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ABSTRACT*

Productivity is becoming increasingly important in high performance computing. Parallel
systems, as well as the problems they are being used to solve, are becoming dramatically larger
and more complicated. Traditional approaches to programming for these systems, such as MPI,
are being regarded as too tedious and too tied to particular machines. Languages such as Unified
Parallel C attempt to simplify programming on these systems by abstracting the communication
with a global shared memory, partitioned across all the threads in an application. These
Partitioned Global Address Space, or PGAS, languages offer the programmer a way to specify
programs in a much simpler and more portable fashion.

However, performance of PGAS applications has tended to lag behind applications implemented
in a more traditional way. It is hoped that cache optimizations can provide similar benefits to
UPC applications as they have given single-threaded applications to close this performance gap.
Memory resuse distance is a critical measure of how much an application will benefit from a
cache, as well as an important piece of tuning information for enabling effective cache
optimization.

This research explores extending existing reuse distance analysis to remote memory accesses in
UPC applications. Existing analyses store a very good approximation of the reuse distance
histogram for each memory access in a program efficiently. Reuse data are collected for small
test runs, and then used to predict program behavior during full runs by curve fitting the patterns
seen in the training runs to a function of the problem size. Reuse data are kept for each UPC
thread in a UPC application, and these data are used to predict the data for each UPC thread in a
larger run. Both scaling up the problem size and the increasing the total number of UPC threads
are explored for prediction. Results indicate that good predictions can be made using existing
prediction algorithms. However, it is noted that choice of training threads can have a dramatic
effect on the accuracy of the prediction. Therefore, a simple algorithm is also presented that
partitions threads into groups with similar behavior to select threads in the training runs that will
lead to good predictions in the full run.

*This work is partially supported by NSF grant CCF-0833082.



CHAPTER 1

Introduction

1.1 Motivation

High performance computing is becoming an increasingly important part of
our daily lives. It is used to determine where oil companies drill for oil, to figure
out what the weather will be like for the next week, to design safer buildings
and vehicles. Companies save millions of dollars every year by simulating product
designs instead of creating physical prototypes. The movie industry relies heavily
on special effects rendered on large clusters. Scientists rely on simulations to
understand nuclear reactions without having to perform dangerous experiments
with nuclear materials.

In addition, the machines used to carry out these computations are becoming
drastically larger and more complicated. The Top500 list claims that the fastest
supercomputer in the world has over 200000 cores [1]. It is made up of thou-
sands of six-core opteron processors in compute blades networked together. The
compute blades can each be considered a computer in its own right, working to-
gether with the others to act as one large supercomputer. This clustering model
of supercomputer is now the dominant force in high performance computing.

Traditionally, applications written for these clusters required the programmer
to explicitly manage the communication needs of the program across the various
nodes of the cluster. It was thought that the performance needs of such applications
could only be met by a human programmer carefully designing the program to
minimize the necessary communication costs. This approach to programming for
supercomputers is quickly becoming unwieldy. The productivity cost of requiring
the application programmer to manage and tune an application’s communication
for these complex systems is simply too high.

Partitioned global address space languages, such as Co-Array Fortran [2] and
Unified Parallel C [3], attempt to address these productivity concerns by building
a shared memory programming model for programmers to work with, delegating
the task of optimizing the necessary communication to the language implementor.

While these languages do offer productivity improvements, implementations
haven’t been able to match the performance of more traditional message passing
setups. Various approaches to catching up have been tried. The UPC imple-
mentation from the University of California Berkeley [4] uses the GASNet network
library [5], which attempts to optimize communication using various methods such
as message coalescing [6]. Many implementations try to split synchronous opera-
tion into an asynchronous operation and a corresponding wait, then spread these
as far apart as possible to hide communication latency. These optimizations can



lead to impressive performance gains, but there is still a performance gap for some
applications.

One approach hasn’t been commonly used in implementations is software
caching of remote memory operations. Caching has been used to great effect in
many situations to hide the cost of expensive operations. Programmers are also
accustomed to working with caches, since they are so prevalent in today’s CPUs.
As Marc Snir pointed out in his keynote address to the PGAS2009 conference [7],
programmers would like to see some kind of caching in these languages’ imple-
mentations. He demoed a caching scheme implemented entirely in the application.
However, it is desirable that the caching be done at the level of the language im-
plementation to avoid forcing the programmer to deal with the complexities of
communication that these languages were designed to hide.

This research takes an initial look at the possibility of using existing algorithms
for single threaded applications designed to predict patterns in the reuse distances
for memory operations to predict patterns in the reuse distances for remote memory
operations in Unified Parallel C applications. It is hoped that this information
could be used to tune cache behavior for caching remote references, and to enable
other optimizations that rely on this information and have been successfully used
with single-threaded applications to work with multi-threaded UPC applications.

1.2 Thesis Outline

The rest of this document is organized as follows. Chapter 2 gives a broad
background in instruction-based reuse distance analysis and Unified Parallel C.
Chapter 3 introduces the instrumentation, test kernels and models used to predict
remote memory behavior. Chapter 4 shows the prediction results obtained. Finally
Chapter 5 summarizes the results, looks at ways this prediction model can be used,
and possible future work to overcome some of this model’s weaknesses.



CHAPTER 2

Background

2.1 Parallel Computation

When one wishes to solve problems faster, there are generally only three things
to do. First, one can try to find a better algorithm to solve the problem at hand.
While this can lead to massive performance benefits, most common problems al-
ready have known optimal solutions. Second, one can increase the rate at which
a program executes. If a program requires the execution of 10000 instructions, a
machine that can execute an instruction every millisecond will finish the program
much sooner than one that can only execute an instruction every second. Finally,
one can execute the program in parallel-solving multiple pieces of the problem at
the same time. Just as having multiple checkout lanes speed consumers through
their purchases, having the ability to work on multiple pieces of a problem can
speed its solution.

There are many different ways to think about solving a problem in parallel.
Flynn’s taxonomy classifies parallel programming models up along two axes, one
based on the program’s control, the other based on its data [8, 9]. This creates
four classes of programs: single instruction single data, multiple instruction sin-
gle data, single instruction multiple data, and multiple instruction multiple data.
These are henceforth referred to by the acronyms SISD, MISD, SIMD, and MIMD
respectively.

The SISD model is the classic, non-parallel programming model where each
instruction is executed serially and works on a single piece of data. While modern
architectures actually do work in parallel, this remains the most commonly used
abstraction for software developers.

The MISD model is widely considered nonsensical, as it refers to multiple
instructions being executed in parallel operating on the same data. While this
usually makes little sense, the term has been used to refer to redundant systems,
which use parallelism not to speed up a computation, but rather to prevent pro-
gram failures.

The SIMD model sees widespread use in many special purpose accelerators.
In this model, a single instruction is executed in parallel across large chunks of
data. The most well-known use of this is probably in the graphics processing
units, or GPUs, that have become standard on modern personal computers. Many
architectures also include SIMD extensions to their SISD instruction set that enable
certain types of applications to perform much better.

The MIMD model is the most general, where multiple instructions are run in
parallel, each on different data. This model is perhaps the most commonly used



abstraction for software developers writing parallel applications, as this model is
used in the threading libraries included with many operating systems.

2.1.1 SPMD Model

The Single Program, Multiple Data, or SPMD model of parallel programming
is a subset of the MIMD model from Flynn’s taxonomy. The MIMD model can be
thought of as multiple SISD threads executing in parallel that have some means
of communicating amongst themselves. The SPMD model is a special case where
each thread is executing the same program, only working with different data. The
threads need not operate in lock-step, nor all follow the same control-flow through
the program.

2.1.2 Communication and the Shared Memory Model

Flynn’s taxonomy describes how a problem can be broken up and solved in
parallel. It does not specify how the various threads of execution that are being run
in parallel communicate. From a programmer’s perspective, there are two major
models of parallel communication, message passing and shared memory.

The message passing model, as its name suggests, requires that threads send
messages to one another to communicate. In general, these messages must be
paired in that the sender must explicitly send a message and the receiver must
explicitly receive that message.

In the shared memory model, all threads share some amount of memory,
and communication occurs through this shared memory. This naturally simplifies
communication as the programmer no longer needs to explicitly send data back and
forth between threads. The programmer is also no longer responsible for ensuring
threads send messages in the correct order to avoid deadlocks, nor to check for
errors in communication.

However, as memory is a shared resource, the programmer must be aware of
the consistency that the model allows. In the most simple case, there is a strict or-
dering on all memory accesses across all threads, which is easy for the programmer
to understand, but is usually quite expensive for the implementation to enforce.
There are various ways of relaxing the semantics to improve the performance of
the program by permitting threads to see operations occur in different orders,
eliminating unnecessary synchronization.

2.1.3 Partitioned Global Address Space

While the shared memory programming model offers the programmer many
advantages, it is often difficult to implement efficiently on today’s large distributed
systems. One major difficulty comes from the fact that it is usually orders of
magnitude more expensive to access shared memory that is off-node than it is to



access on-node memory. If the programmer has no way of differentiating between
on-node and off-node memory, it becomes difficult to write programs that run
efficiently on these modern machines.

Partitioned Global Address Space, PGAS, languages try to address this prob-
lem by introducing the concept of affinity [10]. The shared memory space is parti-
tioned up among the threads such that every object in shared memory has affinity
to one and only one thread. This allows programmers to write code that takes
advantage of the location of the object.

2.1.4 Unified Parallel C

Unified Parallel C, henceforth UPC, is a parallel extension to the C program-
ming language [3]. It uses the SPMD programming model, where a fixed number
of UPC threads execute the same UPC program. Each UPC thread has its own
local stack and local heap, but there is also a global memory space that all threads
have access to. As UPC is a PGAS language, this global memory is partitioned
amongst all the UPC threads.

[t is important to note that accesses to shared memory in UPC applications do
not require any special libraries or syntax. Once a variable is declared as shared, it
can be referenced just as any local variable, at least from the programmer’s point
of view. In many implementations, including MuPC, these accesses are directly
translated into runtime library calls that perform the read or write as necessary.

For example, the program in Figure 2.1 prints hello from each UPC thread,
records how many characters each thread printed, and exits with EXIT FAILURE
if any thread had an error (printf() returns a negative value on errors).

One important performance feature of UPC is the ability to specify that mem-
ory accesses use relaxed memory consistency. The default, strict, memory consis-
tency requires that all shared memory accesses be ordered, and that all threads
see the same global order of memory accesses. In particular, if two threads write
to the same variable at the same time, all threads will see the same written value
after both threads have occurred. Consider the code segment in Figure 2.2.

For threads other than thread 0, there are only three possible outputs at the end
of the code: a =0,b=00ra=1,b=00ra=1,0=2.

