
Computer Science Technical Report

Action-Level Addition of Leads-To

Properties to Shared Memory Parallel

Programs
Ali Ebnenasir

Michigan Technological University

Computer Science Technical Report
CS-TR-08-01

March 2008

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu



Action-Level Addition of Leads-To Properties to Shared Memory

Parallel Programs

Ali Ebnenasir

March 2008

Abstract

We present a method for large-scale automatic addition of Leads-To properties to shared memory
parallel programs. Such an automated addition of Leads-To is highly desirable in facilitating the design
of multicore programs for average programmers. Our approach is action-level in that we separately an-
alyze and revise the actions of an existing program in order to accommodate a new Leads-To property
while preserving already existing properties. Based on our method, we have developed a software frame-
work that exploits the computational resources of geographically distributed machines to add Leads-To
properties to parallel programs. We demonstrate our approach in the context of a token passing and a
barrier synchronization program.
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1 Introduction

The use of multicore processors in commodity systems brings parallelism to mainstream programmers. To
facilitate the design of multicore programs, we need automated techniques as manual design of parallel
programs is a difficult task in part due to the inherent non-determinism of such programs. The design of
parallel programs becomes even more complicated when developers are given new requirements (specified as
new desired properties) after they already have created some design artifacts. In such scenarios, designers
are left with two options: either design a whole new program from scratch, or add the new properties to the
existing design (i.e., revise the existing design) while preserving existing properties. The focus of this paper
is on the latter as we conjecture that design revisions will potentially be less expensive. Such an addition
of new properties is especially difficult for liveness properties (e.g., guaranteed service) [1]. We present a
method for large-scale addition of the commonly-used Leads-To property to shared memory parallel programs,
where a Leads-To property states that the program will eventually meet some condition (e.g., will enter its
critical section) once another condition holds (e.g., upon trying to enter the critical section).

Numerous approaches exist for automated design and verification of parallel programs [2–8] most of which
focus on designing/verifying an integrated combinatorial model of a program (implemented as a reachability
graph [6–8] or as a set of Binary Decision Diagrams (BDDs) [9] in symbolic methods [4]) which makes it
difficult to scale up such methods as the size1 of the program increases. For example, specification-based
approaches [2, 5] synthesize the abstract structure of a parallel program as a finite-state machine from
the satisfiability proof of its temporal logic specification. Model checking techniques [3, 10, 11] verify the
correctness of a program model with respect to temporal logic specifications. Compositional design and
verification methods [12, 13] provide a divide-and-conquer approach for reasoning about the correctness of
concurrent programs. Our previous work [1] focuses on adding Leads-To properties to integrated models of
parallel programs. While all aforementioned approaches are important and useful for automated design of
parallel programs, we believe that improving the scalability of automated design is equally important if we
want to facilitate the design of parallel programs for average programmers.

We present an action-level method for dividing the problem of adding liveness (e.g., Leads-To) properties
to parallel programs. Our focus on liveness properties is due to the fact that adding safety has been
extensively investigated [14–16], and adding liveness in a way that easily scales up remains a challenge. In
our approach, we start with an existing program p and a new liveness requirement L that is not met by p.
Then we investigate the following questions: Is there a revised version of p that satisfies L while preserving
its existing properties? How can we answer the above question by analyzing each instruction (action) of p
separately? If the answer to the first question is affirmative, then which program actions should be changed
so that p satisfies L (while preserving its existing properties)?

The proposed approach in this paper investigates the above questions for shared memory parallel pro-
grams. Specifically, in our model, programs are defined in terms of processes, where each process has a finite
set of variables and a finite set of Dijkstra’s guarded commands [17], called actions, that can be executed
non-deterministically. A guarded command is of the form grd → stmt, where grd is a Boolean expression
specified over program variables and stmt atomically updates a subset of program variables when grd holds.
(Such a design language can be realized in several existing compilers (e.g., [18]) that support software trans-
actional memory [19].) The input to our method is a parallel program that satisfies a set of Propositional
Linear Temporal Logic (PLTL) [20] properties, denoted Spec. We also take a new Leads-To property of the
form L ≡ P ; Q, where P ; Q means that it is always the case that if P holds in a program execution then
Q will eventually hold at some point of time in that execution. Subsequently, we distribute each program ac-
tion over a network of workstations. Then we analyze and possibly revise each action on a different machine
in order to synthesize a revised version of the input program that satisfies (Spec ∧ L). Such an analysis is
based on a distributed synthesis algorithm that has two layers: the ranking layer and the synthesis layer. The
ranking layer assigns a rank to all reachable states based on their shortest distance to any state in Q. The
synthesis layer uses the results of ranking to ensure reachability of Q from every state in P . Both layers have
one component associated with each program action. The ranking and synthesis components of different
actions can be deployed on different machines to enhance the space efficiency of addition. The hypothesis of

1In this work, we determine the size of the program by the number of its processes, which has a direct relation with the
total number of program actions, variables, and state space.



this work is that an action-level addition of Leads-To properties improves the scalability of addition.
Based on our action-level method, we have developed a software framework, called PARallel program

DESigner (PARDES), that is deployed on a cluster of machines and adds Leads-To properties to shared
memory parallel programs. Using PARDES, we have designed several parallel programs among which (i)
a token passing program, and (ii) a barrier synchronization protocol. The organization of the paper is as
follows: We present preliminary concepts in Section 2. In Section 3, we represent the problem of adding
Leads-To properties from [1]. Subsequently, in Section 4, we present an overview of our proposed approach.
Then, in Section 5, we present our action-level method. In Section 6, we demonstrate our approach in the
context of a barrier synchronization protocol and a mutual exclusion program. In Section 7, we illustrate
how our approach made it possible to easily scale up the addition of Leads-To to a barrier synchronization
program with 18 processes on a cluster of 5 distributed machines. We discuss related work in Section 8.
Finally, we make concluding remarks and discuss future work in Section 9.

2 Preliminaries

In this section, we present formal definitions of programs and specifications. The definition of specification is
adapted from Alpern and Schneider [21] and Emerson [20]. We represent our read/write model from [6,22].
To illustrate our modeling approach, we use a Token Passing (TP) program as a running example and use
sans serif font for the exposition of the TP example.
Programs and processes. A program p = 〈Vp, Πp〉 is a tuple of a finite set Vp of variables and a finite
set Πp of processes. Each variable vi ∈ Vp, for 1 ≤ i ≤ n, has a finite non-empty domain Di. A state s of a
program p is a valuation 〈d1, d2, · · · , dn〉 of program variables 〈v1, v2, · · · , vn〉, where di is a value in Di. We
denote the value of a variable vi in a state s by vi(s). The state space Qp is the set of all possible states of p.
A transition of p is of the form (s, s′), where s and s′ are program states. A process Pj , 1 ≤ j ≤ k, includes
a finite set of actions. An action is a guarded command (due to Dijkstra [17]) of the form grd → stmt that
captures the set of transitions (s0, s1) where the Boolean expression grd (specified over Vp) holds in s0 and
the atomic execution of the assignment stmt changes the program state to s1. An assignment updates a
subset of variables in Vp and always terminates once executed. The set of program actions is the union of the
actions of all its processes. We represent the new values of updated variables as primed values. For example,
if an action updates the value of an integer variable v1 from 0 to 1, then we have v1 = 0 and v′1 = 1.

