argv [1 ℄) ;up
 ba r r i e r (1) ;/� Print out the randomly generated A and B. �/pr int A () ;pr int B () ;up
 ba r r i e r (2) ;/� Find X su
h t ha t AX=B. �/i t e r = j a
 o b i k e r n e l () ;up
 ba r r i e r (3) ;/� Print out the r e s u l t . �/pr int X (i t e r) ;return 0 ;g

40

A.3 LU De
omposition/���//� �//� Copyright (
) 1994 Stanford Unive r s i t y �//� �//� Al l r i g h t s reserved . �//� �//� Permission i s g iven to use ,
opy , and modify t h i s so f tware fo r any �//� non�
ommer
ial purpose as long as t h i s
opyr i gh t no t i
 e i s not �//� removed . A l l o ther uses , i n
 l ud ing r e d i s t r i b u t i o n in whole or in �//� part , are forb idden wi thout p r i o r wr i t t en permiss ion . �//� �//� This so f tware i s prov ided with a b s o l u t e l y no warranty and no �//� support . �//� �//���//���//� �//� Pa r a l l e l dense b l o
ked LU f a
 t o r i z a t i o n (no p i v o t i n g) �//� �//� This vers ion
onta ins one dimensional arrays in whi
h the matrix �//� to be f a
 t o r ed i s s t o red . �//� �//� Command l i n e op t ions : �//� �//� �nN : De
ompose NxN matrix . �//� �pP : P = number o f pro
essors . �//� �bB : Use a b l o
 k s i z e o f B. BxB elements shou ld f i t in
a
he fo r �//� good performan
e . Small b l o
 k s i z e s (B=8, B=16) work we l l . �//� �s : Print i n d i v i d u a l pro
essor t iming s t a t i s t i
 s . �//� �t : Test output . �//� �o : Print out matrix va lue s . �//� �h : Print out
ommand l i n e op t ions . �//� �//� Note : This vers ion works under both the FORK and SPROC models �//� �//���/#in
lude <s t d i o . h>#in
lude <math . h>#in
lude <s t d l i b . h>#in
lude <sys / time . h>#in
lude "up
 . h"#in
lude " lu . h"//MAIN ENV#define MAXRAND 32767.0#define DEFAULT N 128#define DEFAULT P 1#define DEFAULT B 16#define min(a , b) ((a) < (b) ? (a) : (b))#ifdef MUPCTRACERDMUPCTRACERD#endif//Everthing in globalmemory
orrspond to shared typesshared double t i n s o l v e [THREADS℄ ;shared double t in mod [THREADS℄ ;shared double t i n b a r [THREADS℄ ;shared double t i n f a
 [THREADS℄ ;
41

shared double
omplet ion [THREADS℄ ;shared stru
t t imeva l r f ;shared stru
t t imeva l r s ;shared stru
t t imeva l done ;shared int id ;up
 l o
k t � i d l o
k ;/�s t r u
 t GlobalMemory f// doub le � t i n f a
 ;shared doub le � t i n s o l v e ;shared doub le � t in mod ;doub le � t i n b a r ;doub le �
omplet ion ;s t r u
 t t imeva l s t a r t t ime ;s t r u
 t t imeva l r f ;s t r u
 t t imeva l rs ;s t r u
 t t imeva l done ;i n t id ;//BARDEC(s t a r t)//LOCKDEC(i d l o
 k)u p
 l o
 k t � i d l o
 k ;g ;�/// shared s t r u
 t GlobalMemory �Global ;stru
t Lo
alCopies fdouble t i n f a
 ;double t i n s o l v e ;double t in mod ;double t i n b a r ;g ;shared int n ; /� The s i z e o f the matrix �/shared int b l o
 k s i z e ; /� Blo
k dimension �/int nblo
ks ; /� Number o f b l o
 k s in ea
h dimension �/int num rows ; /� Number o f pro
essors per row of pro
essor g r i d �/int num
ols ; /� Number o f pro
essors per
o l o f pro
essor g r i d �/// doub le �a ; /� a = lu ; l and u both p la
ed ba
k in a �/shared double �a ;// doub le � rhs ;shared double � rhs ;int � pro
 byte s ; /� Bytes to mal lo
 per pro
essor to ho ld b l o
 k so f A�/int t e s t r e s u l t = 0 ; /� Test r e s u l t o f f a
 t o r i z a t i o n ? �/int dopr int = 0 ; /� Print out matrix va lue s ? �/int dos ta t s = 0 ; /� Print out i n d i v i d u a l pro
essor s t a t i s t i
 s ? �/void In itA () ;void S laveSta r t () ;void OneSolve (int , int , shared double � , int , int) ;void lu0 (shared double � , int , int) ;void bdiv (shared double � , shared double � , int , int , int , int) ;void bmodd(shared double � , shared double� , int , int , int , int) ;void bmod(shared double � , shared double � , shared double � , int , int , int , int) ;void daxpy (shared double � , shared double � , int , double) ;int Blo
kOwner (int , int) ;void lu (int , int , int , stru
t Lo
alCopies � , int) ;double Tou
hA(int , int) ;void PrintA () ;
42

