
Computer Science Technical Report

A Performance Model for Unified Parallel C
Zhang Zhang

Michigan Technological University
Computer Science Technical Report

CS-TR-07-04
June, 2007

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Abstract

This research is a performance centric investigation of the Unified Parallel C (UPC), a parallel pro-
gramming language that belong to the Partitioned Global Address Space (PGAS) language family.
The objective is to develop performance modeling methodology that targets UPC but can be gener-
alized for other PGAS languages.

The performance modeling methodology relies on platform characterization and program character-
ization, achieved through shared memory benchmarking and static code analysis, respectively. Mod-
els built using this methodology can predict the performance of simple UPC application kernels with
relative errors below 15%. Beside performance prediction, this work provide a framework based
on shared memory benchmarking and code analysis for platform evaluation and compiler/runtime
optimization study. A few platforms are evaluated in terms of their fitness to UPC computing. Some
optimization techniques, such as remote reference caching, is studied using this framework.

A UPC implementation, MuPC, is developed along with the performance study. MuPC consists of
a UPC-to-C translator built upon a modified version of the EDG C/C++ front end and a runtime
system built upon MPI and POSIX threads. MuPC performance features include a runtime software
cache for remote accesses and low latency access to shared memory with affinity to the issuing
thread. In this research, MuPC serves as a platform that facilitates the development, testing, and
validation of performance microbenchmarks and optimization techniques.

Contents

1 Introduction 4

2 UPC background 7

2.1 History of UPC . 7

2.2 The UPC language . 8

2.2.1 Execution Model . 8

2.2.2 Partitioned Shared Memory . 8

2.2.3 Memory consistency model . 9

2.2.4 Other features . 10

3 Related work 12

3.1 UPC implementations . 12

3.1.1 Cray UPC . 12

3.1.2 Berkeley UPC . 12

3.1.3 Intrepid UPC . 13

3.1.4 HP UPC . 13

3.1.5 MuPC . 13

3.2 Performance studies . 13

3.2.1 Performance benchmarking . 13

3.2.2 Performance monitoring . 14

4 MuPC: A UPC runtime system 15

4.1 The runtime system API . 15

4.1.1 Runtime constants . 16

4.1.2 Shared pointer representation . 16

4.1.3 Shared memory accesses . 16

4.1.4 One-sided message passing routines . 17

4.1.5 Synchronization . 17

4.1.6 Locks . 17

4.1.7 Shared memory management . 17

1

4.1.8 Interface extension . 18

4.2 The communication layer . 18

4.3 The two-threaded implementation . 18

4.4 MuPC internals . 20

4.4.1 Runtime source code structure . 20

4.4.2 Program start and termination . 20

4.4.3 MPI messaging . 21

4.4.4 Read and write scalar variables . 21

4.4.5 Non-scalar type references and one-sided communication 22

4.4.6 Optimization for local shared references 22

4.4.7 Synchronization primitives . 23

4.4.8 Shared memory management . 25

4.4.9 Remote reference caching . 26

4.4.10 Atomic operations . 26

4.5 The UPC-to-C translator . 27

4.6 Performance characteristics . 28

4.6.1 Synthetic benchmarks . 28

4.6.2 The UPC NAS benchmark suite . 28

4.6.3 Results . 28

4.7 Summary . 31

5 A study of UPC remote reference cache 35

5.1 An overview of MuPC cache and HP-UPC cache 36

5.2 Apex-MAP . 36

5.3 Experiments and results . 37

5.3.1 The L-K perspective . 38

5.3.2 The K-L perspective . 39

5.3.3 The cache block size perspective . 40

5.3.4 The cache table size perspective . 42

5.3.5 Cache associativity . 43

5.4 Conclusions . 44

5.5 Example . 46

2

6 Performance modeling for PGAS languages 48

6.1 Performance modeling of parallel computing . 48

6.1.1 Models for point-to-point communication 49

6.1.2 A model for shared memory communication 50

6.2 The UPC programming model . 50

6.3 Platform abstraction . 51

6.4 Microbenchmarks design . 53

6.5 Application analysis . 53

6.5.1 Reference partitioning . 55

6.6 Performance prediction . 56

6.7 Performance modeling for Co-Array Fortran and Titanium 57

6.7.1 Co-Array Fortran . 58

6.7.2 Titanium . 58

6.8 Summary . 59

7 Performance model validation 60

7.1 Modeling the performance of UPC application kernels 60

7.1.1 Histogramming . 61

7.1.2 Matrix multiply . 61

7.1.3 Sobel edge detection . 63

7.2 Caching and performance prediction . 64

8 Applications of the UPC performance model 66

8.1 Characterizing selected UPC platforms . 66

8.2 Revealing application performance characteristics 68

8.3 Choosing favorable programming styles . 68

8.4 Future work . 69

8.4.1 Performance analysis . 69

8.4.2 Runtime system/compiler design . 70

9 Summary 71

References 72

3

Chapter 1

Introduction

High performance computing has long been dependent on the promised high performance of multi-
processor systems. There are a number of problems, however, making the potential of multiproces-
sor systems difficult to realize. One of the primary problems is that programming these systems is
very difficult because of the lack of good parallel programming models.

During the quest for good parallel programming models, there have emerged two major categories of
models that map onto two major categories of parallel architectures. The shared memory program-
ming model is a reflection of shared memory architectures. It offers implicit parallel expression and
a single address space for a collection of processes running in parallel. Algorithm design and anal-
ysis in this model is simple because it resembles a sequential programming model. But the shared
memory programming model is rarely applied to large scale parallel computation tasks because
shared memory architectures suffer from serious scalability issues when the number of processors
grows. On the other hand, the message passing programming model reflects distributed memory ar-
chitectures, which are scalable to very large numbers of processors and are more widely used. The
problem is programming with this model requires explicit expression of communications, making
parallel programming very tedious and program analysis much obscured.

When the distributed memory architectures gained popularity since they are more scalable and af-
fordable, so did the message passing programming model. For example, MPI has become the de
facto standard interface for large scale parallel and distributed system programming. However, the
simplicity provided by the shared memory programming model is still attractive. This situation
has led to many researches on new parallel programming models that exploit the advantages of
explicit parallelism while still providing a single address space. The emerging Partitioned Global
Address Space (PGAS) languages are the most recent response to the problem. The three prominent
members of the current PGAS languages family are Unified Parallel C [CDC+99], Co-Array For-
tran [NR98], and Titanium [Het al.01]. They are developed by seperate research groups as language
extensions to ANSI C, Fortran and Java, respectively.

PGAS languages realizes a programming model with both shared memory and distributed memory
flavors. They are based on a conceptual partitioned shared memory model. At the center of this
model is a global address space partitioned among a collection of processes. Parallel execution
streams are mapped onto multiple processes. Each process is associated with a disjoint block of
memory. Each block has a shared part that is exposed and visible by all processes and a private part
that is accessible by the owner process only. Processes reference any positions in the shared space
using a common syntax. References made within a processes’s own partition have the least cost.
This model retains the simplicity of the shared memory programming model but gives program-
mers the control over data locality and memory consistency. Besides, PGAS languages follows the
following philosophy:

4

1. They support both distributed memory machines and shared memory machines. The goal is
to provide performance comparable to MPI on a wide range of parallel platforms.

2. They encourage programmers to be aware of characteristics of underlying architecture, for
example, memory latency and bandwidth, when designing parallel algorithms.

3. They provide concise and efficient syntax, fostering simplicity in algorithm design and anal-
ysis.

This work intends to be a performance-centric study on the PGAS programming model and imple-
mentations, using UPC as a representative of all PGAS languages.

Among all PGAS languages, Unified Parallel C (UPC) has been gaining interest from academia,
industry and government labs. UPC was recognized by the high-performance computing commu-
nity [Ree03] as part of an revolution to answer the challenges posed by future petascale parallel
computers. A UPC consortium [Geo04] has been formed to foster and coordinate UPC develop-
ment and research activities. Several UPC implementations are available, including commercial
implementations. These implementations cover a wide range of parallel architectures and operating
systems.

This work first describes the implementation of MuPC, a UPC runtime system based on MPI and
POSIX threads. The emphasis is put on various performance improving techniques and trade-offs
between performance and simplicity. Then, performance benchmarking results for MuPC are re-
ported, alongside with the results obtained for other UPC implementations. This study designs a
few synthetic micro-benchmarks that are particularly suitable for UPC, which provide more insights
into UPC application performance than traditional message passing oriented benchmarks do.

The foremost goal of this work, however, is to develop techniques for performance model construc-
tion for UPC applications. This work is the first to propose a theory of UPC performance modeling,
which projects UPC programs’s complex performance behavior onto a two-dimensional plane. On
one dimension are the architectural characteristics, on the other are the shared memory access pat-
terns of a program. Architectural characteristics that have an impact on program performance are
identified and abstracted using a few simple metrics. The work then goes on to design benchmarks
to measure these metrics. Shared memory access patterns that may appear in a program are cate-
gorized into several typical patterns. Performance models are then constructed by combining the
effects of architectural characteristics and the effects of shared memory access patterns.

A performance model based on this theory reveals performance loopholes in UPC compilers and
run time systems, as well as loopholes inherited from applications algorithm design. By doing this,
the model is able to identify techniques that compilers, run time systems and programmers can use
to improve the performance. Moreover, the model can predict UPC application performance on
existing and future parallel architectures. It can expose those architectural features that hinder the
current performance optimization efforts, and tell us what features are desired for UPC code to run
efficiently.

Note that although the performance modeling in this research targets UPC, the performance model
construction techniques used here can be extended to other PGAS languages due to the program-
ming model similarity among PGAS languages and also because these languages use the same
shared memory abstraction, namely the partitioned shared memory.

The rest of this report is organized as follows: Chapter 2 is an overview of the UPC language.
Chapter 3 discusses existing UPC implementations and related performance benchmarking work.
Chapter 4 describes the MuPC runtime system. Chapter 5 is a detailed study of the performance
implications of the remote reference caching implemented in MuPC. Chapter 6 discribes a theory

5

of performance modeling and benchmarking. Chapter 7 validates performance models using some
simple application kernels. Last, Chapter 8 summarizes findings and proposes future work.

6

Chapter 2

UPC background

UPC is a parallel extension of the C programming language intended for multiprocessors with a
common global address space [CDC+99]. UPC provides a common syntax and semantics for ex-
plicitly parallel programming in C. It also provides efficient and easy mapping from UPC language
features to the underlying architectures.

2.1 History of UPC

UPC is a collective achievement of several previous similar attempts. It has three predecessors.

• Split-C Split-C [CDG+93] was a small parallel extension to C targeted toward massively
parallel machines with distributed memory, such as the Thinking Machine CM-5 and Cray
T3D. It provides a global address space with clear syntax distinction between local and global
accesses. It also provides “split-phase transaction” semantics for remote accesses to allow
efficient overlapping of communication and computation. This feature evolved into the split-
phase barriers in UPC. Split-C introduced two distinct synchronization semantics at global
level and at processor level. Global level synchronization is a global barrier, while processor
level synchronization ensures completion of store transactions local to a processor. These are
the predecessors of UPC’s upc barrier and upc fence respectively.

• AC AC [CD95a] is a language inspired by the same objectives that inspired Split-C. It is very
similar to Split-C in terms of global address space, distinction between local and global ac-
cesses, and synchronization semantics. Moreover, it enriches the semantics of global accesses
by the introduction of a “dist” type-qualifier for explicit control over array distribution. AC
strictly follows the traditions of C in dealing with pointers. The combined effect of using the
“dist” type-qualifier with pointers enables distribution of complex data structures. The “dist”
type-qualifier later evolved into the “shared” type-qualifier in UPC, where the semantics of
block size in distribution is integrated, eventually making it possible to distribute complex
data structures over the global address space. AC has been implemented on Cray T3D and
has achieved good performance [CD95b].

• PCP Parallel C Preprocessor [BGW92] is an effort to port the simple abstraction of serial
computing model to shared memory and distributed memory platforms. The design of PCP is
based on the belief that a viable parallel algorithm is the one that can be efficiently supported
on a wide range of architectures. To achieve this, PCP adopts a so-called “Reducible Parallel

7

Programming Model”, where operations dealing with parallel constructs on a more sophisti-
cated architecture are reduced to simple operations on a simpler architecture. For example,
memory operations on SMP’s and MPP’s are supported at the hardware level but they are re-
duced to using active messages on message passing platforms. A unique feature of PCP is the
split-join execution model. Concurrent processes in a PCP program can be subdivided into
teams and the teams can merge or split further. This model facilitates exploration of nested
parallelism, allowing more concurrency from a fix number of processes.

In 1999, the first UPC language specification was introduced on the basis of previous work. Bill
Carlson, et al [CDC+99] implemented the first specification on a Cray T3E. Several open source
compilers and a commercial compiler quickly followed. At the same time, the language specifica-
tion evolved. The latest UPC specification as of 2006 is UPC version 1.2 [EGCD05]. Specifications
on collective operations, memory model, and parallel I/O also emerged.

The UPC development consortium [Geo04] hosted by George Washington University now has
working groups from universities, national labs, and industrial, covering a wide range of UPC topics
from low-level API design, performance analysis, debugging, to application and library develop-
ment.

2.2 The UPC language

UPC is a superset of ANSI C (as per ISO/IEC9899 [ISO00]). This section is a summary of UPC
language features.

2.2.1 Execution Model

UPC programs adopt the single program multiple data (SPMD) execution model. Each UPC thread
is a process executing a sequence of instructions. UPC defines two constants, THREADS and MYTHREAD,
to respectively denote the number of threads in a UPC program and the identity of a particular
thread. THREADS can be a compile time constant or a run time constant. THREADS and MYTHREAD do
not change during execution.

2.2.2 Partitioned Shared Memory

Data objects in a UPC program can be either private or shared. A UPC thread has exclusive access
to the private objects that reside in its private memory. A thread also has access to all of the shared
objects in the shared memory space. UPC provides a partitioned view for the global address space
by introducing the concept of affinity. The whole global address space is equally partitioned among
all threads. The block of global address space given to a thread is said to have affinity to the thread.
The concept of affinity captures the reality that on most modern parallel architectures the latencies
of accessing different shared objects are different. It is assumed that an access to a shared object that
has affinity to the thread that performs the access is faster than an access to a shared object to which
the thread does not have affinity. Figure 2.1 illustrates the partitioned memory model of UPC.

UPC uses the shared type qualifier in a declaration to describe a shared data object. Objects
declared in traditional C style (such as int x; in the figure) are private data objects. Shared and
private objects are referenced using the same syntax. Shared objects are declared at file scope. UPC
uses a layout type qualifier to specify the distribution of a shared array across shared memory. The

8

Figure 2.1: Partitioned memory model

layout type qualifier specifies a block size. Block size is considered a part of the data type, that is,
two shared arrays with different block sizes are not type-compatible with each other. A shared array
is decomposed into blocks of the given size and distributed across the blocks of the shared memory
in a round-robin fashion. For example, three shared arrays are depicted in Figure 2.1. The first is
declared as shared [1] int A[2*N];. The second is declared as shared [2] int B[2*N+2].
The third can only be dynamically allocated. It has the type of shared [] int*, meaning its
elements all have the same affinity and its block size is indefinite.

UPC provides three types of pointers, two for pointers to shared objects and one for pointers to
private objects.

• A pointer-to-shared is a pointer whose target is a shared data object. The pointer itself resides
in the private memory space of some thread.

• A shared pointer-to-shared is a pointer whose target is a shared data object. The pointer itself
also resides in the shared memory space.

• A private pointer is a conventional C pointer.

Just as in C, a pointer assumes the type of the object it points to. In UPC, a pointer-to-shared
and a shared pointer-to-shared assume the block sizes of their targets. These two pointer types
are illustrated in Figure 2.1. Pointer pA, pB and pC are pointers-to-shared. Pointer sp is a shared
pointer-to-shared. The block sizes in their declaration govern the arithmetic of these pointers.

2.2.3 Memory consistency model

UPC provides strict and relaxed memory consistency modes. This choice matters for shared object
references. The strict model allows very limited shared access reordering. By contrast, the relaxed
model allows reordering and coalescence of shared object accesses as long as data dependencies
within each thread are preserved. The relaxed model offers more opportunities for compiler and run
time system optimizations.

The choice of memory consistency model can be made at three different levels.

• At the program level, including either the upc strict.h or the upc relaxed.h header file
sets the default consistency model for the whole program.

9

• At the statement level, pragmas #pragma upc strict and #pragma upc relaxed change
the model for shared references in a statement block, for a translation unit, or until the next
pragma.

• At the object level, declaring a shared object using the keyword strict or relaxed stipulates
the model for all references made to the object.

2.2.4 Other features

UPC provides a parallel loop, upc forall, to facilitate job sharing across threads. upc forall
distributes among threads the iterations of a loop operating on a shared object based on the affinity
expression of the loop.

UPC provides two types of global barriers. upc barrier is similar to the MPI Barrier operation in
MPI. upc notify and upc wait together offer the semantics of split-phase synchronization. This
feature is inherited from the split-phase transactions in Split-C.

UPC also provides thread-level synchronization through upc fence. All accesses to shared objects
made by a thread before the fence must be completed before any accesses to shared objects after the
fence can begin. The fence only affects the actions of the calling thread.

Other features include locks (to synchronize accesses to shared objects by multiple threads). A
set of collective routines [WGS03], dynamic memory management, and “string” functions are also
available in UPC. Table 2.1 comprehensively summarizes the UPC language API.

10

Type qualifiers shared, shared[]
Thread identifiers THREADS

MYTHREAD
Shared data operators upc localsizeof()

upc blocksizeof()
upc elemsizeof()
upc threadof(x)
upc phaseof()
upc addrfield()
upc resetphase()
upc affinitysize()

Job sharing upc forall()
Global synchronization upc barrier()
Split phase synchronization upc notify()

upc wait()
Thread-level synchronization upc fence()
Locks upc global lock alloc()

upc all lock alloc()
upc lock free()
upc lock()
upc lock attempt()
upc unlock()

Dynamic memory management upc global alloc()
upc all alloc()
upc alloc()
upc free()

Memory manipulation upc memcpy()
upc memget()
upc memput()
upc memset()

Collectives upc all broadcast()
upc all scatter()
upc all gather()
upc all gather all()
upc all exchange()
upc all permute()
upc all reduce()
upc all prefix reduce()

Table 2.1: UPC language API

11

Chapter 3

Related work

UPC is a maturing language. Researchers have mostly been focusing on language development
and extensions design [CDC+99, WGS03, KW04, EGCS+03, Sav02, BBC+03, BB03, UC 04b,
BD03, CKY03]. This section introduces existing UPC compilers and implementations, and related
performance studies.

3.1 UPC implementations

A variety of open source and commercial implementations have been available to support UPC on
shared memory architectures, SMP clusters, and Beowulf-type Linux clusters.

3.1.1 Cray UPC

The first UPC was developed by Bill Carlson, et al. [CDC+99] on a Cray T3E. It is a partial im-
plementation of UPC Specifications V1.0. It lacks dynamic allocation routines and string handling
routines. No further evolution of this implementation is expected. Instead, a full native implemen-
tation of UPC has been integrated into the Cray X1 system [Cra03].

3.1.2 Berkeley UPC

The most widely used public domain UPC compiler is Berkeley UPC [UC 04a]. It has a highly
portable runtime system because it provides a multi-layered system design that interposes the GAS-
Net communication layer between the runtime system and the network hardware [UC 04b]. Core
and extended GASNet APIs can be mated with a variety of runtime systems, such as UPC and Ti-
tanium, on one side and with various types of network hardware, such as Myrinet, Quadrics, and
even MPI, on the other side. Berkeley UPC includes a UPC-to-C translator based on the Open64
open source compiler. Various optimizations, mainly for generating shared memory latency tolerant
code, are done at the UPC source code level. Translator-level optimizations for Berkeley UPC are
described in [CBD+03]. Contrary to the runtime system, the translator is not portable. As a result,
users of Berkeley UPC typically have to send their code to a translator proxy (an HTTP service)
set up by the Berkeley group for compilation, then get back the translated C code, which is then
compiled and run on local machine.

12

3.1.3 Intrepid UPC

Intrepid Technology provides a UPC compiler [Int04] as an extension to the GNU GCC compiler
(GCC 3.3.2). It supports only shared memory platforms and SMP platforms such as the SGI Irix,
Cray T3E, and Intel x86 uniprocessor and SMPs. It is freely available under the GPL license.