TP example. We consider a Token Passing (TP) program that has three processes P1, P2 and P3. Each process Pi

(1 ≤ i ≤ 3) has a integer variable xi with the domain {0, 1, 2, 3}. We denote a program state by a tuple 〈x1, x2, x3〉.
Process Pi, for i = 2, 3, copies the value of xi−1 to xi without any preconditions. We present the actions of P2 and P3

as the following parameterized action:

Ai : true −→ xi := xi−1;

Process P1 copies the value (x3 ⊕ 1) to x1 (without any preconditions), where ⊕ denotes addition in modulo 4. The
action of P1 is as follows:

A1 : true −→ x1 := x3 ⊕ 1;

By definition, process Pi, i = 2, 3, has a token iff xi 6= xi−1. Process P1 has a token iff x1 = x3. The above actions
represent a translation of the following piece of code specified in three different threads in the Intel C++ language extension
for Software Transactional Memory, where tm atomic declares a block of statements that are executed atomically:

1 int x1, x2, x3;

2 void* thread_1(void* arg)

3 {
4 __tm_atomic {
5 x1 = (x3+1) % 4;

6 }
7 }
8

9 void* thread_2(void* arg)



10 {
11 __tm_atomic {
12 x2 = x1;

13 }
14 }
15

16 void* thread_3(void* arg)

17 {
18 __tm_atomic {
19 x3 = x2;

20 }
21 }

State and transition predicates. A state predicate of p is a subset of Qp specified as a Boolean expression
over Vp.

2 An unprimed state predicate is specified only in terms of unprimed variables. Likewise, a primed
state predicate includes only primed variables. A transition predicate (adapted from [22, 23]) is a subset of
Qp × Qp represented as a Boolean expression over both unprimed and primed variables. We say a state
predicate X holds at a state s (respectively, s ∈ X) iff (if and only if) X evaluates to true at s. (A state
predicate X also represents a transition predicate that includes all transitions (s, s′), where either s ∈ X
and s′ is an arbitrary state, or s is an arbitrary state and s′ ∈ X .) An action grd → stmt is enabled
at a state s iff grd holds at s. A process Pj ∈ Πp is enabled at s iff there exists an action of Pj that is
enabled at s. We define a function Primed (respectively, UnPrimed) that takes a unprimed (respectively,
primed) state predicate X (respectively, X ′) and substitutes each variable in X (respectively, X ′) with
its primed (respectively, unprimed) version, thereby returning a state predicate X ′ (respectively, X). The
function extractPrimed (respectively, extractUnPrimed) takes a transition predicate T and returns a primed
(respectively, an unprimed) state predicate representing the set of destination (respectively, source) states
of all transitions in T .

TP example. We define a state predicate S1 that captures the set of states in which only one token exists in the TP
program, where

S1 = ((x1 = x2) ∧ (x2 = x3)) ∨
((x1 = x2) ∧ (x2 6= x3)) ∨
((x1 6= x2) ∧ (x2 = x3))

For example, the states s1 = 〈0, 1, 1〉 and s2 = 〈2, 2, 3〉 belong to S1, where P2 has a token in s1 and P3 has a token
in s2. As another example, we consider a subset of S1 where all x values are equal. Each state in S2 is called a stable

state [24]. Formally, we have
S2 = ((x1 = x2) ∧ (x2 = x3))

Closure. A state predicate X is closed in an action grd → stmt iff executing stmt from a state s ∈ (X∧grd)
results in a state in X . We say a state predicate X is closed in a program p iff X is closed in all actions of
p [25].

TP example. The state predicates S1 is closed in actions A1 and A2. We leave it to the reader to verify this claim.

Program computations and execution semantics. We consider a nondeterministic interleaving of all
program actions generating a sequence of states. A computation of a program p = 〈Vp, Πp〉 is an infinite
sequence σ = 〈s0, s1, · · ·〉 of states that satisfies the following conditions: (1) for each transition (si, si+1),
where i ≥ 0, in σ, there exists an action grd → stmt in some process Pj ∈ Πp such that grd holds at si

and the execution of stmt at si yields si+1, i.e., action grd → stmt induces the transition (si, si+1); (2)
σ is maximal in that either σ is infinite or if it is finite and its final state is sf , then no program action
induces a transitions (sf , s), where s 6= sf , and (3) σ is fair; i.e., if a process Pj is continuously enabled
in σ, then eventually some action of Pj will be executed. A computation prefix of p is a finite sequence
σ = 〈s0, s1, · · · , sn〉 of states in which every transition (si, si+1), for 0 ≤ i < n, is induced by some action
of some process in Πp. Since all program computations are infinite, during the addition of Leads-To, we
distinguish between a valid terminating computation and a deadlocked computation by stuttering at the final
state of valid terminating computations. However, if a program computation σ reaches a state s with no
outgoing transitions, then s is a deadlocked state and σ is a deadlocked (i.e., invalid) computation.
Read/write model. In our model, processes are allowed to read all program variables in an atomic
step. However, we specify write restrictions that determine the set of variables that are writeable for each

2An individual state s, the empty set, and the entire state space (i.e., the universal set) are special cases of a state predicate.



process Pj , denoted wj . No action in a process Pj is allowed to update a variable v /∈ wj . In addition to
the write restrictions for each process, we allow additional write constraints on actions in that a variable
that is writeable for a process may not be writeable for a specific action of that process. The overall write
restrictions for each action of a process Pj can be specified as a transition predicate wRest ≡ (∀v : v /∈ wj :
v = v′); i.e., the value of an unprimed variable v /∈ wj should be equal to the value of its primed version.
Using the write restrictions wRest, we formally specify an action grd → stmt as a transition predicate
grd ∧ stmtExpr ∧ wRest, where stmtExpr is a Boolean expression generated from the assignment stmt.
For example, an assignment x := 1 can be specified as the primed expression x′ = 1.

TP example. Each process Pi is allowed to write only xi (1 ≤ i ≤ 3). As an example of a transition predicate, we

represent the action A2 as (x′

2 = x′

1) ∧ wRest, where wRest is the transition predicate (x1 = x′

1) ∧ (x3 = x′

3).

