
DiConic Addition of Failsafe Fault-Tolerance∗

Ali Ebnenasir1

Department of Computer Science

Michigan Technological University
Houghton MI 49931 USA

Technical Report #CS-TR-07-03
June 2007

Abstract

We present a divide-and-conquer method, called DiConic, for automatic addition
of failsafe fault-tolerance to distributed programs, where a failsafe program guarantees
to meet its safety specification even when faults occur. Specifically, instead of adding
fault-tolerance to a program as a whole, we separately revise program actions so that
the entire program becomes failsafe fault-tolerant. Our DiConic algorithm has the po-
tential to utilize the processing power of a large number of machines working in parallel,
thereby enabling automatic addition of failsafe fault-tolerance to distributed programs
with a large number of processes. We formulate our DiConic synthesis algorithm in
terms of the satisfiability problem and apply it to several case studies using the Yices
Satisfiability Modulo Theories (SMT) solver. We demonstrate our DiConic approach
for the classic Byzantine Generals problem and an industrial application.

Keywords: Addition of fault-tolerance, Formal methods, Divide-and-
conquer, Satisfiability

∗This work was sponsored by a grant from Michigan Technological University.
1Email: aebnenas@mtu.edu
Web: http://www.cs.mtu.edu/~aebnenas
Tel: +1-906-487-4372, Fax: +1-906-487-2283

1

Contents

1 Introduction 3

2 Preliminaries 5

3 Problem Statement 11

4 Adding Failsafe Fault-Tolerance 12

5 DiConic Addition 13

5.1 Computing Fault-Span and Offending States 14

5.2 Removing Offending Transitions . 17

5.3 Computing a New Invariant . 19

6 Case Studies 21

6.1 Altitude Switch Controller . 22

6.2 Cruise Control System . 26

6.3 Token Ring . 30

7 Related Work 33

8 Conclusions and Future Work 34

2

1 Introduction

Software intensive systems are inevitably subject to the occurrence of unanticipated faults

as it is difficult (if not impossible) to anticipate all types of faults in early stages of develop-

ment. Automatic addition of fault-tolerance to programs provides a systematic approach for

equipping an existing program with necessary fault-tolerance functionalities while preserving

its correctness in the absence of faults. However, the exponential complexity of automatic

addition of fault-tolerance to distributed programs [1] urges us to devise new paradigms for

the addition of fault-tolerance that scale better than existing techniques. In this paper,

we present a DIvide-and-CONquer paradigm, called DiConic, that decomposes the problem

of automatic addition of failsafe fault-tolerance - where a failsafe program meets its safety

specification even when faults occur – into a set of sub-problems, where in each sub-problem,

we focus on revising an individual program action (specified in terms of Dijkstra’s guarded

command language [2]) in such a way that the entire program becomes failsafe fault-tolerant.

Most existing approaches [3–13] for automated synthesis of fault-tolerant programs generate

an integrated combinatorial model of a program (implemented as a reachability graph in

enumerative techniques [10–12] or as a set of Binary Decision Diagrams (BDDs) in symbolic

methods [8, 13]) which makes it difficult to scale such methods as the size2 of the program

increases. For example, specification-based approaches [3, 9] synthesize the abstract struc-

ture of a fault-tolerant program as a finite-state machine from the satisfiability proof of its

temporal logic specification. Control-theoretic techniques [5, 7] use synchronous automata-

theoretic product to generate finite state automata that represent fault-tolerant discrete-

event controllers. Game-theoretic methods [4,6] synthesize a winning strategy that captures

all program behaviors. Previous work on addition of fault-tolerance to concurrent and dis-

tributed programs [10–12] takes an integrated model (represented as a finite-state machine)

of an existing program and automatically revises the program model in order to generate a

model of a fault-tolerant version thereof. Symbolic techniques [8,13] enable the synthesis of

larger programs, however, they still suffer from the complexity of synthesis as they deal with

2In this work, we determine the size of the program by the number of its processes, which has a direct
relation with the total number of program actions, variables, and state space.

3

the synthesis problem as a whole without decomposing the problem. While all aforemen-

tioned approaches present important and useful techniques for synthesizing fault-tolerant

programs and mitigating space/time complexity of addition, we believe that decomposing

the synthesis problem so that each sub-problem can be solved separately is equally important

and is orthogonal to complexity issues.