3.1.4 HP UPC

Hewlett-Packard offered the first commercially available UPC compiler [Hew04]. The current ver-
sion of this compiler targets Tru64 UNIX, HP-UX, and XC Linux clusters. Its front end is also
based on the EDG source-to-source translator. The Tru64 runtime system uses the Quadrics net-
work for off-node remote references. Runtime optimizations include a write-through runtime cache
and a trainable prefetcher.

3.1.5 MuPC

MuPC [Sav02] is a run time system developed by Michigan Technological University with help
from the HP UPC group. MuPC implements an API defined by a UPC-to-C translator contributed
by HP. The translator is based on the EDG C/C++ front end. The run time system is implemented
using MPI and the POSIX standard threads library. MuPC currently supports AlphaServer SMP
clusters and Intel X86 Linux clusters. MuPC is the subject of the next chapter of this report.

3.2 Performance studies

Performance studies done so far fall into two categories: benchmarking and run time system (or
compiler) monitoring.

3.2.1 Performance benchmarking

El-Ghazawi, et al. [EGC01] developed the first set of performance benchmarks for UPC. This set
consists of a synthetic benchmark suite and an application benchmark suite. The synthetic bench-
mark characterizes the performance of memory accesses, including private accesses, local-shared
accesses and remote-shared accesses. The application benchmark contains three application tests
representing three typical parallel processing problems: (1) Sobel edge detection, an image process-
ing problem, (2) matrix multiplication, a dense matrix algorithm, and (3) the NQueens problem, an
embarrassingly parallel algorithm. UPC Bench helped expose the first performance loophole recog-
nized by UPC compiler developers. The loophole exists in the early releases of HP UPC compiler
for AlphaServer platforms, where the local-shared memory references are implemented to be al-
most as expensive as the remote-shared memory references. UPC Bench also investigated remote
reference prefetching and aggregating, two potential compiler optimization techniques.

Cantonnet and El-Ghazawi [CEG02] studied the performance of UPC using the NAS Parallel Bench-
mark (NPB) [BBB94]. The five kernels (CG, EP, FT, IS and MG) in the NPB suite were rewritten
in UPC. Their performance was measured and compared with that of the MPI implementation on
an AlphaServer SC machine running HP UPC. Results showed that UPC has a potential to perform
as well as traditional parallel computing paradigms such as MPI, only if the compilers are able to
optimize local-shared accesses and to aggregate fine-grained remote-shared accesses.

13

3.2.2 Performance monitoring

Performance of various UPC compilers and runtime systems have been closely monitored. El-
Ghazawi, et al. [EGC01, CEG02] investigated the performance of the HP UPC compiler on an
AlphaServer SC platform. Cantonnet, et al. [CYA+04] evaluated the GCC UPC implementation
on SGI Origin family NUMA architectures. Chen, et al. [CBD+03] studied the performance of the
Berkeley UPC compiler on the an AlphaServer SC.

Zhang and Seidel [ZS05] did performance analysis for UPC on Linux clusters where the only two
UPC implementations supporting Linux platforms, MuPC and Berkeley UPC, were evaluated. This
work also evaluated MuPC on an AlphaServer SC and compared the performance with Berkeley
UPC and HP UPC.

Besides performance monitoring and benchmarking, Prins, et al. looked at performance issues from
the perspective of language features. Their work [BHJ+03] analyzed the UPC language features that
thwart the performance on current parallel architectures, especially on clusters. They held a pes-
simistic view about the fine-grain communication pattern inherent to UPC. However, they predicted
that a hybrid programming model mixing coarse-grain and fine-grain communication may improve
the performance of UPC and still retain its ease-of-use feature. Prins, et al. also pioneered the
search for a killer application for UPC. Their work [PHP+03] on the implementation of unbalanced
tree search showed that the UPC implementation is shorter in length than the MPI implementation,
and the UPC implementation performs better than the MPI implementation on a SGI Origin 2000
platform.

Other performance related work includes an attempt to improve performance by overlapping com-
munication and computation [IHC04], and a study of exploiting UPC’s relaxed memory consistency
model [KW04]. In the first work, Iancu, et al. discussed how to segment large remote references
so that transfers of small-sized segments can be pipelined and overlapped with local computation
to save communication cost. They used the technique of message strip mining combined with loop
unrolling to optimize vectorizable parallel loops. In the second work, Kuchera and Wallace con-
templated how a few loop optimization techniques (loop fusion, loop fission, and loop interchange)
commonly adopted in sequential programming language compilers could also improve UPC perfor-
mance by taking advantages of a less constrained memory consistency model.

14

Chapter 4

MuPC: A UPC runtime system

A substantial part of this research is the development of a UPC implementation called MuPC [Mic05].
This work used MuPC as a platform to develop, test, and validate all microbencmarks that are used
in performance study described in later chapters. MuPC also served as a sandbox for developing
runtime optimization techniques, such as remote reference caching.

MuPC contains a runtime system and a UPC-to-C translator. The translator was developed with
help from the High Performance Technical Computing Division at Hewlett-Packard Company. The
runtime system is based on MPI and the POSIX standard threads library. It implements an API
defined by the UPC-to-C translator.

Each UPC thread at run time is mapped to two Pthreads, the computation Pthread and the commu-
nication Pthread. The translator is a modified version of the EDG C/C++ V3.4 front end [Edi05].
This report mainly focuses on the internal structure of the runtime system. The work related to the
EDG front end modification is also discussed.

The MuPC runtime system (excluding the EDG front end) is portable to any platform that supports
MPI and POSIX threads. This means that a wide range of architectures and operating systems can
run MuPC. MuPC has been ported to Intel x86/Linux, HP AlphaServer/Tru64 Unix, and Sun En-
terprise (Solaris). The only portability issue arises from the UPC-to-C translator, which is released
as a binary executable. Executables for platforms other than the aforementioned three are available
upon request.

4.1 The runtime system API

The MuPC runtime system is a static library that implements a UPC runtime system API. The front
end translates a UPC program into an ANSI C program where UPC-specific features are repre-
sented using structures and function calls defined in the API. For example, pointers-to-shared are
translated into UPCRTS SHARED POINTER TYPE structures. Remote memory reads and writes are
translated into calls to UPCRTS Get() and UPCRTS Put(), respectively. The translated code is
compiled using a C compiler such as icc, then linked with the runtime system library to generate
an executable. The executable is then run as an MPI program. This section describes the runtime
system API and discusses some high-level decisions made in its design.

The runtime system API used by MuPC is based on an API originally defined by the UPC devel-
opment group at Hewlett-Packard. Despite the similarity between the two APIs, their implemen-
tations are completely different. While MuPC implements the API using MPI and Pthreads, HP’s
implementation is based on the NUMA architecture of the SC-series platform and uses the Elan

15

communication library and Quadrics switch to move data between nodes. Compared with MPI, the
Elan library provides much lower level message passing primitives and higher performance. On the
other hand, the MPI+Pthreads implementation gives MuPC greater portability. MPI also makes the
implementation simpler because it already guarantees ordered message delivery in point-to-point
communication. In addition, process startup, termination and buffer management are straightfor-
ward in MPI.

4.1.1 Runtime constants

THREADS and MYTHREAD are runtime constants representing the number of UPC threads and the ID
of a particular running thread, respectively. They are available in the runtime library through two
global constants: UPCRTS gl cur nvp and UPCRTS gl cur vpid.

4.1.2 Shared pointer representation

UPCRTS SHARED POINTER TYPE is a C structure in the API that represent pointers-to-shared. A
pointer-to-shared contains three fields: address, affinity and phase. The address and affinity fields
together specify the location of an object in shared memory. The phase field specifies the relative
offset of an element in a shared array. The phase field is useful only in pointer arithmetic, which
is handled in the UPC-to-C translation step. In other words, translated code does not include any
pointer arithmetic. The runtime system needs only address and affinity to retrieve and store shared
data.

4.1.3 Shared memory accesses

Shared memory read and write operations for scalar data types are implemented using correspond-
ing get and put functions defined in the runtime API. One key design feature of the runtime system
is that all get operations are synchronous, while put operations are asynchronous. A get routine
initiates a request to get data from a remote memory location. Each request is then completed by
one of the getsync routines (depending on the data type), which guarantees the data are ready to
use once it returns. In contrast, there are no routines to complete put operations. A thread considers
a put operation to be complete as soon as the function call returns, although the data to be written
are likely still in transit to their destination. This permits the MuPC runtime system to issue multiple
put operations at a time, but only one get at a time. It is desirable to have the runtime issue multiple
gets at a time and complete them altogether with just one getsync routine, but this requires a de-
pendence analysis within a block to determine which gets can be issued simultaneously. Basically,
only a sequence of gets without the WAR hazards in between can be issued simultaneously. This
feature is not currently implemented in MuPC.

Another set of corresponding runtime functions are defined for moving non-scalar data objects
between shared memory locations. Non-scalar types, such as user defined data types, are treated
by the runtime system as raw bytes. Both block get and block put operations are synchronous.
A block get or block put request is issued first, then it is completed by a matching completion
routine. In the block get case, the completion routine guarantees the data retrieved are ready to
be consumed by the calling thread. In the block put case, the completion routine guarantees the
source buffer where the data came from is ready to be overwritten because the data are already on
the way to their destination.

16

4.1.4 One-sided message passing routines

Besides shared memory accesses, UPC provides one-sided message passing functions: upc memcpy(),
upc memget(), upc memput() and upc memset(). These functions retrieve or store a block of raw
bytes from or to shared memory. The MuPC runtime supports these directly by providing corre-
sponding runtime functions. These functions rely on the aforementioned block get and block
put functions to accomplish data movement.

4.1.5 Synchronization

The MuPC runtime system directly supports the UPC synchronization functions by providing match-
ing runtime routines. It is noteworthy that a UPC barrier is not implemented using MPI Barrier(),
although it appears to be natural to do so. UPC barriers come with two variations, anonymous barri-
ers and indexed barriers. An indexed barrier includes an integer argument and can be matched only
by barriers on other threads with the same argument or by anonymous barriers. MPI barriers are
incapable of supporting complex synchronization semantics as such, so the MuPC runtime system
implements its own barriers, using a binary tree-based algorithm.

A fence in UPC is a mechanism to force completion of shared accesses. In the MuPC runtime
system, fences play a significant role in the implementation of UPC’s memory consistency model.
More details are discussed in section 4.4.7.

4.1.6 Locks

UPC provides locks to synchronize concurrent accesses to shared memory. Locks are shared opaque
objects that can only be manipulated through pointers. In MuPC, the lock type is implemented
using a shared array with size THREADS and block size 1. Each lock manipulation routine, such as
upc lock, upc unlock, and upc lock attempt, has a corresponding runtime function.

4.1.7 Shared memory management

Static shared variables are directly supported using static variables of ANSI C. For static shared
arrays distributed across threads, the translator calculates the size of the portion on each thread, and
accordingly allocates static arrays on each thread. For static shared scalars and static shared arrays
with indefinite block size, the translator replicates them on all UPC threads but only the copy on
thread 0 is used. This ensures that on each thread the corresponding elements of a shared array
that occupy multiple threads always have the same local addresses. This is a desirable feature that
greatly simplifies the implementation of remote references.

The memory module of the runtime system manages the shared heap. At start-up, the memory
module reserves a segment of the heap on each thread to be used in future memory allocations. The
size of this segment is a constant that can be set at run time. The starting address of this reserved
segment is the same on all threads. This guarantees that corresponding elements of an allocated
array have the same local addresses on each thread. The memory module uses a simple first-fit
algorithm [Tan01] to keep track of allocated and free space on the reserved segment on each thread
at run time.

17

4.1.8 Interface extension

One goal of MuPC is to provide an experimental platform for language developers to try out new
ideas. Thus the runtime API is extensible. One extension that is currently being investigated is the
implementation of atomic shared memory operations, which are not part of the latest UPC language
specifications. Section 4.4.10 contains more details about implementing atomic operations.

4.2 The communication layer

Bonachea and Duell [BD03] presented five requirements for communication layers underlying the
implementation of global address space languages such as UPC:

1. Support remote memory access (RMA) operations (one-sided communication).

2. Provide low latency for small remote accesses.

3. Support nonblocking communication.

4. Support concurrent and arbitrary accesses to remote memory.

5. Provide or support the implementation of collective communication and synchronization
primitives.

MPI was chosen to implement the MuPC runtime API for two important reasons: (1) The prevalence
of MPI makes the runtime system easily portable. (2) MPI libraries provide high-level communica-
tion primitives that enable fast system development by hiding the details of message passing. MuPC
is built on the top of only a handful of the most commonly used MPI routines, such as MPI Isend()
and MPI Irecv().

However, MPI does not meet the five requirements listed above. Specifically, MPI-1.1 supports
only two-sided communication. The one-sided get/put routines defined in the MuPC runtime API
must be simulated using message polling because the receiver does not always know when a sender
will send a message. This justifies a two-threaded design as discussed in the next section. The
MPI-2 standard supports one-sided communication with some restrictions, but the restrictions make
the one-sided message passing routines incompatible with the requirements of UPC [BD03]. In
addition, MPI-2 has not been as widely implemented as MPI-1.1. Therefore, MuPC is currently
implemented with MPI-1.1.

The MuPC runtime system constructs its own MPI communicator. All UPC threads are members of
the communicator MUPC COMM WORLD. MuPC uses only asynchronous message-passing functions to
achieve message overlapping and to minimize message overhead.

As a user-level communication library, MPI has a higher overhead comparing to lower-level libraries
such as GM (Myrinet), elan (Quadrics) and GasNet. But performance study shows that the commu-
nication layer is not the bottleneck of MuPC performance. In other words, choosing a lower-level
communication library would not have led to better performance for MuPC.

4.3 The two-threaded implementation

MuPC uses a two-threaded design to simulate one-sided communication, or remote memory ac-
cess (RMA), using MPI’s two-sided communication primitives. This design uses POSIX Threads

18

(Pthreads) because of its wide availability. Each UPC thread spawns two Pthreads at runtime, the
computation Pthread and the communication Pthread. The computation Pthread executes the com-
piled user code. This code contains calls to MuPC runtime functions. The computation Pthread
delegates communication tasks to the communication Pthread. The communication Pthread plays
two basic roles. First, it handles the read and write requests of the current UPC thread by post-
ing MPI Irecv() and MPI Isend() calls and completing them using MPI Testall(). Second, it
responds to the read and write requests from remote threads by sending the requested data using
MPI Isend() or storing the arriving data directly into memory. Since the communication Pthread
has to respond to remote read and write requests in real time, it implements a polling loop (by post-
ing persistent MPI receive requests) that listens to all other UPC threads. Figure 4.1 depicts the
operation of the communication Pthread. The two Pthreads synchronize with each other using a

Figure 4.1: The communication Pthread

set of mutexes and conditional variables; they communicate with each other using a set of global
buffers and queues. The level of thread-safety provided by MPI implementations is highly variable,
so the MuPC runtime system encapsulates all MPI function calls in the communication Pthread.

19

4.4 MuPC internals

4.4.1 Runtime source code structure

The runtime system kernel is organized into 3 modules. The main module (rts.c) implements all
runtime API functions, as well as the communication Pthread and the computation Pthread. A
memory module (mem.c) defines allocation and de-allocation routines that underlie UPC’s dynamic
shared memory allocation functions. A cache module (cache.c) performs remote reference caching
to help reduce the long latencies of referencing remote scalar shared variables.

The source code is compiled into a static library, libmupc.a. User code written in UPC is first
translated into intermediate code by the EDG front end. Then the intermediate code is compiled
using mpicc and linked to the runtime library by passing the option -lmupc.

The source package contains wrappers that encapsulate the procedures of translating, compiling,
linking and running user code. The package is built using the GNU build system. Configuration
scripts and makefiles are automatically generated by tools including autoconf and automake.

4.4.2 Program start and termination

The runtime system goes through the following steps to start the execution environment:

1. MuPC relies on the MPI command mpirun to boot the execution environment. All MPI pro-
cesses spawned by mpirun make up a unique communicator. Each MPI process corresponds
to a MuPC runtime instance. The size of the communicator is equal to the constant THREADS.

2. A runtime instance starts as a normal MPI process by calling MPI init(). The process reads
the runtime configuration file to set appropriate runtime constants. For example, the geometry
of the remote reference cache.

3. Each process then initializes runtime buffers, mutexes, conditional variables, etc. These are
used for communication and synchronization between the two internal Pthreads.

4. Next, remote reference cache and memory management subsystems are initialized.

5. Each process creates and starts the computation Pthread and the communication Pthread.
From this point on, all MPI communication is restricted to the communication Pthread.

6. The computation Pthread starts to execute the main() function of the user program. A
upc barrier is forced by the runtime at the beginning of the user program. At the same
time, the communication Pthread starts the polling loop.

The termination of a program involves the following steps:

1. When the computation Pthread exhausts the statements of the user program, it forces a upc barrier,
then signals the communication Pthread about job completion. After this, the computation
Pthread exits.

2. On receiving the signal, the communication Pthread finishes handling the final barrier, stops
the polling loop, cancels and de-allocates all persistent MPI requests, then exits.

3. The runtime’s main() process waits for the termination of the two Pthreads, then de-allocates
all runtime buffers, mutexes, conditional variables, the remote reference cache, and the mem-
ory management subsystem.

4. The main process calls MPI Finalize() to terminate the MPI process.

20

4.4.3 MPI messaging

Since communication is handled by MPI message passing routines, the runtime system defines a
uniform message format for all messages, including both data transfer messages and control mes-
sages. Messages for different purposes are distinguished by message types. The runtime system
defines approximately 40 message types.

A message is a sequence of raw bytes and it is transfered as the data type MPI BYTE. Along with the
data item to be transfered, a message consists of six other fields: message type, source, destination,
context tag, data size, and data address. Not all fields are used all the time. For example, control
messages such as synchronization messages usually use only the first three fields (type, source and
destination). Except for the data item field, all fields have fixed lengths. A message is always made
8-byte aligned to obtain optimal buffering overhead [SG98].

The runtime system maintains two global queues for message passing, one is for sending fixed size
data and control messages, and the other is for sending block data messages with variable size. The
difference between these two queues is that the first queue is statically declared with fixed size, while
the second one is dynamically allocated at run time. Coupled with the computation Pthread and the
communication Pthread, these queues provide a producer-consumer mechanism. The computation
Pthread produces messages to be added to these queues, and the communication Pthread consumes
the messages by posting nonblocking asynchronous MPI sends to send them. Both queues can hold
a finite number of messages. Instead of being consumed one by one, they are processed in batches.
The communication Pthread sends all queued messages at one time, using multiple nonblocking
asynchronous MPI sends. It completes them (at a later time) using a single call to the completion
routine MPI Testall().

Accesses to the queues are synchronized by a set of Pthread mutexes and conditional variables. If a
queue is full because the communication Pthread is too slow, the computation Pthread stops waiting
for vacancies on the queue. The communication Pthread periodically checks the queue to process
pending messages. When the queue becomes empty the computation Pthread is signaled. On the
other hand, if the communication Pthread does not have enough work to do because the queues are
empty, it yields its current time slice to the computation Pthreads.

4.4.4 Read and write scalar variables

One of the most salient features of UPC programming language is that it supports implicit commu-
nication. Read and write accesses to shared scalar variables are expressed as variable assignments,
not syntactically distinguishable from local reads and writes. The EDG translator translates remote
references into calls to runtime get/put functions.

The runtime function UPCRTS GetBytes() performs shared read operations. If the shared data to
be read has affinity to the local thread, the data are directly read from the local memory. Other-
wise, this function builds a request message to be sent by the communication Pthread, then it calls
UPCRTS GetSync<Type>() to complete the read request. This requires checking the global buffer

where the communication Pthread stores the retrieved data; grabbing the data if it is available, or
blocking if the data are still not ready. When the requested data arrives, the communication Pthread
stores them to a global buffer and signals the computation Pthread.

On the other end, the remote thread which serves the read request hears the request message because
its communication Pthread is a passive listener. Its communication Pthread fetches the requested
data from local memory, packages it into an MPI message and sends it back to the requesting
thread. This process involves the communication Pthread only, the computation Pthread on the
remote thread is not involved.

21

Write operations to shared variables are performed by the runtime function UPCRTS Put<Type>(),
where the <Type> corresponds to the type of the variable to be written to. The computation Pthread
builds a message with the data being piggybacked. It appends the message to the “send” queue
to be processed by the communication Pthread. The communication Pthread sends the message
using MPI Isend() and completes the send (possibly together with other sends) with a call to
MPI Testall().

The communication Pthread on the remote thread which is the destination of the write receives the
message, decodes it and stores the data to local memory. Again, the computation Pthread on the
remote thread is not involved.