void Che
kResult () ;void p r i n t e r r (
onst
har �) ;#define CLOCK(x) gett imeofday(&(x) , NULL)f loat
a l
 t ime (stru
t t imeva l tp 1s t , stru
t t imeva l tp 2nd) ff loat d i f f = (tp 2nd . tv se
�t p 1 s t . t v s e
) � 1000000.0 +(tp 2nd . tv use
�t p 1 s t . t v u s e
) ;return d i f f / 1000000 . 0 ;gint main(int arg
 ,
har� argv [℄)f int i , j ;int
h ;double mint , maxt , avgt ;double min fa
 , min so lve , min mod , min bar ;double max fa
 , max solve , max mod , max bar ;double avg fa
 , avg so lve , avg mod , avg bar ;int pro
 num ;stru
t t imeva l s t a r t ;#ifdef TRACE FUNCTRACE FUNC;#endifi f (MYTHREAD==0)fn=DEFAULTN; b l o
 k s i z e=DEFAULT B;gCLOCK(s t a r t) ;i f (!MYTHREAD) fwhile ((
h = getopt (arg
 , argv , "n : p : b :
s toh ")) != �1) fswit
h (
h) f
ase ' n ' : n = a t o i (optarg) ; break ;
ase ' b ' : b l o
 k s i z e = a t o i (optarg) ; break ;
ase ' s ' : do s ta t s = 1 ; break ;
ase ' t ' : t e s t r e s u l t = ! t e s t r e s u l t ; break ;
ase ' o ' : dopr int = ! dopr int ; break ;
ase ' h ' :p r i n t f ("Usage : LU <opt ions>nnnn") ;p r i n t f (" opt ions :nn") ;p r i n t f (" �nN : De
ompose NxN matrix .nn") ;p r i n t f (" �bB : Use a blo
k s i z e o f B. BxB elements should f i t in
a
he nf o r nn") ;p r i n t f (" good performan
e . Small b lo
k s i z e s (B=8, B=16) work we l l .nn") ;p r i n t f (" �
 : Copy non� l o
 a l l y a l l o
 a t e d b lo
ks to l o
 a l memory be fo r e nuse .nn") ;p r i n t f (" �s : Pr int i nd i v i dua l p r o
 e s s o r t iming s t a t i s t i
 s .nn") ;p r i n t f (" �t : Test output .nn") ;p r i n t f (" �o : Pr int out matrix va lues .nn") ;p r i n t f (" �h : Pr int out
ommand l i n e opt ions .nnnn") ;p r i n t f ("Defau l t : LU �n%1d �p%1d �b%1dnn" ,DEFAULT N,DEFAULT P,DEFAULT B) ;e x i t (0) ;break ;ggp r i n t f ("nn") ;
43