By contrast, relaxed memory consistency provides no such guarantee. Differ-

ent threads may see operations occur in different orders. Consider the same code
segment using relaxed variables instead of strict ones shown in Figure 2.3.
For threads other than thread 0, there are now four possible outputs at the end
of the code: a = 0,b=0o0ora=1,b=00ora=1,0b=2o0ra=0,b0=2 The
additional value, a = 0,b = 2 is permitted because the relaxed semantics allow
threads other than thread 0 to see the assignment to sb occur before the assignment
to sa, while the strict semantics require they occur in program order.

Since implementation is allowed to reorder relaxed operations, it is also permit-



#include <stdio.h>
#include <stdlib .h>
#include <upc.h>

/* FEach UPC thread has 1 element of this array. */
shared [1] int printed [THREADS];

int main()

{
int i, exit_-value = EXIT_SUCCESS;

/* Initialize local part of printed array to 0. x/
printed [MYTHREAD| = 0;

/% Wait for everyone to finish initialization. x/
upc_barrier( 1 );

/* Record the number of characters printed. %/
printed [MYTHREAD] = printf(” Hello._from .UPC_thread %d_of %d.\n” ,
MYTHREAD, THREADS);

/* Wait for everyone to finish printing. */
upc_barrier( 2 );

/x Verify all the threads printed something. */
for (i=0;i<THREADS;++1)
{

if (printed [1]<0) exit_-value = EXIT FAILURE;

}

exit (exit_-value);

Figure 2.1. Hello World in UPC

ted to cache the values without having to worry about keeping the caches coherent
until a strict access or collective occurs. Despite this capability, relatively few
UPC implementations cache remote accesses, and those that do use relatively sim-
ple caches. At the time of this writing, only the MuPC reference implementation
from Michigan Technological University [11] and the commercial implementation
from Hewlett Packard [12] are known to implement caching of remote references.

2.1.5 MuPC

MuPC is a reference UPC implementation that is built on top of MPI and
POSIX threads. It currently supports Intel x86 and x86-64 based clusters running
Linux, as well as alpha clusters running Tru64. Each UPC thread is implemented
as a single OS process using two pthreads, one for managing communication, the
other to run the UPC program’s computation. The compile script first translates
the UPC code into C code with calls into the MuPC runtime library to handle
communication and synchronization. This is then compiled with the system MPI
compiler and the resulting binary can be run as if it were an MPI program.



strict shared int sa=0, sb=0;
int la=0, 1b=0;

i f (MYTHREAD==0)

else

Ib=sb ;
la=sa;
printf(” Thread %d:.a.=%d, .b.=%d\n” ,la ,1b );

Figure 2.2. Example of Strict Semantics in UPC

relaxed shared int sa=0, sb=0;
int a=0, b=0;

i f (MYTHREAD==0)

else

{
b=sb ;
a=sa;

printf(” Thread %d: .a.=%d, -b_.=-%d\n” ,a,b);

Figure 2.3. Example of Relaxed Semantics in UPC

MuPC implements a cache for remote references in the communication thread.
The cache is divided into THREADS—1 sections, one for each non-local UPC
thread. The size of the cache is determined by the user via a configuration file.
The user can also change the size of a cache line. The defaults setup a 2mb cache
with 64-byte cache lines.

2.2 Reuse Distance Analysis

Reuse distance is defined as the number of distinct memory locations that are
accessed between two accesses to a given memory address. This information is
generally used to determine, predict, or optimize cache behavior.

Forward reuse distance answers the question ”How many distinct memory
locations will be accessed before the next time this address is accessed?”. It scans
forward in an execution, counting the number of memory locations accessed until
the given address is found. This information can be useful for determining whether
or not caching should be performed for a memory reference, among other things.



Backward reuse distance answers the question "How many distinct memory
locations were accessed since the last time this address was accessed?”. It scans
backward in an execution, counting the number of memory locations accessed until
the given address is found. This information can be useful for determining whether
or not a memory reference should be prefetched, among other things.
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Figure 2.4. Reuse Distance Example

For example, consider the second reference to A[2] in the short code segment
in Figure 2.4. Because only A[l] was accessed since the last access to A[2], the
backward reuse distance is 1. The forward reuse distance is 2, because both A[l]
and A[3] are accessed before A[2] is accessed again.

There is also a distinction between temporal reuse and spatial reuse. Temporal
reuse refers to reuse of a single location in memory, as in the example above. Spatial
reuse considers larger sections of memory, as the cache in many systems pulls in
more than one element at a time. Assuming the cache lines in the system can
hold two array elements and that A[1] is aligned to the start of a cache line, the
backwards spatial reuse distance of the second access to A[2] is 0, because their
were no intervening accesses to different cache lines since the last access. The
forward reuse distance is 1 however, because A[3] does not share a cache line with
A[l] and A[2].

2.2.1 Instruction Based Reuse Distance

Analyses generally create histograms of either the forward or backward reuse
distances encountered in a program trace. The histograms are generally associated
either with a particular memory address or with a particular memory operation.
When associated with a memory operation, the data are referred to as instruction
based reuse distances [13, 14].

Studying the reuse distances associated with operations can provide many
useful insights into an application’s behavior. For example, the maximum reuse
distance seen by any operation can tell how large a cache will be beneficial to the
application. Critical instructions, operations that suffer from a disproportionately
large number of the cache misses in a program, can be identified as well [14].

It is generally expensive to record the reuse distances over an entire program
execution exactly, as there can be trillions of memory operations encountered.



However, it has been shown that highly accurate approximations of the reuse dis-
tance can be stored efficiently using a splay tree to record when memory locations
are encountered [15]. This information can then be used to create histograms
describing the reuse distances for a given application.

2.2.2 Predicting Reuse Distance Patterns

input: the set of memory-distance bins B
output: the set of locality patterns P

for each memory reference r {
P, = 0; down = false; p = null;
for (i = 0; i < numBins; i++)
if (B .size > 0)
if (p == null ||(BL.min — p.maz > p.max — B:.min)||
(down&&Bi~t.freq < Bi.freq)) {

p = new pattern; p.mean = B.mean;
p.min = B{.min; p.max = B!.max;
p.freq = Bi.freq; p.maxf = Bl.freq;
P, = P, U p; down = false;

}

else {
p.max = Bl.max; p.freq += Bl.freq;
if (B¢.freq > p.maxf) {
p.mean = Bf.mean; p.maxf = B! .maxf;

if ('down && Bi~'.freq > Bi.freq)
down = true;
}

else
p = null;

Figure 2.5. Pattern-formation Algorithm

Using profiling data, it has been shown that the memory behavior of a program
can be predicted by using curve fitting to model the reuse distance as a function
of the data size of an application [14].

First, patterns are identified for each memory operation in the instrumented
training runs. Histograms storing the reuse data for memory operations are used
to identify these patterns. For each bin in the histogram, a minimum distance,
mazimum distance, mean distance, and frequency are recorded. Then, adjacent
bins are merged using the algorithm in Figure 2.5. The locality patterns for an
operation are defined as the sets of merged bins. Finally, the prediction algorithm
uses curve fitting with each of a memory operation’s patterns in two training runs
to predict the corresponding pattern in the predicted run [14].



2.2.3 Prediction Accuracy Model

There are two important measures of the reuse distance predictions. First is
the coverage, which is defined as the percentage of operations in the reference run
that can be predicted. An operation can be predicted if it occurs in both training
runs, and all of its patterns are regular. A pattern is regular if it occurs in both
training runs and the reuse distance does not decrease as the problem size grows.

The accuracy then is the percentage of covered operations that are predicted
correctly. An operation is predicted correctly if the predicted patterns exactly
match the observed patterns, or they overlap by at least 90%. The overlap for two
patterns A and B is defined as

A.max — max(A.min, B.min)

max(B.max — B.min, A max — A.min

The overlap factor of 90% was used in this work because this factor worked
well in prior work with sequential applications [14].
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CHAPTER 3

Predicting Remote Reuse Distance

3.1 Instrumentation

In order to get the raw cache reuse data for the predictions, it was important
to have a working base compiler from which to add instrumentation to generate
the raw cache reuse data. The MuPC compiler and runtime was used for the data
collection, with a number of modifications to support runtime remote reuse data
collection.

Initially, it was necessary to update MuPC to add support for x86-64 systems
to ensure MuPC continues to function in the future, as well as to support our new
cluster. Because the vender-provided MPI libraries were 64-bit only, it was not
possible to simply use the 32-bit support in the OS. Therefore, the MuPC compiler
was modified to generate correct code for the new platform. The bulk of this work
was merely increasing the size of primitive types and enabling 64-bit macros and
typedefs in the EDG front-end.

The other changes were all to support recording cache reuse in UPC programs.
First, generic instrumentation was added to many of the runtime functions. These
allow a programmer to register functions that get called whenever a particular
runtime function is called. This enables a programmer to inspect the program’s
runtime behavior. To test this instrumentation, a simple function was written to
create a log of all remote memory accesses, recording the operation (put or get),
the remote address, the size of the access, and the location in the program source
that initiated the access.

Once this functionality was working, existing instrumentation for the Atom
simulator [16] was modified for use with MuPC. This code uses splay trees to store
cache reuse data per instruction. Since it was originally designed to work with
cache reuse in hardware, associating the reuse data with an instruction works fine.
However, for this project, there is no simple instruction to associate the reuse data
with, as remote accesses are complicated operations. It was finally decided that
the return address (back into the application code) would work as a substitute,
since it would produce the desired mapping back to the application source.

Additionally, the Atom instrumentation had to be modified to deal with dif-
fering sizes of addresses. In particular, shared memory addresses are a struct in
MuPC, containing a 64-bit address, a thread, and a phase. The phase was not
important to this research, but both the thread and the address were. To properly
store these values, the instrumentation was modified to store addresses as 64-bit
values instead of 32-bit values, and the thread was stored in the upper six bits of
the address, since they were unused due to memory alignment.
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Unfortunately, the implementation does require modifications to the source
program. The modifications are quite small, and can easily be disabled with the
preprocessor. The macros and global variables shown in Figure 3.1 were defined
in the upc.h header.