In order to decompose the problem of automatic addition of failsafe fault-tolerance, we focus

on the following questions: Given a fault-intolerant program that satisfies its specification

in the absence of faults, but provides no guarantees in the presence of faults, how can we

determine whether or not each program action should be revised so that the entire program

becomes fault-tolerant? If indeed a program action should be revised, how do we indepen-

dently identify the nature of the change for that action? These questions are indeed special

cases of a more general question, which is the focus of our research: Given a program that

meets its specification and a new desired property raised due to the change in requirements,

how do we revise each program action so that the revised program satisfies the new property

while preserving its existing specification? To address this question for the addition of failsafe

fault-tolerance, we present a sound distributed algorithm that has two components: synthe-

sis coordinator and synthesis node. Corresponding to each program action, we instantiate a

synthesis node that determines how that action should be revised towards the synthesis of a

failsafe version of the input program. The synthesis coordinator synchronizes the activities

of synthesis nodes. There is only one synchronization point between a synthesis node and

the synthesis coordinator, which helps decreasing the communication cost of our algorithm.

As the number of program actions increases one can instantiate new synthesis nodes and

deploy them on different machines in a parallel platform.

Our proposed synthesis algorithm is a distributed fixpoint computation where in each round

of the computation synthesis nodes report their results to the synthesis coordinator. More

specifically, our algorithm takes a fault-intolerant program (as a set of actions) and a set of

fault actions, and instantiates (i) N synthesis nodes, where N is the total number of program

and fault actions, and (ii) one coordinator node. Each synthesis node performs a set of

verification and revision operations that could be done irrespective of revisions performed on

4

other actions in other synthesis nodes. Afterwards, each synthesis node reports its revised

action to the coordinator node and waits for coordinator’s reply. At the end of each round,

the collection of the actions in all synthesis nodes comprises an intermediate program. The

coordinator verifies some constraints on the intermediate program and broadcasts the results

to all synthesis nodes that are waiting to enter the next round of synthesis. A synthesis

node terminates in two possible cases. First, the synthesis node locally determines that its

associated action should be removed in the failsafe program. Second, the synthesis node

receives a termination message from the coordinator. The coordinator terminates either by

finding a failsafe program or by declaring failure.

We have employed the Yices Satisfiability Modulo Theories (SMT) solver [14] (developed

at SRI International) to apply our DiConic approach to four case studies among which (i)

the classic problem of Byzantine Generals (BG) [15], and (ii) an altitude switch controller

program that has been manually designed at the Naval Research Laboratory [16]. The Yices

specifications of these case studies are available in the Appendix. The organization of this

report is as follows: We present preliminary concepts in Section 2. In Section 3, we represent

the problem of adding failsafe fault-tolerance. Subsequently, in Section 4, we reiterate an

enumerative solution due to Kulkarni et al. [17] where they add failsafe fault-tolerance to

distributed programs represented as finite-state machines. Then, in Section 5, we present

our DiConic algorithm. We use the BG problem as a running example to demonstrate our

approach. Additionally, in Section 6, we present three case studies for DiConic addition of

failsafe fault-tolerance to (i) a simplified version of an altitude switch controller (from [16]),

(ii) a cruise control system, and (iii) a token ring protocol. We discuss related work in

Section 7. Finally, we make concluding remarks and discuss future work in Section 8.

2 Preliminaries

In this section, we provide formal definitions of programs, problem specifications, faults,

and failsafe fault-tolerance. The definition of specifications is adapted from Alpern and

Schneider [18]. The definition of programs, faults and fault-tolerance is adapted from Arora

and Gouda [19] and Arora and Kulkarni [20]. The issues of modeling distributed programs

5

is adapted from Attie and Emerson [21], and Kulkarni and Arora [10]. To illustrate our

modeling approach, we use the Byzantine Generals (BG) problem [15] as a running example

and use sans serif font for the exposition of the BG example.