Note that there are no UPCRTS PutSync<Type>() functions to complete writes. This is how write
operations are different from read operations. This implies that a user program should always use
a barrier to guarantee the data are stored to the destination location. Section 4.4.7 discusses more
about the implementation of UPC’s memory consistency model.

Discussions above do not consider the presence of the remote reference cache. If the cache is active,
then the UPCRTS GetBytes() and the UPCRTS Put<Type>() functions will try to read from or
write to the cache first. Message passing is necessary only in the case of a cache miss. Section 4.4.9
contains details about remote reference caching.

4.4.5 Non-scalar type references and one-sided communication

Reads and writes for non-scalar types, for example, user-defined structures, are performed by
UPCRTS GetBlock() and UPCRTS PutBlock() runtime functions. These two functions also sup-

port UPC’s one-sided communication functions such as upc memget(), upc memput(), and upc memcpy().

More MPI messages are exchanged for implementing non-scalar type references than for scalar
type references. When the computation Pthread calls get or put, it first builds a control message
specifying the the type of the operation, memory addresses involved, and data size, to be sent to
the remote UPC thread by the communication Pthread. After processing the control message, the
communication Pthread posts an MPI Irecv()/MPI Isend() to actually receive or send the data.
The communication Pthread on the remote UPC thread receives the control message first, then
accordingly posts an MPI Isend() or MPI Irecv() to match the MPI Irecv() or MPI Isend() on
the other end.

There are two more complexities. First, data of very large size are fragmented to be processed
by multiple consecutive calls to the get or put functions. The threshold of the fragmentation is
adjustable at installation time and depends on the particular MPI library used. It should be tuned
carefully on individual installations to achieve good performance.

Second, unlike scalar get or put requests, the data to be transfered by a non-scalar get or put request
are not stored in a queue. Only a pointer to the data is queued. At a put operation, this means that the
communication thread copies the data directly from the user program’s memory instead of from the
runtime maintained queue. Therefore, a UPCRTS PutBlockSync() is always needed to complete
a put operation, to make sure that the source location will not be modified until the data are totally
copied out. A UPCRTS GetBlockSync() is also needed to complete a get because get operations
must be synchronous.

4.4.6 Optimization for local shared references

Local shared references are accesses to shared variables that have affinity to the accessing thread.
There is no communication overhead in this type of accesses, but the latency still tends to be longer

22

than the latency of accessing private variables [CEG02, EGC01, CYA+04, CBD+03]. The extra
cost comes from the effort of handling UPC’s shared keyword. For example, initially the UPC-to-
C translator mechanically translates shared references into calls to corresponding runtime get/put
functions. The overhead of the function calls accounts for the extra cost.

An optimization has been implemented in the UPC-to-C translator to distinguish local and remote
shared references. Tests are inserted for each shared reference to determine if the reference is local
at run time by comparing the thread field of the address with MYTHREAD. Once identified, a local
shared reference is converted to regular local memory access to avoid expensive runtime function
calls.

4.4.7 Synchronization primitives

The UPC synchronization primitives include fence, split and non-split barriers, and locks.

Fences and the memory consistency model
upc fence is a mechanism to force the local completion of shared memory references. It forces an
order between the operations before it and the operations after it. In the MuPC runtime system, it is
supported by the runtime function UPCRTS PutAllSync().

MuPC relies on fences to implement the strict and the relaxed shared memory accesses. For
each strict access, the translator forces a fence immediately after the access to ensure that a
following access will not start until the current access is issued. No fences are forced for relaxed
accesses.

Reordering relaxed accesses may lead to performance improvement. For example, starting long-
latency operations early helps reduce the waiting time. However, at this stage MuPC is not capable
of reordering user program statements. And because of the non-overtaking property of MPI mes-
sages [SG98], shared memory references in MuPC always complete in program order, as long as the
remote reference caching is not used. Therefore, a fence is just a no-op in the absence of caching.
When caching is used, however, a fence requires the cache to be invalidated and dirty cache lines
to be written back. Section 4.4.9 contains more information about cache invalidation.

Barriers
UPC provides split and non-split barriers. A split barrier is a upc notify and upc wait pair,
supported by the runtime functions UPCRTS Notify() and UPCRTS Wait(), respectively.

At a notify, the computation Pthread creates a notifying message to be broadcast by the communi-
cation Pthread to all other UPC threads, then continues until the matching wait. Other UPC threads
may pick up the notifying message at any time (because their communication Pthreads are also pas-
sive listeners), and increment a counter by one. The split barrier semantics [EGCD03] determine
that any two UPC threads can differ by at most one synchronization phase. (A synchronization
phase is the epoch between two consecutive notifies.) Thus, each UPC thread maintains two
counters for barrier purposes, one for the current phase, the other for the next phase. Depending
on whether the notifying message is from a faster-going thread or a slower-going thread, one of the
two counters is incremented when the notifying message is received.

At a wait, the computation Pthread sleeps until being wakened up by the communication Pthread
when the counter for the current phase has reached the value of THREADS-1.

When named notify and wait are used, the runtime performs extra operations to verify that the
barrier arguments match between each pair of notify and wait, and across all UPC threads. The
runtime also verifies the pairs of notify and wait are not nested.

23

A non-split barrier, upc barrier, is supported by the runtime function UPCRTS Barrier(). A
binary tree based broadcasting algorithm is used to implement non-split barriers. When a UPC
thread reaches a barrier, the computation Pthread creates a barrier message to be sent to Thread 0
by the communication Pthread and then goes to sleep. Thread 0 maintains a special counter and
increments it for each barrier messages it receives. Once the counter reaches the value of THREADS-1
and Thread 0 itself also reaches the barrier, it broadcasts a signal to all other UPC threads. The
communication Pthread on each UPC thread picks up the signal and wakes the sleeping computation
Pthread. This completes the barrier.

A fence is inserted immediately before a notify and immediately after a wait. A fence is also
inserted immediately before a barrier. The remote reference cache is invalidated at fences.

Locks
Locks are opaque shared objects that can be accessed using pointers (handles). The affinity of a
lock object does not affect its semantics and is implementation dependent. In MuPC, lock objects
have affinities with Thread 0 except that if a lock is allocated using upc global lock alloc()
then it has affinity to the calling thread. The UPC thread with which a lock has affinity is called the
host of the lock.

Lock manipulations are supported by three runtime functions, UPCRTS lock(), UPCRTS lock attempt()
and UPCRTS unlock(). One feature desired in lock manipulations is fairness. That is, an acquire
of a lock will eventually succeed, as long as any UPC thread held it previously always releases it.
To achieve this feature, each UPC thread maintains a cyclic queue for locks it hosts. Every lock
request the host receives is queued until the host is able to honor the request. In more detail, lock
manipulations are performed in the following way:

When a UPC thread acquires a lock, the computation Pthread calls UPCRTS lock() to build a
request to be sent by the communication Pthread to the lock host, then the computation Pthread
goes to sleep. The communication Pthread of the host receives the request and appends it to the
queue. The communication Pthread periodically serves the lock request at the head of the queue by
checking the status of the requested lock. If the lock is unlocked, the host’s communication Pthread
honors the request by marking the status as locked, dequeues the request, and sends a message to
the requester. The communication Pthread of the requester receives the message, then wakes up the
blocked computation Pthread. On the other hand, if the lock is locked, the host’s communication
Pthread either dequeues the request and sends a deny message to the requester, if the request is a
lock attempt; or it keeps the request on the queue and sends no message, if the request is a lock.
This scheme ensures that an unhonored lock request is always on the queue and will be checked
again and again by the host until it is eventually honored.

When a UPC thread releases a lock, the computation Pthread calls UPCRTS unlock() to build a re-
quest to be sent by the communication Pthread to the lock host, then continues. The communication
Pthread of the host receives the request and changes the status of the lock to be unlocked.

The UPC language defines lock operations to be consistency points. That is, memory references
inside a critical section are not allowed to appear outside the critical section. Thus, a fence is
executed immediately after a lock is successfully acquired; and immediately before a lock is re-
leased. But fences are not enough to force consistency points. This subtlety can be explained by
an example shown in Table 4.1.

The circled numbers in Table 4.1 represent the global order in which statements are executed. The
fence implied at the beginning of statement 2© ensures only the local completion of statement 1©.
The updated value of variable X may actually arrive the memory location of X much later than
statement 4©, which reads in a stale value of X. From the point view of Thread 0, this is a violation
of lock semantics.

24

Thread 0 Thread 1 Thread 2
upc lock t LL; shared int X;

upc lock(&LL);
1© write X;

3© upc lock(&LL); 2© upc unlock(&LL);
4© read X;
upc unlock(&LL); 5© X is updated;

Table 4.1: Locks and memory consistency

The MuPC runtime takes the following approach to solve this problem. Immediately after the fence
implied by a lock release, a dummy message is sent to every other UPC thread to which remote
writes have been made inside the critical section. The lock is then released when all involved UPC
threads have acknowledged the dummy messages. This approach depends on the non-overtaking
property of MPI messages, if the dummy message has arrived then all messages sent before it must
have also arrived. In other word, all updates to remote memory locations inside the critical section
have reached their destinations.

4.4.8 Shared memory management

Static shared variables
Static shared variables are directly supported using static variables of ANSI C. For static shared
arrays that span several threads, the translator calculates the size of the portion on each thread and
accordingly allocates static arrays on each thread. For static shared scalars and static shared arrays
with indefinite block size, the translator replicates them on all UPC threads, but only the copy on
thread 0 is used. This ensures that for a static shared array spanning several threads, corresponding
elements on each thread always have the same address. This is a desirable feature that greatly
simplifies the implementation of remote references. For example, for the array declared as: shared
int A[THREADS], the element A[MYTHREAD] on each thread has the same local address.

Dynamic shared memory management
The runtime functions UPCRTS GlobalAlloc(), UPCRTS AllAlloc() and UPCRTS Alloc()
support dynamic shared memory allocation. The function UPCRTS Free() supports de-allocation.
The memory module of the runtime manages the shared heap.

It is also desired that corresponding elements on each thread have the same address for dynamically
allocated arrays spanning several threads. At start-up, the memory module reserves a segment of
the heap on each thread to be used for future memory allocations. The size of this segment is a
constant that can be set at run time. The starting address of this reserved segment is the same on all
threads.

An exception is arrays allocated using upc alloc(). This routine allocates arrays with indefinite
block size, all elements have affinity with the calling thread. Therefore, this routine is essentially
the same as a local allocation. It takes space from the heap, but not from the reserved segment.

The memory module uses a simple first-fit algorithm [Tan01] to keep track of allocated and free
space on the reserved segment on each thread. Tracking is done on thread 0 only because the image
of the reserved segment is always the same on all threads.

When UPCRTS GlobalAlloc() is called, the size of the portion on each thread is calculated. Then a
control message containing this information is sent from the calling thread to thread 0. The memory
module on thread 0 marks off an appropriate amount of space from the reserved segment and sends
back to the calling thread a control message containing the information about the returned address.

25

UPCRTS AllAlloc() works similarly except that it is a collective function. A broadcast is needed
at the end of it to notify all threads of the address of the newly allocated space.

When UPCRTS Free() is called, a control message containing the information about the address
of the space to be de-allocated is sent to thread 0. The memory module on thread 0 marks the
corresponding block of the heap as free, or does nothing if it has already been de-allocated.

4.4.9 Remote reference caching

The runtime implements a software caching scheme to hide the latency of remote references. Each
UPC thread maintains a noncoherent, direct-mapped, write-back cache for scalar references made
to remote threads. The memory space of the cache is allocated at the beginning of execution. The
length of a cache line and the number of cache lines can be set at run time using a configuration file.

The cache on each thread is divided into THREADS-1 segments, each being dedicated to one remote
thread. Either a read miss or a write miss triggers the load of a cache line. Subsequent references
are made to the cache line until the next miss. Writes to remote locations are stored in the cache,
then are actually written back later at a cache invalidation or when the cache line is replaced. This
mechanism helps reduce the number of MPI messages by combining frequent small messages into
infrequent larger messages.

Cache invalidation takes place at a fence, with dirty cache lines being written back to their sources.
Dirty cache lines are collected and packed into raw byte packages destined to different remote
threads. The packages are transferred using UPCRTS PutBlock(). The communication Pthread of
a receiver unpacks each package and updates the corresponding memory locations with the values
carried by the package.

A cache line conflict occurs if more than one memory block is mapped to one cache line. The
incumbent will be replaced and written back if it is dirty. The runtime calls UPCRTS PutBlock()
to perform the write-back of the replaced cache line.

The runtime also provides a victim cache to mitigate the penalty of conflict misses. The victim
cache has the same structure as the main cache, except that it is much smaller. When a conflict
occurs, the replaced line is stored in the victim cache. It is written back when it is replaced again in
the victim cache. A cache hit in the victim cache brings the line back to the main cache, and a miss
both in the main cache and in the victim cache triggers the load of a fresh cache line.

The false sharing problem is handled by associating with each cache line a bit vector to keep track
of the bytes written by a thread. The bit vector is transferred together with the cache line and is used
to guide the byte-wise updating of the corresponding memory locations.

Remote reference caching is a feature designed to improve the throughput of relaxed remote shared
memory accesses. It is not favorable to strict accesses because every strict access implies a
fence. As described above, cache invalidation takes place at each fence. So a strict access in-
volves the additional cost of invalidating the cache. For applications with frequent strict accesses
it is better off to disable caching.

4.4.10 Atomic operations

Atomic shared memory operations are a unique feature of MuPC. They are not defined in the latest
UPC language specifications.

Atomic operations provide safe lock-free accesses to shared memory. When an atomic operation is
performed to a shared variable by multiple UPC threads, only one can succeed, all other attempts

26

fail and have no effects. Five atomic operations are currently implemented in MuPC. They are
supported by five corresponding runtime functions.

The runtime starts an atomic operation by building a request (message) to be sent to the thread
to which the targeted memory location has affinity. Upon receiving this message the thread ap-
pends the request to a cyclic queue. Thus multiple concurrent accesses from different threads are
sequentialized by the queue. The access that arrives first will be performed successfully. Then later
accesses will only see that the value of the concerned memory location has been changed, and they
all fail. A reply message is built for each access request, specifying success or failure, and is sent
back to each requester.

4.5 The UPC-to-C translator

MuPC’s UPC-to-C translator is based on the EDG front end, one of the most widely used compiler
front ends [Edi05]. MuPC started with EDG Version 2.45, which did not support UPC. MuPC
borrowed HP-UPC’s modification to provide UPC support. From Version 3.2 and up, EDG provides
native UPC syntax parsing (but only up to UPC 1.0 specification). MuPC has since released to EDG
Version 3.2.

The process of translating UPC code into ANSI C code consists of two phases, parsing and lowering.
In the parsing phase, the front end reads source files written in UPC, checks syntax and semantics
errors, and produces an IL (intermediate language) tree to represent the source program. The IL
tree is a high-level interpretation of the source program because it uses constructs corresponding
very closely to UPC constructs. All UPC language specific features are kept in their original form,
without being translated into equivalent C code. Then, in the lowering phase, the front end translates
the UPC IL constructs into ANSI C constructs. All UPC language specific features are implemented
using only ANSI C features. For example, a shared pointer is implemented using a C struct with
fields to represent thread, address, and offset. Shared memory operations are implemented using
get/put functions defined in the UPC runtime API. The lowered code can then be compiled using
any native C compilers and linked with the MuPC runtime library.

The EDG front end performs only the first phase and can only parse UPC 1.0 syntax. So the EDG
Version 3.2 code was modified to provide UPC 1.1 support and an IL lowering scheme to generate
ANSI C code. The work consisted of three parts.

First, the UPC syntax parsing code is isolated. Modifications needed by UPC 1.1 specific syntax
were applied to the isolated code. These included:

• Addition of predefined macros such as UPC STATIC THREAD and UPC DYNAMIC THREADS

• Addition of new UPC operators such as upc resetphase and upc affinitysize

• Deprecation of the shared [] void * type

Second, the UPC IL was extended to add new IL entries corresponding to the new additions in UPC
1.1. This guaranteed an accurate UPC 1.1 code interpretation that facilitates correct code generation.
By preserving source-correspondence information in the IL tree this modification also ensured that
appropriate debugging information is produced for UPC syntax errors.

Last, the UPC lowering code was rewritten with help from HP-UPC. The lowering phase was mod-
ified to conform to the new compile-time structures and functions provided by EDG Version 3.2. It
was also modified to facilitate some simple UPC code instrumentation. For example, MuPC pro-
vides a few routines that can be inserted in a UPC program to record remote memory accesses and

27

cache behavior. The lowering phase is able to translate these routines in source code to appropriate
runtime functions.

4.6 Performance characteristics

This section uses two home-grown synthetic microbenchmarks and the NAS Parallel Benchmark
suite [BBB94] to characterize the performance of the MuPC runtime system. Measurements were
obtained on a variety of parallel platforms and are compared with the performance of other UPC
implementations.

4.6.1 Synthetic benchmarks

The synthetic microbenchmarks used are:

• Streaming remote access measures the transfer rates of remote memory accesses issued by a
single thread, while other threads are idle. Four access patterns are measured: stride-1 reads
and writes, and random reads and writes.

• Natural ring is similar to the streaming remote access test, except that all threads form a
logical ring and read from or write to their neighbors at approximately the same time. This
benchmark is similar to the all-processes-in-a-ring test implemented in the HPC Challenge
Benchmark Suite [LDea05].

4.6.2 The UPC NAS benchmark suite

The UPC NAS benchmark suite used in this work was developed by the UPC group at George
Washington University [CEG02]. This suite is based on the original MPI+FORTRAN/C imple-
mentation of the the NAS Parallel Benchmark suite (NPB 2.4) [BBB94]. There are five kernel
benchmarks in the NPB suite. Every benchmark comes with a “naı̈ve” implementation and one or
more “optimized” implementations. The naı̈ve implementation makes no effort to incorporate any
hand-tuning techniques. The optimized implementations incorporate to various extents hand-tuning
techniques such as prefetching and privatized pointers-to-shared [CEG02]. This work measured the
performance of the naı̈ve version and the most optimized version. The class A workload was used as
the input size for all benchmarks. The five benchmarks are conjugate gradient (CG), embarrassingly
parallel (EP), Fourier transform (FT), integer sort (IS), and multigrid (MG).

4.6.3 Results

Measurements were obtained on two platforms, an HP AlphaServer SC SMP cluster and a Linux
cluster connected with a Myrinet network. For comparison purposes, the same benchmarks are also
run using Berkeley UPC on the Linux cluster and using HP UPC on the AlphaServer SC cluster.

The AlphaServer SC cluster has 8 nodes with four 667MHz Alpha 21264 EV67 processors per
node. The Linux cluster has 16 nodes with two Pentium 1.5GHz processors per node. The UPC
compilers used are MuPC V1.1, Berkeley UPC V2.0, and HP UPC V2.2. In all experiments, each
UPC thread is mapped to one processor. The cache in MuPC on each thread is configured to have
256×(THREADS-1) blocks with 1024 bytes per block. The cache in HP UPC on each thread is
configured to be 4-way associative, with 256×(THREADS-1) blocks and 1024 bytes for each block.

28

Synthetic benchmarks results

The results for the streaming remote access tests are presented in Figures 4.2 and 4.3. These tests
reveal the performance of fine grained accesses with a lightly loaded communication network. When
remote reference caching is not used, MuPC has comparable performance with Berkeley UPC.
Berkeley UPC is slightly better in read operations but MuPC outperforms it in write operations. It is
clear that caching helps MuPC in stride-1 accesses, whose transfer rates are significantly better than
the no-caching counterparts. But caching hurts the performance of random accesses, although not
significantly, due to cache miss penalties. Also note that caching helps HP UPC in stride-1 reads
but not in stride-1 writes. This is because the cache in HP UPC is a write-through cache. MuPC
achieves only 10−25% of HP’s performance in random accesses.

Figure 4.2: The streaming remote access results for platforms without caching

Figure 4.3: The streaming remote access results for platforms with caching

The results for the natural ring tests are presented in Figures 4.4 and 4.5. The communication
network is much more heavily loaded in these tests than in the streaming remote access tests. Both
MuPC and Berkeley UPC suffer from a performance degradation by a factor as large as 10. HP
UPC suffers from only a slight performance degradation. The observations about remote reference
caching still hold in these tests.

29

Figure 4.4: The natural ring test results for platforms without caching

Figure 4.5: The natural ring test results for platforms with caching

NAS benchmarks results

Figures 4.6 through 4.10 display the results for the NPB 2.4 benchmarks.