J*
* Added to support tracing remote accesses.
*/

extern char x__mupc_trace_func;
char #__mupc_get_func_name ();

#define TRACEFUNC \
char *__mupc_trace_func_prev; \
__mupc_trace_func_prev=__mupc_trace_func; \
_-mupc_trace_func=__mupc_get_func_name ()

#define TRACEFUNCRET __mupc_trace_-func=__mupc_trace_func_prev

/*% Macros for tracing. Must be used ezactly once per program! xx/
#define MUPC.TRACENONE \
void (*-_mupc_trace_init)() = NULL;

#define MUPC_.TRACEFILE \
void __mupc_trace_init_file (); \
void (*_-_mupc_trace_init)() = -_mupc-trace_init_file;

#define MUPC.TRACERD \
void __mupc_trace_init_rd (); \
void (*_-_mupc_trace_init)() = __mupc_trace_init_rd;

Figure 3.1. Added MuPC Macros

These macros setup information in global variables that is used by special
functions that wrap calls into the MuPC runtime. The calls save the return address
of the call and the name of the function that it was called from so they can be
recorded by the instrumentation.

The macros TRACE_FUNC and TRACE_FUNC_RET should be used at the
beginning and end of all functions with remote accesses. While these macros are
not strictly necessary, they enable the instrumentation to track the function name
that an operation originated from without having to figure it out from the return
address.

The MUPC_TRACE_* macros initialize the tracing code. The
MUPC_TRACE_RD macro configures the tracing to store per instruction shared
memory reuse data. It must be included exactly once in the program’s source.

During an instrumented run, all remote accesses are logged, and each place
there is a call into the runtime gets associated with a reuse distance histogram.
Barriers and strict accesses cause the last use data to be dropped to force all
later references to act as if no addresses had yet been seen. When the program
completes, these histograms are written out to disk, one file per thread.

12



3.2 Test Kernels

Since there are no standard benchmark applications for UPC, a small number
of kernels were written or modified from existing applications to model program
behavior. These are described below.

3.2.1 DMatrix Multiplication

Matrix multiplication is a well studied problem in parallel computation. Each
index (7,7) in the resulting matrix is defined as the sum of the products of the
elements of row ¢ from the first matrix with the corresponding elements of column
j from the second. A simple UPC implementation to solve C' = A * B where A,
B, and C are N x N matrices is shown in Figure 3.2.

for (int i=0;i<N;++i) {
upc_forall (int j=0;j<N;++j;&C[i][j]) {
Cli][j] = 0;
for (int k=0;k<N;++k) {
ClLilli] +=A[i][k] = B[k][]];

Figure 3.2. Matrix Multiplication in UPC

The Matrix Multiplication kernel simply multiplies two large (square) arrays
together. The nodes are arranged in a 2-d grid, and each node has an NxN block
of the array. The multiplication is performed using a naive implementation with
a triple-nested loop, where each thread calculates its portion of the final matrix,
working a block at a time. The problem size in this kernel is the local size of the
three matrices. In testing, this kernel was run with 4, 9, and 16 threads with 4
elements per thread up to 262144 elements per thread, in increasing powers of 4.
The complete source for the kernel used can be found in Appendix A.1.

3.2.2 Jacobi

The Jacobi method is an iterative method that finds an approximate solution
to a series of linear equations. While it does not find exact solutions, it can give
a solution that is within a desired delta of the exact solution for most problems.
However, its most important feature is its numerical stability, which is critical
when working with inexact values. Since the floating point format most commonly
used to represent real numbers is inexact, this stability makes the Jacobi method
quite useful in a variety of applications.

The Jacobi kernel simulates a Jacobi iterative solver for a large array dis-
tributed in a block cyclic fashion. The kernel only simulates the remote access
pattern for a Jacobi solver, it does not actually attempt to solve the generated

13



U

X

L

Figure 3.3. LU Decomposition of a Matrix

array. Like the Matrix Multiplication kernel, every thread performs essentially the
same task. The problem size in this kernel is the number of iterations the solver
runs for. In testing, this kernel was run with 2 through 24 threads, with iteration
counts as a power of 2 up to 8192. The complete source for the kernel used can be
found in Appendix A.2.

3.2.3 LU Decomposition

LU decomposition is another important operation for many scientific applica-
tions. It decomposes a matrix into the product of a lower triangular matrix with
an upper triangular matrix, as shown in Figure 3.3. This can be used to find both
the determinant and inverse of a matrix, as well as to solve a system of linear
equations.

The LU kernel, which comes from the test suite from Berkeley’s UPC com-
piler [4] based on a program from Stanford University [17], performs an LU-
decomposition on a large array that is distributed across nodes in a block cyclic
fashion. Square blocks of B x B (B = 8,16, 32 were tested) are distributed to
each thread until the entire array has been allocated. The problem size is the total
size of the array. In testing, this kernel was run with 2 through 36 threads, with
problem sizes from 1024 elements to 16777216 elements. The complete source for
the kernel used can be found in Appendix A.3.

3.2.4 Stencil

Stencil problems are problems where elements of an array are iteratively up-
dated based on the pattern of its neighbors. A common example of this is John
Conway’s Game of Life, where the life or death of a cell at a given time step is
determined by the life or death of neighboring cells in the previous time step. The
stencil describes which neighboring cells are used to update a given cell. This is
often used in engineering when modeling the flow of heat or air.

14



The stencil kernels are a family of kernels that apply a 2-d or 3-d stencil to
an array. These kernels were added as an example of a class of problems where
threads displayed differing behavior based on the logical layout of threads. The
problem size for these is the total size of the array the stencil operates over. These
kernels were developed later than the others and did not have as many test runs
as the other kernels due to time and hardware constraints. Therefore, exhaustive
results are not available for these kernels, results are available only for the four
and eight point 2d stencil kernels.

While initially instrumenting the stencil code, it was observed that in some
cases, there were additional unexpected remote memory accesses that did not
match up to the theoretical communication behavior of the programs.

void stencil(int i, int j)

{
A(i,]) += A(i+1,]);
A(iLj) +=A(1,j-1);
A(i,j) /= 5.0;

}

Figure 3.4. Failing Stencil Code

Assuming that A(i,7) is local to the calling thread, one would expect that the
stencil function in Figure 3.4 generates at most four operations (calls to the run-
time) that could be remote accesses. Without that assumption, at most four-
teen operations could be remote accesses. The code generated actually has at
most twenty-three operations that could be remote accesses. This was causing the
thread-scaling prediction to fail, as the pattern of which of these operations is used
varies with thread count.

The culprit was determined to be the '+=" operator and its interaction with
a shared variable. Changing the stencil code sample from Figure 3.4 to the that
shown in Figure 3.5 eliminates the superfluous operations.

This fixed the problem because the UPC to C translator uses nested condi-
tional operators to check for local accesses when working with shared variables.
This nesting caused multiple accesses to be generated for a single source access
when there are multiple accesses to shared variables in a statement. Since this is a
limitation of the MuPC compiler and common practice is to use local temporaries
to avoid multiple remote accesses, the stencil code was updated to use the latter
form. The complete source for the kernel used can be found in Appendix A.4.
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void stencil(int i, int j)

{
double t;
t = A(i,j);
t 4= A(i-1,j);
t += A(i+1,j);
t 4= A(i,j—1);
t 4= AP, j+1);
t /= 5.0;
A(ly.]) - tv

}

Figure 3.5. Corrected Stencil Code

3.3 Thread Partitioning

Since a prediction is being performed for each UPC thread in a run, the
choice of which thread’s data are used to train becomes important. If the number
of threads is kept constant, the obvious choice is to use the same thread’s data for
the training. However, that doesn’t work when the number of threads increases.
Therefore, it was necessary to come up with a way of selecting the threads used in
the predictions.

In searching for a suitable algorithm for partitioning threads for training, it
was noted that all of the kernels tested worked with large square arrays, and the
communication pattern was based on the distribution of these arrays. Because the
communication pattern is based on the geometric layout of the data, an algorithm
was used that matches the training data with a pattern describing this geometric
layout, and then chooses threads for prediction based on it. As a special exception,
thread 0 is assumed to be used for various extraneous tasks, such as initialization,
and is therefore always predicted with thread 0 from each of the training runs.

The algorithm is split into three parts. The threads in the two training runs
are partitioned into groups based on their communication behavior, as shown in
Figure 3.6. It is assumed that data for each thread in each training run has
associated with it the pattern data, represented as t.patterns, the instructions
encountered (patterns are associated with an instruction) represented as t.inst.
Each thread’s patterns are tested against those in the existing groups. The thread
is included in the group if all the patterns are present in both, and there is at
most 5% difference between the min, max, freq, and mean values for the thread
and the average of the values for all the threads in the group. Each group tracks
the number of members and the running arithmetic average min, max, freq, and
mean of each pattern. Once the patterns are generated, they are associated with
the run as 7".groups.

Then these groups are matched against a function describing the expected
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input: the set of training runs containing pattern data for each thread in the run
output: the set of training runs is updated with the set of groups G

for each training run T
T.groups = 0
for each thread t € T
t.group = NULL
for each group g € T'.groups
if patterns_match(g,t)
t.group = g
break
if t.group == NULL
t.group = new group
t.group.vals = NULL
t.group.inst = t.inst
t.group.patterns = ¢.patterns
t.group.nthr = 1
T.groups = 1'.groups Ut.group
else
for each pattern p, € t.group.patterns
let p; be the corresponding pattern in ¢.patterns
pg-min = (pg.minst.group.nthr+p,.min)/(¢t.group.nthr+1)
pg-max = (pg.maxxt.group.nthr+p;.max)/(¢.group.nthr+1)
pg-freq = (pg.freqxt.group.nthr+p,.freq)/(t.group.nthr+1)
pg-mean = (py.meankt.group.nthr+p;.mean)/(t.group.nthr+1)
t.group.nthr = t.group.nthr+1

Figure 3.6. Partitioning Algorithm

input: a group g and a thread ¢
output: true if the patterns of ¢ match those of g, false otherwise

if g.inst# t.inst return false
for each pattern p, € g.patterns

let p; be the corresponding pattern in ¢.patterns

if no such p; return false

if (pg. min—p;.min)/max(py.min,p;.min)> 0.05 return false

if (pg.max—p;.max)/max(p,.max,p;.max)> 0.05 return false

if (pg.freq—py.freq)/max(pgy.freq,p;.freq)> 0.05 return false

if (py.mean—p;.mean)/max(p,.mean,p,.mean)> 0.05 return false
return true

Figure 3.7. patterns_match() Function
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partitioning of threads, as shown in Figure 3.8. The pattern function is used to
generate the set of values associated with threads in the group. The training run
matches the pattern function if the set of values associated with each group is
disjoint from ever other group. Additionally, a map mapping values with one of
the threads associated with it (the lowest if the threads are tested in ascending
order) is kept for each training run, for later use when picking which threads to
use in the prediction.

input: the set T of training runs with the associated group assignments
output: true if training runs match the pattern, false otherwise

for each training run 7T;
for each thread t € T;
t.group.vals = t.group.valsUf (¢, T.numthreads)
if |M;.containsKey( f (¢, 7 .numthreads))
M, .insert(f (¢, T.numthreads),t)
for each unordered pair of groups g, g2 € T.groups
if (g1.valsNgz.vals) # 0 return false
return true

Figure 3.8. Matching Algorithm

Unfortunately, the pattern itself is not automatically detected, but was chosen
because the kernels tested all used a square thread layout. The pattern function
used is shown in Figure 3.9. Note that the pattern partitions a square into regions
based on geometric properties. Because the algorithm merges regions based on
observed behaviors, the pattern actually defines a large number of subpatterns,
which are automatically matched by the algorithm. The ability to automatically
generate a pattern function for a given problem would increase the generality of
this analysis greatly, an important avenue for future work. However, it is possible
to create general patterns that match a wide variety of problems by utilizing the
subsetting inherent to this algorithm.