Programs and processes. A program p = 〈Vp, Πp〉 is a tuple of a finite set Vp of variables

and a finite set Πp of processes. Each variable vi ∈ Vp, for 1 ≤ i ≤ n, has a finite non-empty

domain Di. A state s of a program p is a valuation 〈d1, d2, · · · , dn〉 of program variables

〈v1, v2, · · · , vn〉, where di is a value in Di. The state space Qp is the set of all possible states

of p. A transition of p is of the form (s, s′), where s and s′ are program states. A process

Pj , 1 ≤ j ≤ k, includes a finite set of actions. An action is a guarded command (due to

Dijkstra [2]) of the form grd → stmt, where grd is a Boolean expression specified over Vp

and stmt is an assignment that atomically updates zero or more variables. An assignment

always terminates once executed. The set of program actions is the union of the actions of

all its processes. We represent the new values of updated variables as primed values. For

example, if an action updates the value of an integer variable v1 from 0 to 1, then we have

v1 = 0 and v′

1 = 1.

BG example. We consider the canonical version of the Byzantine generals problem [15] where

there are 4 distributed processes Pg, Pj, Pk, and Pl such that Pg is the general and Pj, Pk, and

Pl are the non-generals. (An identical explanation is applicable for arbitrary number of non-

generals.) In the fault-intolerant BG program, the general sends its decision to non-generals and

subsequently non-generals output their decisions. Thus, each process has a variable d to represent

its decision, a Boolean variable b to represent if that process is Byzantine, and a variable f to

represent if that process has finalized (output) its decision. A Byzantine process may arbitrarily

change its d and/or f values. The program variables and their domains are as follows:

d.g : {0, 1} ; d.j, d.k, d.l : {0, 1,⊥} // ⊥ denotes uninitialized decision
b.g, b.j, b.k, b.l : {true, false} // b.j = true iff Pj is Byzantine
f.j, f.k, f.l : {false, true} // f.j = true iff Pj has finalized its decision

We represent the actions of the non-general process Pj as follows. We label these actions with

BG1 and BG2. (The actions of other non-generals are similar.)

BG1 : d.j = ⊥ ∧ ¬f.j −→ d.j := d.g;
BG2 : d.j 6= ⊥ ∧ ¬f.j −→ f.j := true;

6

A non-general process that has not yet decided copies the decision of the general. When a

non-general process decides, it can finalize its decision.

State and transition predicates. A state predicate of p is a subset of Qp specified

as a Boolean expression over Vp.
3 An unprimed state predicate is specified only in terms

of unprimed variables. Likewise, a primed state predicate includes only primed variables.

A transition predicate (adapted from [22, 23]) is a subset of Qp × Qp represented as a

Boolean expression over both unprimed and primed variables. We say a state predicate X

holds at a state s (respectively, s ∈ X) if and only if (iff) X evaluates to true at s. Note

that, a state predicate X also represents a transition predicate that includes all transitions

(s, s′), where either s ∈ X and s′ is an arbitrary state, or s is an arbitrary state and

s′ ∈ X. An action grd → stmt is enabled at a state s iff grd holds at s. A process

Pj ∈ Πp is enabled at s iff there exists an action of Pj that is enabled at s. We define a

function Primed (respectively, UnPrimed) that takes a state predicate X (respectively, X ′)

and substitutes each variable in X (respectively, X ′) with its primed (respectively, unprimed)

version, thereby returning a state predicate X ′ (respectively, X). The function getPrimed

(respectively, getUnPrimed) takes a transition predicate T and returns a primed (respectively,

an unprimed) state predicate representing the set of destination (respectively, source) states

of all transitions in T .

BG example. We define a state predicate I1 that captures the set of states in which the general

is not Byzantine and at most one non-general could be Byzantine. (Process variables p and q

represent non-general processes in the quantifications.)

I1 = ¬b.g ∧ (¬b.j ∨ ¬b.k) ∧ (¬b.k ∨ ¬b.l) ∧ (¬b.l ∨ ¬b.j) ∧

(∀p :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧

(∀p :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥)) ∧

In this case, a non-general non-Byzantine process is either undecided or its decision is the same

as that of general. Moreover, all non-general non-Byzantine processes that are finalized have

3An individual state s, the empty set, and the entire state space (i.e., the universal set) are special cases
of a state predicates.

7

decided on a non-⊥ value. As another example, the state predicate I2 captures a set of states

where the general is Byzantine and all non-generals have decided on the same value.