CG For the nonoptimized version, this benchmark scales very poorly on all systems. MuPC per-
forms about one order of magnitude better than Berkeley UPC on the x86 cluster and about 3 times
better on the AlphaServer. HP UPC performs about 70% faster than MuPC on the AlphaServer. For
the optimized version, the scalability is still poor for MuPC, HP UPC and Intrepid UPC, but the
overall performance of these systems improves 5-fold. Berkeley UPC shows an order of magnitude
improvement on both the x86 cluster and the AlphaServer. Berkeley UPC also achieves good scala-
bility for the optimized version. This result shows that at the current stage Berkeley UPC is superior
in handling unstructured fine-grain accesses. A cross-platform comparison shows that Intrepid UPC
running on the T3E is usually slow. This is partially because the T3E machine has the slowest pro-
cessors. However, since the T3E is very good at handling remote shared accesses, there should be
ample room for performance improvements.

EP The embarrassingly parallel benchmark requires few remote accesses. MuPC, HP UPC and
Berkeley UPC all exhibit nearly identical linear speedups on the x86 cluster and the AlphaServer.

30

Intrepid UPC cannot run this benchmark to completion.

FT On the x86 cluster, Berkeley UPC performs about 50% better than MuPC. They both exhibit
good scalability. Optimization increases the performance by 50% for Berkeley UPC and about
100% for MuPC so MuPC and Berkeley UPC have similar performance for the optimized version.
On the AlphaServer, the nonoptimized benchmark does not run to completion on Berkeley UPC.
HP UPC scales poorly. MuPC has the best performance. The optimized version increases the
performance for HP UPC by at least 4 times and doubles the performance for MuPC. Berkeley UPC
exhibits similar performance. Intrepid UPC cannot run this benchmark to completion.

IS This benchmark scales well in all cases. On the x86 cluster, MuPC exhibits a 30− 50% per-
formance edge against Berkeley UPC, for both nonoptimized and optimized implementation. Op-
timization doubles the performance in both cases. On the AlphaServer, HP UPC performs slightly
better than others for the nonoptimized version. HP UPC, MuPC and Berkeley UPC perform very
closely for the optimized version. Optimization at least doubles the performance for all three. Again,
this benchmark fails Intrepid UPC on the T3E.

MG On the x86 cluster, Berkeley UPC cannot run this benchmark with less than 8 UPC threads
because the problem size exhausts the available memory. When the number of threads is 8 or more,
Berkeley UPC performs about 50% better than MuPC for the nonoptimized version. Both MuPC
and Berkeley UPC benefit tremendously from optimization, with more than one order of magnitude
improvements in performance. The two perform similarly for the optimized implementation. On the
AlphaServer, HP UPC cannot run with fewer than 8 UPC threads because of memory limitations.
HP UPC performs best for the nonoptimized version. Berkeley UPC performs best for the optimized
version. All systems benefit by at least an order of magnitude from optimization, but HP UPC
scales poorly in this case. MuPC exhibits erratic performance for the nonoptimized versions on
the x86 cluster and AlphaServer because when the number of threads is 4 a large proportion of
the shared accesses are local shared accesses. The performance difference between remote shared
accesses and local shared accesses is obscured by the huge overall performance improvement after
optimization. Intrepid UPC running on the T3E shows good scalability for both the nonoptimized
and the optimized code. It benefits from optimization by more than one order of magnitude.

It has to be pointed out that the original NPB [BBB94] MPI-based benchmarks run about twice
as fast as the optimized UPC-based NPB codes on all three platforms. Part of this performance
difference may be attributed to the maturity of UPC compilers and run time systems. Another part
of this difference may be due to MPI’s fitness for the NAS benchmarks, though not all of them
are coarse-grained. The benchmarks used in this work were not written “from scratch” in the UPC
style but were translated from the MPI versions to UPC, so they do not necessarily take advantage
of the asynchronousness natural to UPC’s relaxed memory access mode but are more attuned to
the bulk synchronous style of MPI. Current UPC compilers do not exploit the greatest part of the
optimizations available by instruction reordering offered by UPC’s relaxed memory access mode.
Finally, distributed memory platforms such as the x86 cluster and the SC-40 were not designed to
minimize the costs of fine-grained accesses. Needed to resolve this question is further development
of compilers and run time systems, development of benchmarks suitable for fine grained computa-
tions, and new parallel architectures to facilitate the investigation of the partitioned shared memory
programming model.

4.7 Summary

MuPC is an open source runtime system for UPC. It is based on MPI and POSIX threads and
therefore is portable to most distributed memory and shared memory parallel systems. It consists

31

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 0 4 8 12 16 0 4 8 12 16

Threads

 0 4 8 12 16

GCC

HP

Berkeley

MuPC

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

M
o

p
s/

se
c

x86 cluster AlphaServer T3E

Figure 4.6: CG benchmark performance. Upper is the fully optimized version, lower is the nonop-
timized version. Note: Measurements for Berkeley UPC on the AlphaServer for the nonoptimized
version were collected using version 2.0.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 4 8 12 16

M
o

p
s/

se
c

x86 cluster

 0 4 8 12 16

Threads

AlphaServer

HP

Berkeley

MuPC

Figure 4.7: EP benchmark performance. This benchmark failed Intrepid UPC. Note: Measurements
for Berkeley UPC on AlphaServer were collected using version 2.0.

32

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 4 8 12 16 0 4 8 12 16

Threads

HP

Berkeley

MuPC

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

M
o

p
s/

se
c

x86 cluster AlphaServer

Figure 4.8: FT benchmark performance. Upper is the fully optimized version, lower is the nonop-
timized version. This benchmark failed Intrepid UPC. The nonoptimized version also failed with
Berkeley UPC on the AlphaServer. Note: Measurements for Berkeley UPC on the AlphaServer
were collected using version 2.0.

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 0 4 8 12 16

Threads

HP

Berkeley

MuPC

 0

 20

 40

 60

 80

 100

 120

 140

M
o

p
s/

se
c

x86 cluster AlphaServer

Figure 4.9: IS benchmark performance. Upper is the fully optimized version, lower is the nonopti-
mized version. This benchmark failed Intrepid UPC. Note: Measurements for Berkeley UPC on the
AlphaServer for the nonoptimized version were collected using version 2.0.

33

 0

 20

 40

 60

 80

 100

 120

 140

 0 4 8 12 16 0 4 8 12 16

Threads

 0 4 8 12 16

GCC

HP

Berkeley

MuPC

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

M
o

p
s/

se
c

x86 cluster AlphaServer T3E

Figure 4.10: MG benchmark performance. Upper is the fully optimized version, lower is the nonop-
timized version.

of a runtime library, a UPC-to-C translator, and a collective function library. This chapter described
the internals of the runtime library, which is the core of MuPC.

The UPC-to-C translator works as a front-end that translate UPC code into ANSI C code. A set
of UPC runtime API functions provide an interface between the translated code and the runtime
library. An optimization performed at the UPC source level is localizing shared references with
local affinity. These references are translated into regular memory accesses, bypassing the runtime
library. Other optimizations include a software cache fore remote accesses.

Each UPC thread is represented by two Pthreads at run time; one for computation and one for inter-
thread communication. The computation Pthread executes instructions in a ANSI C program, which
is translated from a UPC program. Accesses to non-local shared memory locations are transformed
to MPI messages and are dispatched to the communication Pthread for processing.

Most techniques used in MuPC implementation can also be applied to the implementations of other
PGAS languages. Since PGAS languages have similar shared memory abstraction and execution
model, they can share the same runtime system. In principle, for a PGAS language, as long as there
exists a translator that translates source code into C code then the MuPC runtime system can be
used as the runtime system for this language.

Performance results in this chapter compare several current UPC compilers with synthetic and ap-
plication benchmarks, showing that MuPC achieved comparable performance with other UPC im-
plementations. In the following chapters dedicated to performance modeling MuPC faciliates more
performance benchmark development. MuPC together with other UPC implementations are also
used to validate the performance modeling results.

34

Chapter 5

A study of UPC remote reference cache

The global address space of most UPC platforms is implemented as a software layer on the top of
distributed memory. This layer creates a “memory wall” that is orders of magnitude larger than
the one found between regular memory systems and CPUs. Caching is a natural choice for hiding
the very long latency of remote shared accesses. So far, however, only MuPC and HP-UPC have
implemented remote reference caching mechanisms. There are probably three reasons why other
UPC implementations do not do the same.

First, direct hardware support for remote access caching is uncommon on most distributed memory
systems. UPC implementations must use software caches. The overhead of a software cache is much
larger than that of a hardware cache. There has never been a thorough study of the effectiveness
of any of the current UPC cache systems to justify this overhead. Second, a cache is just a way to
increase memory throughput. It in no ways improves the actual memory latency. The ability of a
cache to increase memory throughput heavily depends on reference patterns of applications. The
UPC programming model makes it easy to write programs with irregular reference patterns, which
are typically cache unfriendly. Many UPC implementers therefore would rather focus on reducing
the inherent shared memory latency, or reducing the number of remote accesses with compiler
optimization techniques. Third, cache coherence has always been a hurdle in distributed and parallel
computing. The cost of enforcing cache coherence for a UPC software cache is prohibitive. The
UPC memory model does allow cache incoherence under the relaxed consistency mode (both MuPC
and HP-UPC provide non-coherent cache), but it requires non-trivial efforts from programmers to
understand this memory model. So even when a cache is provided, it is considered to be an advanced
feature that only expert-level UPC programmers can safely handle.

Nonetheless, among all productivity-improving techniques, remote reference caching is the easiest
and cheapest to implement. Its performance deserves a careful investigation from the performance
perspective to quantify its effectiveness and to illustrate the trade-offs in cache design. There are two
objectives in such an investigation: To explain the cache effects not accounted for in the run time
prediction using the performance model given in Section 6, and to provide insights for choosing
good cache parameters for UPC programs with various reference patterns.

This chapter uses a synthetic global data access benchmark to investigate the interactions between
shared memory access characteristics (namely spatial locality and temporal locality) and cache con-
figurations. Important discussions are given about designing cache-friendly programs and choosing
optimal cache configurations based on an application’s shared memory access characteristics.

So far, performance measurements reported in this report for cache-enabled MuPC and HP-UPC
were obtained using default cache parameters. For example, in HP-UPC cache block size is 1024
bytes, the number of cache sets is 256, and cache associativity is 4. There is no particular justifica-

35

tion for these settings because little is known about how cache configuration affects the performance
of applications with different reference patterns.

Cache performance analysis is much more difficult than building the software cache itself. Tradi-
tional approaches rely on simulations and execution trace analyses. These approaches usually use
benchmark suites that contain real-world applications. The results are applicable only to applica-
tions with similar characteristics. UPC is still in its early adoption stage. There is not yet a mature
and large code base from which application benchmark suites can be built. Tools for simulation and
trace generation are still in early development stage [SLB+06]. To overcome these difficulties, this
study uses the Apex-MAP synthetic benchmark [SS05, SS04] developed by the Future Technology
Group at the Lawrence Berkeley National Lab. Apex-MAP is a synthetic global data access bench-
mark for scientific computing. It can generate performance probes for the whole range of spatial
and temporal locality for any UPC platforms [SS05]. In this section, Apex-MAP is used to analyze
remote reference caching in MuPC and HP-UPC. These results and methodology can be a guide for
selecting optimal cache parameters based on an application’s remote reference patterns.

5.1 An overview of MuPC cache and HP-UPC cache

The remote reference cache in MuPC is direct-mapped. A small fully associative victim cache is
used to reduce conflict misses. Remote writes are also cached (write-back), but coherence is not
maintained. A more detailed description of the caching mechanism can be found in Section 4.4.
Cache parameters are set in the user’s MuPC configuration file (mupc.conf).

The cache in HP-UPC supports remote reads only. Writes are not cached. Its associativity is tunable.
There is no victim cache. Cache parameters are set by using environment variables.

The following are the specifications for the two caches:

MuPC HP-UPC
Block size 64–2048 bytes 64–8192 bytes
Cache sets 16–1024 × THREADS Unlimited
Associativity direct-mapped 1–128

5.2 Apex-MAP

Apex-MAP is an architecture independent memory performance benchmark. It is based on the
assumption that the memory access patterns of scientific applications can be abstracted using three
memory hardware independent factors: data set size, spatial locality, and temporal locality. The
first two factors are easy to quantify. The temporal locality is determined by the re-use distance,
which is approximated using the power distribution function. In other words, the addresses of a
sequence of memory accesses comply with the distribution A = a

1
K , where a is a random number

and K is the temporal locality quantifying parameter. Choosing the power distribution function
to approximate temporal re-use is appropriate because the distribution is scale-invariant. A single
parameter therefore is enough to characterize temporal locality without regard to the memory size.

Apex-MAP defines three parameters in total:

• M is the data set size, which is the total amount of memory that may be accessed in one
execution.

36

• L is the vector size (double words) of an access. This parameter determines the spatial lo-
cality. The larger L is, the more double words are read in one access sequence, and the more
spatial locality is exhibited.

• K is the shape parameter in the power distribution function. It is a value between 0 and 1.
The lower the value, the more temporal locality is exhibited. K = 1 means a random access
pattern, and K = 0 means repeated accesses to one location.

Apex-MAP was designed to probe the performance of the whole memory system. To accommodate
the special needs in studying remote reference caching in UPC, this work uses a modified version of
the original Apex-MAP program. The first and the most important modification is the exclusion of
local shared accesses. The original Apex-MAP does not differentiate between the remote and local
shared accesses. It happens to have an unfortunate property that increasing the temporal re-use (a
lower K value) also increases the number of local shared accesses. Since both of the UPC software
caches under investigation are designed only for remote accesses, continuously increasing the local
accesses would obscure the analysis. The Apex-MAP code is modified so that the overwhelming
majority of the accesses made during benchmarking are to remote locations. This modification also
makes sure that the shared memory locations accessed by remote references are balanced among
participating threads: No locations are accessed by multiple threads at the same time. This ensures
the probes do not generate hot-spots in the shared memory, and the effects of memory contention
are not going to interfere with the observations. The second modification deals with result reporting.
The original benchmark reports an accumulated bandwidth, which is defined to be the sum of the
bandwidths of all threads. But this study is only concerned about the effectiveness of the remote ref-
erence caches, which is independent of the number of threads since the software cache is replicated
on each thread. Therefore, the modified Apex-MAP reports an average per-thread bandwidth.

Only read accesses with unit stride are measured by the benchmark. This is the most common type
of remote access in UPC applications.

5.3 Experiments and results

Experiments were conducted using MuPC on a Linux cluster with a Myrinet interconnect, and HP-
UPC on a AlphaServer SC-40 SMP cluster. The size of shared memory probed (M) is constant
during measurements and is at least 32 times larger than the cache size. Four factors are carefully
controlled during the experiments. Parameters L and K are used to control spatial and temporal lo-
cality. Cache block size and the number of cache sets per thread are used to control cache geometry.
These factors range over the values given in the following table.

Factor Levels
L 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
K 1.0, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001
Block size 64, 128, 256, 512, 1024, 2048 (bytes)
Cache sets per thread 16, 32, 64, 128, 256, 512, 1024

Each combination of the four factors is benchmarked, resulting in 11 × 10 × 6× 7 = 4620 data
points on each platforms. Each point is measured at least 16 times and the average is taken. All
experiments are designed to avoid interference from shared memory contention. The number of

37

cache sets in both MuPC and HP-UPC scales with the number of threads (See Section 4.4). So the
number of UPC threads is not a factor contributing to bandwidth readings.

Measurement results are plotted against the four factors respectively, giving the whole picture of
caching effectiveness from multiple perspectives. In all plots the logarithmic values (base 10) of ob-
served bandwidths are actually used because the difference between the worst and the best readings
is more than two orders of magnitude.

Plots obtained for MuPC cache and for HP-UPC cache are very similar. In the following discussions
only MuPC cache plots are displayed. But the conclusions apply to HP-UPC as well. Associative
cache is a feature specific to HP-UPC, so it is discussed separately in Section 5.3.5.

5.3.1 The L-K perspective

The readings are plotted against L-K combinations. Selected curves are presented in Figure 5.1.
In each of the six plots, there are 11 groups of curves. Each group is corresponding to a certain L
value. Within each group 10 data points are plotted for each curve, corresponding to 10 K values.
For example, the group labeled in the X-axis with “32-[1:0.001]” were obtained using L = 32(double
words) and K varying from 1.0 to 0.001. Each group has four curves, corresponding to four cache
settings: A fixed cache block size with 16, 64, 256, and 1024 cache sets, respectively. The six plots
are different only in the cache block size, which are fixed at 64, 128, 256, 512, 1024, and 2048,
respectively in each of these plots.

Remote reference caching improves memory throughput significantly in most cases. The average
bandwidth without caching, as measured by the Baseline microbenchmark described in 6.4, is 0.16
MB/sec. The base 10 logarithmic value is −0.80. Only a very small number of data points in the
plots are below this level. Those few data points are located in the lower left corner in each plot,
corresponding to random access patterns (K = 0.25) with the shortest access vector (L = 1). In all
other cases caching yields improvements of 50% to more than two orders of magnitude.

The four curves in each L-K group almost fully overlap. This is a strong indication that the number
of cache sets has little effect on remote memory bandwidth and it is independent of other factors.
There is only one exception: In the first plot when L is 1024 the curves for small numbers of cache
sets (16 and 64) are much flatter than the other two. The two low performance curves are results for
very small caches with only 64-byte cache blocks and 16 or 64 cache sets. When large vectors are
accessed (L = 1024) with non-negligible temporal reuse (K ≤ 0.1), too many cache misses due to
capacity conflicts inhibit the bandwidths.

Among the 11 groups in each plot, those on the left side tend to have a greater span than those on
the right side. This means that bandwidth is more sensitive to temporal locality when L is small
than it is when L is large.

Going from left to right and top to bottom, cache block size doubles for each graph but bandwidths
for high temporal locality (the upper ends of curves) remains roughly the same across the six graphs.
Bandwidths for low temporal locality (the lower ends of curves) improve significantly with the
doubling of cache block size, but most likely this is the contribution of the increasing of L factor.

38

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=64 blocks=16
cache: blocksize=64 blocks=64
cache: blocksize=64 blocks=256
cache: blocksize=64 blocks=1024

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=128 blocks=16
cache: blocksize=128 blocks=64
cache: blocksize=128 blocks=256
cache: blocksize=128 blocks=1024

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=256 blocks=16
cache: blocksize=256 blocks=64
cache: blocksize=256 blocks=256
cache: blocksize=256 blocks=1024

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=512 blocks=16
cache: blocksize=512 blocks=64
cache: blocksize=512 blocks=256
cache: blocksize=512 blocks=1024

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=1024 blocks=16
cache: blocksize=1024 blocks=64
cache: blocksize=1024 blocks=256
cache: blocksize=1024 blocks=1024

-2

-1

 0

 1

 2

 3

10
24

-[
1:

0.
00

1]

51
2-

[1
:0

.0
01

]

25
6-

[1
:0

.0
01

]

12
8-

[1
:0

.0
01

]

64
-[

1:
0.

00
1]

32
-[

1:
0.

00
1]

16
-[

1:
0.

00
1]

8-
[1

:0
.0

01
]

4-
[1

:0
.0

01
]

2-
[1

:0
.0

01
]

1-
[1

:0
.0

01
]

lo
g 1

0B
an

dw
id

th

L-K combinations

cache: blocksize=2048 blocks=16
cache: blocksize=2048 blocks=64
cache: blocksize=2048 blocks=256
cache: blocksize=2048 blocks=1024

Figure 5.1: Logarithmic bandwidths against L-K combinations

5.3.2 The K-L perspective

The K-L view presented in Figure 5.2 are plots of exactly the same set of data as plotted in the
L-K view. The difference is that data points are categorized using K values this time. There are 10
groups of curves in each graph, corresponding to 10 K values benchmarked. Within each group are
points corresponding to the 11 L values. The settings for cache block size and the number of cache
sets in all six plots are the same as before.

There is a plateau on each curve. The plateaus are longer for smaller cache block size and shorter
for larger cache block size. Within each graph the plateaus are of the same length for all groups.
The plateaus are because of the saturation of the cache. Small caches are saturated easily with small
L values (so they have longer plateaus) and large caches can accommodate much larger L values.