p r i n t f ("Blo
ked Dense LU Fa
 to r i z a t i on nn") ;p r i n t f (" %d by %d Matrixnn" ,n , n) ;p r i n t f (" %d Pro
e s so r s nn" , THREADS) ;p r i n t f (" %d by %d Element Blo
ks nn" , b l o
 k s i z e , b l o
 k s i z e) ;p r i n t f ("nn") ;gup
 no t i f y ;num rows = (int) s q r t ((double) THREADS) ;for (; ;) fnum
ols = THREADS/num rows ;i f (num rows�num
ols == THREADS)break ;num rows��;gnblo
ks = n/ b l o
 k s i z e ;i f (b l o
 k s i z e � nblo
ks != n) fnblo
ks++;gi f (!MYTHREAD) fp r i n t f (" num rows = %dnn" , num rows) ;p r i n t f (" num
ols = %dnn" , num
ols) ;p r i n t f (" nb lo
ks = %dnn" , nb lo
ks) ;p r i n t f ("nn") ;p r i n t f ("nn") ;gup
 wait ;//a = (doub le �) GMALLOC(n�n� s i z e o f (doub le)) ;a = (shared double �) u p
 a l l a l l o
 (n�n , s izeof (double)) ;// rhs = (doub le �) GMALLOC(n� s i z e o f (doub le)) ;rhs = (shared double�) u p
 a l l a l l o
 (n , s izeof (double)) ;//Globa l = (s t r u
 t GlobalMemory �) GMALLOC(s i z e o f (s t r u
 t GlobalMemory)) ;/�Global�>t i n f a
 = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t in mod = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t i n s o l v e = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>t i n b a r = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;Global�>
omplet ion = (doub le �) GMALLOC(P� s i z e o f (doub le)) ;�//� POSSIBLE ENHANCEMENT: Here i s where one might d i s t r i b u t e the amatrix data a
ross p h y s i
 a l l y d i s t r i b u t e d memories in around�rob in fa sh ion as de s i r ed . �///BARINIT(Global�>s t a r t) ;//LOCKINIT(Global�>i d l o
 k) ;i d l o
k = u p
 a l l l o
 k a l l o
 () ;//Global�>i d = 0;i f (MYTHREAD == 0)id = 0 ;//Fork o f f
ode i s unne
essary due to spmd model/�f o r (i =1; i<P; i++) fCREATE(S l a v eS t a r t)g
44

�/In itA () ;i f (MYTHREAD == 0 && dopr int) fp r i n t f ("Matrix be f o r e de
ompos it ion :nn") ;PrintA () ;g// S l a v eS t a r t (MyNum) ;S laveSta r t () ;up
 ba r r i e r ;//WAIT FOR END(P�1)i f (MYTHREAD == 0) fi f (dopr int) fp r i n t f ("nnMatrix a f t e r de
ompos it ion :nn") ;PrintA () ;gi f (do s ta t s) fmaxt = avgt = mint =
omplet ion [0 ℄ ;for (i =1; i<THREADS; i++) fi f (
omplet ion [i ℄ > maxt) fmaxt =
omplet ion [i ℄ ;gi f (
omplet ion [i ℄ < mint) fmint =
omplet ion [i ℄ ;gavgt +=
omplet ion [i ℄ ;gavgt = avgt / THREADS;min fa
 = max fa
 = avg fa
 = t i n f a
 [0 ℄ ;min so lve = max solve = avg so lve = t i n s o l v e [0 ℄ ;min mod = max mod = avg mod = t in mod [0 ℄ ;min bar = max bar = avg bar = t i n b a r [0 ℄ ;for (i =1; i<THREADS; i++) fi f (t i n f a
 [i ℄ > max fa
) fmax fa
 = t i n f a
 [i ℄ ;gi f (t i n f a
 [i ℄ < min fa
) fmin fa
 = t i n f a
 [i ℄ ;gi f (t i n s o l v e [i ℄ > max solve) fmax solve = t i n s o l v e [i ℄ ;gi f (t i n s o l v e [i ℄ < min so lve) fmin so lve = t i n s o l v e [i ℄ ;gi f (t in mod [i ℄ > max mod) fmax mod = t in mod [i ℄ ;gi f (t in mod [i ℄ < min mod) fmin mod = t in mod [i ℄ ;gi f (t i n b a r [i ℄ > max bar) fmax bar = t i n b a r [i ℄ ;gi f (t i n b a r [i ℄ < min bar) f
45