I2 = b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l∧ (d.j = d.k = d.l ∧ d.j 6= ⊥)

Closure. A state predicate X is closed in an action grd → stmt iff executing stmt from a

state s ∈ (X∧grd) results in a state in X. We say a state predicate X is closed in a program

p iff X is closed all actions of p.

BG example. The state predicates I1 and I2 are closed in actions BG1 and BG2. We leave it

to the reader to verify this claim.

Program computations and execution semantics. We consider a nondeterministic

interleaving of all program actions generating a sequence of states. A computation of a

program p = 〈Vp, Πp〉 is a sequence σ = 〈s0, s1, · · ·〉 of states that satisfies the following

conditions: (1) for each transition (si, si+1) (i ≥ 0) in σ, there exists an action grd → stmt

in some process Pj ∈ Πp such that grd holds at si and the execution of stmt at si yields si+1;

(2) σ is maximal in that either σ is infinite or if it is finite, then no action is enabled in its

final state, and (3) σ is fair; i.e., if a process Pj is continuously enabled in σ, then eventually

some action of Pj will be executed.

Distribution model. We model distribution issues as a set of read/write restrictions

imposed on program processes. More specifically, we associate with each process Pj a set

of variables that it is allowed to read, denoted rj , and a set of variables that Pj can write,

denoted wj. We assume that for each process Pj, wj ⊆ rj ; i.e., if a process can write

a variable, then that variable is readable too. No action in a process Pj is allowed to

update a variable v /∈ wj. This constraint can be specified as the transition predicate

rwRest ≡ (∀v : v /∈ wj : v = v′); i.e., the value of an unprimed variable v /∈ wj should

be equal to the value of its primed version. Note that the transition predicate rwRest

imposes a similar constraint on unreadable variables because if a variable cannot be read,

then it cannot be written either. Using read/write restrictions rwRest, we formally specify

an action grd → stmt as a transition predicate grd ∧ Primed(stmtExpr)∧ rwRest, where

stmtExpr is a Boolean expression generated from the assignment stmt. For example, an

8

assignment x := 1 can be specified as the expression x′ = 1.

BG example. Each non-general non-Byzantine process Pj is allowed to only read rj = {b.j, d.j,

f.j, d.k, d.l, d.g} and it can only write wj = {d.j, f.j}. Hence, we have wj ⊆ rj. As an example

of a transition predicate, we represent the action BG1 as ((d.j = ⊥) ∧ (f.j = 0)) ∧ (d.j′ =

d.g′) ∧ rwRest, where rwRest is the transition predicate (d.k = d.k′) ∧ (d.l = d.l′) ∧ (d.g =

d.g′) ∧ (b.g = b.g′) ∧ (b.j = b.j′) ∧ (b.k = b.k′) ∧ (b.l = b.l′) ∧ (f.k = f.k′) ∧ (f.l = f.l′).

Specifications. We follow Alpern and Schneider [18] in representing the specification

spec of a program as the conjunction of a safety specification (denoted S) and a liveness

specification (denoted L); i.e., spec = S ∩ L. Intuitively, S stipulates that nothing bad

ever happens. Formally, we represent S as a transition predicate whose transitions must not

appear in program computations. An action grd → stmt satisfies S from a state predicate

X iff the transition predicate X ∧ grd ∧ Primed(stmtExpr) ∧ S ∧ rwRest is equal to the

empty set, where rwRest captures the read/write restrictions of the process that executes

the action. A program p satisfies its safety specification S from X iff all actions of p satisfy

S from X . In terms of program computations, a program satisfies S from X iff all program

computations starting in X satisfy S. A program computation c = 〈s0, s1, · · ·〉 satisfies S

from X iff (s0 ∈ I) ∧ (∀(si, si+1) : i ≥ 0 : (si, si+1) /∈ S). Otherwise, the computation c

violates S. The liveness specification L states that something good will eventually occur.

More precisely, we define L as a set of infinite sequences of states. A computation is in L

if it contains a suffix4 that is in L. Note that there may exist infinitely long sequences that

have no suffix in the particular set of infinite sequences specified by L. For example, given a

state s that does not appear in any sequence 〈s0, s1, · · ·〉 belonging to L, the infinite sequence

generated by a self-loop on s would not belong to L. A computation c = 〈s0, s1, · · ·〉 satisfies

L from a state predicate X iff (s0 ∈ I) and c has a suffix in L. We say a program p satisfies

its liveness specification L from a state predicate X iff all computations of p satisfy L from

X. A program p satisfies its specification spec from a state predicate X iff p satisfies its

safety and liveness specifications from X.