Specifications. We recall the syntax and semantics of PLTL from Emerson [20]. The following rules
generate the set of PLTL formulas: (1) each atomic proposition, specified as a Boolean expression over
program variables, is a formula; (2) if F1 and F2 are two PLTL formulas, then F1 ∧ F2 and ¬F1 are PLTL
formulas as well, and (3) if F1 and F2 are two PLTL formulas, then F1UF2 (read it as F1 is true until F2

becomes true) and XF1 (read it as in the next state F1 is true) are PLTL formulas. We define the semantics
of PLTL formulas with respect to infinite sequences of state σ = 〈s0, s1, · · ·〉. A sequence σ models an atomic
proposition AP (denoted σ |= AP) iff AP(s0) evaluates to true, where AP(s0) denotes the expression
resulting from substituting all program variables in AP with their values in state s0. We say σ models
(F1 ∧ F2), denoted σ |= (F1 ∧ F2), iff σ |= F1 and σ |= F2. Moreover, σ |= ¬F1 iff it is not the case that
σ |= F1. For a sequence σ, we have σ |= (F1UF2) iff there exists a state sj , j ≥ 0, in σ, where F2 holds at
sj , and for every sk, where k < j, F1 holds at sk. Due to practical significance, we define the eventuality
σ |= 3F that means eventually F becomes true in the sequence σ (i.e., 3F ≡ (trueUF)). Further, we define
σ |= 2F , where 2F means formula F is always true in every state of the sequence σ (i.e., 2F ≡ ¬3(¬F)).

A specification, denoted Spec, is indeed a set of infinite sequences of states σ = 〈s0, s1, · · ·〉 such that each
element σ in Spec models all formulas in a given (finite) set of PLTL formulas; i.e., σ |= ∧k

i=1Fi, where k is
a fixed positive integer and Fi is a PLTL formula. We say a program computation σ = 〈s0, s1, · · ·〉 satisfies
(i.e., does not violate) Spec from a state predicate Y iff s0 ∈ Y and σ is in Spec. A program p satisfies Spec
from a state predicate Y iff every computation of p satisfies Spec from Y .
Leads-To property. For the state predicates P and Q, a computation σ = 〈s0, s1, · · ·〉 satisfies the Leads-To

property P ; Q from a state predicate Y iff we have s0 ∈ Y , and for every state si, i ≥ 0, if P is true in si,
then there exists a state sj , j ≥ i, where Q holds at sj . A program p satisfies P ; Q from a state predicate
Y iff every computation of p satisfies P ; Q from Y . (P ; Q is logically equivalent to (2(P ⇒ 3Q)).)

TP example. Suppose that the designer of the TP program starts with a simple program with three concurrent
processes, where each process Pi includes the action Ai (1 ≤ i ≤ 3). The ultimate goal of the designer is to develop a
program that starting from any arbitrary state will eventually reach a stable state, where all x values are the same (i.e.,
all processes synchronize on the same value). Formally, the TP program should satisfy (true ; S2). To achieve this goal,
the designer decomposes this problem into two subproblems. First, the designer creates an intermediate program TP’ that,
from any arbitrary state, reaches a state where only one process has a token; i.e., add the property L1 ≡ (true ; S1) to
TP. Second, the designer generates a revised version of TP’, denoted TP”, that, starting from any state where only one
process has a token, will reach a stable state; i.e., add L2 ≡ (S1 ; S2) to TP’ while preserving the property L1.

Invariants. A state predicate I is an invariant of a program p for its specification Spec iff the following
conditions hold: (1) I is closed in p, and (2) p satisfies Spec from I.

TP example. The initial invariant of the TP program is equal to its entire state space that includes 43 states.

3 Problem Statement

In this section, we formulate the problem of adding Leads-To properties to shared memory parallel programs.
Consider a Leads-To property L ≡ P ; Q for state predicates P and Q. Let p = 〈Vp, Πp〉 be a program that
satisfies its specification Spec from its invariant I, but violates L from I. We wish to generate a revised
version of p, denoted pr = 〈Vp, Π

r
p〉,

3 with a new invariant Ir such that pr satisfies (Spec∧L) from Ir. More
precisely, pr should satisfy L from Ir while preserving Spec. Satisfying Spec from Ir means that pr should
have infinite computations starting from any state in Ir; i.e., pr should not deadlock starting from any state

3Note that the set of variables of pr is the same as the set of variables of p; i.e., no new variables are added while revising p.



in Ir. Moreover, while generating pr, we want to benefit from the assumption that p satisfies Spec from I.
In other words, we would like to reuse the computations of p generated from I; i.e., reuse the correctness of
p from I.

If Ir includes a state s that does not belong to I, then the execution of p from s may generate new
computations, which makes it difficult to reuse the computations of p from I. Hence, we require that
Ir ⇒ I. Moreover, starting in Ir, the actions of pr should not include new transitions. Otherwise, pr may
exhibit new behaviors. Thus, for each action grdr → stmtr in pr, we require that there exists an action
grd → stmt in p such that the transition predicate Ir ∧ grdr ∧ stmtrExpr ∧ wRest implies the transition
predicate Ir ∧ grd ∧ stmtExpr ∧ wRest. Therefore, we formally state the problem of adding Leads-To as
follows:

The Problem of Adding Leads-To.
Given p, I, Spec, and L ≡ P ; Q, identify pr and Ir

such that the following conditions hold:
(1) Ir ⇒ I,
(2) For each action grdr → stmtr in pr, there exists

some action grd → stmt in p such that
(Ir ∧ grdr ∧ stmtrExpr ∧ wRest) ⇒

(Ir ∧ grd ∧ (stmtExpr ∧ wRest),
where wRest captures the write restrictions
of the action grd → stmt.

(3) pr satisfies (Spec ∧ L) from Ir. 2

Remark. Note that we have not explicitly stated the deadlock-freedom requirement since it follows from
‘pr satisfies Spec’. During the addition of Leads-To properties, we ensure that program computations do not
deadlock.

4 Overview of the Action-Level Addition

In this section, we present an overview of our approach (Figure 1) for action-level addition of Leads-To

properties. To add P ; Q, we must ensure that any program computation that reaches a state in P
will eventually reach a state in Q. In our previous work [1], we provide such an assurance by exhaustive
analysis and revision of integrated models of parallel programs. Our analysis in [1] includes an exhaustive
search for (1) cycles reachable from P whose all states are outside Q, and (2) states reachable from P from
where Q cannot be reached. To resolve cycles, we use a ranking process that assigns a rank to each state
s, where Rank(s) is the length of the shortest computation prefix from s to any state in Q. Afterwards,
we eliminate transitions (s0, s1) such that (1) s0 is reachable from P and s0 does not belong to Q and
Rank(s0) ≤ Rank(s1); (2) Rank(s1) = ∞, i.e., there are no computation prefixes from s1 that reach Q,
or (3) s1 becomes a deadlock state due to removing some transitions in cases (1) and (2). The algorithm
presented in [1] adds Leads-To to an integrated model of a parallel program which may be represented as a
reachability graph. A limitation of the work in [1] is the state space explosion problem. One way to mitigate
this problem is to follow the approach used in parallel/distributed model checking [26, 27] where the set
of reachable states is distributed over a network of workstations. However, such techniques suffer from (i)
the sensitivity of the partition functions used to partition reachable states, and (ii) the high communication
cost due to cross over transitions whose source and destination states are placed in different machines.
Furthermore, most of these approaches focus on checking a program model with respect to some properties,
whereas in the case of addition, we may need to revise a program model. As such, cross over transitions may
cause even more complications.