min bar = t i n b a r [i ℄ ;gavg fa
 += t i n f a
 [i ℄ ;avg so lv e += t i n s o l v e [i ℄ ;avg mod += t in mod [i ℄ ;avg bar += t i n b a r [i ℄ ;gavg fa
 = avg fa
 /THREADS;avg so lv e = avg so lve /THREADS;avg mod = avg mod/THREADS;avg bar = avg bar /THREADS;gp r i n t f (" PROCESS STATISTICSnn") ;p r i n t f (" Total Diagonal Per imeter I n t e r i o r nBar r i e r nn") ;p r i n t f (" Pro
 Time Time Time Time nTimenn") ;p r i n t f (" 0 %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,
omplet ion [0 ℄ , t i n f a
 [0 ℄ ,t i n s o l v e [0 ℄ , t in mod [0 ℄ ,t i n b a r [0 ℄) ;i f (do s ta t s) ffor (i =1; i<THREADS; i++) fp r i n t f (" %3d %4.6 f %4.6 f %4.6 f %4.6 f %4.6 f nn" ,i ,
omplet ion [i ℄ , t i n f a
 [i ℄ ,t i n s o l v e [i ℄ , t in mod [i ℄ ,t i n b a r [i ℄) ;gp r i n t f (" Avg %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,avgt , avg fa
 , avg so lve , avg mod , avg bar) ;p r i n t f (" Min %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,mint , min fa
 , min so lve , min mod , min bar) ;p r i n t f (" Max %10.6 f %10.6 f %10.6 f %10.6 f %10.6 f nn" ,maxt , max fa
 , max solve ,max mod , max bar) ;gp r i n t f ("nn") ;p r i n t f (" TIMING INFORMATIONnn") ;// p r i n t f (" S ta r t time : %16dnn" ,// s t a r t t ime) ;// p r i n t f (" I n i t i a l i z a t i o n f i n i s h time : %16dnn" ,// rs) ;// p r i n t f (" Overa l l f i n i s h time : %16dnn" ,// r f) ;p r i n t f ("Total time with i n i t i a l i z a t i o n : %4.6 f nn" ,
 a l
 t ime (s ta r t , r f)) ;p r i n t f ("Total time without i n i t i a l i z a t i o n : %4.6 f nn" ,
 a l
 t ime (rs , r f)) ;p r i n t f ("nn") ;i f (t e s t r e s u l t) fp r i n t f (" TESTING RESULTSnn") ;Che
kResult () ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifreturn 0 ;g
46

void S laveSta r t ()f/� POSSIBLE ENHANCEMENT: Here i s where one might pin pro
esses topro
essors to avoid migrat ion �/OneSolve (n , b l o
 k s i z e , a , MYTHREAD, dos ta t s) ;gvoid OneSolve (n , b l o
 k s i z e , a , MyNum, dos ta t s)shared double �a ;int n ;int b l o
 k s i z e ;int MyNum;int dos ta t s ;f unsigned int i ;stru
t t imeva l myrs , myrf , mydone ;stru
t Lo
alCopies � l
 ;#ifdef TRACE FUNCTRACE FUNC;#endifl
 = (stru
t Lo
alCopies �) mal lo
 (s izeof (stru
t Lo
alCopies)) ;i f (l
 == NULL) ff p r i n t f (s tde r r , "Pro
 %d
ould not mal lo
 memory f o r l
 nn" ,MyNum) ;e x i t (�1);gl
�>t i n f a
 = 0 . 0 ;l
�>t i n s o l v e = 0 . 0 ;l
�>t in mod = 0 . 0 ;l
�>t i n b a r = 0 . 0 ;/� b a r r i e r to ensure a l l i n i t i a l i z a t i o n i s done �///BARRIER(Global�>s t a r t , P) ;up
 ba r r i e r ;/� to remove
old�s t a r t misses , a l l p ro
es sors beg in by tou
hing a [℄ �/Tou
hA(b l o
 k s i z e , MyNum) ;//BARRIER(Global�>s t a r t , P) ;up
 ba r r i e r ;/� POSSIBLE ENHANCEMENT: Here i s where one might r e s e t thes t a t i s t i
 s t ha t one i s measuring about the p a r a l l e l exe
u t ion �/i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(myrs) ;glu (n , b l o
 k s i z e , MyNum, l
 , do s ta t s) ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(mydone) ;g
47