39

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=64 blocks=16
cache: blocksize=64 blocks=64
cache: blocksize=64 blocks=256
cache: blocksize=64 blocks=1024

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=128 blocks=16
cache: blocksize=128 blocks=64
cache: blocksize=128 blocks=256
cache: blocksize=128 blocks=1024

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=256 blocks=16
cache: blocksize=256 blocks=64
cache: blocksize=256 blocks=256
cache: blocksize=256 blocks=1024

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=512 blocks=16
cache: blocksize=512 blocks=64
cache: blocksize=512 blocks=256
cache: blocksize=512 blocks=1024

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=1024 blocks=16
cache: blocksize=1024 blocks=64
cache: blocksize=1024 blocks=256
cache: blocksize=1024 blocks=1024

-2

-1

 0

 1

 2

 3

0.
00

1-
[1

:1
02

4]

0.
00

25
-[

1:
10

24
]

0.
00

5-
[1

:1
02

4]

0.
01

-[
1:

10
24

]

0.
02

5-
[1

:1
02

4]

0.
05

-[
1:

10
24

]

0.
1-

[1
:1

02
4]

0.
25

-[
1:

10
24

]

0.
5-

[1
:1

02
4]

1-
[1

:1
02

4]

lo
g 1

0B
an

dw
id

th

K-L combinations

cache: blocksize=2048 blocks=16
cache: blocksize=2048 blocks=64
cache: blocksize=2048 blocks=256
cache: blocksize=2048 blocks=1024

Figure 5.2: Logarithmic bandwidths against K-L combinations

The heights of the plateaus reflect the best bandwidths of various reference patterns (K-L combina-
tions) under different cache settings. Larger cache block sizes lead to higher plateaus. On the other
hand, the opposite ends of the plateaus, corresponding to low spatial locality, do not change with the
increasing of cache block size. Therefore, accesses with high levels spatial reuse need large cache
block size, while accesses with little spatial reuse benefit little from large cache blocks.

The number of cache sets does not matter, as observed before.

5.3.3 The cache block size perspective

Figure 5.3 was obtained by plotting the logarithmic values of bandwidth measurements against
cache geometry. Data points are categorized using cache block sizes. There is one graph for each of
the six L values. Going from left to right and top to bottom, the L value quadruples for each graph.
Four curves are plotted each graph, corresponding to 4 levels of temporal locality (K = 1, K = 0.1,
K = 0.01, and K = 0.001).

40

In each graph, access patterns with K > 0.1 show little difference in their performance. Their curves
appear at the bottom. Performance improvements achieved when K ≤ 0.01. Across graphs, access
patterns with no spatial reuse (L = 1) show the lowest bandwidths. As long as there is a little spatial
reuse (L = 4), the bandwidths improve about one order of magnitude. But the improvements due
to L are very limited after this; the positions of the four curves on the L = 64 graph are almost the
same with those on the L = 1024 graph.

Long cache blocks bring significant improvements only for cases where temporal reuse is poor (K
close to 1) but spatial reuse is strong (L > 64). When L is not large, however, all four curves on
each graph are almost flat. This proves that temporal locality (the K value) is insensitive to cache
geometry. Given large enough cache blocks, accesses with substantial spatial locality can achieve
good bandwidths regardless of their temporal reuse characteristics.

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1 K=1
L=1 K=0.1
L=1 K=0.01
L=1 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=4 K=1
L=4 K=0.1
L=4 K=0.01
L=4 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=16 K=1
L=16 K=0.1
L=16 K=0.01
L=16 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=64 K=1
L=64 K=0.1
L=64 K=0.01
L=64 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=256 K=1
L=256 K=0.1
L=256 K=0.01
L=256 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1024 K=1
L=1024 K=0.1
L=1024 K=0.01
L=1024 K=0.001

Figure 5.3: Logarithmic bandwidths against cache blocksize and set numbers

41

5.3.4 The cache table size perspective

Categorizing the same set of data points using the number of cache sets per thread yields Figure 5.4.
There are 7 groups of curves on each graph corresponding to the 7 levels of cache table size. The
six graphs are corresponding to the six L levels, and the same four levels of K are plotted on each
graph.

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1 K=1
L=1 K=0.1
L=1 K=0.01
L=1 K=0.001

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=4 K=1
L=4 K=0.1
L=4 K=0.01
L=4 K=0.001

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=16 K=1
L=16 K=0.1
L=16 K=0.01
L=16 K=0.001

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=64 K=1
L=64 K=0.1
L=64 K=0.01
L=64 K=0.001

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=256 K=1
L=256 K=0.1
L=256 K=0.01
L=256 K=0.001

-2

-1

 0

 1

 2

 3

10
24

-[
64

:2
04

8]

51
2-

[6
4:

20
48

]

25
6-

[6
4:

20
48

]

12
8-

[6
4:

20
48

]

64
-[

64
:2

04
8]

32
-[

64
:2

04
8]

16
-[

64
:2

04
8]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1024 K=1
L=1024 K=0.1
L=1024 K=0.01
L=1024 K=0.001

Figure 5.4: Logarithmic bandwidths against cache set numbers and blocksize

The shapes of curves are different among the six graphs. However, the shapes of the 7 groups in
each graph are the same. This means cache table size per thread is a negligible factor in determining
bandwidth.

When L ≤ 16, increasing the cache block size has no benefits. It even slightly degrades the band-
widths for low temporal reuses. As L grows, increasing the cache block size boosts the bandwidth,
especially for accesses with low temporal reuse. But the benefit brought by increasing the cache
block size is not long-lasting; it stops when the cache block size grows beyond the value of L.

42

5.3.5 Cache associativity

All discussions above apply to direct-mapped cache. HP-UPC (V2.3) provides associative cache.
The associativity is tunable at run time through an environment variable. Associative cache is
usually used to improve the hit rate by reducing conflict misses. In HP-UPC (same with MuPC)
every thread has a designated chunk in the cache table, so memory locations on different threads
are mapped to separate chunks. This avoids cache line conflicts among threads and largely offsets
the benefits of an associative cache. Figure 5.5 and Figure 5.6 clearly confirm this conclusion.
Figure 5.5 shows bandwidth measurement results for a direct-mapped cache and Figure 5.6 for a 8-
way associative cache. The curves between corresponding settings are strikingly similar, indicating
that associativity has little effect on hit rate.

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1 K=1
L=1 K=0.1
L=1 K=0.01
L=1 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=4 K=1
L=4 K=0.1
L=4 K=0.01
L=4 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=16 K=1
L=16 K=0.1
L=16 K=0.01
L=16 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=64 K=1
L=64 K=0.1
L=64 K=0.01
L=64 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=256 K=1
L=256 K=0.1
L=256 K=0.01
L=256 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1024 K=1
L=1024 K=0.1
L=1024 K=0.01
L=1024 K=0.001

Figure 5.5: Logarithmic bandwidths: HP-UPC with direct-mapped cache

43

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1 K=1
L=1 K=0.1
L=1 K=0.01
L=1 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=4 K=1
L=4 K=0.1
L=4 K=0.01
L=4 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=16 K=1
L=16 K=0.1
L=16 K=0.01
L=16 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=64 K=1
L=64 K=0.1
L=64 K=0.01
L=64 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=256 K=1
L=256 K=0.1
L=256 K=0.01
L=256 K=0.001

-2

-1

 0

 1

 2

 3

20
48

-[
16

:1
02

4]

10
24

-[
16

:1
02

4]

51
2-

[1
6:

10
24

]

25
6-

[1
6:

10
24

]

12
8-

[1
6:

10
24

]

64
-[

16
:1

02
4]

lo
g 1

0B
an

dw
id

th

Cache geometry

L=1024 K=1
L=1024 K=0.1
L=1024 K=0.01
L=1024 K=0.001

Figure 5.6: Logarithmic bandwidths: HP-UPC with 8-way associative cache

5.4 Conclusions

Several important conclusions can be drawn from the Apex-MAP benchmarking experiments.

1. Overall, remote reference caching improves remote memory throughput significantly. If an
application performs a large number of remote reads and little remote writes, then it is always
beneficial to use caching. The benefits of caching in applications with lots of remote writes is
more problematic. Caching may have negative effects because of the cost of frequent cache
invalidation when the writes exhibit poor temporal locality.

2. The number of cache sets per thread is a negligible factor. By design the MuPC cache supports
up to 1024 cache sets per thread, but there is little evidence to justify more than 64 cache sets
per thread. However, it must be noted that this conclusion only applies to programs whose
remote accesses are nearly all remote reads. This is because the MuPC cache caches both

44

reads and writes, and conflict misses are much more expensive for writes than for reads. The
write miss penalty includes the cost of moving a whole dirty block back to the memory.

3. The length of a cache block is a significant factor. Cache blocks with less than 64 bytes are
not very useful. Long cache blocks are needed for long vector accesses, but cache blocks
longer than the vector length are unnecessary.

4. Temporal locality is a very significant factor affecting the remote memory bandwidth. Ap-
plications with high levels of temporal reuses easily gain orders of magnitude bandwidth
improvements with caching.

5. Spatial locality is easy to exploit with large cache blocks. Since temporal reuse is a special
form of spatial reuse, applications that exhibit little temporal reuse may still exhibit spatial
reuse. One example are the applications that make random but clustered remote accesses. No
temporal reuse is observed in these applications. But if we treat a whole cache block as a
reference unit then the cost of each individual access in the block is amortized due to spatial
reuse. Therefore, setting large cache block size always improves the performance of this type
of applications.

6. Cache associativity is virtually useless in improving hit rate. A direct mapped cache works
just as well as an 8-way associative cache. Actually, from V2.4 on HP-UPC has removed this
feature, keeping only a simple direct mapped cache.

These conclusions have important implications on how to design cache-friendly UPC programs,
as well as on how to tune cache settings at run time to achieve optimal performance based on a
program’s remote access pattern.

A well-designed UPC program should try to minimize the need for remote data. Then, for those
inevitable remote accesses it should maximize temporal reuses. If this is not possible then it should
perform clustered remote accesses (so spatial reuse is high) as much as possible and then use large
cache blocks to exploit the benefits. Programs with many remote writes should consider using large
cache tables to mitigate conflict miss penalties.

Theoretically, at run time an optimal cache configuration can be set based on the memory access
characteristics of the program to be run, because the Apex-MAP benchmarking results cover all
combinations of a wide range of temporal and spatial locality. In practice, however, the correlation
between a program’s temporal locality and the L and K parameters defined in Apex-MAP is not
always obvious. One limitation of the Apex-MAP tool is that it does not provide an easy way to
deduce the corresponding L and K values for a given access pattern. A brute force method is to use
a statistical back-fitting procedure to find the parameters for a given program [SS04]. The program
is run with various data set sizes. A large L−K space is then explored using Apex-MAP, with the
sizes of probed memory being set to according program data set sizes. The run times obtained from
running the program are statistically compared with those produced by Apex-MAP under various
L−K combinations, to find the exact values of L and K.

These procedures are too complicated for practical uses. For application kernels with simple access
patterns the exact values of L and K are not important. Qualitative analysis is usually good enough
to provide guidelines for choosing optimal cache settings. The example in the next section illustrates
this point.

45

5.5 Example

The UPC matrix multiply kernel has a very regular access pattern. The naı̈ve O(N 3) implementation
discussed in Section 7.2 with cyclic striped distribution of input matrices exhibits very strong spatial
reuse because remote columns are accessed as vectors. The remote columns are accessed in a round-
robin fashion so the temporal distance is very long, implying poor temporal locality.

Based on the earlier discussion, the rule of improving performance for this type of access patterns is
to use a cache with long cache blocks to take advantages of the vector accesses. But there is another
alternative. Since temporal locality is a more significant factor than spatial locality in affecting
remote access performance, using a different implementation that is targeted to exploit temporal
reuse should be more effective than relying solely on the cache.

The matrix multiply kernel is re-written to take the following form:

shared [N] double A[N][N];
shared double B[N][N];
shared [N] double C[N][N];

// Initialize matrix C to all 0’s.

for(j=0; j<N; j++) {
for (k=0; k<N; k++) {

upc_forall(i=0; i<N; i++; &A[i][0]) {
C[i][j] += A[i][k]*B[k][j];

}
}

}
upc_barrier;

The upc forall loop is moved into the innermost level but still distributes work based on the affini-
ties of the rows of matrix A. In this implementation the local rows of matrix A are accessed in a
round-robin fashion. The remote columns of matrix B are now accessed in a way such that each
column is used repeatedly to multiply with all the rows in A before going to the next column. Ta-
ble 5.1 show the run times and cache miss rates of running the two implementations using different
sizes of cache blocks.

Cache block size (byte)
no cache 256 512 1024 2048
second second miss rate second miss rate second miss rate second miss rate

na ı̈ve 415.86 297.96 56.08% 115.83 19.48% 5.67 0.03% 4.16 0.01%
temporal 437.66 10.88 1.14% 7.64 0.36% 6.05 0.03% 5.93 0.01%

Table 5.1: Running two implementations of the matrix multiply kernel using MuPC remote refer-
ence cache. The naı̈ve code exploits remote access spatial reuse and the temporal code exploits
remote access temporal reuse. Input matrices are 400× 400 in dimension with floating point type
elements. The number of cache sets used in all experiments is fixed at 64.

The results confirm with the previous expectation. Without remote reference caching both imple-
mentations take about the same amount of time. But when using a cache with only small cache

46

blocks (256 bytes), the temporal implementation run time drops by more than one order of mag-
nitude. The cache miss rate is only 1.14% while the naı̈ve code has more than a 50% miss rate.
The run time and the miss rate for both continue to fall as the cache block size doubles. Once the
cache block size reaches 1024 bytes and above, the two implementation have virtually no difference
in terms of the cache miss rate. This is because at this time the cache capacity is so big that a
substantial portion of an input matrix can reside in the cache without being evicted due to capacity
conflicts, even when the columns of the matrix are accessed with long temporal distance.

Note that with long cache block sizes the temporal implementation takes more time to finish than
the naı̈ve implementation, though their miss rates are the same. The explanation is, once the most
part of the remote access cost is mitigated by caching, the cost of local accesses becomes important.
The column-major accesses of matrix A are unfriendly to the CPU cache, thus increases the total
run time.

47

Chapter 6

Performance modeling for PGAS
languages

While substantial efforts have gone into PGAS language designs and implementations, little work
has been done to model the performance of these languages. At the first PGAS Programming
Models Conference [PGA05] and at the 5th UPC Developers Workshop [Geo05], both held at the
end of 2005, the need for a performance modeling methodology for PGAS languages, especially for
UPC, was expressed many times by application developers and language developers.

This work is the first to address the demand for an application level performance model for PGAS
languages. UPC is chosen to be the representative of PGAS languages and the target for perfor-
mance model validation.

This study focuses on the performance of fine-grain shared memory accesses in an execution en-
vironment with relaxed memory consistency. This chapter first investigates the UPC programming
model to isolate the inherent factors that complicate performance modeling. Then an approach is
proposed to describe the interactions between a UPC platform and UPC applications. The UPC
platform is abstracted into a small set of features and then these features are mapped onto the
shared references in an application to give a performance prediction. Microbenchmarks are given
to quantify the set of UPC platform features, and the principles of a dependence-based algorithm
to characterize shared references are also given. Finally, the performance model is validated using
three simple UPC programs.

This chapter starts with a review of important performance models for message passing and shared
memory communications. Then, a few features of the UPC programming model that have impli-
cations to UPC performance will be reviewed to explain why they defeat efforts of modeling UPC
performance using existing models. This section is followed by discussions on platform abstraction
and application analysis techniques used in this work. Next, microbenchmarks designed for char-
acterizing a UPC platform are discussed in detail, followed by mathmetical equations to predict run
time and characterize concurrency. At the end of this chapter there is a discussion about extending
the performance modeling methodology to other PGAS languages, such as Co-Array Fortran and
Titanium.

6.1 Performance modeling of parallel computing

Over the past decade many performance models for parallel computing have been proposed. Since
MPI and clusters are so widely used, the majority of these performance models target point-to-

48

point communication and are based on network properties and message sizes. Models of this kind
include BSP [GV94] and LogP [CKP+93], and many variations [DDH97, HK96, AISS95, IFH01,
MF98, CS03, HHS+95]. The “check-in, check-out” (CICO) performance model [LCW93] has been
proposed for the shared memory programming model but it is only applicable to cache-coherent
architectures. None of these models are suitable for UPC because mechanisms employed by UPC,
such as the global address space, fine-grain references, and implicit communication, are not captured
by these models.

6.1.1 Models for point-to-point communication

The LogP model [CKP+93] was developed in the early 90’s. It defines a simple abstraction of net-
work interconnects found in most modern parallel machines, yet it is accurate enough to predict the
communication cost for message-passing parallel programs. The LogP model captures the most im-
portant details of an interconnect using four parameters: L: An upper bound on the cost of one-word
message transfer latency; o: The amount of time a processor is tied up in handling messages and
cannot do other work; g: The reciprocal of the effective per-processor communication bandwidth;
and P: The number of processor/memory module. The cost of a point-to-point message transfer is
charged with cost: os + w×max{g,o}+ L + or, where w is the message size in words. The key
point of the LogP model is that it suppresses system specific information including network topol-
ogy, message buffering, routing algorithms, local memory interaction, and so on. All of these are
distilled down to the L, o, and g parameters.

The simplicity of the LogP model makes it less accurate for systems where message size, synchro-
nization, network contention, memory hierarchy and middleware costs substantially affect perfor-
mance. To capture these effects, a variety of extensions have been proposed, each dealing with one
of these aspects. For example, the LogGP model [AISS95] extends LogP with an additional pa-
rameter G, which accounts for the cost of long messages. A w-word long message is then charged
with os +w×G+L+or. Based on this, the LoGPC model [MF98] and the LogGPS model [IFH01]
were proposed to incorporate network contention costs for irregular communication patterns and
synchronization costs needed by MPI in sending long messages, respectively. The LoGPC model
captures network contention using a variation of the M/G/1 queuing system. The LogGPS model
captures the cost of extra REQ/ACK synchronization messages used by many MPI implementations
to send very long messages.

In more recent distributed shared memory (DSM) machines, communication is usually off-loaded
to a communication controller so that the processor is free to achieve greater concurrency. The
parameter o in the LogP model no longer applies in this case. Holt, et al. [HHS+95] remedy this by
changing the meaning of o to be the cost due to the occupancy of the communication controller, the
time during which the controller is tied up handling a message and cannot process others.

The convergence of DSM machines to clusters of SMPs requires a new formulation of how the
memory hierarchy affects the cost of message passing. While previous models are hardware-
parameterized models, they fall short in this case because the effects of the memory hierarchy are
mostly determined by the behavior of software that tries to exploit the hierarchy. Two software-
parameterized models, the Memory logP model [CS03] and the lognP model [CG04], relate the
cost of message passing with local memory reference patterns. In these two models, the cost of a
message transfer is also a function of the distribution pattern of data that constitute the message.
Although the nomenclature of the parameters is similar to that in the LogP model, some parameters
have different meanings in the two models. The parameter o is now the cost of transferring an ide-
ally distributed message, l represents the cost beyond o due to non-contiguous distribution, and g
and P are the same as in LogP.

49

The lognP model is a generalization of the Memory LogP model. The memory system is generalized
using the concept of middleware. Multiple layers of middleware are possible. The parameter n
in this model stands for the number of implicit transfers along the data transfer path between two
endpoints. For example, if the memory system is regarded as the only layer of middleware, then n =
3; corresponding to three implicit transfers, local memory to network interface, network transfer,
and network interface to local memory. Both models assume g = o, thus the total cost of a message
transfer is given by w× (o1 + l1 +o2 + l2 +o3 + l3).

6.1.2 A model for shared memory communication

Performance models based on the shared memory programming model are far less mature than the
ones for message passing. The check-in, check-out (CICO) model [LCW93] is one worth mention-
ing. The CICO model is for cache-coherent shared memory computers. In this model communi-
cation arises only from cache misses and invalidation. The model annotates points in a program at
which data moves in or out of cache. The communication cost is determined by the total amount of
data transfered at these points.

The CICO model applies to shared memory programming on cache-coherent shared memory ma-
chines only. For shared memory programming on other architectures where the cache is not the only
latency tolerance mechanism and/or the cache is noncoherent (e.g. UPC on DSMs), this model is not
applicable because there might not be clear check-in and check-out points (for example, pipelined
message transfers), and the communication cost is determined by multiple factors in addition to
transfer sizes.