Our proposed approach in this paper is based on a new paradigm, where we partition the code of a
program into its actions instead of partitioning its reachability graph. Figure 1 depicts the basic idea behind
the proposed approach. Each action is deployed on a separate machine in a parallel/distributed platform.
Our approach comprises two layers, namely ranking and addition layers. In the ranking layer, we associate
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Figure 1: A large-scale framework for the addition of Leads-To properties.

a Ranking Node with each program action. Then, without creating an integrated model of the program,
we analyze the contribution of each action in all the possible computation prefixes that reach Q. Ranking
nodes are coordinated by a ranking coordinator in a distributed/parallel fashion towards identifying the set
of states in each rank. The results of ranking will be used by the addition layer. We consider a similar
architecture for the addition layer except that in the addition layer, we may revise individual actions using
a Addition Node associated with each action. We note that the addition layer may invoke the ranking layer
several times because the program model may be revised and the ranking should be repeated using the
updated program model until the addition algorithm terminates. In the next section, we present the details
of the algorithms behind the ranking and addition layers.

5 Action-Level Addition

In this section, we discuss the underlying algorithms of our action-level method. In Subsection 5.1, we
present our action-level ranking algorithm. Then in Subsection 5.2, we illustrate how the results of the
ranking layer are used by the addition layer. We present our approach in the context of the Token Passing
example introduced in Section 2. (For ease of presentation, we use the sans serif font for the names of state
predicates and functions.)

5.1 Ranking Layer

In this section, we present an algorithm that ranks each invariant state s of a program p based on the shortest
computation prefix of p from s to a given destination predicate, denoted DestPred. Let p = 〈Vp, Πp〉 be a
program with an invariant Inv. The program p has N actions Aj , where 1 ≤ j ≤ N , and N is a fixed positive
integer. Our algorithm includes two components: Ranking Node (see Figure 2) and Ranking Coordinator (see
Figure 3). A Ranking Node component, denoted rNodej , is instantiated for each program action Aj : grd →
stmt. The Ranking Coordinator synchronizes the activities of all rNodej . In each rNodej , we first compute
the intersection between DestPred and the program invariant Inv. This intersection includes all states with
rank zero (see Lines 1-3 in Figures 2 and 3). Such states are placed in the first entry of a hash table of state
predicates, denoted RHash. We also consider a state predicate explored that captures the set of states that
have so far been ranked.

In each iteration of the while loop in Ranking Node, each rNodej computes a set of states from where
the DestPred calculated in the previous iteration can be reached in a single-step execution of the action Aj

(1 ≤ j ≤ N). (In the start of the first iteration (i.e., i = 1), DestPred is equal to the predicate Q in P ; Q.)
Specifically, in Step 7 (see Figure 2), Ranking Node calculates the set of transitions (s0, s1), where s0 is an
invariant state in which grd holds, s0 is not in the set of already ranked states, and s1 reaches DestPred by
the execution of stmt. Moreover, the transition (s0, s1) should meet the write restrictions of Aj , denoted
wRestj . The function extractUnPrimed returns a state predicate Rij representing the set of source states of



Ranking Node(RHash: hashtable; grd → stmt: action; wRestj: transition predicate;
Inv, DestPred: state predicate)

// j is the index of the j-th program action Aj : grd → stmt

{
- DestPred := DestPred ∧ Inv; (1)
- i := 0; /* Iterator */ (2)
- RHash[i] := DestPred; (3)
- explored := DestPred; (4)
while (DestPred 6= ∅) { (5)

- i := i + 1; (6)
- Rij := extractUnPrimed(grd ∧ Inv ∧ ¬explored ∧ wRestj ∧ stmtExpr ∧

Primed(DestPred)); (7)
- Send Rij to the coordinator; (8)
- Receive the new DestPred from the coordinator; (9)
- RHash[i] := DestPred; (10)
- explored := explored ∨ DestPred (11)

}
}

Figure 2: The algorithm of the Ranking Node.

all transitions (s0, s1) computed in Step 7 in Figure 2. That is, Rij captures the set of states from where
states with rank i − 1 can be reached with a single-step execution of Aj . Then rNodej sends its Rij to
Ranking Coordinator. The Ranking Coordinator calculates the disjunction of all Rij predicates (see Lines 6-7 in
Figure 3). The state predicate ∨N

j=1Rij captures the set of states from where states with rank i − 1 can be
reached by any program action in a single step. Such states are added to the set of explored states. In fact,
at the end of the i-th iteration, the state predicate explored captures all states whose rank is between 0 and
i. Continuing thus, until all Rij become empty in some iteration i, each rNodej would have a hash table
RHash such that RHash[i] contains a state predicate representing all state with rank i.

Ranking Coordinator(RHash: hashtable; Inv, DestPred: state predicate)
/* N is the number of program actions */
{

- DestPred := Inv ∧ DestPred; (1)
- i := 0; /* Iterator variable */ (2)
- RHash[i] := DestPred; (3)
- while (DestPred 6= ∅) { (4)

- i := i + 1; (5)
- Forall 1 ≤ j ≤ N , receive Rij from rNodej ; (6)
- DestPred := ∨N

j=1Rij (7)
- Forall 1 ≤ j ≤ N , send DestPred to rNodej ; (8)
- RHash[i] := DestPred; (9)

}
}

Figure 3: The algorithm of the Ranking Coordinator.

Theorem 5.1 Action-level ranking terminates.
Proof. In order to prove the termination of the ranking phase, we first make the following observation that
for each rNodej and in each iteration i of the while loop in Figure 2, the intersection of the state predicate
Rij and the state predicate explored is empty. Since the Ranking Coordinator computes the union of all Rij in
each iteration i, it follows that, before Step 11 in Figure 2, we have DestPred ∩ explored = ∅. That is, in
each iteration, the size of the explored predicate increases in Step 11 in Figure 2. Since the state space of a
program p (i.e., Qp) is finite, the explored predicate can at most become equal to Qp. Therefore, based on
the observation that DestPred ∩ explored = ∅, it follows that DestPred = ∅ will eventually hold. 2

Theorem 5.2 Action-level ranking is sound; i.e., RHash[i] contains the set of states from where the shortest



computation prefix to DestPred has length i.
Proof. We consider the following loop invariant for the while loop in Figure 2:

Loop Invariant: RHash[i] denotes the set of states from where the shortest computation prefix of program p has

length i .

• Initialization. Before the while loop in Figure 2 starts, we have RHash[0] = DestPred, which preserves
the loop invariant.

• Maintenance. Now, we show that if the loop invariant holds before the i-th iteration of the while
loop, then it also holds before the (i + 1)-th iteration. Step 6 in Figure 2 only increases the value of
the loop counter i and does not affect the contents of RHash[i]. Step 7 computes the set of all states
R(i+1)j from where an action Aj can take the state of the program to the set of states explored so
far in a single step. By construction, the states in R(i+1)j should reach a state in ∨N

j=1Rij by a single
transition; otherwise they must have been included in some Rkj , for k ≤ i. Since DestPred is the union
of R(i+1)j for 1 ≤ j ≤ N , it follows that DestPred in iteration i + 1 contains the set of states whose
shortest computation prefix to the initial DestPred has length i+1. Therefore, before the next iteration,
the loop invariant holds.