//BARRIER(Global�>s t a r t , P) ;up
 ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(myrf) ;t i n f a
 [MyNum℄ = l
�>t i n f a
 ;t i n s o l v e [MyNum℄ = l
�>t i n s o l v e ;t in mod [MyNum℄ = l
�>t in mod ;t i n b a r [MyNum℄ = l
�>t i n b a r ;
omplet ion [MyNum℄ =
a l
 t ime (myrs , mydone) ;gi f (MyNum == 0) fr s = myrs ;done = mydone ;r f = myrf ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid lu0 (a , n , s t r i d e)shared double �a ;int n ;int s t r i d e ;f int j ;int k ;int l ength ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<n ; k++) f/� modify subsequent
olumns �/for (j=k+1; j<n ; j++) fa [k+j � s t r i d e ℄ /= a [k+k� s t r i d e ℄ ;alpha = �a [k+j � s t r i d e ℄ ;l ength = n�k�1;daxpy(&a [k+1+j � s t r i d e ℄ , &a [k+1+k� s t r i d e ℄ , n�k�1, alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bdiv (a , diag , s t r i d e a , s t r i d e d i a g , dimi , dimk)shared double �a ;shared double �diag ;int s t r i d e a ;int s t r i d e d i a g ;int dimi ;
48

int dimk ;f int j ;int k ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimk ; k++) ffor (j=k+1; j<dimk ; j++) falpha = �diag [k+j � s t r i d e d i a g ℄ ;daxpy(&a [j � s t r i d e a ℄ , &a [k� s t r i d e a ℄ , dimi , alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bmodd(a ,
 , dimi , dimj , s t r i d e a , s t r i d e
)shared double �a ;shared double �
 ;int dimi ;int dimj ;int s t r i d e a ;int s t r i d e
 ;f int i ;int j ;int k ;int l ength ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimi ; k++)for (j =0; j<dimj ; j++) f
 [k+j � s t r i d e
 ℄ /= a [k+k� s t r i d e a ℄ ;alpha = �
 [k+j � s t r i d e
 ℄ ;l ength = dimi � k � 1 ;daxpy(&
 [k+1+j � s t r i d e
 ℄ , &a [k+1+k� s t r i d e a ℄ , dimi�k�1, alpha) ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid bmod(a , b ,
 , dimi , dimj , dimk , s t r i d e)shared double �a ;shared double �b ;
49

shared double �
 ;int dimi ;int dimj ;int dimk ;int s t r i d e ;f int i ;int j ;int k ;double alpha ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (k=0; k<dimk ; k++) ffor (j =0; j<dimj ; j++) falpha = �b [k+j � s t r i d e ℄ ;daxpy(&
 [j � s t r i d e ℄ , &a [k� s t r i d e ℄ , dimi , alpha) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid daxpy (a , b , n , alpha)shared double �a ;shared double �b ;double alpha ;int n ;f int i ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i =0; i<n ; i++) fa [i ℄ += alpha �b [i ℄ ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint Blo
kOwner (I , J)int I ;int J ;f return ((I%num
ols) + (J%num rows)� num
ols) ;g
50

void lu (n , bs , MyNum, l
 , do s ta t s)int n ;int bs ;int MyNum;stru
t Lo
alCopies � l
 ;int dos ta t s ;f int i , i l , j , j l , k , k l ;int I , J , K;// doub le �A, �B, �C, �D;shared double �A, �B, �C, �D;int dimI , dimJ , dimK;int s t r I ;// unsigned i n t t1 , t2 , t3 , t4 , t11 , t22 ;stru
t t imeva l t1 , t2 , t3 , t4 , t11 , t22 ;int diagowner ;int
olowner ;#ifdef TRACEFUNCTRACE FUNC;#endifs t r I = n ;for (k=0, K=0; k<n ; k+=bs , K++) fk l = k+bs ;i f (kl>n) fk l = n ;gi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t1) ;g/� f a
 t o r d iagona l b l o
 k �/diagowner = Blo
kOwner (K, K) ;i f (diagowner == MyNum) fA = &(a [k+k�n ℄) ;lu0 (A, kl�k , s t r I) ;gi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t11) ;g//BARRIER(Global�>s t a r t , P) ;up
 ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t2) ;g/� d i v i d e
olumn k by d iagona l b l o
 k �/D = &(a [k+k�n ℄) ;for (i=kl , I=K+1; i<n ; i+=bs , I++) fi f (Blo
kOwner (I , K) == MyNum) f /� par
e l out b l o
 k s �/i l = i + bs ;i f (i l > n) fi l = n ;g
51