6.2 The UPC programming model

This section discusses some conspicuous features of the UPC programming model that compli-
cate performance modeling. Communication in UPC is expressed implicitly as references to shared
memory. This can be implemented in many ways, depending on the architecture. Although remote
references are often implemented by messages, it is not realistic to model references using point-
to-point communication because a reference may correspond to multiple messages and this corre-
spondence varies from one implementation to another. The communication cost ultimately depends
on both hardware-specific factors such as memory bandwidth, network bandwidth and latency, and
program-specific factors such as reference patterns and data affinity.

The UPC programming model encourages fine-grained accesses. That is, references to scalar shared
objects largely dominate communication. Given the increasing gap between local memory band-
width and network bandwidth, it is reasonable to expect compilers and runtime systems to pursue
aggressive latency avoidance and tolerance techniques. These techniques typically involve code
transformations that change the number, order, and form of the shared references in the original
program. Performance prediction based only on nominal access latency and the number of refer-
ences leaves too many alternatives for explanation and is not accurate.

UPC has a memory consistency model in which references may be either strict or relaxed. Strict
references are executed in program order and do not lend themselves to aggressive optimizations,
but relaxed references offer many opportunities for optimizations. From a performance perspective,
a practical UPC program should consist of a majority of relaxed references. Each compiler and
runtime environment applies a different set of optimizations. Without detailed information about a
particular implementation, it is difficult to model performance.

50

In summary, modeling UPC performance is challenging because its programming model is so far
removed from the architectural model on which it is usually implemented. In addition, the con-
nection between language constructs (e.g., remote references) and data movements (e.g., messages)
is blurred by compiler and runtime optimizations. To tackle this problem, this work takes an ap-
proach based on platform benchmarking and dependence analysis. Platform benchmarking uses
microbenchmarks to quantify a UPC platform’s ability to perform certain common optimizations
and dependence analysis determines which shared references in a code are potentially optimizable.

Above arguments about performance modeling challenges and solutions are also applicable to other
PGAS languages, particularly Co-Array Fortran and Titanium. These languages and UPC share the
same programming model, which determines that the performance of a program in most cases is
reflected by the performance of shared memory accesses. Thus the same modeling approach that
combines platform benchmarking and dependence analysis is suitable to these languages too.

6.3 Platform abstraction

The performance of a UPC program is determined by platform properties and application charac-
teristics. A UPC platform can be characterized by two aspects: How fast the communication layer
performs shared memory accesses and synchronization and how aggressively the UPC compiler
and the runtime system optimize shared references. The baseline performance of a UPC platform,
assuming no optimizations are done to shared memory accesses, can be characterized using param-
eters such as scalar access latency, shared access overhead, and average barrier cost. To characterize
optimizations, internal knowledge about the particular UPC compiler and runtime system is needed
but this is not always available. Analyses in this section show that a small set of optimizations that
compilers and runtime systems might possibly perform can be abstracted. Then a set of correspond-
ing microbenchmarks is used to test a particular platform’s ability to perform these optimizations.

On the other hand, application parameters capture the effect of fine-grain reference patterns on the
performance of a UPC computation. This work shows how to group shared memory accesses into
categories that are amenable to the set of optimizations abstracted from studying UPC platforms. A
UPC computation is characterized by the occurrences of each category. Combining this information
with the platform measurements produces a performance prediction.

This section describes how to abstract UPC platform behaviors and the design of the microbench-
marks used to capture this abstraction. This section also discusses a dependence-based approach to
parameterizing shared memory references in UPC applications.

Fine-grain access optimization is expected to be the focus of optimizations that a UPC platform con-
ducts because fine-grain accesses tend to be the performance bottleneck [BHJ+03]. Although op-
timizations for private memory accesses commonly seen on sequential compilers are also expected
to be performed by a UPC compiler, they are not considered in this paper due to their insignificance
relative to the cost of remote accesses.

Latency avoidance and latency tolerance are the principal fine-grain access optimization techniques.
The partitioned shared memory layout and the fine-grain access pattern determine that spatial lo-
cality and work overlapping are the two areas that UPC compilers and runtime systems will most
likely exploit to achieve latency avoidance and latency tolerance. It is anticipated that the follow-
ing optimizations may be performed by current UPC platforms. These optimizations either exploit
spatial locality or work overlapping.

Access aggregation Multiple writes (puts) to shared memory locations that have affinity to a single
UPC thread and are close to each other can be postponed and then combined into one put operation.

51

Multiple reads (gets) from locations that have affinity to the same UPC thread and are close to
each other can also be coalesced by prefetching them into local temporaries using one get operation
before they are used. For example, the two reads in the following code segment are subject to
coalescing:

shared [] double *p;
... = *(p-1);
... = *(p+1);

Vectorization A special case of access aggregation is vectorized get and put operations for sub-
scripted variables in a loop. Array accesses in a loop with fixed stride usually exhibit spatial locality
that can be exploited using vector-like get and put operations. In the following simple example,
both the read and the write make stride-1 accesses to remote locations. There are a total of N re-
mote reads and N remote writes in the loop. If the reads and writes are performed using two vectors
of length L, then the number of remote accesses can be reduced to N/L for both reads and writes.
The vectorized code is shown on the right.

shared [] double *SA, *SB; shared [] double *SA, *SB;
// SA and SB point to blocks double tA[L], tB[L];
// of memory on remote threads. for (i = 0; i < N; i += L) {
for (i = 0; i < N; i++) { vector_get(tA, SA, i);
... = SA[i]; for (ii = 0; ii < L; ii++) {
SB[i] = ...; ... = tA[ii];

} tB[ii] = ...; }
vector_put(tB, SB, i); }

Remote access caching Accesses made to remote threads can be cached to exploit temporal and
spatial reuse. This is a runtime optimization that can achieve effects similar to aggregation and
vectorization but for shared memory accesses with regular patterns. Coalescing and vectorization,
on the other hand, are compiler directed optimizations that, if properly implemented, can be effective
for a wider range of access patterns.

Access pipelining Dependence-free accesses that appear consecutively in code can be pipelined
to overlap with each other. Unlike the case of aggregation where multiple accesses are completed
using one operation, here the number of operations does not change, so latency saved this way is
limited. Accesses to locations with affinity to different threads can also be pipelined to overlap
with each other, but this has the risk of jamming the communication network when the diversity of
affinity increases.

Overlapping with computation Memory accesses can be issued as early as possible (for reads),
or completed as late as possible (for writes), to hide the latency behind local computation. The
potential benefits of this approach depend on both the freedom of moving read and write operations
and the latency gap between shared memory access and private memory access.

Multi-streaming Remote accesses can be multi-streamed on platforms that support it. This is
beneficial in situations where the memory system can handle multiple streams of data and there
are a good number of independent accesses that can be evenly divided into different groups to be
completed in parallel using multiple streams.

52

Note that the effects of these optimizations are not disjoint. For example, remote access caching
can sometimes provide the effect of coalescing multiple accesses to the same remote thread. Vec-
torization can have an effect similar to caching accesses that exhibit spatial reuses. Pipelining and
aggregation are both effective for independent accesses that appear in a sequence. In reality it is hard
to tell exactly which optimizations lead to an observed effect on an application. But it is possible
to use carefully designed microbenchmarks to determine which of these optimizations a particular
UPC compiler and runtime system might have implemented.

6.4 Microbenchmarks design

Four microbenchmarks are proposed to capture a UPC platform’s ability to optimize fine-grain
shared memory accesses. They focus on capturing the effects of aggregation, vectorization and
pipelining for remote accesses, as well as local shared access optimizations.

• Baseline This benchmark performs uniformly random read and write operations to the shared
memory. Remote access caching (if available) is turned off. All UPC threads have the same
workload. Accesses are made to remote shared memory. This benchmark obtains the la-
tency of scalar remote accesses in an environment with a balanced communication pattern.
Since random fine-grain accesses are generally not amenable to the optimizations listed in the
previous section, this benchmark gives the baseline performance of a UPC platform.

• Vector Each UPC thread accesses consecutive memory locations, a vector, starting from a
random location in a large shared array with indefinite block size. This benchmark determines
if the platform exploits spatial locality by issuing vectorized reads and writes or by caching
remote accesses.

• Coalesce In this case each UPC thread makes a sequence of accesses with irregular but small
strides to a large shared array with indefinite block size. The accesses appear as a sequence
in the microbenchmark code to allow pipelining, but if access aggregation is supported by the
platform, this access pattern is more amenable to aggregation. This benchmark captures the
effect of access pipelining and aggregation.

• Local vs. private Each UPC thread accesses random memory locations with which it has
affinity. Then the same operations are performed to private memory locations. The cost
difference between the two kinds of accesses represents shared access overhead, i.e., the
software overhead arising from processing shared memory addresses.

These microbenchmarks represent four typical reference patterns found in UPC programs. Each
pattern results in an effective memory access rate in terms of double words per second. Let Sbaseline ,
Svector , Scoalesce and Slocal be the rates of the four patterns.

The measured data access rates for these four patterns on some UPC platforms are listed in Ta-
bles 6.1–6.4.

6.5 Application analysis

The whole purpose of UPC compiler and runtime optimizations is to exploit concurrency so that
multiple shared memory operations can be scheduled in parallel. The Bernstein conditions [Ber66]

53

MuPC w/o cache MuPC w/ cache Berkeley UPC GCC
THREADS read write read write read write read write

2 71.4 28.1 43.0 87.2 47.6 21.5 2.2 0.77
4 76.8 28.0 72.3 114.5 61.5 22.0 2.3 0.76
6 80.0 30.8 83.2 119.4 63.0 22.2 2.5 0.92
8 79.6 30.0 88.0 126.9 63.8 22.0 2.2 0.77
10 80.0 29.0 90.4 135.2 65.5 23.1 2.2 0.77
12 83.1 32.5 92.8 137.7 66.0 23.1 2.5 0.93

Table 6.1: Baseline pattern measurements (microseconds/double word)

MuPC w/o cache MuPC w/ cache Berkeley UPC GCC
THREADS read write read write read write read write

2 60.8 22.0 1.0 1.0 47.4 21.2 2.0 0.6
4 67.8 21.9 0.8 1.3 64.2 21.8 2.1 0.6
6 68.2 22.8 0.8 1.3 65.9 21.8 2.2 0.6
8 69.5 22.2 0.8 1.2 66.2 21.8 2.1 0.6
10 69.4 22.0 1.0 1.0 67.7 22.0 2.2 0.6
12 71.2 28.9 1.3 1.4 68.5 22.3 2.2 0.6

Table 6.2: Vector pattern measurements (microseconds/double word)

established the constraints for concurrent scheduling of memory operations. That is, dependence-
free accesses can be safely executed in parallel. Following [AK02], dependence is defined as: A
dependence exists between two memory references if (1) both references access the same memory
location and at least one reference stores to it, and (2) there is a feasible execution path from one
reference to another. Based on this definition, dependences can be categorized as true dependence,
antidependence, and output dependence. In this study, the concept of input dependence is also used,
i.e., both references involved in a dependence are reads.

The UPC memory model forces another constraint for concurrent scheduling of memory accesses.
It prohibits reordering strict operations and reordering strict and relaxed operations. References
separated by strict operations must complete in program order even if they are independent of each
other. Strict operations, including strict memory accesses, barriers, fences, and library function
calls such as collectives, are defined as sequence points. Effectively, there is a true dependence
from every statement before a sequence point to the sequence point, and a true dependence from
it to every statement after it. In other words, sequence points divide a program into a series of

MuPC w/o cache MuPC w/ cache Berkeley UPC GCC
THREADS read write read write read write read write

2 60.0 22.8 12.2 14.3 5.8 21.3 2.0 0.64
4 74.3 25.8 12.2 14.6 7.7 21.7 2.1 0.64
6 69.2 22.0 13.1 15.8 7.8 21.9 2.2 0.64
8 70.3 21.8 14.4 18.4 7.9 22.0 2.2 0.65
10 75.2 22.6 17.4 20.2 8.2 22.3 2.2 0.64
12 77.3 25.3 15.6 21.6 8.2 22.5 2.5 0.65

Table 6.3: Coalesce pattern measurements (microseconds/double word)

54

MuPC w/o cache MuPC w/ cache Berkeley UPC GCC
THREADS read write read write read write read write

2 0.12 0.12 0.12 0.12 0.12 0.15 0.8 1.44
4 0.12 0.12 0.12 0.12 0.12 0.15 0.8 1.44
6 0.12 0.12 0.12 0.12 0.12 0.16 1.0 1.6
8 0.12 0.12 0.12 0.12 0.12 0.15 0.8 1.44
10 0.12 0.12 0.12 0.12 0.15 0.2 1.0 1.6
12 0.12 0.12 0.12 0.12 0.15 0.2 1.0 1.6

Table 6.4: Local pattern measurements (microseconds/double word)

intervals.

A dependence-based analysis of a UPC program can identify candidate references for concurrent
scheduling in an interval. First, a dependence graph is constructed for all references inside an
interval. Then, references to a shared array are partitioned into groups based on the four reference
patterns represented by the microbenchmarks described in section 6.4, under the assumption that
their accesses are amenable to the optimizations targeted by these patterns. References in the same
group are subject to concurrent scheduling. Last, their collective effects are aggregated to predict
the performance of the program.

To precisely describe reference partitioning, it is necessary to formally define a partition as a 3-
tuple (C, pattern,name), where C is the set of references grouped in the partition. pattern is one
of the four patterns, baseline, vector, coalesce, or local, and some simple combinations of them.
Simple combinations are allowed because accesses caused by a reference may incur different costs
at different time during an execution. For example, some accesses are local and others are remote.
name is the name of the shared object referenced by C, which implies that all references in a partition
access the same shared object because references to different shared objects are not amenable to
aggregation.

Mathematically, a partition is an equivalence class with the equivalence relation being ”same pat-
tern”. Every reference must be in one partition and can only be in that partition.

The following sections discuss the principles of reference partitioning. To facilitate the analysis,
user defined functions are inlined to get a flat code structure. Recursive routines are not considered
in this study.

6.5.1 Reference partitioning

Reference partitioning can be reduced to a variation of the typed fusion problem [AK02]. Thus, the
reference partitioning problem is formulated as the following.

Let G = (V,E) be a dependence graph of an interval, where V is a set of vertices denoting shared
references appearing in the interval (each vertex denotes a separate reference), and E is a set of
edges denoting dependences among the references. Let T be the set of names that label the vertices
in V . A name uniquely identifies the shared object involved in the reference. Alias analysis must be
done so that aliases to the same object have the same name. Let B ⊆ E be a set of edges denoting
true dependences and antidependences. Then the reference partitioning graph G ′ = (V ′,E ′) is the
graph derived from G that has a minimum number of edges by grouping vertices in V . Vertices are
grouped subject to the following constraints:

1. Vertices in a partition must have the same name t, where t ∈ T .

55

2. At any time, the memory locations referenced by vertices in a partition must have the same
affinity.

3. No two vertices joined by an edge e ∈ B may be in the same partition.

In the resulting graph G′, each vertex may contain more than one reference. If multiple references
in a partition access the same memory location, then they should be counted only once because only
one access is really needed. Each reference in a partition incurs a uniform cost determined by the
pattern of the partition. A partition has a cost that is just the aggregated costs of its members.

What pattern a partition should assume, and consequently its cost, is determined by what optimiza-
tions are applicable to the references in the partition on a particular UPC platform. Consider the
following two examples:

shared [] float *A; shared float *B;
// A points to a block of for (i = 1; i < N; i++)
// memory on a remote thread { ... = B[i];
for (i = 1; i < N; i++) ... = B[i-1]; }
{ ... = A[i];

... = A[i-1]; }

In the example on the left, references to A[i] and A[i-1] are in one partition. If the platform
supports access vectorization then they are vectorizable because all accesses have the same affinity
and are unit-strided. This partition is assigned the vector pattern. On the other hand, if the platform
does not support access vectorization but supports coalescing then the two references can be coa-
lesced into one access on each iteration and the partition is assigned the coalesce pattern. Finally, if
the platform does not support vectorization or coalescing then the partition is assigned the baseline
pattern.

In example on the right, the two references to B appear to be similar to the two references to A in the
previous example. But B[i] and B[i-1] are in two separate partitions because they access locations
with different affinities on each iteration. Neither of the two partitions are subject to vectorization
because they both access locations with different affinities across iterations. The two partitions can
only be assigned a mixed baseline-local pattern, because for every THREADS accesses there is one
local, no matter what optimizations a platform supports. For example, if THREADS = 4 then it will
be a (75% baseline, 25% local) pattern.

6.6 Performance prediction

Each reference partition within an interval identified from dependence analysis is associated with
a cost that expresses the number of accesses in the group and the access pattern of the group. The
communication cost of the interval is modeled by summing the costs of all reference partitions.
Specifically, the following equation defines the communication cost for any interval i to be the sum
of the costs over all reference groups in that interval:

T i
comm =

Groups

∑
j=1

(

N j

r (N j, pattern)

)

(6.1)

56

where N j is the number of shared memory accesses in any reference group j and r(N j, pattern)
gives the effective data transfer rate (double words per second) of the pattern associated with the
group, which is a function of the number of accesses and the pattern of accesses. The values of
r(Ni, pattern) are obtained by benchmarking the four patterns on a UPC platform with varying
numbers of accesses.

On the other hand, the computation cost of an interval Tcomp can be modeled by simulating the
computation using only private memory accesses. The run time of an interval is simply predicted
to be Tcomm + Tcomp. The run time of a thread is the sum of the costs of all intervals, plus the costs
of barriers, whose costs are also estimated by benchmarking. When it is necessary to take control
flow into consideration, only the intervals on the critical path of execution are considered. Finally,
the thread with the highest predicted cost is taken to be the cost of the whole program.

The degree of concurrency supported by a platform is determined by the gap between the speed of
private memory access and the speed of shared memory access. Let S private be the private memory
access speed, which can be obtained using an existing microbenchmark such as STREAM [McC06],
and let Sbaseline , Svector , Scoalesce , and Slocal be as defined as in Section 6.4. Then, Gbaseline, Gvector ,
Gcoalesce and Glocal are the degrees of concurrency with respect to the 4 canonical shared memory
access patterns, respectively:

Gbaseline =
Sbaseline

Sprivate
, Gvector =

Svector

Sprivate
, Gcoalesce =

Scoalesce

Sprivate
, Glocal =

Slocal

Sprivate

These values give an upper bound on how much communication can overlap with computation.
Smaller values mean that the shared memory access speed is relatively faster and a shared memory
access can overlap with less local computation. For example, if a G value is 4 then a shared access
can overlap at most 2 floating point operations (each with 2 operands).

Let Ns be the number of memory accesses in the sequential code. Let Nc, Nl , and Nr be the average
number of private memory accesses, local shared memory accesses, and remote shared memory
accesses issued by any thread in the parallelized code, respectively. Let Np be the normalized
average number of memory accesses issued by any thread in the parallelized code. That is, N p =
Nc +(Nl ×Glocal)+ (Nr ×Gremote), where Gremote is the weighted average of Gbaseline , Gvector , and
Gcoalesce . Then the speedup achievable by the parallelized code is given by the ratio Ns/Np:

S =
Ts

Tp
≈

Ns

Np
=

Ns

Nc +(Nl ×Glocal +Nr ×Gremote)
(6.2)

where Ts is the sequential run time and Tp is the parallel run time prediction based on Equation 6.1.
Oftentimes, private memory accesses are orders of magnitude faster than shared memory accesses
because they are direct memory loads and stores instead of being implemented using runtime func-
tion calls, so Nc is negligible unless it is of the same or larger order than than (Nl + Nr). Note that
this motivates an important optimization desired by UPC applications: the privatization of local
shared memory accesses. When a compiler fails to do this, it is always beneficial for a programmer
to manually cast pointers to local shared memory locations into pointers to private (i.e., regular C
pointers), whenever possible.

6.7 Performance modeling for Co-Array Fortran and Titanium

Extending UPC performance modeling techniques to other PGAS languages is possible but not
trivial. This section discusses how this may be done for Co-Array Fortran and Titanium.

57

Both languages support some abstractions not supported by UPC. For example, Co-Array Fortran
has a rich set of multi-dimensional array operations. Titanium supports classes, templates, opera-
tor overloading, exceptions, etc. These features improve programmability and maintainability for
application development in their respective domains. But when it comes to performance the most
important factors are interprocess communication and synchronization, which are expressed using
the same abstractions in these languages. It is this common ground that makes it possible to extend
UPC performance modeling approach to the other two languages.