• Termination. When the while loop terminates, each RHash[i], for 1 ≤ i ≤ RHash.size, has the set
of states whose rank is equal to i. 2

TP Example. Consider the property L1 that requires the reachability to states where only one process has a token;
i.e., true ; S1. In this case, DestPred is equal to S1. Hence, we rank all states based on the shortest computation
prefix of the TP program that reaches a state in S1. Towards this end, we create three ranking nodes corresponding to
each action Aj , denoted rNodej (1 ≤ j ≤ 3). In the first iteration of the while loop, rNode1 computes the set of states
(denoted R11) from where the execution of the action A1 would take the state of the program from a state with two/three
tokens to a state where only one token exists. The state predicate R11 is equal to (x1 6= x2) ∧ (x2 = (x3 ⊕ 1)). To
illustrate this, consider a transition (s0, s1) captured by A1 where there are two or three tokens in s0 and only one process
has a token in s1. We observe that the value of x1 and x3 cannot be the same in s1. Thus, P1 does not have a token in
s1. By contradiction, if (x2 6= (x3 ⊕ 1)) in s0, then x1 6= x2 holds in s1 because A1 assigns (x3 ⊕ 1) to x1. Thus, P2 has
a token in s1. As a result, we must have had x2 = x3 in s0 since only one token can exist in s1. If (x2 = x3) holds in
s0 and we start either with x1 = x2 or with x1 6= x2 in s0, then only one token can exist in s0, which is a contradiction
with our assumption that two or three tokens exist in s0. Hence, (x2 = (x3 ⊕ 1)) must hold in s0. As a result, x1 will
become equal to x2 after the execution of A1. We note that x1 = x2 cannot be true in s0 because having both x1 = x2

and (x2 = (x3 ⊕ 1)) in s0 means that only P3 has a token in s0, which again contradicts with having multiple tokens in
s0. Therefore, (x1 6= x2) ∧ (x2 = (x3 ⊕ 1)) must hold in s0. For example, consider the state 〈1, 2, 1〉, where (1) P1 has a
token because x1 = x3; (ii) P2 has a token because x1 6= x2, and (3) P3 has a token because x2 6= x3. The execution of
A1 from 〈1, 2, 1〉 would change the state of the TP program to 〈2, 2, 1〉, where only P3 has a token.

The state predicate R12 = R13 = ((x1 6= x2)∧ (x2 6= x3)) represents the states from where the execution of A2 or A3

would get the TP program from a state with multiple tokens to a state where only one process has a token. Thus, in the
first iteration, rNode2 and rNode3 would respectively send the state predicates R12 and R13 to the ranking coordinator.
The predicates R21, R22 and R23 evaluate to the empty set, thereby terminating the ranking process in the second iteration.

5.2 Addition Layer

In this section, we illustrate how we use the results of the ranking layer to add Leads-To properties to parallel
programs. Similar to the ranking layer, in the addition layer, we create an instance of the Addition Node com-
ponent (see Figure 4) corresponding to each program action Aj , denoted aNodej. Each aNodej collaborates
with an instance of the Addition Coordinator (see Figure 5) during addition.

The addition starts with invoking the ranking layer to identify the rank of each state inside the program
invariant Inv with respect to Q as the destination predicate (Line 1 in Figures 4 and 5). Then each aNodej

enters a loop in which it eliminates two classes of transitions from the action Aj (Recall from Section 2 that
each action in fact represents a set of transitions.): (1) transitions that reach a state s from where Q cannot
be reached by program computations; i.e., Rank(s) = ∞ (see Steps 3 and 4 in Figure 4), and (2) transitions
that reach a deadlock state created due to removing some transition of the first class (see Step 8 in Figure
4). If a program computation reaches a deadlock state or a state with rank infinity, then reachability of



Addition Node( grd → stmt: action; Inv, P, Q: state predicate; wRestj: transition predicate)
{
/* j is the index of the j-th program action Aj : grd → stmt */
/* P and Q are state predicates in the leads-to property P ; Q */
/* RHash[i] denotes states from where the shortest computation prefix to Q has length i. */

- Rank Node(RHash, grd → stmt, Inv, Q); (1)
- m := RHash.size − 1; (2)
- InfinityRank := (P ∧ Inv)−(∨m

k=0RHash[k]); (3)

repeat {
- Exclude(grd ∧ Inv ∧ wRestj ∧ stmtExpr ∧ Primed(InfinityRank), grd → stmt); (4)
- Send grdj to the Addition Coordinator; (5)
- Receive a new invariant Invnew and Deadlock states; (6)
- Inv := Invnew; (7)
- Exclude(grd ∧ Inv ∧ wRestj ∧ stmtExpr ∧ Primed(Deadlock), grd → stmt); (8)
- Rank Node(RHash, grd → stmt, Inv, Q); (9)
- m := RHash.size − 1; (10)
- InfinityRank := (P ∧ Inv)−(∨m

k=0RHash[k]); (11)
} until (((P ∧ Inv ∧ InfinityRank) is unsatisfiable) ∨ (grd is unsatisfiable)); (12)

- if (grd is unsatisfiable) then declare that this action should be removed; exit; (13)
- For (i := 1 to m − 1)

- Exclude(grd ∧ Inv ∧ wRestj ∧ RHash[i] ∧
stmtExpr ∧ Primed(∨m

k=i+1RHash[k]), grd → stmt); (14)
- For (i := 1 to m)

- Exclude(grd ∧ Inv ∧ wRestj ∧ RHash[i] ∧
stmtExpr ∧ Primed(RHash[i]), grd → stmt); (15)

}

Exclude(transPred: transition predicate, Aj : grd → stmt: action)
// exclude the set of transitions represented by transPred from the action grd → stmt.
{ - transPred := grd ∧ stmtExpr ∧ ¬transPred ∧ wRestj ;

- grd := extractUnPrimed(transPred); }

Figure 4: The algorithm of the Addition Node.

Q cannot be guaranteed. Then, each aNodej sends its updated guard to the coordinator. The addition
coordinator receives the updated guards of all nodes (Step 2 in Figure 5) and calculates the set of invariant
states where no updated guard is enabled. Such states have no outgoing transitions; i.e., deadlocked states
(Step 3 in Figure 5). Since some invariant states may become deadlocked (due to Step 4 in Figure 4), the
addition coordinator computes a new invariant that excludes deadlock states. The coordinator sends the
new invariant and the set of deadlock states to all addition nodes. Afterwards, each addition node eliminates
transitions that reach a deadlock state ensuring the deadlock-freedom requirement. Since at this point the
program actions might have been updated, the ranking should be repeated. Each aNodej performs the
above steps until either all states in P have a finite rank, or the action associated with aNodej is eliminated
(i.e., the guard of action Aj becomes empty).