A = &(a [i+k�n ℄) ;bdiv (A, D, s t r I , n , i l�i , kl�k) ;gg/� modify row k by d iagona l b l o
 k �/for (j=kl , J=K+1; j<n ; j+=bs , J++) fi f (Blo
kOwner (K, J) == MyNum) f /� par
e l out b l o
 k s �/j l = j+bs ;i f (j l > n) fj l = n ;gA = &(a [k+j �n ℄) ;bmodd(D, A, kl�k , j l�j , n , s t r I) ;ggi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t22) ;g//BARRIER(Global�>s t a r t , P) ;up
 ba r r i e r ;i f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t3) ;g/� modify subsequent b l o
 k
olumns �/for (i=kl , I=K+1; i<n ; i+=bs , I++) fi l = i+bs ;i f (i l > n) fi l = n ;g
olowner = Blo
kOwner (I ,K) ;A = &(a [i+k�n ℄) ;for (j=kl , J=K+1; j<n ; j+=bs , J++) fj l = j + bs ;i f (j l > n) fj l = n ;gi f (Blo
kOwner (I , J) == MyNum) f /� par
e l out b l o
 k s �/B = &(a [k+j �n ℄) ;C = &(a [i+j �n ℄) ;bmod(A, B, C, i l �i , j l�j , kl�k , n) ;gggi f ((MyNum == 0) j j (do s ta t s)) fCLOCK(t4) ;l
�>t i n f a
 +=
a l
 t ime (t1 , t11) ;l
�>t i n s o l v e +=
a l
 t ime (t2 , t22) ;l
�>t in mod +=
a l
 t ime (t3 , t4) ;l
�>t i n b a r +=
a l
 t ime (t11 , t2) +
a l
 t ime (t22 , t3) ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifg
52

// void InitA (doub le � rhs)void In itA ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endifsrand48 ((long) 1) ;for (j =0; j<n ; j++) ffor (i =0; i<n ; i++) fa [i+j �n ℄ = (double) l rand48 ()/MAXRAND;i f (i == j) fa [i+j �n ℄ �= 10 ;gggu p
 f o r a l l (j =0; j<n ; j++; j) frhs [j ℄ = 0 . 0 ;gfor (j =0; j<n ; j++) fu p
 f o r a l l (i =0; i<n ; i++; i) frhs [i ℄ += a [i+j �n ℄ ;gg#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgdouble Tou
hA(bs , MyNum)int bs ;int MyNum;f int i , j , I , J ;double to t = 0 . 0 ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (J=0; J�bs<n ; J++) ffor (I =0; I �bs<n ; I++) fi f (Blo
kOwner (I , J) == MyNum) ffor (j=J�bs ; j<(J+1)�bs && j<n ; j++) ffor (i=I �bs ; i<(I+1)�bs && i<n ; i++) fto t += a [i+j �n ℄ ;ggggg#ifdef TRACE FUNC RETTRACE FUNC RET;
53

#endifreturn (to t) ;gvoid PrintA ()f int i , j ;#ifdef TRACE FUNCTRACE FUNC;#endiffor (i =0; i<n ; i++) ffor (j =0; j<n ; j++) fp r i n t f ("%8.1 f " , a [i+j �n ℄) ;gp r i n t f ("nn") ;g#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid Che
kResult ()f int i , j , bogus = 0 ;double �y , d i f f , max d i f f ;#ifdef TRACE FUNCTRACE FUNC;#endify = (double �) mal lo
 (n� s izeof (double)) ;i f (y == NULL) fp r i n t e r r ("Could not mal lo
 memory f o r ynn") ;e x i t (�1);gfor (j =0; j<n ; j++) fy [j ℄ = rhs [j ℄ ;gfor (j =0; j<n ; j++) fy [j ℄ = y [j ℄ / a [j+j �n ℄ ;for (i=j +1; i<n ; i++) fy [i ℄ �= a [i+j �n ℄� y [j ℄ ;ggfor (j=n�1; j>=0; j��) ffor (i =0; i<j ; i++) fy [i ℄ �= a [i+j �n ℄� y [j ℄ ;ggmax di f f = 0 . 0 ;for (j =0; j<n ; j++) fd i f f = y [j ℄ � 1 . 0 ;i f (fabs (d i f f) > 0 .00001) f
54