As described earlier in this chapter, the performance of a UPC program is determined by two things,
the fitness of the platform on which the program runs and the shared memory reference patterns of
the program. The former is measured by platform benchmarking and the latter is characterized by
static analysis. It is straightforward to translate the UPC microbenchmarks described in Section 6.4
into Co-Array Fortran and Titanium to create equivalent platform abstraction tools. But the static
analysis procedures must be different due to the vast syntactical difference between these languages.
The principles of static analysis, however, are still the same: identifying shared memory references
and partitioning them into equivalence classes. The remaining part of this section outlines issues
that need to be addressed in static analysis for Co-Array Fortran and Titanium.

6.7.1 Co-Array Fortran

Static analysis for Co-Array Fortran is generally easier than for UPC. This is mainly because of a
salient difference between the shared array indexing schemes used in Co-Array Fortran and UPC: A
co-array is indexed using “co-dimensions” that include a image (process) index. Therefore, whether
a reference is to local data or remote data is always obvious.

Co-arrays are the only type of shared objects in Co-Array Fortran, they can only be statically al-
located. There is no block size in the type system of co-arrays (or in equivalent UPC jargon, all
co-arrays have indefinite block size). Moreover, indirect references such as pointers and aliases are
not widely used. These factors also contribute to the easiness of static analysis of Co-Array Fortran
code.

Synchronization operations in Co-Array Fortran can find counterparts in UPC. SYNC ALL corre-
sponds to upc barrier; SYNC MEMORY corresponds to upc fence; critical sections correspond to
UPC lock and unlock operations. Just as in UPC, these synchronization operations divide a piece
of Co-Array Fortran into intervals.

As an extension to Fortran 95, Co-Array Fortran is powerful in expressing multi-dimensional arrays
and their operations. A whole array or any slice of an array can be used as a unit in an operation,
which means a single statement may contain multiple references to the elements in multiple co-
arrays. This is the only complexity that may arise from Co-Array Fortran analysis, but an automated
static analysis tool, for example, the middle-end of a Co-Array Fortran compiler, can handle this
very well.

6.7.2 Titanium

Titanium is the most difficult one among the three languages. Titanium is a language designed
to target irregular problems such as adaptive mesh refinement (AMR). It supports highly flexible
global address space manipulation that makes it easy to construct and demolish distributed data
structures, but difficult to track the accesses to these data structures. The main reasons that make it
difficult include:

58

• There are no statically declared shared objects (a sharp contrast to Co-Array Fortran). Tita-
nium’s global address space is totally based on dynamic allocation. Each process allocates
its own “sub-grids” that are accessible by other processes. Sizes and shapes of the sub-grids
across processes may be different.

• Shared objects are usually accessed by pointer dereferencing, not by indexing.

In addition, the high-level abstraction power inherited from Java also makes it difficult to analyze
shared memory accesses. An access may be buried many levels down to the abstraction hierarchy.

Nonetheless, Titanium does provide several hints that make static analysis still tractable. The local
and global quantifiers specify whether a pointer is used to dereference private objects or shared
objects. Interprocess communication in Titanium is achieved in two ways: By dereferencing a
global pointer to a remote object or by calling communication functions such as Exchange and
Broadcast. Consequently, as long as the static analysis can carefully track the dereferencing of
all global pointers then the dependence analysis and reference partitioning can be performed as
they are done in UPC. Exchange and Broadcast are similar to the corresponding UPC collectives.
Accounting for their cost is relatively easy because they are explicit communication functions.

Based on above understanding, the static code analysis techniques used for UPC is still applicable
to Titanium but not enough. These techniques must be enhanced to be able to perform thorough
indirection analysis. Manual analysis is unrealistic, automated solution is needed.

6.8 Summary

On today’s parallel platforms, communication cost still dominates application performance. In the
case of UPC, communication cost is represented by a “shared memory wall”, the gap between
shared memory bandwidth and processor bandwidth. Therefore, studying shared memory access
patterns is a reasonable way of understanding UPC performance. However, UPC programs are
inherently difficult to model for two reasons. First, the UPC programming model entails implicit,
finei grain shared memory accesses that lead to sophisticated communication patterns in a dynamic
execution environment. Second, the fine grain shared memory accesses are subject to UPC compiler
optimizations that further obscure access pattern analysis.

This study is the first performance modeling effort for UPC programs. It proposes an approach to
analyze the implicit, finegrain shared memory accesses in UPC programs. The approach recognizes
four basic reference patterns and accordingly uses four simple microbenchmarks to measure a UPC
platform’s ability to optimize fine grain shared memory accesses. Next, a dependence-based anal-
ysis is used to partition references in an application into groups and to associate each group with
a certain pattern or a simple combination of patterns. The cost of each group is determined by the
pattern associated with the group and the number of shared memory accesses made by the group.
The run time of an application is determined by the aggregated costs of all reference groups.

As shown in the next chapter, models built with this approach predict the run times of three applica-
tions running on three different UPC platforms. These predictions have a maximum error of ±15%
in most cases. This is good accuracy for an analytical performance model. Although the valida-
tion is done only with respect to UPC, it is expected that performance models for Co-Array Fortran
and Titanium can be constructed in a similar way. The key is to identify and correctly characterize
shared memory references through static analysis, a task that may need sophisticated software tools
in the case of Titanium because of many high level abstractions imposed by the language.

59

Chapter 7

Performance model validation

This chapter provides validation for the performance modeling method presented in the previous
chapter. Performance modeling is an important tool for application developers to understand an
application’s performance behavior, as well as for system engineers to evaluate a parallel system
and help them make design decisions. To demonstrate the usefulness of the performance modeling
method in this two aspects, this chapter first builds basic models to predict the run time of three
simple UPC application kernels and validate the prediction with actual measurements. Then the
models are extended to give better explanations for the effects of remote reference caching in the
MuPC runtime system.

7.1 Modeling the performance of UPC application kernels

The three application kernels include a histogramming program, naı̈ve matrix multiply, and Sobel
edge detection. The three applications feature three memory access patterns encountered in many
real-world applications. The histogramming code contains a large number of random, fine-grain
shared memory updates and is communication intensive. The matrix multiply code accesses mem-
ory in a regular pattern and all remote accesses are reads. This program is also communication
intensive. The Sobel edge detection code is computation intensive and most accesses are made to
local shared memory.

Performance models are built to predict the run times of the three programs running on three dif-
ferent UPC platforms with fixed problem sizes. The prediction is validated by comparing the actual
run time and the predicted run time. The precision of prediction is defined to be:

δ =
predicted cost −actual cost

actual cost
×100% (7.1)

The experiments were done using MuPC V1.1.2 beta [ZSS06, ZS05, Mic05], Berkeley UPC V2.2 [UC 04a,
CBD+03], and GCC UPC V3.4.4 compilers [Int04]. MuPC and Berkeley UPC are run on a 16-node
Intel 2.0 GHz x86 Linux cluster with a Myrinet interconnect. GCC UPC is run on a 48-PE 300MHz
Cray T3E.

MuPC and Berkeley UPC take a similar approach in providing a compilation and execution envi-
ronment for UPC programs. UPC code is first translated into C code with UPC constructs being
replaced with corresponding C constructs and runtime function calls. The translated C code is then
compiled using a regular C compiler and linked to a runtime library to produce an executable. The

60

MuPC runtime incorporates a software cache for remote shared memory accesses as a latency toler-
ance mechanism. Berkeley UPC provides some source-level optimizations as experimental features,
including more efficient local shared pointer arithmetic, remote access coalescing, communication-
computation overlapping, and redundancy elimination for share address computation. On the other
hand, GCC UPC directly extends the GNU GCC compiler by implementing UPC as a C language
dialect. GCC UPC currently provides no optimizations beyond sequential code optimizations.

7.1.1 Histogramming

In this application a cyclically distributed shared array serves as a histogramming table. Each UPC
thread repeatedly chooses a random element and increments it as shown in the following code
segment:

shared int array[N];
for (i = 0; i < N*percentage; i++) {
array[loc]++; // loc is a pre-computed random number

}
upc_barrier;

The parameter percentage determines how many trips the loop iterates, thus how big a portion
of the table will be updated. In this simple setting, collisions obviously occur. The probability of
collisions increases as percentage increases. This example models the run times while varying
percentage from 10% to 90% with a 10% interval.

This code cannot be optimized by coalescing or vectorization because the table element accessed
in each step is randomly chosen. Assume the elements chosen by each thread are uniformly and
randomly distributed, then 1/THREADS of the updates are made to locations within a thread’s affin-
ity and (THREADS− 1)/THREADS of the updates are made to remote locations. The only reference
partition contains only array[loc], which fits a mixed baseline-local pattern. Run time prediction
is thus based on the number of local shared accesses, the number of remote accesses, and the effec-
tive data transfer rates obtained using the baseline and the local microbenchmarks. The results in
Table 7.1 show that the model very accurately predicted the run time for all three platforms. The
largest relative error is less than 10% and in most cases it is less than 5%.

7.1.2 Matrix multiply

The matrix multiply program is a naı̈ve version of the O(N 3) sequential algorithm. The product of
two square matrices (C = A×B) is computed as follows [EGC01]:

upc_forall(i=0; i<N; i++; &A[i][0]) {
for(j=0; j<N; j++) {

C[i][j] = 0;
for (k=0; k<N; k++)

C[i][j] += A[i][k]*B[k][j]; }
}
upc_barrier;

61

δ (%)
Percentage MuPC Berkeley UPC GCC UPC

10% -2.2 -0.38 -3.6
20% -4.8 -0.25 -3.5
30% -0.4 0.15 -3.5
40% -4.0 0.32 -3.5
50% 1.6 0.45 -3.5
60% -9.8 0.36 -3.6
70% -4.6 0.39 -3.5
80% -3.3 0.35 -3.5
90% -9.7 0.54 -3.5

Table 7.1: Prediction precision for histogramming. The size of the histogram table is 1M,
THREADS= 12. The results are averages of at least 10 test runs.

To facilitate this computation the rows of A and C are distributed across threads, while columns of
B are distributed across threads. Both row distribution and column distribution can be either cyclic
striped or block striped, that is, matrices are declared in either of the following two ways (in the
experiments N is always divisible by THREADS):

shared [N] double A[N][N]; #define M1 (N*N/THREADS)
shared double B[N][N]; #define M2 (N/THREADS)
shared [N] double C[N][N]; shared [M1] double A[N][N];

shared [M2] double B[N][N];
shared [M1] double C[N][N];

cyclic striped block striped

Memory access patterns are similar in both distributions. Accesses to A are all local reads. The
majority of accesses to B are remote reads, with a portion being local reads. Accesses to C involve
both local reads and local writes. The numbers of all types of accesses made by each thread can be
easily counted, and these numbers are the same for both distribution schemes.

Reference partitioning identifies the following partitions: (1) A partition containing a reference
writing to C[i][j]. There are two references of this type but they always access the same location
in each iteration of the j-loop, so they are included only once. This partition fits the local pattern.
(2) A partition containing a reference reading from C[i][j] as implied by the + = operation. This
partition also fits the local pattern. (3) A partition containing a reference reading from A[i][j] that
fits the local pattern. (4) A partition containing a reference to B[k][j] that fits a mixed vector-local
pattern.

This analysis shows that a majority of accesses by the references in partition (4) are subject to remote
access vectorization. Currently, none of the three UPC implementations detect this opportunity for
optimization, but remote access caching by MuPC can achieve effects similar to vectorization in
this case because spatial locality can be exploited.

The modeling results are shown in Table 7.2. The negative errors in the cases of Berkeley UPC and
GCC UPC show an underestimation of run times for these two platforms. It is suspected that there

62

δ (%)
THREADS MuPC w/o cache MuPC w/ cache Berkeley UPC GCC UPC1

cyclic block cyclic block cyclic block cyclic block
striped striped striped striped striped striped striped striped

2 -12.2 0.7 7.9 -2.1 -1.2 -1.9 -4.0 -14.0
4 -4.5 0.3 15.3 19.5 -7.4 -14.7 -8.8 -10.5
6 3.6 -0.7 15.8 11.8 -4.5 -8.9 7.6 -2.0
8 2.2 -4.4 9.8 13.0 -7.0 -12.0 10.6 9.6

10 -0.4 -2.2 3.9 2.0 -7.4 -15.2 6.2 -3.2
12 2.9 0.9 9.8 8.8 -5.4 4.4 3.1 -5.7

Table 7.2: Prediction precision for matrix multiply. The size of matrices are 240× 240 (doubles).
The results are averages of at least 10 test runs.

are some non-UPC related factors that lead to increased costs. The relatively larger error for MuPC
with cache when running with more than two threads represents an overestimation of run times.
This is because the cache also exploited temporal locality (i.e., many cache lines are reused) and
led to extra savings. However, the model did not capture this because the model regarded the cache
only as a simulated vectorization mechanism.

7.1.3 Sobel edge detection

In this classical image transforming algorithm, each pixel is computed using information of its
direct neighbors. An image of size N ×N is distributed across threads so that each thread has
N/THREADS contiguous rows. Communication is needed for the border rows only. Local shared
memory references are the predominant performance factor. The kernel of this code [EGC01] is
shown below.

#define B (N*N/THREADS)
shared [B] int O[N][N], E[N][N];
upc_forall(i=1; i<N-1; i++; &E[i][0]){
for (j=1; j<N-1; j++) {

d1 = O[i-1][j+1] - O[i-1][j-1];
d1 += (O[i][j+1] - O[i][j-1])<<1;
d1 += O[i+1][j+1] - O[i+1][j-1];

d2 = O[i-1][j-1] - O[i+1][j-1];
d2 += (O[i-1][j] - O[i+1][j])<<1;
d2 += O[i-1][j+1] - O[i+1][j+1];

m = sqrt((double)(d1*d1+d2*d2));
E[i][j] = m > 255 ? 255 : (unsigned char)m; }

}

Reference partitioning results in the following partitions: (1) A partition containing the reference
E[i][j] that involves only local shared writes. This partition fits the local pattern. (2) A partition

1GCC UPC array references with two subscripts are 20− 60% more expensive than array references with one sub-
script. It is believed to be a performance bug. Numbers shown in the table take this into consideration.

63

containing references to the i-th row of O. This partition also fits the local pattern because all
accesses are local shared reads. (3) A partition containing references to the (i-1)-th row of O. (4)
A partition containing references to the (i+1)-th row of O. Partitions (3) and (4) fit a mixed local-
vector pattern on the MuPC platform due to the exploitation of spatial locality by MuPC’s cache,
but they fit a mixed local-coalesce pattern on the Berkeley UPC platform because the coalescing
optimization enabled by Berkeley’s compiler is applicable. They fit a mixed local-baseline pattern
on the GCC UPC platform because no optimizations are performed by this platform.

The modeling results are shown in Table 7.3. A large error (−21.6%) occurs in the case of MuPC
with cache enabled when running with two threads. This implies unaccounted for cache overhead.
With only two threads the communication is minimal and the benefit of caching is not big enough to
offset the overhead. Again, simulating access vectorization using a remote reference cache partially
accounts for other errors in the case of MuPC with cache.

δ (%)
THREADS MuPC w/o cache MuPC w/ cache Berkeley UPC GCC UPC 1

2 4.8 -21.6 7.3 -10.3
4 1.4 15.8 8.3 -10.8
6 11.8 16.3 1.1 -6.3
8 9.9 16.8 -1.3 7.5

10 7.0 17.5 -4.3 -1.0
12 -0.5 14.3 5.0 -3.5

Table 7.3: Prediction precision for Sobel edge detection. The image size is 2000×2000 (integers).
The results are averages of at least 10 test runs.

7.2 Caching and performance prediction

In the previous section, prediction errors are relatively larger for cases where remote reference
caching is used. This section tries to remedy this by including cache behavior into the performance
model.

To simplify the discussion, the analysis focuses only on shared reads. All caches are effective for
reads, but not all are effective for writes. For example, the cache in HP-UPC does not cache shared
writes at all. On the other hand, the principles of caching for shared reads can be easily extended
to shared writes by considering a few extra complexities such as the policy for invalidation (write-
through or write-back) and the cost and frequency of invalidations.

Equation 6.1 predicts the communication cost of a computation interval. It takes as input the number
of shared memory accesses of different reference patterns inside the interval and the data transfer
rates of corresponding patterns. Data transfer rates are determined by UPC platform characteristics.
The variety of reference patterns and the number of accesses of each pattern are determined by
application characteristics. Although remote reference caching is a platform-level feature, it does
not affect data transfer rates, which are fixed by the platform’s underlying communication hardware
and library. But remote reference caching effectively alters reference patterns. It turns some remote
shared accesses (cache hits) into local shared accesses at the cost of a miss penalty. Therefore, the
following two modifications to equation 6.1 are needed:

• The number of cache hits is subtracted from the number of remote accesses and added to the
number of local shared accesses.

64

• For the remaining remote accesses, each is a cache miss and causes a block to be brought into
cache, so the value of remote access latency is increased to equal the miss penalty. A cache
miss is handled by copying consecutive bytes equivalent to the size of a cache block from the
shared memory to the cache using the upc memcpy() function. The cost of this copying is
the miss penalty and can be measured by benchmarking.

Among the four basic reference patterns identified in chapter 6, baseline, vector, and coalesce are
about remote accesses and will be affected by above modifications. The baseline accesses are cache
unfriendly and their quantity is unlikely to change. The coalesce accesses exhibit some temporal
locality and may benefit from the cache. The vector accesses are all cache friendly and most of them
turn into local shared accesses. A careful execution trace analysis will help show how many accesses
of each of the three types actually become local accesses. For programs with simple reference
patterns, however, run time cache statistics will reveal the same information. Both MuPC and HP-
UPC can generate cache statistics such as the number of cache misses/hits. As an example, this
information is used to reconcile the actual run time and predicted run time for the matrix multiply
(cyclic striped distribution) modeled in chapter 6. The results are plotted in figure 7.1. The figure
shows an overall improvement for prediction precision, compared to the predictions in Chapter 6.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2 4 6 8 10 12

R
un

 ti
m

e
(s

ec
on

ds
)

THREADS

actual
original prediction
reconciled prediction

Figure 7.1: Cost prediction reconciled using MuPC cache statistics for matrix multiply (cyclic
striped distribution)

65

Chapter 8

Applications of the UPC performance
model

This chapter is a recapitulation of findings of the performance modeling work presented in this re-
port, and observations of what can be extended from the current research. Discussions here focus
on UPC because they are based on UPC platform benchmarking results and UPC language partic-
ularities. The discussions cover the applications of UPC performance modeling in the following
areas:

• Characterizing UPC platform and identifying performance bottlenecks

• Revealing application performance characteristics

• Recognizing favorable programming styles with respect to a UPC platform

Then the last part of this chapter envisions future UPC work based on the current findings.

8.1 Characterizing selected UPC platforms

Many benchmarks are used throughout this research. Some of them are established popular bench-
marks for parallel systems, for example, the UPC version of the NPB suite. These types of bench-
marks are useful at the early stage to demonstrate the usefulness of a UPC platform, but they have
been long regarded as not appropriate for UPC because results produced by these benchmarks can-
not be easily mapped to UPC language features. An important contribution of this research is that
it has created a set of microbenchmarks that reliably captures a UPC platform’s characteristics.
These microbenchmarks define a set of elementary fine-grain memory operations that are perva-
sively used in UPC programs and whose performance can be easily quantified. So a UPC platform
can be characterized based on its ability to perform these operations. This approach provides simple,
straightforward, yet meaningful criteria to compare UPC platforms.

Table 8.1 lists these microbenchmarks and the basic operations they measure respectively.

For any UPC platform, this set of microbenchmarks produces a performance matrix that is centered
around shared memory operations. The performance matrix dictates that a good UPC platform must
be aware of access patterns, that is, it not only provides low latencies for remote random accesses,
but also differentiates between randomness and non-randomness, and between remote and local.
Given the performance matrix, an ideal UPC platform can be identified using the following criteria:

1The Apex-MAP used in this research is adapted from the original version described in [SS05].

66

Microbenchmarks Operations measured Bottlenecks exposed

stream Remote accesses issued by a sin-
gle thread with others being idle

Nominal random access latency
(the lower bound of random ac-
cess latency)

baseline Remote accesses issued from all
threads

Achievable random access la-
tency

coalesce Remote accesses with clustered
but random pattern

Capability of access aggregation
or pipelining

vector Vectorizable remote accesses Capability of Access vectoriza-
tion, remote reference caching
for spatial locality

local Accesses to the shared memory
with local affinity

Random local access latency

Apex-MAP1 Remote accesses with tunable
temporal locality and spatial lo-
cality

Effectiveness of remote refer-
ence caching

Table 8.1: UPC platform characterization microbenchmarks

• The stream and baseline latencies being on the same scale.