BG example. The safety specification of the BG program requires that Validity and Agreement

4A suffix of a sequence 〈s0, s1, · · ·〉 is a subsequence 〈sj , sj+1, · · ·〉 for some j ≥ 0.

9

be satisfied. Validity stipulates that if the general is not Byzantine and a non-Byzantine non-

general has finalized its decision, then the decision of that non-general process is the same as that

of the general. Agreement requires that if two non-Byzantine non-generals have finalized their

decisions, then their decisions are identical. Hence, the program should not execute transitions

that reach the primed state predicate R1, where

R1 = (∃p, q :: ¬b.p′ ∧ ¬b.q′ ∧ d.p′ 6= ⊥ ∧ d.q′ 6= ⊥∧ d.p′ 6= d.q′ ∧ f.p′ ∧ f.q′) ∨

(∃p :: ¬b.g′ ∧ ¬b.p′ ∧ d.p′ 6= ⊥ ∧ d.p′ 6= d.g′ ∧ f.p′)

Moreover, when a non-Byzantine process finalizes, it is not allowed to change its decision. Thus,

the set of transitions of the following transition predicate should not be executed as well:

S2 = ¬b.j ∧ ¬b.j′ ∧ f.j ∧ (d.j 6= d.j′ ∨ f.j 6= f.j′)

Let S1 be the transition predicate representing all transitions that reach a state in R1. We specify

the safety specification of the BG program as the transition predicate S1 ∨ S2.

Invariants. A state predicate I is an invariant of a program p for its specification spec iff

the following conditions are satisfied: (1) I is closed in p, and (2) p satisfies spec from I.

BG example. The state predicate IBG = I1 ∨ I2 is indeed an invariant of the BG program.

Faults and fault-span. We represent a fault-type F as a set of actions. Fault actions

differ from program actions in that the program does not have execution control over fault

actions. A computation of a program p = 〈Vp, Πp〉 in the presence of fault F is a sequence

σ = 〈s0, s1, · · ·〉 of states that satisfies the following conditions: (1) for each transition

(si, si+1) (i ≥ 0) in σ, there exists either a program or a fault action grd → stmt such that

grd holds at si and the execution of stmt at si yields si+1; (2) σ is maximal, and (3) σ is

fair. A state predicate FS is called a fault-span of a program p from its invariant I for fault

F (denoted F -span) iff the following conditions are satisfied: (1) I ⇒ FS, and (2) FS is

closed in program p and fault actions. Intuitively, the F -span of p from I is a boundary

around I to which the state of p can be perturbed by fault and program actions.

BG example. The fault action F1 may cause at most one non-Byzantine process to become

Byzantine. A Byzantine process may arbitrarily change its d and/or f values. (We include similar

fault actions for k, l and g.)

10

F1 : ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true

F2 : b.j −→ d.j, f.j := 0|1, false|true 5

In Section 5, we shall illustrate how to calculate the fault-span in a DiConic manner.

Failsafe fault-tolerance. A program p is failsafe F -tolerant from an invariant I for its

specification spec (i.e., fault-tolerant against a fault-type F) iff there exists an F -span FS

such that: (1) in the absence of fault F , p satisfies spec from I, and (2) in the presence of

fault F , the actions of p and F satisfy the safety of spec (i.e., S) from FS.

3 Problem Statement

In this section, we reiterate the problem of adding failsafe fault-tolerance to programs

from [10]. Specifically, to formulate our DiConic approach in terms of the satisfiability

problem, we represent the addition problem in terms of state/transition predicates.

In order to separate fault-tolerance from functional concerns, the problem of adding fault-

tolerance stipulates that no new behaviors are added to programs in the absence of faults.