After ensuring that no program computation starting in a state in P would reach a deadlock state or a
infinity-ranked state, we ensure that all non-progress cycles would be resolved. We classify such non-progress
cycles into two groups: (1) cycles whose states span over distinct ranks, and (2) cycles whose all states belong
to the same rank. The For loop in Step 14 of Figure 4 resolves the first group of cycles by removing any
transition (s0, s1), where Rank(s0) < Rank(s1). Respectively, the For loop in Step 15 of Figure 4 resolves
the second group of cycles by removing any transition (s0, s1), where s0 and s1 are in the same rank. Note
that Steps 14 and 15 do not create additional deadlock states because a computation prefix that reaches Q



Addition Coordinator(Inv, P, Q: state predicate) {
/* aNodej denotes the addition node for the j-th action. */
/* N is the number of program actions. */
/* RHash is a hashtable. */

- Ranking Coordinator(RHash, Inv, Q); (1)
repeat {

- Forall 1 ≤ j ≤ N , receive guards grdj from aNodej ; (2)
- Deadlock := Inv−(∨N

j=1grdj); (3)
- Invnew := Inv−Deadlock; (4)
- Forall 1 ≤ j ≤ N , send Invnew and Deadlock to aNodej ; (5)
- Ranking Coordinator(RHash, Inv, Q); (6)
- Inv := Invnew; (7)

} until (((P ∧ Inv) is unsatisfiable) ∨ (Deadlock is unsatisfiable));

- If (Inv is unsatisfiable) then declare that addition is not possible; exit; (8)
- declare that addition succeeded; (9)
}

Figure 5: The algorithm of the Addition Coordinator.

is originated at s0; i.e., s0 has an outgoing transition.

Theorem 5.3 Action-level addition is sound.
Proof. We show that the program synthesized by all aNodej , for 1 ≤ j ≤ N , meets the requirements of
the problem of adding Leads-To properties. Let pr denote the synthesized program and Ir denote its new
invariant.

• Since Addition Coordinator updates the invariant of the input program, denoted Inv = I, by excluding
some deadlock states from Inv (see Step 4 in Figure 5), it follows that the returned invariant is a
subset of the input invariant; i.e., Ir ⇒ Inv.

• Each aNodej (1 ≤ j ≤ N) updates its associated action Aj in Steps 4, 8, 14 and 15 of Figure 4
by excluding some transitions from the set of transitions captured by Aj ; i.e., no new transitions are
added to Aj . Therefore, the returned action of aNodej meets the second requirement of the addition
problem.

• Since all deadlock states are eliminated from Inv in Step 4 in Figure 5, the Addition Coordinator algorithm
returns an invariant that does not include any deadlocks. Moreover, based on the above steps of the
proof, Ir does not include any new states, and the actions of pr do not include new transitions. It
follows that the computations of pr from Ir are a subset of the computations of the input program
starting in I. Thus, pr satisfies Spec from Ir. Otherwise, there must exist a computation of p that
violates Spec from Ir ⇒ I, which is a contradiction with p satisfying Spec from I.

Now, if pr violates the Leads-To property P ; Q from Ir, then, by the definition of Leads-To, there
must be a computation σ = 〈s0, s1, · · ·〉 of pr that starts in P ∧ Ir and never reaches a state in Q.
There are two possible scenarios for σ: either σ deadlocks in a state s /∈ Q before reaching Q, or σ
reaches a non-progress cycle. The former cannot be the case because, based on the above argument,
all computations of pr are infinite. Consider σ to be the sequence 〈s0, s1 · · · , sj, · · · , sk, sj · · ·〉, where
s0 ∈ P and no state in the subsequence δ = 〈s1 · · · , sj , · · · , sk, sj〉, k ≤ j, belongs to Q.4 If there exists
a state sm, where 1 ≤ m ≤ k, in δ whose rank is infinity, then there is a program action Al (1 ≤ l ≤ N)
that induces the transition (sm−1, sm); i.e., the output action of aNodel includes a transition that
reaches a infinity-ranked state. By construction, all such transitions are removed by Addition Node.
Thus, all states in δ have a finite rank.

If Rank(sk) = Rank(sj), then there must be some program action that executes the transition (sk, sj),
which is a contradiction with Step 15 in Figure 4. If Rank(sk) < Rank(sj), then some action of pr

4We assume P does not intersect Q.



includes a transition from a lower-ranked state to a higher-ranked state, which is a contradiction with
Step 14 in Figure 4. If Rank(sk) > Rank(sj), then since sk is reachable from sj , there must be some
transition (sm, sm+1), for j ≤ m < k, where Rank(sm) < Rank(sm+1), which is again a contradiction
with Step 14 in Figure 4. Therefore, the assumption that σ violates P ; Q is invalid. 2

Theorem 5.4 Action-level addition is complete.
Proof. Let p be a program with an invariant I such that p satisfies its specification Spec from I. Moreover,
let P ; Q be the Leads-To property that should be added to p. By contradiction, consider the case where
the action-level addition fails to add P ; Q, and there exists a program p′ with an invariant I ′ that meets
the requirements of the addition problem (in Section 3). Thus, I ′ is non-empty, and we have I ′ ⇒ I.
Moreover, p′ must satisfy (Spec ∧ (P ; Q)) from I ′. That is, all computations of p′ are infinite and satisfy
(Spec∧ (P ; Q)) from I ′. Hence, there exists a subset of I and a set of revised program actions that meet
the requirements of the addition problem. Our algorithm declares failure only if no such invariant and set
of revised actions exist. Therefore, our algorithm would have found p′ and I ′. 2

TP Example. The first invocation of the ranking layer in Step 1 of each aNode identifies 28 states in rank 0 (captured
by DestPred ≡ S1) and 36 states in rank 1, which comprise the total state space of the TP program. Thus, there are two
ranks (i.e., m = 1), and no states with rank infinity exist. (This is an intuitive result as actions A1-A3 have no guards;
i.e., from every state in the state space, there exists a computation prefix to S1.) Since we have InfinityRank = ∅, no
transitions are excluded from the actions in Step 4 of each aNodej ; i.e., no aNodej updates its guard grd. Thus, the
invariant of TP remains unchanged and the set of deadlock states is empty in the first iteration of the repeat-until loop in
Figure 4. Since in the first iteration no program action is changed, the second call to the ranking layer would give us the
same result as the first invocation. The loop terminates after the first iteration as InfinityRank = ∅.

The first For loop in Step 14 does not eliminate any transitions because there are no ranks higher than rank 1. Note
that we do not remove the transitions that start in rank 0 and end in higher ranks since they originate at DestPred; i.e.,
such transitions cannot be in a non-progress cycle. For example, the action A1 includes transitions that start in S1, where
only one token exists, and terminate in states where multiple tokens exist. Consider a transition from s0 = 〈2, 2, 0〉 to
s1 = 〈1, 2, 0〉 executed by action A1, where only P3 has a token in s0, but both P2 and P3 have tokens in s1. Nonetheless,
the execution of actions A2 and A3 from a state where there is only one token would not generate additional tokens.