• The local latencies being on the same scale with regular private random accesses, and at least
1 ∼ 2 orders of magnitude lower than stream and baseline.

• The coalesce and vector latencies being on the same scale with local.

• The bandwidths for ring and flush being on the same scale and both scaling with the number
of threads.

Microbenchmarks MuPC MuPC HP-UPC HP-UPC Berkeley UPC
w/o cache w/ cache w/o cache w/ cache

stream 20.0 25.4 8.2 8.4 13.6
baseline 83.1 92.8 10.4 9.8 66.0
coalesce 77.3 15.6 9.9 2.8 8.2
vector 71.2 1.3 10.1 2.4 68.5
local 0.12 0.12 0.09 0.09 0.15

Table 8.2: Performance matrices for selected UPC platforms (THREADS = 12)

As an example, Table 8.2 shows the latencies in microseconds obtained from running these mi-
crobenchmarks on MuPC, HP-UPC, and Berkeley UPC. The performance matrices clearly expose
performance bottlenecks for these platforms. When evaluating the numbers against the criteria,
none of these platforms is an ideal UPC platform:

• HP-UPC with cache is the most optimized platform. But the latencies of coalesce and vector
are still one order of magnitude bigger than the local latency.

• MuPC with cache has similar problems. Besides, its baseline latency is 4 times the stream
latency.

67

• Berkeley UPC is only able to exploit the coalesce pattern. And this is only available as an
experimental feature.

• Platforms without cache hardly meet any of the above criteria.

• All platforms exhibit similar local latency, which is about one order of magnitude bigger than
that of private memory accesses (The typical latency of private memory accesses is on the par
of 10 nanoseconds).

• All platforms suffer seriously from shared memory bank contentions. The flush latency is
2 ∼ 5 times the ring latency.

8.2 Revealing application performance characteristics

Another important contribution of this work is the UPC performance model that makes use of the
performance matrix and the accompanying theory of breaking a UPC program down into simple
work units based on reference pattern analysis. These work units can be directly mapped to the types
of access patterns characterized by the microbenchmarks. So the performance of the UPC program
can be explained by combining the amount of the work units with the corresponding values in a UPC
platform’s performance matrix. Examples of the applications of the UPC performance modeling in
this area include performance prediction. Chapter 7 has shown that application run times predicted
via performance modeling matched actual run times well.

There are times when quantitative performance prediction is unnecessary or not easy to obtain. For
example, it may take a long time to model a real-world application with complicated structure.
Often, a user only wants to know which platform is a more suitable one for this application. As
long as there are some qualitative knowledge about the memory access pattern of the application,
the user can choose a good platform for this application based on the information presented in
Table 8.2. Taking the CG program in the NPB benchmark suite as an example, the performance
of this program is illustrated in Figure 4.6 (Chapter 4). CG is an implementation of the conjugated
gradient method for unstructured sparse matrices. Access patterns in CG are complicated but the
vector pattern predominates. Based on Table 8.2, HP-UPC should be the best platform for this
program, followed by MuPC with caching, then followed by Berkeley UPC. Figure 4.6 confirms
this prediction.

8.3 Choosing favorable programming styles

Finally, the performance model is more of a valuable tool in guiding program design. The UPC
language offers an affinity-aware shared memory programming model that features fine-grain re-
mote accesses. But it also provides constructs for programming in a coarse-grain message passing
model (i.e., bulk data transfer routines such as upc memcpy(), upc memget(), and upc memput()).
Without referring to the performance characteristics of a particular UPC platforms, it is invalid to
discuss which design be chosen for a program. Given a particular UPC platform and its performance
characteristics, then the performance model can serve as a useful tool in evaluating performance.

One can broadly divide UPC platforms into four types by looking at them along two dimensions:
Remote access latency and access pattern awareness. Table 8.3 lists the four types, along with the
programming styles suitable to each type and the trade-offs need to be considered.

MuPC with caching disabled is a typical example of the first type platform. As shown in Table 8.3,
the programming style that favors performance on this platform stresses scalar access aggregation.

68

Platform types Favorable programming
style

Trade-offs

High remote access la-
tency, access pattern unex-
ploited

Minimize the number of
remote accesses. Aggre-
gate scalar accesses into
bulk data transfers.

A compromise of pro-
grammability. Perfor-
mance on a par with MPI.

High remote access la-
tency, access pattern ex-
ploited

Minimize the number
of scattered, random
accesses. Maximize the
number of cache-friendly
and vectorizable accesses.

Better programmability.
Performance not as good
as that of the coarse-grain
style.

Low remote access la-
tency, access pattern unex-
ploited

Aggregate scalar accesses
into bulk data transfers.

Even better programma-
bility. Performance not
portable to high latency
systems.

Low remote access la-
tency, access pattern ex-
ploited

Maximize the number of
cache-friendly and vector-
izable accesses.

Best programmability,
best performance. Per-
formance not portable to
other platforms.

Table 8.3: Recognizing favorable programming styles with respect to a UPC platform

The impact of programing style choice can be illustrated by two matrix multiply implementations:
one is the straightforward implementation that uses only fine-grain scalar accesses, the other ag-
gregates remote shared reads using upc memget(). The first implementation takes 179 seconds to
multiply two matrices with 256× 256 doubles each using 4 UPC threads, while the second imple-
mentation needs only 1.7 seconds, a difference of two orders of magnitudes!

8.4 Future work

The theme of this work is performance analysis and UPC system design. It can be easily extended
on both sides.

8.4.1 Performance analysis

This research focuses on the performance of fine-grain shared memory accesses, based on the as-
sumption that those are very critical to good performance. The work should be complemented with
performance analyses of other operations, notably the collectives, the bulk data transfer operations,
and the synchronization operations. These operations are widely used in parallel applications. They
are even more important on platforms with low remote access latencies and that are incapable of
exploiting access patterns. As has been done in this work, a set of microbenchmarks and models to
characterize these operations should be developed.

Most this work relies on microbenchmarks. Microbenchmarks measure discrete fine-grain opera-
tions. On the other hand, high performance computing study has been heavily utilizing application
benchmarks, for example, the LINPACK benchmark and the NAS Parallel Benchmark suite for
distributed memory platforms, and the SPLASH and the SSCA benchmarks for shared memory

69

platforms, but none of these is suitable or available for UPC. So a major extension of this research
should be the development of a UPC-friendly application benchmark suite. A good starting point
could be a UPC implementation of the SSCA application kernels [BM05]. The SSCA kernels are
a set of graph algorithms for large, directed, weighted multi-graphs. They were originally designed
for symmetric multiprocessors, but they are good candidates for exploring UPC’s capability for
irregular, fine-grain memory accesses.

Other potential extensions to this research include a thorough scalability study. Most results in
this work are obtained on architectures with only a few processors. To make these results more
valuable in practice, the experiments and analyses should be extended to real-world architectures
with hundreds or thousands processors. Shared memory contention will become a non-negligible
issue in such environments. Performance models need to account for this additional factor.

8.4.2 Runtime system/compiler design

The work on MuPC can be extended to achieve a more efficient and more sophisticated UPC imple-
mentation. First, a compiler middle-end capable of source-level static analysis is very desirable. The
current compiler is only a juxtaposition of the EDG front end and an ANSI C compiler. Many opti-
mizations envisioned in this research, such as remote access aggregation and prefetching, however,
can only be done through static analysis.

Second, porting MuPC to large-scale parallel systems would be a valuable project. MuPC was
mostly developed, tested, and benchmarked on Beowulf-like clusters with a small number of pro-
cessors. It is unclear how it would behave and whether it scales on larger clusters or on other types
of large-scale multiprocessors. It is also worthwhile to re-implement MuPC’s communication layer
using MPI-2, tapping the benefits of one-sided communication and parallel I/O provided by MPI-2.

Third, the remote reference caching scheme used by MuPC today is overly rigid. For sophisticated
applications that have different access patterns in different stages the current caching scheme may
improve the performance of some stages but hurt that of other stages. An adaptive caching scheme
is envisioned, where enabling and disabling caching is controlled dynamically by execution flow
based on remote memory accessing trace collected by runtime during the execution.

Finally, the issue of fault tolerance in UPC is so far largely ignored by researchers. In any of today’s
implementations, a UPC thread is always scheduled to one and only one processor. Once started, a
UPC thread does not migrate and cannot be restarted. This does not guarantee robustness on real-
world multiprocessors. Multiprocessor systems built with COTS components are the mainstream of
today’s high performance parallel systems. These systems usually suffer from a high failure rate.
For long-running programs written in UPC, it is critical to protect them with fault tolerance and/or
recovery mechanisms.

70

Chapter 9

Summary

This research accomplishes on two fronts: UPC performance modeling and runtime system imple-
mentation.

The major contribution on the first front is performance modeling methodology proposed for PGAS
languages and validated with respect to UPC. This is the first effort of understanding the perfor-
mance phenomena of PGAS languages through performance modeling. This methodology is real-
ized using a set of microbenchmarks and an algorithm for characterizing shared references. In par-
ticular, UPC platform benchmarking and the dependence analysis for shared references employed in
this work allowed accurate prediction of UPC application performance and reliable characterization
of UPC platforms.

On the second front, the major achievement is the MuPC runtime system, which has been used as a
tool by this and other researchers to study performance issues and to develop new UPC language fea-
tures. MuPC is a UPC implementation based on MPI and the POSIX threads. It offers performance
comparable with other open source implementations. The implementation work is accompanied
with a careful investigation on remote reference caching. The results helped identify loopholes in
the current UPC implementations, and provide insights for future performance improvements.

71

Bibliography

[AISS95] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. LogGP:
incorporating long messages into the LogP model: one step closer towards a realistic
model for parallel computation. In SPAA ’95: Proc. of the seventh annual ACM sym-
posium on Parallel algorithms and architectures, pages 95–105. ACM Press, 1995.

[AK02] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, 2002.

[BB03] C. Bell and D. Bonachea. A New DMA Registration Strategy for Pinning-Based High
Performance Networks. In Proceedings of Workshop on Communication Architecture
for Clusters, 2003.

[BBB94] D. Bailey, E. Barszcz, and J. Barton. The NAS Parallel Benchmark RNR. Technical
Report RNR-94-007, NASA Ames Research Center, March 1994.

[BBC+03] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Wel-
come, and K. Yelick. An Evaluation of Current High-Performance Networks. In
Proceedings of International Parallel and Distributed Processing Symposium, 2003.

[BD03] D. Bonachea and J. Duell. Problems with using MPI 1.1 and 2.0 as compilation targets
for parallel language implementations. International Journal on High Performance
Computing and Networking, 2003.

[Ber66] A. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on
Electronic Computers, 15:757–763, 1966.

[BGW92] Eugene D. Brooks, III, Brent C. Gorda, and Karen H. Warren. The Parallel C Prepro-
cessor. Scientific Programming, 1(1):79–89, 1992.

[BHJ+03] K. Berlin, J. Huan, M. Jacob, G. Kochhar, J. Prins, W. Pugh, P. Sadayappan, J. Spacco,
and C-W. Tseng. Evaluating the Impact of Programming Language Features on the
Performance of Parallel Applications on Cluster Architectures. In Languages and
Compilers for Parallel Computing (LCPC), 2003.

[BM05] D. Bader and K. Madduri. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In Proceedings, 12th International Con-
ference on High Performance Computing (HiPC 2005), 2005.

[CBD+03] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A Performance
Analysis of the Berkeley UPC Compiler. In Proceedings of 17th Annual International
Conference on Supercomputing (ICS), 2003.

72

[CD95a] W. Carlson and J. Draper. Distributed Data Access in AC. In Proceedings of 5th ACM
SIGPLAN Symposium on PPOPP, July 1995.

[CD95b] William W. Carlson and Jesse M. Draper. AC for the T3D. In CUG 1995 Spring
Proceedings, pages 291–296, Denver, CO, March 1995. Cray User Group, Inc.

[CDC+99] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to
UPC and Language Specification. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, May 1999.

[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming in
Split-C. In IEEE, editor, Proceedings, ACM/IEEE Conference on Supercomputing (SC
1993): Portland, Oregon, November 15–19, 1993, pages 262–273, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1993. IEEE Computer Society Press.

[CEG02] F. Cantonnet and T. El-Ghazawi. UPC Performance and Potential: A NPB Experi-
mental Study. In Proceedings, ACM/IEEE Conference on Supercomputing (SC 2002):
Baltimore, Maryland, November 2002.

[CG04] K. Cameron and R. Ge. Predicting and Evaluating Distributed Communication Per-
formance. In Proceedings, ACM/IEEE Conference on Supercomputing (SC 2004):
Pittsburgh, Pennsylvania, 2004.

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a
realistic model of parallel computation. In PPOPP ’93: Proc. of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 1–
12. ACM Press, 1993.

[CKY03] W. Chen, Arvind Krishnamurthy, and K. Yelick. Polynomial-time Algorithms for
Enforcing Sequential Consistency in SPMD Programs with Arrays. In Proceedings
of 16th International Workshop on Languages and Compilers for Parallel Computing
(LCPC), 2003.

[Cra03] Cray Inc. Cray X1 System Overview. Cray Inc., 2003.
http://www.cray.com/craydoc/manuals/S-2346-22/html-S-2346-
22/z1018480786.html.

[CS03] Kirk W. Cameron and Xian-He Sun. Quantifying Locality Effect in Data Access De-
lay: Memory logP. In IPDPS ’03: Proc. of the 17th International Symposium on
Parallel and Distributed Processing, page 48.2. IEEE Computer Society, 2003.

[CYA+04] F. Cantonnet, Y. Yao, S Annareddy, A. Mohamed, and T. El-Ghazawi. Performance
Monitoring and Evaluation of a UPC Implementation on a NUMA Architecture. In
Proceedings of International Parallel and Distributed Processing Symposium, 2004.

[DDH97] F. Dehne, W. Dittrich, and D. Hutchinson. Efficient External Memory Algorithms by
Simulating Coarse-Grained Parallel Algorithms. In Proceedings of ACM Symp. on
Parallel Algorithms and Architectures, pages 106–115, 1997.

[Edi05] Edison Design Group, Inc. Compiler Front Ends for the OEM Market, 2005.
http://www.edg.com.

73

[EGC01] T. El-Ghazawi and S. Chauvin. UPC Benchmarking Issues. In Proceedings of ICPP
(2001), 2001.

[EGCD03] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language Specifications, October
2003.
http://www.gwu.edu/∼upc/docs/upc spec 1.1.1.pdf.

[EGCD05] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language Specifications, May 2005.
http://www.gwu.edu/∼upc/docs/upc spec 1.2.pdf.

[EGCS+03] T. El-Ghazawi, F. Cantonnet, P. Saha, R. Tharkur, R. Ross, and D. Bonachea. UPC-IO:
A parallel I/O API for UPC, 2003.
http://www.gwu.edu/∼upc/docs/UPC-IO v1pre10.pdf.

[Geo04] George Washington University. Unified Parallel C Home Page, 2004.
http://hpc.gwu.edu/∼upc.

[Geo05] George Washington University. The 5th UPC Developers Workshop, September 2005.
http://www.gwu.edu/ upc/upcworkshop05/agenda.html.

[GV94] A. Gerbessiotis and L. Valiant. Direct Bulk-Synchronous Parallel Algorithms. J. of
Parallel and Distributed Computing, 22:251–267, 1994.

[Het al.01] P. Hilfinger and et al. Titanium language reference manual. Technical Report CSD-
01-1163, University of California, Berkeley, November 2001.

[Hew04] Hewlett-Packard. Compaq UPC for Tru64 UNIX, 2004.
http://www.hp.com/go/upc.

[HHS+95] Chris Holt, Mark Heinrich, Jaswinder P Singh, Edward Rothberg, and John Hennessy.
The Effects of Latency, Occupancy, and Bandwidth in Distributed Shared Memory
Multiprocessors. Technical report, 1995.

[HK96] S. Hambrusch and A. Khokhar. C3, An Architecture-independent Model for Coarse-
grained Parallel Machines. Journal of Parallel and Distributed Computing, 32, 1996.

[IFH01] Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara. LogGPS: a parallel compu-
tational model for synchronization analysis. In PPoPP ’01: Proc. of the eighth ACM
SIGPLAN symposium on Principles and practices of parallel programming, pages
133–142. ACM Press, 2001.

[IHC04] C. Iancu, P. Husbands, and W. Chen. Message Strip Mining Heuristics for High Speed
Networks. In Proceedings of VECPAR, 2004.

[Int04] Intrepid Technology. Intrepid UPC Home Page, 2004.
http://www.intrepid.com/upc.

[ISO00] ISO/IEC. Programming Languages - C, ISO/IEC 9989, May 2000.

[KW04] W. Kuchera and C. Wallace. The UPC Memory Model: Problems and Prospects. In
Proceedings of International Parallel and Distributed Processing Symposium, 2004.

[LCW93] James R. Larus, Satish Chandra, and David A. Wood. CICO: A Practical Shared-
Memory Programming Performance Model. In Ferrante and Hey, editors, Workshop on
Portability and Performance for Parallel Processing, Southampton University, Eng-
land, July 13 – 15, 1993. John Wiley & Sons.

74

[LDea05] P. Luszczek, J. Dongarra, and et al. Introduction to the HPC Challenge Benchmark
Suite. In Proceedings, ACM/IEEE Conference on Supercomputing (SC 2005): Seattle,
Washington, November 2005.

[McC06] John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers, 2006.
http://www.cs.virginia.edu/stream/.

[MF98] Csaba Andras Moritz and Matthew I. Frank. LoGPC: Modeling Network Contention
in Message-Passing Programs. In SIGMETRICS ’98/PERFORMANCE ’98: Proc.
of the 1998 ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, pages 254–263. ACM Press, 1998.

[Mic05] Michigan Technological University. UPC Projects at MTU, 2005.
http://www.upc.mtu.edu.

[NR98] Robert W. Numrich and John Reid. Co-Array Fortran for parallel programming. ACM
SIGPLAN FORTRAN Forum, 17(2):1–31, August 1998.

[PGA05] The First PGAS Programming Models Conference, September 2005.
http://www.ahpcrc.org/conferences/PGAS/abstracts.html.

[PHP+03] J. Prins, J. Huan, B. Pugh, C-W. Tseng, and P. Sadayappan. UPC Implementation
of an Unbalanced Tree Search Benchmark. Technical Report 03-034, Department of
Computer Science, University of North Carolina, October 2003.

[Ree03] D. A. Reed, editor. Workshop on the Roadmap for the Revitalization of High-End
Computing. Computing Research Association, 2003.

[Sav02] J. Savant. MuPC: A Run Time System for Unified Parallel C. Master’s thesis, Depart-
ment of Computer Science, Michigan Technological University, 2002.

[SG98] M. Snir and W. Gropp. MPI: The Complete Reference. The MPI Press, 2nd edition,
1998.

[SLB+06] H. Su, A. Leko, D. Bonachea, B. Golden, H. Sherburne, M. Billingsley III, and
A. George. Performancerallel Performance Wizard: A Performance Analysis Tool for
Partitioned Global-Address-Space Programming Models. In Proceedings, ACM/IEEE
Conference on Supercomputing (SC 2006) Poster Session: Tampa, Florida, 2006.

[SS04] E. Strohmaier and H. Shan. Architecture Independent Performance Characterization
and Benchmarking for Scientific Applications. In Proceedings of the 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’04), pages 467–474, 2004.

[SS05] E. Strohmaier and H. Shan. Apex-Map: A Global Data Access Benchmark to Ana-
lyze HPC Systems and Parallel Programming Paradigms. In Proceedings, ACM/IEEE
Conference on Supercomputing (SC 2005): Seattle, Washington, November 2005.

[Tan01] A. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition, 2001.

[UC 04a] UC Berkeley. Berkeley Unified Parallel C Home Page, 2004. http://upc.nersc.gov.

[UC 04b] UC Berkeley. GASNet Home Page, 2004.
http://www.cs.berkeley.edu/∼bonachea/gasnet.

75

[WGS03] E. Wiebel, D. Greenberg, and S. Seidel. UPC Collectives Specification 1.0, December
2003.
http://www.gwu.edu/∼upc/docs/UPC Coll Spec V1.0.pdf.

[ZS05] Z. Zhang and S. Seidel. Benchmark Measurements for Current UPC Platforms. In Pro-
ceedings of IPDPS’05, 19th IEEE International Parallel and Distributed Processing
Symposium, April 2005.

[ZSS06] Z. Zhang, J. Savant, and S. Seidel. A UPC Runtime System based on MPI and POSIX
Threads. In To appear in the Proceedings of 14th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP 2006), 2006.

76