More precisely, given a program p = 〈Vp, Πp〉, its invariant I, its specification spec = S ∩ L

and a fault-type F , we aim to generate a revised version of p, denoted pf = 〈Vp, Π
f
p〉 with a

new invariant If such that pf is failsafe F -tolerant from If for spec. If If includes a state s

that does not belong to I, then the execution of p in the absence of F from s may generate new

computations. Hence, we require that If ⇒ I. Moreover, starting in If , the actions of pf

should not include new transitions. Otherwise, pf may exhibit new behaviors in the absence

of faults. Thus, for each action grdf → stmtf in pf , we require that there exists an action

grd → stmt in p such that the transition predicate If ∧grdf ∧Primed(stmtfExpr)∧rwRest

implies the transition predicate If ∧ grd ∧ Primed(stmtExpr) ∧ rwRest. Therefore, we

formally state the problem of adding failsafe fault-tolerance as follows:

5d.j := 0|1 means that d.j could be assigned either 0 or 1.

11

The Problem of Adding Failsafe Fault-Tolerance.
Given p, I, spec, and F , identify pf and If such that

(1) If ⇒ I,
(2) For each action grdf → stmtf in pf , there exists

some action grd → stmt in p such that
(If ∧ grdf ∧ Primed(stmtfExpr) ∧ rwRest) ⇒

(If ∧ grd ∧ Primed(stmtExpr) ∧ rwRest)
where rwRest captures the read/write
restrictions of the process that executes
the action grdf → stmtf .

(3) pf is failsafe F -tolerant from If for spec.

4 Adding Failsafe Fault-Tolerance

In order to simplify the presentation of our DiConic approach, in this section, we present an

intuitive description of the algorithm presented in previous work [12, 17] for the addition of

fault-tolerance to integrated models of distributed programs. This algorithm (see Figure 1)

takes a non-deterministic finite-state machine representing the fault-intolerant program and

generates a state machine representing the failsafe fault-tolerant program.

The algorithm in Figure 1 first identifies a valid fault-span of the program that is a superset

of the invariant and is closed in program and fault transitions. Subsequently, the algorithm

computes and removes the set of offending states from where a sequence of fault transitions

can directly violate safety. The removal of offending states is accomplished by making them

unreachable. Then the algorithm identifies and removes a set of offending transitions that

either directly violate safety or reach an offending state. However, since the offending states

are made unreachable in Step 2, offending transitions that start in an offending state need

not be removed. While removing offending states/transitions, the addition algorithm may

introduce states that have no outgoing transitions; i.e., deadlock states. The exclusion of

deadlock states from the invariant may leave transitions that start in the new invariant and

reach a recently removed state, thereby violating the closure of the new invariant. These

transitions are removed in Step 5. The algorithm iterates through Steps 4 and 5 until either

all invariant states are removed or a closed non-empty invariant is found. Existing imple-

mentations [12,13,17] of the algorithm in Figure 1 execute all steps on an integrated model

12

Step 2: Remove the set of offending states in

the F-span from where a sequence of fault

transitions alone violates safety; i.e., make the

offending states unreachable.

Step 3: Remove a set of offending transitions

that either directly violate safety or reach the

set of offending states

(Heuristic: Transitions that violate safety and

start in an offending state need not be removed

since offending states are made unreachable in

the previous step)

Step 4: Remove deadlocks in the invariant

Is the new invariant

empty?

Is the new invariant

closed?

No

Declare failure
Yes

No

Declare success
Yes

Step 1: Calculate a valid F-span

Step 5: Ensure the closure of the new invariant

Operation

Legend

Control

flow

Decision

Figure 1: Adding failsafe fault-tolerance to non-deterministic finite state automata.

represented either as a non-deterministic finite-state machine [12] or as a set of symbolic en-

tities (e.g., BDDs) [13], thereby making it difficult to scale these algorithms as the number

of program processes increases.

5 DiConic Addition

In this section, we present our DiConic algorithm. Specifically, in Section 5.1, we illustrate

how to compute the fault-span and the set of offending states (Steps 1 and 2 in Figure 1).

In Section 5.2, we present a DiConic method for removing offending transitions (Step 3 in

Figure 1). Finally, in Section 5.3, we calculate a new invariant for the synthesized failsafe

program in a DiConic fashion. This step corresponds to the loop that includes Steps 4 and

5 in Figure 1.