bogus = 1 ;max d i f f = d i f f ;ggi f (bogus) fp r i n t f ("TEST FAILED: (%.5 f d i f f)nn" , max d i f f) ;g else fp r i n t f ("TEST PASSEDnn") ;gf r e e (y) ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgvoid p r i n t e r r (
onst
har � s)f f p r i n t f (s tde r r , "ERROR: %s nn" , s) ;g

55

A.4 Sten
il#in
lude <s t d i o . h>#in
lude <s t d l i b . h>#in
lude <math . h>#in
lude <a s s e r t . h>#in
lude <up
 . h>#ifdef MUPCTRACERDMUPCTRACERD#endif#define N 6#define ITERS 100shared [N℄ double a [N ℄ [THREADS�N℄ ;shared [1 ℄ double dmax [THREADS℄ ;int n ;#define A(i , j) a [(i)%N℄ [((i)/N)�N�n+(j) ℄void s t e n
 i l (int i , int j)f double t ;#ifdef TRACE FUNCTRACE FUNC;#endift = A(i , j) ;#ifdef EIGHT PT STENCILt += A(i �1, j �1);t += A(i �1, j) ;t += A(i �1, j +1);t += A(i , j �1);t += A(i , j +1);t += A(i +1, j �1);t += A(i +1, j) ;t += A(i +1, j +1);t /= 9 . 0 ;#elset += A(i �1, j) ;t += A(i +1, j) ;t += A(i , j �1);t += A(i , j +1);t /= 5 . 0 ;#endifA(i , j) = t ;#ifdef TRACE FUNC RETTRACE FUNC RET;#endifgint main ()f int i , j , i t e r ;#ifdef TRACE FUNC
56

TRACE FUNC;#endif/� Ensure number o f threads i s a square . �/n = (int) s q r t ((double) THREADS) ;a s s e r t ((n�n) == THREADS) ;/� I n i t i a l i z e A. �/for (i =0; i<N;++ i)for (j =0; j<N;++j)a [i ℄ [N�MYTHREAD+j ℄ = (double) MYTHREAD;up
 ba r r i e r ;for (i t e r =0; i t e r<ITERS;++ i t e r)f /� Update a l l po in t s with 4/8�pt s t e n
 i l . �/for (i =1; i<(N�n)�1;++ i)f for (j =1; j<(N�n)�1;++ j)f i f (MYTHREAD==up
 threado f (&A(i , j)))f s t e n
 i l (i , j) ;ggg/� Update dmax . �/dmax [MYTHREAD℄ = (double) i t e r + 1 . 0 ;up
 ba r r i e r ;/� Che
k fo r
omplet ion . �/for (i =0; i<THREADS;++ i)i f (dmax [i ℄<0.0) goto end ;gend :return 0 ;g

57

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Outline

	Background
	Parallel Computation
	SPMD Model
	Communication and the Shared Memory Model
	Partitioned Global Address Space
	Unified Parallel C
	MuPC

	Reuse Distance Analysis
	Instruction Based Reuse Distance
	Predicting Reuse Distance Patterns
	Prediction Accuracy Model

	Predicting Remote Reuse Distance
	Instrumentation
	Test Kernels
	Matrix Multiplication
	Jacobi
	LU Decomposition
	Stencil

	Thread Partitioning

	Prediction Results
	Problem Size Scaling
	Thread Scaling

	Conclusions
	Applications
	Future Work

	LIST OF REFERENCES
	Test Kernel Sources
	Matrix Multiplication
	Jacobi Solver
	LU Decomposition
	Stencil