The For loop in Step 15 eliminates the transitions that start and end in rank 1. For example, both states s2 = 〈0, 2, 0〉

and s3 = 〈1, 2, 0〉 belong to rank 1 (because more than one tokens exist in s2 and s3) and the action A1 executes the

transition (s2, s3). Moreover, consider a self-loop from 〈3, 0, 2〉 to itself executed by A1. This self-loop in rank 1 is indeed

a non-progress cycle. The following parameterized action represents the revised actions A′

2 and A′

3 in the program TP’

synthesized by PARDES (i = 2, 3):

A′
i : xi 6= xi−1 −→ xi := xi−1;

The following action is the revised version of action A1:

A′
1 : x3 6= (x1 ⊕ 3) −→ x1 := (x3 ⊕ 1);

While TP’ satisfies true ; S1, it does not guarantee that a stable state, where all x values are equal, will be reached.

Formally, TP’ does not satisfy S1 ; S2. In a non-progress scenario, process P1 changes the state of TP’ from 〈1, 1, 2〉

to 〈3, 1, 2〉 from where a non-progress cycle starts with an execution order P3, P2, P1 repeated for 8 rounds; none of the

states in this cycle is a stable state. (We leave it to the reader to validate this claim.) We have used PARDES to add

S1 ; S2 to TP’ while preserving true ; S1. The actions of the resulting program TP” are as follows:

A′′
1 : (x3 6= (x1 ⊕ 3)) ∧ (x2 6= (x1 ⊕ 1))

−→ x1 := (x3 ⊕ 1);
A′′

2 : (x1 6= x2) −→ x2 := x1;
A′′

3 : (x3 6= x2) ∧ (x1 = x2) −→ x3 := x2;



6 Examples

In this section, we present two additional case studies of the application of our action-level approach in
automated addition of Leads-To properties to parallel programs. In Section 6.1, we illustrate how we have
synthesized a Barrier Synchronization program. In Section 6.2, we add progress to a mutual exclusion
program.

6.1 Barrier Synchronization

In this section, we demonstrate our approach in the design of a barrier synchronization program (adapted
from [28]). The Barrier program includes three processes P1, P2, and P3. Each process Pj , 1 ≤ j ≤ 3, has a
variable pcj that represents the program counter of Pj . The program counter pcj can be in three positions
ready, execute, success. The actions of process Pj in the initial program are as follows (j = 1, 2, 3):

Aj1 : pcj = ready −→ pcj := execute;
Aj2 : pcj = execute −→ pcj := success;
Aj3 : pcj = success −→ pcj := ready;

If process Pj is in the ready position, then it changes its position to execute. From execute, the position of Pj

transitions to success, and finally back to the ready position from success. Let 〈pc1, pc2, pc3〉 denote a state of the
Barrier program. The problem statement requires that, starting from the state allR = 〈ready, ready, ready〉,
all processes will eventually synchronize in the state allS = 〈success, success, success〉. The invariant of the
Barrier program, denoted IB, specifies that at least two processes should be in the same position, where

IB = (∀j : 1 ≤ j ≤ 3 : (pcj 6= ready)) ∨ (∀j : 1 ≤ j ≤ 3 : (pcj 6= execute)) ∨ (∀j : 1 ≤ j ≤ 3 : (pcj 6= success))

In the Barrier program, one process could circularly transition between the positions ready, execute, success,
thereby preventing the synchronization on 〈success, success, success〉. To ensure synchronization, we add
the property allR ; allS to the above program. The actions of P1 in the synthesized program are as follows:

A′
11 : (pc1 = ready) ∧ ( ((pc2 6= success) ∧ (pc3 6= success)) ∨ ((pc2 = success) ∧ (pc3 = success)) )

−→ pc1 := execute;
A′

12 : (pc1 = execute) ∧ (pc2 6= ready) ∧ (pc3 6= ready) −→ pc1 := success;
A′

13 : (pc1 = success) ∧ ( ((pc2 = ready) ∧ (pc3 = ready)) ∨ ((pc2 = success) ∧ (pc3 = success)) )
−→ pc1 := ready;

The synthesized actions of P2 and P3 are structurally similar to those of P1. To gain more confidence in
the implementation of PARDES, we have model checked the barrier synchronization and the token passing
programs using the SPIN model checker [29]. (The Promela code is available at http://www.cs.mtu.edu/

~aebnenas/files/{TP.txt,Barrier.txt}).

6.2 Mutual Exclusion: Adding Progress

In this section, we use our approach to automatically synthesize Peterson’s solution [30] for the mutual
exclusion problem for two competing processes. Specifically, we start with a program that meets its safety
requirement (i.e., the two process will never have simultaneous access to shared resources), but does not
guarantee progress for competing processes (i.e., if a process tries to obtain the shared resources, then it
will eventually gain control over shared resources). The Mutual Exclusion (ME) program has two processes
denoted P0 and P1. Each process Pj (j = 0, 1) can be in three synchronization states, namely critical state,
where Pj uses some resources that are shared with the other process, trying state, where Pj tries to enter
its critical state, and non-trying state, where Pj does not intend to enter its critical state. Process Pj has
three Boolean variables csj , tsj , and nsj that respectively represent its critical, trying and non-trying states.



Moreover, Pj has a Boolean variable flagj representing its intention for using shared resources. Processes
take turn to use shared resources, which is represented by an integer variable turn with the domain {0, 1}.
The actions of Pj , for j = 0, 1, in the input program are as follows. We note that, in this section, ⊕ denotes
addition in modulo 2.

Aj1 : nsj −→ tsj := true;
flagj := true;
turn := j ⊕ 1;
nsj := flase;

Aj2 : tsj ∧ ¬flagj⊕1 −→ csj := true;
tsj := false;

Aj3 : csj −→ flagj := false;
csj := false;
nsj := true;

If a process Pj is in its non-trying state, then it enters its trying state and illustrates its intention by
setting flagj to true. However, Pj gives the priority to the other process by setting turn to (j ⊕ 1). In its
trying state, if the other process does not intend to use the shared resources, then Pj transitions to its critical
state. The process Pj goes to its non-trying state from its critical state. The ME program guarantees that
the two competing processes will not be in their critical state simultaneously. Formally, the invariant of the
ME program is equal to the state predicate ¬(cs0∧cs1). However, inside the invariant, a process may repeat
the above steps in a cycle and deprive the other process from entering its critical state. In other words, the
above program does not satisfy tsj ; csj , for j = 0, 1; i.e., a process that is trying to enter its critical state
may never get a chance to transition to its critical state and benefit from shared resources. After adding the
above Leads-To property to the ME program, we have synthesized a new program, denoted ME’. The actions
of process Pj in ME’ are as follows:

A′
j1 : nsj −→ tsj := true;

flagj := true;
turn := j ⊕ 1;
nsj := flase;

A′
j2 : tsj ∧ (¬flagj⊕1 ∨ (turn = j)) −→ csj := true;

tsj := false;
A′

j3 : csj −→ flagj := false;
csj := false;
nsj := true;

The program ME’ is the same as Peterson’s solution [30] for two competing processes. We are currently
investigating the application of our approach in the large-scale design of Dijkstra’s solution [31] for n > 2
competing processes.