Finally, if both training runs match the pattern, threads are predicted with
threads from the training runs who share the same group as determined by the
matched function. The algorithm selecting the pairs is shown in Figure 3.10. It
uses the maps generated while matching the pattern to choose threads in the
training runs with the same value returned by the pattern function.

As an example, consider using equation 3.1 as a pattern to match against the
LU kernel run with 16 threads in the test dataset, 25 threads in the train dataset,
and 36 threads in the reference dataset with a fixed per-thread data size. In this
case, the threads with data on the diagonal of the array have to do extra work.
Equation 3.1 returns 0 for threads on the diagonal and 1 for threads not on the
diagonal, assuming the threads are laid out in a square grid. This should perfectly
match the thread layout of the LU kernel when run with a number of threads that
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f(t,n) = | : :

Figure 3.9. Pattern Function

input: the set of threads Tp q in the prediction run

re
input: for each training run, a map M; mapping a return value from the pattern f(¢,T")

to a thread in the training run that generates that return value
output: for each thread in the prediction run, a pair of threads from the training runs to use

for each thread tpred S Tpred

t.preds = (Mjy.get(f( q-numthreads)),M;.get(f( J-numthreads)))

tpred’ Tpre tpred’ Tpre

Figure 3.10. Training Thread Selection Algorithm
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is a perfect square, such as in this example. For clarity, the matching of reuse
patterns is simplified such that threads with data on the diagonal perfectly match
only other threads with data on the diagonal, and likewise for threads without
data on the diagonal.

(3.1)

1 o.w.

f(t,n) = {0 if LﬁJ = (t mod /n)

First the threads in the test and train datasets are sorted into groups. In
both cases there are two groups, those threads that have data on the diagonal —
and therefore have extra work, and those that don’t. For the test dataset, the
groups are go = {ls,ti,t15} and g1 = {t1,t2,t3,t4,ts, t7,ts, o, t11, tio, t13, tia}.
For the train dataset, the groups are gy = {tg,t12,t18,t24} and g3 =
{t1,ta, ts, ta, ts, t7, 3, Lo, tio, tin, tha, tis, tia, tis, tie, ti, T, too, ta1, tao, tas}. As noted
earlier, £ is excluded as a special case.

Next, for each group, the set vals of results of f (¢;,n) where n is the number
of threads is computed for each ¢; in the group. This gives gg.vals = {0} and g¢;.vals
= {1} for both the test and train datasets. Because gg.vals () g;.vals is empty, the
pattern is matched in both datasets.

Ref | Test | Train | Ref | Test | Train
0 0 0 18 1 1
1 1 1 19 1 1
2 1 1 20 1 1
3 1 1 21 5! 6
4 1 1 22 1 1
5 1 1 23 1 1
6 1 1 24 1 1
7 5 6 25 1 1
8 1 1 26 1 1
9 1 1 27 1 1

10 1 1 28 5 6
11 1 1 29 1 1
12 1 1 30 1 1
13 1 1 31 1 1
14 5! 6 32 1 1
15 1 1 33 1 1
16 1 1 34 1 1
17 1 1 35 5 6

Table 3.1. Thread Grouping for 36-Thread Reference Dataset

Since the pattern was matched, it can be used to select the pairs of threads
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used for prediction of the reference dataset. For each thread in the reference
dataset, a pair of threads from the test and train datasets are chosen based on
which set they are in. Since threads are grouped by behavior, it doesn’t matter
which thread in a set is used for the prediction. In the solution shown in table 3.1,
the lowest thread in the set is used for the predictions.
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CHAPTER 4

Prediction Results

To determine whether or not it would be possible to model the behavior
of remote memory accesses, the four kernels were instrumented and run with a
number of different data sizes and numbers of threads. All tests were run with the
instrumented MuPC compiler on a 24-node dual dual core opteron cluster with an
infiniband interconnect.

Due to hardware and software limitations, the testing was restricted to a
maximum of 48 UPC threads. In practice, any more than 24 threads ran quite
slowly, thus there are relatively few results with more than 24 threads. While it is
recognized that these are relatively small systems in the world of high performance
computing, it is believed that the results would hold as the problem and thread
size increases since the problems encountered were due to either changes in data
layout or using training data from runs that were too small.

4.1 Problem Size Scaling

As expected, the prediction accuracy was very high when holding the number
of threads constant and just increasing the problem size. The prediction followed
the same pattern as shown in earlier work, which makes sense as there is very little
to distinguish size scaling with constant threads from size scaling with one thread
as far as the prediction is concerned.

However, problems can arise when the growth of the problem size causes the
distribution of shared data to change, which in turn causes the communication
pattern between threads to change. This behavior is seen in the LU kernel, where
prediction accuracy and coverage drop steeply in a few cases because the distribu-
tion of the array changed.

Table 4.1. Problem Size Scaling Accuracy Distribution

Kernel Predictions | Minimum | Average | Maximum
Matrix Multiplication 1547 3.08% 96.98% | 100.00%
Jacobi Solver 14234 99.87% | 100.00% | 100.00%
LU Decomposition, 8x8 7027 6.36% 94.20% | 100.00%
LU Decomposition, 16x16 5809 8.54% 95.91% 100.00%
LU Decomposition, 32x32 2839 0.00% 96.29% | 100.00%
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Table 4.2. Problem Size Scaling Coverage Distribution

Kernel Predictions | Minimum | Average | Maximum
Matrix Multiplication 1547 53.45% 99.45% | 100.00%
Jacobi Solver 14234 38.80% | 100.00% | 100.00%
LU Decomposition, 8x8 7027 0.00% 76.82% | 100.00%
LU Decomposition, 16x16 5809 0.00% 63.17% | 100.00%
LU Decomposition, 32x32 5839 0.00% 52.97% | 100.00%

Tables 4.1 and 4.2 show that both coverage and accuracy are quite high in most
cases. In the matrix multiplication and Jacobi kernels, the low minimum accuracies
are seen only when training with very small problem sizes. Of the 1612 predictions
on the matrix multiplication kernel where the accuracy is less than 60%, 1610 of
them occur when the smallest training size is 256 or less, 1332 when the smallest
training size is 16 or less. Likewise, the low minimum coverage percentages are
seen only when the training sizes are small enough that some operations disappear.

The LU decomposition kernel is a bit more problematic. Consider the results
in Table 4.3. It charts the percentage of predictions that have greater than 80,
90, and 95% accuracy for each of the three blocking factors tested, first for all
predictions, then only for those where the coverage was 100%.

Table 4.3. LU Problem Size Scaling Accuracy by Coverage

Kernel Predictions | >80% Acc | >90% Acc | >95% Acc
8x8, All Predictions 7027 56.07% 50.39% 33.56%
16x16, All Predictions 5809 50.20% 49.63% 40.37%
32x32, All Predictions 5839 47.58% 45.83% 45.71%
8x8, 100% Coverage 3503 96.97% 85.64% 53.04%
16x16, 100% Coverage 2486 97.30% 96.46% 74.82%
32x32, 100% Coverage 1844 88.72% 85.36% 84.98%

The large difference between predictions with 100% coverage and others stems
from the behavior of the kernel. The data distribution amongst the threads is de-
termined by the problem size, thus changing the problem size changes the data
distribution. The data distribution in turn determines which remote memory oper-
ations a thread encounters, which also changes when the the problem size changes.
This results in low coverage. The altered data distribution also changes the behav-
ior of a couple remote memory operations as the number of threads encountering
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the operation changes. This has the effect of reducing the accuracy of the predic-
tion for those operations.

It is clear that this model is restricted to using training data from runs that
have similar communication patterns as the run being predicted. An interesting
question for future work is whether or not a model of the data distribution can be
used to model how the scaling will affect the applications communication pattern,
and if that can in turn be used to enable high coverage and prediction accuracy
when the data distribution does change.

4.2 Thread Scaling

Table 4.4. Thread Scaling Accuracy Distribution by Kernel

Kernel Predictions | Minimum | Average | Maximum
Matrix Multiplication 61056 3.08% 97.75% | 100.00%
Jacobi Solver 103600 94.02% | 99.87% | 100.00%
LU Decomposition, 8x8 862683 12.85% | 94.71% | 100.00%
LU Decomposition, 16x16 346905 19.57% | 91.73% 99.98%
LU Decomposition, 32x32 94600 13.11% | 82.49% 99.31%
2d Stencil 18000 100.00% | 100.00% | 100.00%

Table 4.5. Thread Scaling Coverage Distribution by Kernel

Kernel Predictions | Minimum | Average | Maximum
Matrix Multiplication 61056 27.62% 99.29% 100.00%
Jacobi Solver 103600 55.66% 91.26% 100.00%
LU Decomposition, 8x8 862683 0.00% 41.73% | 100.00%
LU Decomposition, 16x16 346905 0.00% 37.43% 100.00%
LU Decomposition, 32x32 94600 0.00% 20.96% | 98.56%

2d Stencil 18000 0.00% 57.99% 100.00%

Tables 4.4 and 4.5 show the prediction results for varying the number of
threads, and predicting using all possible pairs of training threads from the train-
ing data available. Both coverage and accuracy are quite high in most cases. In
the matrix multiplication and Jacobi kernels, the low minimum accuracies are seen
only when training with very small problem sizes, the same that occurs when scal-
ing the problem size. These results are for exhaustively predicting every thread
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in the reference set with every possible combination of threads in the two training
sets. The high accuracy and coverage in the matrix multiplication and Jacobi ker-
nels in these tables indicate that the prediction works well regardless of the threads
chosen for training.

The prediction coverage and accuracy on the LU kernel is much more depen-
dent on the choice of threads used for the training however. Consider the accuracy
of the prediction for thread 9 of 25, when using threads from runs with 4 and 16
threads for the training. The prediction accuracy by training pairs is shown in
Figure 4.1.