7 Experimental Results

While we have added Leads-To properties to several programs, in this section, we focus on the results of adding
Leads-To to the barrier synchronization program. Specifically, we illustrate how we added LB ≡ allR ; allS
to a barrier synchronization program with 18 processes on a cluster of 5 regular PCs connected to the
Internet.
Platform of experiments. The underlying hardware platform of our experiments comprises five regular
PCs with the following specifications.

Machine M1 is connected to the Internet via a fast Ethernet subnet, and M2-M5 are connected to the
Internet via a wireless network. While the ranking/addition nodes could have different implementations, we
have implemented the current version of PARDES in C++ and we have used BDDs [9] to model programs
and state/transition predicates.
Experiments. We added LB to several instances of the Barrier program introduced in Section 6.1 with
different number of processes from 3 to 18. First, we designed the program in Section 6.1, where all ranking



Machines CPU RAM Operating System
M_1  Dual Core, 3.2 GHz 2 GB Linux (Fedora)
M_2 Pentium M, 1.86 GHz 502 MB Win XP 2002
M_3 Pentium M, 1.86 GHz 502 MB Win XP 2002
M_4  Dual Core, 1.83 GHz 1 GB Win XP 2002
M_5 Pentium M, 2 GHz 1 GB Win XP 2002

Figure 6: Machines used in the experiments.

and addition nodes were run as independent processes on M1. Afterwards, we synthesized Barrier programs
with 6, 9 and 15 processes on M1. In order to investigate the cost of synthesis, communication and ranking
in PARDES, we repeated the addition of LB to the 15-process Barrier once on M1 and M2, and once on
M1, M2 and M3. Figure 7 summarizes the results of these experiments.

Machines Synthesis Communication Ranking 
Time Time Time

M_1 198 Sec. 203 Sec. 785 Sec.
M_1, M_2 412 Sec. 415 Sec. 1639 Sec.

M_1, M_2, M_3 572 Sec. 575 Sec. 2281 Sec.

Figure 7: Results of adding Leads-To to the Barrier program with 15 processes.

Notice that, in this case, action-level addition on a cluster of machines degrades the time efficiency of
addition. Moreover, the cost of ranking overtakes the cost of synthesis. One reason behind the high cost of
ranking is the current implementation of Ranking Coordinator as a first-in/first-out server. We are investigating
an implementation of Ranking Coordinator as a concurrent server, which would potentially improve the time
efficiency of PARDES. While the ranking overhead undermines the overall time efficiency of addition, we
note that our first priority is the ability to easily scale up PARDES once the addition fails due to space
complexity.

The addition of LB to Barrier with 18 processes failed on M1 due to space complexity. As a result, we
scaled up the addition to M1, M2 and M3, but this experiment was also unsuccessful for the same reason.
When we included all 5 machines in the experiment, we were able to automatically add LB to the 18-process
Barrier in about 115 minutes. The results of this section illustrate that automatic design of the Barrier program
with 18 processes would not have been possible without the help of PARDES in scaling the addition up to
a cluster of 5 machines.

8 Related Work

In this section, we discuss related work on techniques for reducing the space complexity of automated de-
sign/verification. Several approaches exist for compositional design of concurrent programs [12, 13, 32, 33]
and for parallel and distributed model checking [34]. Smith [32] decomposes the program specifications into
the specifications of sub-problems and combines the results of synthesizing solutions for sub-problems. Puri
and Gu [33] propose a divide-and-conquer synthesis method for asynchronous digital circuits. Abadi and
Lamport [12] present a theory for compositional reasoning about the behaviors of concurrent programs. Gian-
nakopoulou et al. [13] present an approach for compositional verification of software components. Edelkamp
and Jabbar [34] divide the model checking problem so it can be solved on a parallel platform.

Previous work on automatic addition of fault-tolerance [7, 23, 35–37] mostly focuses on techniques for
reducing time/space complexity of synthesis. For example, Kulkarni et al. [35] present a set of heuristics
based on which they reduce the time complexity of adding fault-tolerance to integrated models of distributed
programs. Kulkarni and Ebnenasir [7] present a technique for reusing the computations of an existing fault-
tolerant program in order to enhance its level of tolerance. They also present a set of pre-synthesized fault-
tolerance components [36] that can be reused during the addition of fault-tolerance to different programs. We
have presented a SAT-based technique [23] where we employ SAT solvers to solve some verification problems
during the addition of fault-tolerance to integrated program models. Bonakdarpour and Kulkarni [37] present
a symbolic implementation of the heuristics in [35] where they use BDDs to model distributed programs.



Our proposed method differs from aforementioned approaches in that we focus on the problem of adding
PLTL properties to programs instead of verifying PLTL properties. The action-level addition proposed in
this paper adopts the decomposition approach that we present in [38] for the addition of fault tolerance
properties. Nonetheless, in this paper, our focus is on automated addition of Leads-To properties instead of
adding fault tolerance. While the asymptotic time complexity of adding a single Leads-To property in PLTL
is not worse than verifying that property [1], in practice, the space complexity of addition seems to be higher
than verification. One reason behind this is that the program model at hand may be revised, which makes
it very difficult to devise efficient on-the-fly addition algorithms that are complete. We note that while our
focus is on action-level addition of liveness properties, our approach can potentially be used for action-level
verification of liveness properties.

9 Conclusions and Future Work

We presented an action-level method for adding Leads-To properties to shared memory parallel programs. In
our approach, we start with a parallel program that meets its specification, but may not satisfy a new Leads-

To property raised due to new requirements. Afterwards, we partition the code of the program into its set
of actions, and analyze (and possibly revise) each action separately in such a way that the revised program
satisfies the new Leads-To property and preserves its specification. We have also developed a distributed
framework, called PARallel program DESigner (PARDES), that exploits the computational resources of
a network of workstations for automated addition of Leads-To to shared memory parallel programs. Our
preliminary experimental results are promising as we have been able to easily scale up the addition of
Leads-To to a barrier synchronization protocol on a cluster of 5 regular PCs.

We are currently investigating several extensions of our action-level addition approach. First, we are
developing a family of action-level algorithms for the addition of PLTL properties to parallel programs.
Such a family of algorithms provides the theoretical background of a large-scale framework that facilitates
(and automates) the design of parallel programs for mainstream programmers. Second, we would like to
integrate our approach in modeling environments such as UML [39] and SCR [40], where visual assistance
is provided for developers while adding PLTL properties to programs. Third, we are studying the action-
level addition of PLTL properties to distributed programs, where processes have read/write restrictions in
a distributed shared memory model. Finally, we plan to investigate the application of our approach in
distributed model checking of parallel/distributed programs.
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