Prediction Accuracy for Thread 9 by Test and Train Thread
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Figure 4.1. LU 32x32 4-16-25 Thread Scaling Example Thread

For most of the pairs, the prediction accuracy is quite good. However, there
are a number of pairs that results in terrible accuracy. This is a result of the
behavioral differences between threads in the LU kernel. Since certain threads
(those that contain blocks on the diagonal) have to do additional communication,
and thread 9 when run with 25 threads is not one of them, pairs where both threads
are on the diagonal show dramatic decreases in accuracy.

However, these results show that if the threads can be partitioned in such
a way that threads with similar behaviors are in similar groups, high accuracy
predictions can be made. Thus consider what happens when partitioning the
training threads as described in Section 3.3 with the pattern shown in Figure 3.9.
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Prediction Accuracy Using Selected Training
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Figure 4.2. LU 32x32 4-16-25 Accuracy Using Thread Selection Algorithm

The equation for Figure 3.9 is a complicated function that simply partitions
a square into groups based on geometric location. Each corner is in its own group,
the edges (minus the corners) are each in their own groups. The diagonal, and
the upper and lower triangles also have their own groups. Figure 4.2 shows the
accuracy results when using the thread partitioning to select training pairs.

As expected, by predicting threads on the diagonal with threads also on the
diagonal, it is possible to avoid the pits seen in Figure 4.1. However, it is desirable
that the pattern that is matched not be specific to the LU kernel. Thus, the square
2-d stencils were used to verify that the pattern would also work for an application
with a very different communication pattern than the LU kernel.

Like the LU kernel, the data distribution of the shared array determines the
control flow through the program in the stencil kernels. Unlike the LU kernel,
threads on the corners and edges exhibit differing behavior. This is due to lack-
ing communication on one or more sides of the stencil. In turn, this causes low
prediction coverage, if threads along the edges are used to predict for threads in
the middle-thus the low minimum and average coverage values in Table 4.5. The
accuracy of covered operations is not impacted, however, because the skipped op-
erations have minimal impact on the reuse patterns. This is shown by the very
high accuracy of predictions seen in Table 4.4.
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Table 4.6. Thread Scaling Accuracy Distribution with Partitioning

Kernel Minimum | Average | Maximum
Matrix Multiplication 92.38% 99.44% | 100.00%
Jacobi Solver 94.69% | 99.87% | 100.00%

LU Decomposition, 8x8 51.07% 91.24% 99.86%
LU Decomposition, 16x16 | 56.26% 80.36% 99.33%
LU Decomposition, 32x32 | 48.95% | 91.67% | 99.31%
2d Stencil 100.00% | 100.00% | 100.00%

Table 4.7. Thread Scaling Coverage Distribution with Partitioning

Kernel Minimum | Average | Maximum
Matrix Multiplication 100.00% | 100.00% | 100.00%
Jacobi Solver 100.00% | 100.00% | 100.00%

LU Decomposition, 8x8 97.45% | 98.79% 99.90%
LU Decomposition, 16x16 | 97.56% | 98 97% | 100.00%
LU Decomposition, 32x32 | 96.34% | 98.26% | 98.56%
2d Stencil 100.00% | 100.00% | 100.00%

Using thread partitioning, the threads in the corners, on each edge, and in
the middle are separately grouped. This provides 100% coverage for all threads,
as threads in the training runs that skip operations are used to predict for threads
that will also skip those instructions due to the data distribution.

Tables 4.6 and 4.7 show the results of using the partitioning algorithm pre-
sented to select training threads for all kernels. As expected, the coverage and
accuracy both show marked improvement for all kernels. The only unexpected re-
sult is the decline in the average accuracy for the lu kernels. On closer inspection,
this because the results in Table 4.4 are padded by the large number of combina-
tions that match threads not on the diagonal. Additionally, because the number
of predictions is so much smaller, the minimums have more weight.
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CHAPTER 5

Conclusions

In summary, it has been shown that it is possible to predict the remote reuse
distance for UPC applications with a high degree of accuracy and coverage, though
there are a number of important limitations.

First, it is necessary to choose training data that match behavior of the de-
sired prediction size to achieve high accuracy and coverage. Changes in the data
distribution caused by increases in the problem size or number of threads can cause
significant drops in both accuracy and coverage.

Choice of training threads is also critically important for prediction when
scaling up the number of threads. The prediction results can vary from extremely
poor to excellent merely by the choice of which threads were used for the prediction.
It is therefore necessary to match threads’ behaviors in the training data to patterns
that predict which threads will perform similarly in the scaled-up runs.

5.1 Applications

One promising application of this research is automatically adjusting cache
parameters such as size and thread affinity of cache lines. This includes things
like bypassing the cache for operations that are likely to result in a cache miss,
or disabling the cache entirely for applications that won’t make much use of it.
Consider the code segment in Figure 5.1. Assume do_something is a function that
performs no communication.

void example_sub( shared float xpl, shared float xp2, int len )
{
int i,j;
upc_forall (i=0;i<len;++1i;pl+i) {
for (j=0;j<len;++j) {
do-something (p1[i],p2[j].i,j);
}
}
}

Figure 5.1. Sample UPC Function

Since elements of p2 are accessed in order, repeatedly for each element of p1,
this particular segment of code would work well with a cache large enough to hold
at least len elements. This work could be used to predict how large a cache is
needed for the application to cache all the elements this function sees based on the
reuse distance patterns seen.
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Another option is warning the user about operations that show poor cache
performance, perhaps as part of a larger performance analysis/profiling tool. Going
back to the previous code, assume this time that the maximum size the cache can
grow to in an implementation is CACHE_LEN. If the prediction indicates that len
is likely to be larger than this, it might warn the user that the accesses to elements
of p2 are likely to result in cache misses because the cache is too small. Then the
user could change the code, perhaps to something like the code in Figure 5.2 to
take better advantage of the cache, or perhaps simply change the compiler options
used to tell the compiler to do so automatically.

void example_sub( shared float *pl, shared float xp2, int len )
{
int i,j,k;
for (k=0;k<len /CACHELEN;++k) {
upc_forall (i=0;i<len;++i;pl+i) {
for (j=0;j<CACHELEN;++j) {
do_something (p1[i],p2[kxCACHELEN+j],i ,k*xCACHELEN+] );
}
}

}
upc_forall (i=0;i<len;++i;pl+i) {
for (j=0;j<len%CACHELEN;++j) {
do_something (pl[i],p2[kxCACHELEN+] |, i ,k*CACHELEN+] );
}
}
}

Figure 5.2. Sample UPC Function Tuned for Cache Size

Inserting prefetches prior to operations that are likely to result in a cache miss,
and likewise avoiding putting in unnecessary prefetches, would also be a good use
of these predictions. Since network congestion can cause dramatic performance
penalties on large clusters, avoiding unnecessary communication can be just as
important as requesting data before it is actually needed.

5.2 Future Work

This research shows that it is possible to predict the remote reuse distance
behavior of UPC applications. There are a number of weaknesses that should be
addressed in future work. Foremost among these is the ability to model the data
distribution of an application, and use that model to avoid problems such as are
seen with the LU kernel where changing the data distribution between training
runs causes poor accuracy. Since the data distribution is known at runtime, it
should be possible to store it and use it to tune the prediction by modeling how
the distribution will change with an increase in problem size.

Another weakness of this research is that the function used as a pattern during
thread partitioning must be chosen manually. As the thread grouping is largely

29



based on the data distribution, it seems natural to expect that a model of how data
distribution changes when the number of threads grows would also enable a better
partitioning of threads for improved prediction accuracy. Another possibility is
looking at the program in a more abstract fashion, choosing a pattern based on
the type of problem being solved. A list of such abstract problem types, and the
associated communication patterns, such as Berkeley’s Dwarfs [18] could be used
as a starting point.

Since UPC is meant to increase productivity on large systems, it will also
be necessary to improve the scalability of this work. In particular, storing reuse
patterns for every thread in the two training sets, and predicting for every thread
generated a large amount of data even for the relatively small test applications
used. If this were to be used in a production environment, there would need to be
some way of compressing the data or skipping threads whose patterns are similar
to another thread’s. This could perhaps extend into exploring a global view of
cache behavior, where the data is not kept on a per-thread basis, but rather taken
over all the threads in an application.

Finally, this work only explored temporal reuse. Spatial reuse, where ”nearby”
data is pulled in along with requested data provides quite a bit of performance for
many serial applications. It is likely that it would work similarly for many UPC
applications. The same prediction scheme used for temporal reuse was shown to
work well for spatial reuse in serial applications as well. However, spatial locality
in UPC shared memory can be cross thread or on the same thread, depending on
how the application steps through memory and the way the data is laid out.
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APPENDIX

Test Kernel Sources

A.1 DMatrix Multiplication

#include <stdlib .h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <upc.h>
#include <upc_relaxed.h>

#ifdef MUPC.TRACERD

MUPC.TRACERD
#endif
shared [] int % shared [1] ;

] * A
shared [] int % shared [1] = Bj
shared [] int * shared [1] = C;

#define arr_idx (arr,i,j) *((arr)[((1)/N)*n+((j)/N)]J+((1)%N)*N+((j)%N))

/* Initialize will set this to sqrt(THREADS), the number

* of columns and rows of THREADS. Threads are laid out

* as a n r n array. Fach thread locally has an NxzN element.
*/

int n,N;

void initialize (char xargv)
{

int i,j,k;

#ifdef TRACEFUNC
TRACE.FUNC;

#endif

/% Seed the random number gemnerator. x/

srand (MYTHREAD) ;

/* Verify that the number of threads is a square. x/
n = (int) floor (sqrt ((double)THREADS));
assert ((n#*n)==THREADS);

/* Read in the size of the local elment. x/
N = atoi(argv);
if (MYTHREAD==0) printf(” Using._local_blocks_.of_size %dx%d\n” ,N,N);

/% Allocate memory for the arrays. */

A = (shared [] int % shared [1] x*)
upc-all_alloc (THREADS, sizeof (shared [] int *));

B = (shared [] int = shared [1] =)
upc-all_alloc (THREADS, sizeof (shared [] int *));

C = (shared [] int x shared [1] =)
upc-all_alloc (THREADS, sizeof (shared [] int =x));

assert ((A!=NULL)&&(B!=NULL)&& (C!=NULL) ) ;

A[MYTHREAD] = (shared [] int =)(((shared [1] int x)
upc_all_alloc (THREADS,N«Nxsizeof (int)))+MYTIHREAD);
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B[MYTHREAD| = (shared [] int =x)(((shared [1] int =x)
upc-all_alloc (THREADS,Nx«Nxsizeof (int)))+MYTHREAD);
C[MYTHREAD| = (shared [] int =x)(((shared [1] int =x)
upc-all_alloc (THREADS,N*Nxsizeof (int)))+MYTHREAD);

/x Fill in arrays A and B. x/
upc_forall (i=0;i<THREADS; i++;i)
{

assert (A[i]!=NULL);

assert (B[1]!=NULL);

)

assert (C[i]!=NULL);
for (j=0;j<N;j++)
{

for (k=0;k<N; k++)

£ (A[§]4+] *Ntk)

*(B[1]+j*«N+k) = i
*(Cli]+j*N+k) = 0;
}
}
}
#ifdef TRACEFUNCRET
TRACE_FUNC_RET;
#endif

}

void print_array( shared [] int x shared [1] %A )
{

int i,j;
#ifdef TRACEFUNC

TRACE_FUNC;
#endif

/* Only thread 0 prints. FEwveryone else just returns. x/
if (MYIHREAD!=0) return;

for (i=0;i<n*N;i++)
printf (”\t%d” ,i);

putchar(’\n’);

for (i=0;i<nx*N;i++)

{
printf ("%d” ,i);
for (j=0;j<nxN; j++)

J/printf("\t%d” ,x(A[(i/N)xn+(5/N)]+(i%N)«N+(5%N)));
printf (7 \t%d” ,arr_idx (A,i,]j));

putchar(’\n’);
putchar (’\n’);
#ifdef TRACEFUNCRET
TRACEFUNCRET;
#endif
}

void calc_block (int idx)
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{

int i,j,k,rowt,colt;

#ifdef TRACEFUNC
TRACE.FUNC;

#endif

rowt=MYTHREAD/n)*n+idx ;
colt =(MYTHREADn )+ (idx*n);

for (i=0;i<N;i++)
for (j=0;j<N;j++)
for (k=0;k<N; k++)
, # (C[MYTHREAD] + i #N+k) 4= (#(A[rowt]+i*N+j))* (* (B[ colt]+j*Ntk));

}
}

#ifdef TRACEFUNCRET
TRACE_FUNCRET;

#endif

}

void mult_kernel ()

{
int i,j;
upc_forall (i=0;i<THREADS; i++;i)
for (j=0;j<n; j++)

calc_block (j);

}
}
}

int main(int argc,char xxargv)

{
/* Must have 1 argument — size of N. x/
if (argc!=2) exit (EXIT_FAILURE);

/x Initialize arrays. x/
initialize (argv[1l]);

upc_barrier (0);
/* Print out A and B. %/
print_array (A);
print_array (B);

upc_barrier (1);

/* Compute C=AxB. */

mult_kernel ();
upc_barrier (2);

/% Print out the result. x/
print_array (C);
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return 0;
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A.2 Jacobi Solver

#include <stdlib .h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <upc.h>
#include <upc_relaxed.h>

#ifdef MUPC.TRACERD
MUPC.TRACE_RD
#endif

/* Default number of unknowns per thread. x/
#ifndef N
#define N 100

#endif
#define SIZE N+THREADS

shared [N] double A[SIZE][SIZE];
shared [N] double X[2][SIZE];
shared [N] double B[SIZE |;
shared [N] double D[SIZE |;
double maxD;

//double epsilon;
long int MAXITER;

void initialize (char xargv)

{

int i,j;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

/% Seed the random mnumber generator. x/

srandom (MYTHREAD) ;

/* Read in the desired epsilon. x/

//epsilon = atof(argv);

MAXITER = atoi(argv);

//if (MYTHREAD==0) printf(” Using epsilon = %g\n”,epsilon );
if (MYIHREAD==0) printf(” Using .MAXITER.=.%ld \n” ,MAXITER);

/x Fill in A and B. Initialize X[i] to Bf[i]. x/
upc_forall (1=0;i<SIZE; i++&B[1i])

X[O][i]=X[1][i]=B[i]=
((double) THREADS)* (((double) random ())/((double) RANDMAX));

for (j=0;j<SIZE; j++)

Alj]li]=((double) random())/((double) RANDMAX);
if (j=i) A[j][i]+=(double) SIZE;

}

#ifdef TRACEFUNCRET
TRACEFUNC.RET;

#endif

}
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unsigned int jacobi_kernel ()
{

unsigned int iter;

int i,j;

double sum;

#ifdef TRACEFUNC
TRACE_FUNC;
#endif

for (iter =0;iter <MAXITER; iter++)
{

/* Update X[] =/
upc_forall (1=0;i<SIZE; i++;&B[i])

sum=0.0;

for (j=0;j<i;j++) sumt=A[i][j]*X[iter %2][j];

for (j=i+1;j<SIZE; j++) sumt=A[i][j]*X[iter %2][j];
} X[(iter+1)%2][i]=(B[i]—sum)/A[i]]]

upc-barrier ;

)

/% Compute mazimum deltas on each thread. x/
upc_forall (i=0;i<SIZE; i++&D[i])

sum=0.0;

for (j=0;j<SIZE; j++) sum+=(A[i][j]*X[(iter+1)%2][j]);
D[i]=fabs (sum-B[i]);

upc-barrier ;

/* Check for termination. %/

for (maxD=i=0;i<SIZE; i++4) maxD=(D[i]|>maxD)?D[i ]: maxD;
if (MYTHREAD==0) fprintf(stderr ,”maxD:.%8g\n” ,maxD);
//if (mazD<epsilon ) return iter;

}

#ifdef TRACEFUNCRET
TRACEFUNC.RET;
#endif

return iter;

}
void print_A ()
int i,j;

#ifdef TRACEFUNC
TRACE.FUNC;

#endif
if (MYTHREAD!=0) return;

puts ("A[][]:7);
for (i=0;i<SIZE; i++)

for (j=0;j<SIZE; j++)
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printf(”\t%8g” ,A[i][j]);
putchar (’\n’);
putchar(’\n’);

#ifdef TRACEFUNCRET
TRACE.FUNCRET;

#endif

}

void print_B ()
int i;

)

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

if (MYIHREAD!=0) return;

puts ("B[]:7);

for (i=0;i<SIZE; i++)
printf (”\t%8g\n” ,B[i]);

putchar (’\n’);

#ifdef TRACEFUNCRET
TRACE FUNCRET;

#endif

}

void print_X (int iter)
{

int i;

#ifdef TRACEFUNC
TRACEFUNC;
#endif
if (MYTHREAD!=0) return;

puts ("X []:7);
for (i=0;i<SIZE; i++)

printf (”?\t%8g\n” ,X[iter %2][i]);
putchar (’\n’);

#ifdef TRACEFUNCRET

TRACEFUNCRET;
#endif
}
int main(int argc,char xxargv)
{
int iter;
/* Must have 1 argument — desired precision.

if (argc!=2) exit (EXIT_FAILURE);
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/% Initialize arrays. */
initialize (argv[1]);

upc_barrier (1);

/* Print out the randomly generated A and B. x/
print_A ();

print_B ();

upc-barrier (2);

/* Find X such that AX=B. x/
iter = jacobi_kermnel ();

upc_barrier (3);

/% Print out the result. x/
print_X (iter );

return 0;
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A.3 LU Decomposition

/*************************************************************************/

J*

Copyright (c) 1994 Stanford University

All rights reserved.

Permission is given to wuse, copy, and modify this software for any
non—commercial purpose as long as this copyright notice is not
removed. All other wuses, including redistribution in whole or in
part, are forbidden without prior wrilten permission.

This software is provided with absolutely no warranty and no
support.

*/

/*************************************************************************/

/*>(<***********************************************************************/

/*
V&
V&

Para

This

llel dense blocked LU factorization (no pivoting)

version contains one dimensional arrays in which the matrizc

to be factored is stored.

Command line options:

—nN :
—pP
—bB

—s
—t
—o

—h

Note :

Decompose NxN matriz.

: P = number of processors.

Use a block size of B. BxB elements should fit in cache for
good performance. Small block sizes (B=8, B=16) work well.
Print individual processor timing statistics.

Test output.

Print out matriz values.

Print out command line options.

This wversion works under both the FORK and SPROC models

*/
*/
*/

/*************************************************************************/

#include
#include
#include
#include
#include
#include
//MAIN_.ENV

#define
#define
#define
#define
#define

<stdio.h>
<math . h>
<stdlib .h>
<sys/time.h>
” upc .h77

” lu 'h77

MAXRAND 32767.0
DEFAULTN 128
DEFAULTP 1
DEFAULT B 16

min(a,b) ((a) < (b) ? (a) : (b))

#ifdef MUPC.TRACERD
MUPC_TRACERD

#endif

//Everthing in globalmemory corrspond to shared types
shared double t_in_solve [THREADS];

shared double t_in_mod [THREADS];

shared double t_in_bar [THREADS];

shared double t_in_fac [THREADS];
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shared double completion [THREADS];
shared struct timeval rf;

shared struct timeval rsj;

shared struct timeval done;

shared int id;

upc-

Ve

stru

//

lock_t xidlock;

ct GlobalMemory {
double xt_in_fac;

shared double xt_in_solve;
shared double xt_in_mod;
double xt_in_bar;

double xcompletion;

struct timewval starttime;
struct timewval rf;

struct timeval rs;

struct timewval done;

in

t id;

//BARDEC( start )
//LOCKDEC(idlock )
upc_lock_-t xidlock;

}s
*/

//sh

ared struct GlobalMemory = Global;

struct LocalCopies {
double t_in_fac;
double t_in_solve;
double t_in_mod;
double t_in_bar;

}s

shared int n; /* The size of the matriz *x/

shared int block_size; /+* Block dimension x/

int nblocks; /% Number of blocks in each dimension x/

int num_rows; /* Number of processors per row of processor grid %/
int num_cols; /* Number of processors per col of processor grid x/
//double xa; /¥ a = lu; | and u both placed back in a */

shared double xa;
//double xrhs;
shared double xrhs;

int

int
int
int

void
void
void
void
void
void
void
void
int

void

xproc_bytes; /* Bytes to malloc per processor to hold blocks
of Ax/

test_result = 0; /% Test result of factorization? x/

doprint = 0; /* Print out matriz values? */

dostats = 0; /* Print out individual processor statistics? x/

InitA ();

SlaveStart ();

OneSolve (int, int, shared double *, int, int);

lu0 (shared double x,int, int);

bdiv (shared double #, shared double =, int, int, int, int);
bmodd(shared double %, shared doublex, int, int, int, int);
bmod(shared double %, shared double x, shared double x, int, int, int,
daxpy (shared double *, shared double #*, int, double);

BlockOwner (int , int);

lu(int, int, int, struct LocalCopies =, int);

double TouchA(int, int);

void

PrintA ();
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void CheckResult ();
void printerr (const char x);

#define CLOCK(x) gettimeofday(&(x), NULL)
float calc_time (struct timeval tp_lst, struct timeval tp_2nd) {

float diff = (tp-2nd.tv_sec—tp_lst.tv_sec) * 1000000.0 +
(tp-2nd . tv_usec—tp_lst.tv_usec) ;
return diff / 1000000.0;

}

int main(int argc, charx argv][])

{
int i, j;
int ch;
double mint, maxt, avgt;
double min_fac, min_solve, min.mod, min_bar;
double max_fac, max_solve, max_mod, max_bar;
double avg_fac, avg_solve, avg.mod, avg_bar;
int proc_num;
struct timeval start;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

if (MYTHREAD==0){n=DEFAULTN; block_size=DEFAULT B;}
CLOCK(start );

if (IMYTHREAD) {

while ((ch = getopt(argc, argv, "n:p:b:cstoh”)) I= —1) {
switch(ch) {
case 'n’: n = atoi(optarg); break;
case ’b’: block_size = atoi(optarg); break;
case ’'s’: dostats = 1; break;
case 't’: test_result = !test_result; break;
case 'o’: doprint = !doprint; break;
case 'h’:

printf(”Usage: _LU_<options>\n\n”);

printf(”options:\n”);

printf(”..—nN._:_Decompose_NxN_matrix.\n”);

printf(”..—bB.:_Use_.a_block.size_of_B._.BxB_.elements._should_.fit._.in._cache.\
for.\n”);

printf(”cccoooos good_performance.._.Small_block_sizes.(B=8,.B=16)_.work_well .\n"”);

printf(”..—c..:_.Copy_non—locally._allocated _blocks_to_local _memory._before.\
use.\n");

printf(”..—s..:.Print.individual _processor.timing.statistics.\n”);

printf(”c.—t..:_Test_output.\n”);

printf(”..—o..:_.Print_out_matrix.values.\n”);

printf(”..~h__:_Print_out_command.line_options.\n\n”);

printf(” Default: .LU_—n%1d —p%1d —b%1d\n" ,

DEFAULTN,DEFAULT P,DEFAULT B);
exit (0);
break;

}
}

printf(”\n”);
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printf(”Blocked _.Dense_ LU_.Factorization\n”);

printf(” oo J%d by Jd _Matrix\n” ,n,n);
printf(”.oo... Jd_Processors\n”, THREADS);
printf (7 ool %d by %d _Element._Blocks\n” ,block_size , block_size );
printf(”\n”);
}
upc_notify;

num_rows = (int) sqrt ((double) THREADS);
for (;;) {
num-_cols = THREADS/num-_rows;
if (num_rowsxnum_cols = THREADS)
break ;

num_rows——;

nblocks = n/block_size;
if (block_size % nblocks != n) {

nblocks++;

}

if (MYTHREAD) {
printf(”.oooo num_rows.=.%d\n” ,num_rows );
printf(”oooce num_cols.=%d\n” ,num-_cols );
printf(”ooooo nblocks..=.%d\n” ,nblocks);

printf(”\n”);
printf(”\n”);

}

upc-wait ;

//a = (double *) GMALLOC(nxnxsizeof(double));
a = (shared double %) upc-all_alloc(n*n, sizeof(double));

//rhs = (double %) GMALLOC(nx sizeof(double));
rhs = (shared doublex) upc_all_alloc(n, sizeof(double));

//Global = (struct GlobalMemory %) GMALLOC(sizeof (struct GlobalMemory));
/*
Global—>t_in_fac = (double %) GMALLOC(Pxsizeof(double));
Global—>t_in_-mod = (double %) GMALLOC(Pxsizeof (double));
Global—>t_in_solve = (double %) GMALLOC(Pxsizeof(double));
Global—>t_in_bar = (double %) G-.MALLOC(Pxsizeof (double));
Global->completion = (double *x) GMALLOC(Pxsizeof(double));

*/

/* POSSIBLE ENHANCEMENT: Here is where one might distribute the a
matriz data across physically distributed memories in a
round—robin fashion as desired. x/

//BARINIT( Global—>start );
//LOCKINIT ( Global—>1idlock );
idlock = upc-all_lock_alloc ();
//Global—>id = 0;
if (MYTHREAD — 0)

id = 0;

//Fork off code is unnecessary due to spmd model
V&
for (i=1; i<P; i++) {
CREATE( SlaveStart)
}
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*/

InitA ();

if (MYTHREAD — 0 && doprint) {
printf(”Matrix_.before_.decomposition:\n”);
PrintA ();

}

//SlaveStart (MyNum);
SlaveStart ();

upc_barrier;
//WAIT_-FOR_END(P—1)

if (MYTHREAD — 0) {
if (doprint) {
printf(”\nMatrix_after _decomposition:\n”);
PrintA ();

}

if (dostats) {
maxt = avgt = mint = completion[0];
for (i=1; i<THREADS; i++) {
if (completion[i] > maxt) {
maxt = completion[i];

if (completion[i] < mint) {
mint = completion[i];

}

avgt += completion[i];

avgt = avgt / THREADS;

min_fac = max_fac = avg_fac = t_in_fac [0];
min_solve = max_solve = avg_solve = t_in_solve [0];
min_mod = max-mod = avg-mod = t_-in_mod [0];
min_bar = max_bar = avg_bar = t_in_bar [0];

for (i=1; i<THREADS; i++) {
if (t_.in_fac[i] > max_fac) {
max_fac = t_in_fac[i];

if (t-in_fac[i] < min_fac) {
min_fac = t_in_fac[i];

if (t-in_solve[i] > max_solve) {
max_solve = t_in_solve [i];

if (t-in_solve[i] < min_solve) {
min_solve = t_in_solve[i];
}

if (t-in.mod[i] > max-mod) {
max-mod = t_in_mod[i |;

if (t_.in.mod[i] < min_mod) {
min_-mod = t_in_mod|[i];

if (t_.in_bar[i] > max_bar) {
max_bar = t_in_bar[i];

if (t_.in_bar[i] < min_bar) {
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min_bar = t_in_bar[i];
}
avg_fac += t_in_fac[i];
avg_solve += t_in_solve [i];
avg-mod += t_in_mod[i];
avg_bar += t_in_bar[i];
}
avg_fac = avg_fac/THREADS;
avg_solve = avg_solve /THREADS;
avg-mod = avg_mod/THREADS;
avg_bar = avg_bar/THREADS;

Printf(” oo bbb PROCESS_STATISTICS\n” );

printf(”cccccooacoaaan Totalooeooo Diagonal. ... Perimeter.o..... Interior
Barrier\n”);

printf(”_.Procooooooooo Timeoooooooon Timeoooo oo Timec oo coae e Timeo oo oo
Time\n” );

printf(”?ocai000%10.6f0..%10.6f....%10.6f_._._._.%10.6f__.__.%10.6f\n"

completion [0],t_in_fac [0],

t_in_solve [0],t_in_mod [0],

t_-in_bar [0]);

if (dostats) {
for (i=1; i<THREADS; i++) {
printf (7o %3dece %4.6f e %4600 %4.6f 0. %4.6f...%4.6f\n",
i,completion[i],t-in_fac[i],
t_in_solve[i],t.in.mod[i],
t_in_bar[i]);

printf (7 ccAvge o %10.6f02.%10.6f..._.%10.6f_.__%10.6f___._.%10.6f\n",
avgt ,avg_fac ,avg_solve ,avg.mod,avg_bar);

printf(”cocMinee o o%10.6f 000 o%10.6f22.%10.6f.._%10.6f_._._.%10.6f\n",
mint , min_fac, min_solve ,min_mod, min_bar);

printf (7 -o-Maxeooo%10.6f00n%10.6f22.%10.6f.2.%10.6f-.._.%10.6f\n",

maxt , max_fac , max_solve ,max_mod, max_bar );

printf(”\n”);

DEIIEE (7 it i TIMING _INFORMATION\n” ) ;

//printf(” Start time : %16d\n”,
starttime );

J/printf(”Initialization finish time : %16d\n”,

// s );

//printf(” Overall finish time : %16d\n”,

// rf);

printf(” Total_time_with_.initialization....:.%4.6f\n”,
calc_time(start, rf));

printf(” Total_time_without_.initialization.:_.%4.6f\n”,
calc_time(rs, rf));

printf(”\n”);

if (test-result) {
PN (7 ot e e e TESTING _RESULTS\n” ) ;
CheckResult ();

}

}

#ifdef TRACEFUNCRET
TRACEFUNC.RET;
#endif

return 0;

}
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void SlaveStart ()

{

/* POSSIBLE ENHANCEMENT: Here is where one might pin processes to

processors

OneSolve (n,
}

void OneSolve(n, block_size
shared double xa;

int n;

int block_size;

int MyNum;

int dostats;

{
unsigned int i;
struct timeval myrs, myrf
struct LocalCopies xlc;

#ifdef TRACEFUNC
TRACE_FUNC;

#endif

lc = (struct LocalCopies
if (lc =— NULL) {

, a, MyNum,

to avoid migration x/

, mydone;

*)

block_size , a, MYTHREAD, dostats);

dostats)

malloc(sizeof(struct LocalCopies));

fprintf(stderr ,” Proc.%d_could._not_malloc_memory._for.lc\n” ,MyNum);

exit (—1);

}

lc—>t_in_fac = 0.0;
lc—>t_in_solve = 0.0;
lc—>t_in_mod = 0.0;
lc—=>t_in_bar = 0.0;

/% barrier to ensure all

upc_-barrier ;

/* to remove cold—start misses,

TouchA (block_size , MyNum)

initialization
//BARRIER( Global—>start , P);

)

//BARRIER( Global—>start , P);

upc_barrier;

all

processors

is done x/

begin by touching a[] x/

/* POSSIBLE ENHANCEMENT: Here is where one might reset the

statistics that one

i ((MyNum — 0) ||
CLOCK (myrs ) ;

lu(n, block_size , MyNum,

if ((MyNum = 0) ||
CLOCK (mydone ) ;

}

lc,

(dostats)) {

dostats);

(dostats)) {

is measuring about the parallel
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//BARRIER( Global—>start , P);
upc_barrier;

if ((MyNum = 0) || (dostats)) {
CLOCK(myrf);
t_in_fac [MyNum] = lc—>t_in_fac;
t_-in_solve [MyNum| = lc—>t_in_solve;
t_in_mod [MyNum] = lc—>t_in_-mod;
t_in_bar [MyNum] = lc—>t_in_bar;
completion [MyNum] = calc_time (myrs, mydone);

if (MyNum = 0) {
rs = myrs;
done = mydone;
rf = myrf;

}

#ifdef TRACEFUNCRET
TRACEFUNC.RET;

#endif

}

void lu0O(a, n, stride)

shared double xa;
int n;
int stride;

{
int j;
int k;
int length;
double alpha;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

for (k=0; k<n; k++) {
/* modify subsequent columns */
For (j=k+1; j<n; j+4) {
alk+j*stride] /= a[ktkxstride];
alpha = —a[k+j*stride];
length = n—k—1;
daxpy(&a[k+1l+j=*stride], &a|[k+l+kxstride], n—k—1, alpha);

}

#ifdef TRACEFUNCRET
TRACE FUNC_RET;

#endif

}

void bdiv(a, diag, stride_a, stride_diag , dimi, dimk)
shared double xa;

shared double xdiag;

int stride_a;

int stride_diag;

int dimi;
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int dimk;

{
int j;
int k;
double alpha;

#ifdef TRACEFUNC
TRACEFUNC;

#endif

for (k=0; k<dimk; k++) {
for (j=k+1; j<dimk; j++) {
alpha = —diag [k+j*stride_diag];
daxpy(&a[j*stride_a], &alk*stride_a], dimi, alpha);

}

#ifdef TRACEFUNCRET
TRACEFUNC_RET;

#endif

}

void bmodd(a, c, dimi, dimj, stride_a, stride_c)

shared double xa;
shared double xc;
int dimi;

int dimj;

int stride_a;

int stride_c;

{
int i;
int j;
int k;
int length;
double alpha;

#ifdef TRACEFUNC
TRACEFUNC;
#endif

for (k=0; k<dimi; k++)
for (j=0; j<dimj; j++) {
c[kt+jxstride_c] /= alk+tkxstride_a];
alpha = —c[k+j*stride_c];
length = dimi — k — 1;
daxpy(&c [k+1+jxstride_c], &alk+l+kxstride-a], dimi—k—1, alpha);
}

#ifdef TRACEFUNCRET
TRACE_FUNCRET;

#endif
}
void bmod(a, b, ¢, dimi, dimj, dimk, stride)

shared double xa;
shared double xb;
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shared double xc;
int dimi;

int dimj;

int dimk;

int stride;

{
int i;
int j;
int k;
double alpha;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

for (k=0; k<dimk; k++) {
for (j=0; j<dimj; j++) {
alpha = —b[k+j*stride ];
daxpy(&c[j*stride], &a[ksstride], dimi, alpha);

}

#ifdef TRACEFUNCRET
TRACE_FUNCRET;

#endif
}

void daxpy(a, b, n, alpha)

shared double xa;
shared double xb;
double alpha;

int n;

{
int i;

#ifdef TRACEFUNC
TRACE_FUNC;

#endif
for (i=0; i<n; i++) {
a[i] += alphaxb[i];

}

#ifdef TRACEFUNCRET
TRACEFUNCRET;

#endif

}

int BlockOwner (I, J)

int I;
int J;

{
}

return ((I%num_cols) + (J%num_rows)s*num_cols);
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void lu(n, bs, MyNum, lc, dostats)

int n;

int bs;

int MyNum;

struct LocalCopies xlc;
int dostats;

{
int i, il, j, jl, k, kl;
int I, J, K;
//double %A, xB, xC, xD;
shared double *A, xB, *C, xD;
int diml, dimJ, dimK;
int strl;
//unsigned int t1, t2, t3, t4, t11, t22;
struct timeval t1, t2, t3, t4, tl1l, t22;
int diagowner;
int colowner;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

strl = n;
for (k=0, K=0; k<n; kt=bs, K++) {
kl = k+bs;
if (kl>n) {
kl = n;
}

if ((MyNum = 0) || (dostats)) {
CLOCK(t1);
}

/* factor diagonal block x/
diagowner = BlockOwner (K, K);
if (diagowner = MyNum) {

A = &(alk+k=*n]);

lu0 (A, kl-k, strl);
}

if ((MyNum = 0) || (dostats)) {
CLOCK(t11);

//BARRIER( Global—>start , P);
upc_barrier ;

if ((MyNum = 0) || (dostats)) {
CLOCK(t2);
}

/* divide column k by diagonal block x/
D = &(alk+k#*n]);
for (i=kl, I=K+1; i<n; i+=bs, I++) {
if (BlockOwner (I, K) = MyNum) { /% parcel out blocks x/
il = i 4 bs;
if (il > n) {
il = n;
}
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A = &(ali+k#*n]);
bdiv(A, D, strl, n, il—-i, kl-k);
}
}
/* modify row k by diagonal block x/
for (j=kl, J=K+1; j<n; j+=bs, J++) {
if (BlockOwner (K, J) = MyNum) { /% parcel out blocks x/
jl = j+bs;
if (jl > n) {
JjI = n;

}
A = &(a[k+j*n]);
bmodd (D, A, kl-k, jl—j, n, strl);
}
}

if ((MyNum = 0) || (dostats)) {
CLOCK(t22);

//BARRIER( Global—>start , P);

upc_barrier ;

if ((MyNum = 0) || (dostats)) {
CLOCK(t3);
}

/* modify subsequent block columns x/
for (i=kl, I=K+1; i<n; i+=bs, I++) {
il = i+bs;
if (il > n) {
il = n;
}

colowner = BlockOwner (I ,K);
A = &(ali+k*n]);
for (j=kl, J=K+1; j<n; j+=bs, J++) {
jl =] + bs;
if (jl > n) {
I =n;

if (BlockOwner (I, J) = MyNum) { /* parcel out blocks x/
B = &(a[k+j*n]);
C = &(a[i+j*n]);
bmod(A, B, C, il—i, jl—j, kl-k, n);
}

}

if ((MyNum = 0) || (dostats)) {
CLOCK( t4);
lc—>t_in_fac 4= calc_time(tl, t11);
lc—>t_in_solve 4= calc_time (t2, t22);
lc—>t_in_mod += calc_time (t3, t4);
lc—>t_in_bar 4+= calc_-time (t11,t2) + calc_-time (t22, t3);
}
}

#ifdef TRACEFUNCRET
TRACE.FUNC_RET;

#endif

}
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//void InitA (double xrhs)
void InitA ()

{

int i, j;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

srand48 ((long) 1);
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
a[i+j*n] = (double) lrand48 ()/MAXRAND;
if (i —=j) {
a[i+j*n] *= 10;

}
}

upc_forall (j=0; j<n; j++; j) {
rhs[j] = 0.0;

for (j=0; j<n; j++) {
upc_forall (i=0; i<n; i++; i) {
rhs[i] += ali+j*n];

}

#ifdef TRACEFUNCRET
TRACE_FUNC.RET;

#endif

}

double TouchA (bs, MyNum)

int bs;
int MyNum;

{
int i, j, I, J;
double tot = 0.0;
#ifdef TRACEFUNC
TRACEFUNC;
#endif

for (J=0; J#bs<n; J++) {
for (I=0; Isbs<n; I++4) {
if (BlockOwner (I, J) = MyNum) {
for (j=Jxbs; j<(J+1)xbs && j<n; j++) {
for (i=Ixbs; i<(I+1)xbs && i<n; i++) {
tot += a[i+j*n];

#ifdef TRACEFUNCRET
TRACE_FUNC_RET;
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#endif

return(tot );

void PrintA ()
{

int i, j;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
printf(”?%8.1f.", a[i+j#*n]);

printf(”\n”);

#ifdef TRACEFUNCRET
TRACE_FUNCRET;

#endif

}

void CheckResult ()

{

int i, j, bogus = 0;
double xy, diff, max_diff;

#ifdef TRACEFUNC
TRACE.FUNC;
#endif

y = (double x) malloc(nxsizeof(double));

if (y = NULL) {
printerr (” Couldunot_malloc._memory_for_y\n” );
exit (—1);

}

for (j=0; j<n; j++) {
ylil = rhs[j];

for (j=0; j<n; j++) {
ylil = ylil/alj+j*n];
for (i=j+1; i<n; i++4) {
y[i] —= alit+j*n]*y[j];

}

for (j=n—1; j>=0; j—) {
for (i=0; i<j; i++) {
y[li] —= ali+j*n]*y[]j];

}

max_diff = 0.0;
for (j=0; j<n; j++) {
diff = y[j] — 1.0;
if (fabs(diff) > 0.00001) {
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bogus = 1;
max_diff = diff;
}

if (bogus)

printf (?"TEST_FAILED: _.(%.5f_diff)\n”, max_diff);
} else {

printf (?TEST_PASSED\n” );
}

free (y);

#ifdef TRACEFUNCRET
TRACE_FUNC.RET;

#endif
}

void printerr (const char xs)

fprintf(stderr ,”ERROR: .%s\n” ,s);
}
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A.4 Stencil

#include <stdio.h>
#include <stdlib .h>
#include <math.h>
#include <assert.h>
#include <upc.h>

#ifdef MUPC.TRACERD
MUPC.TRACERD
#endif

#define N 6
#define ITERS 100

shared [N] double a[N][THREADS«N];
shared [1] double dmax|[THREADS];

int n;
#define A(i,j) a[(1)%N][((i)/N)«Nsn+(j)]
void stencil (int i, int j)

double t;

#ifdef TRACEFUNC
TRACEFUNC;
#endif

t = A(i,j);

#ifdef EIGHT PT_STENCIL
t 4= A(i—1,j—1);
t 4= A(i-1,j);
t 4= A(i—1,j+1);

A(i,j+1);

o+
+
I

+= A(1+17.] _1);
+= A(i+1,j);
+=A(i+1,j+1);
= 9.0;

o

&+ ot ot ot et ot ot ot
wn
o

#ifdef TRACEFUNCRET
TRACEFUNCRET;

#endif
}

int main()

{

int i, j, iter;

#ifdef TRACEFUNC



TRACEFUNC;

#endif

/* Ensure number of threads is a square. x/
n = (int) sqrt( (double) THREADS );
assert ( (nx*n) = THREADS );

/% Initialize A. x/
for (i=0;i<N;++1)
for (j=0;j<N;++j)
a[i][N+MYTHREAD+j] = (double) MYTHREAD;

upc_barrier;

for (iter=0;iter <ITERS;++iter)
{

/% Update all points with 4/8—pt stencil.
for(i=1;i <(N*n)—1;4++1)

for (j=1;j <(N*n)—1;++j)
if (MYIHREAD=—=upc_threadof(&A(i,j)))

stencil (i,j);
}
}
¥

/+* Update dmaz. =/
dmax [MYTHREAD| = (double) iter + 1.0;

upc_barrier;

/+* Check for completion. x/
for (i=0;i<THREADS;++1i)
if (dmax[i] <0.0) goto end;
}

end:

}

return 0;
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