13

5.1 Computing Fault-Span and Offending States

In this section, we decompose the problem of calculating a fault-span and the set of offending

states by introducing a distributed forward/backward reachability algorithm. Specifically,

in calculating the fault-span using forward reachability, the integrated algorithms [12,13,17]

implement a fixpoint computation that explicitly explores the set of states reachable from

the invariant of the fault-intolerant program by all program and fault transitions. In each

iteration, the forward reachability algorithm computes a new set of states reachable from

previously calculated states. Continuing thus, the forward reachability algorithm reaches a

point where no more states are reachable. The union of the sets of all states computed in

all iterations comprises the fault-span of the fault-intolerant program. Instead of calculating

a set of states reachable from a given state predicate X, in each iteration, the backward

reachability algorithm computes a set of states from where X is reached.

Our proposed DiConic approach for the calculation of the fault-span (respectively, the set of

offending states) is a divide-and-conquer fixpoint computation with two kinds of components,

namely the coordinator and the reachability nodes. A reachability node contains a single

program action and computes the set of states reached by the execution of that action from

a state predicate X (respectively, the set of states from where the execution of that action

reaches a state in X). The coordinator node manages the reachability nodes. Figures 2 and

3 illustrate the two components of our DiConic approach for forward reachability. (We omit

the DiConic backward reachability algorithm as it is similar to the forward reachability.) The

coordinator starts by sending out a Base state predicate to all nodes. Each node computes

the set of states outside Base that are reachable from Base by that node’s action (see

Figure 2). The coordinator takes the union of all reachable states, denoted reachedStates,

calculated by all nodes. If this union is empty, then the fixpoint computation is terminated.

Otherwise, another iteration starts with a new Base, which is the union of the old Base and

the state predicate reachedStates. For the calculation of the fault-span, the Base predicate

is the invariant of the fault-intolerant program, and corresponding to each program and

fault action, a reachability node is instantiated. Note that for the calculation of the set of

offending states using DiConic backward reachability, only fault actions are considered since

14

we want to compute the set of states from where safety is violated by a sequence of fault

transitions alone. Specifically, for each fault action, we first identify the set of states from

where that action directly violates safety. The union of all such states comprises the base

set for a backward reachability computation using only fault actions. Therefore, in the rest

of this section, we present our DiConic approach assuming that the fault-span, denoted FS,

and the set of offending states, denoted OS, have already been calculated.

ForwardReachability Node(grd → stmt: action; X: state predicate;
rwRest: transition predicate)

{
- Wait for X from the coordinator;
- repeat {

- reachedStates := ∅; // set of states reached outside X by
// the execution of grd → stmt from X;

- transPred := (grd ∧ X) ∧ Primed(stmtExpr) ∧
rwRest ∧ Primed(¬X);

- If (transPred is satisfiable) then
- reachedStates := getPrimed(transPred);

- Send reachedStates to coordinator;
- Wait for X from the coordinator;

- } until(termination signal is received);
}

Figure 2: Reachability node in DiConic forward reachability.

BG example. In order to calculate the fault-span of the canonical BG program, denoted FSBG,

we instantiate 14 forward reachability nodes as we have 2 program actions and 2 fault actions

corresponding to each non-general process and 2 fault actions corresponding to the general

process. We also create a reachability coordinator. The base predicate is equal to the invariant

IBG. We consider only the program/fault actions of process Pj as they are structurally similar

to other non-general processes. Clearly, in the first iteration of the fixpoint computation, starting

from the invariant, program actions BG1 and BG2 would reach to a state in the invariant (due

to the closure of the invariant in program actions).

The reachability node corresponding to the fault action F1 returns I1 ∨ (b.g∧¬b.j ∧¬b.k∧¬b.l)

as the set of states reachable from the invariant by F1. Specifically, starting from the state

predicate I1 (see Section 2) in the invariant, if the fault action F1 does not cause the general

15

process Pg to become Byzantine, then the set of states reached from I1 is the same as I1.

Nonetheless, if Pg becomes Byzantine, then the b values of non-general processes would remain

false as at most one process could be Byzantine. Thus, the set of states reached from I1 by

faults is (I1 ∨ (b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l)). If the BG program is in a state in I2, then the fault

action F1 will not be executed as Pg is already Byzantine.

The reachability node corresponding to the fault action F2 returns the same predicate as that of

F1. If Pj is Byzantine, then the execution of the action F2 from I1 would not violate the closure

of I1 since the second and the third conjuncts of I1 are specified for non-Byzantine processes.

Moreover, F2 will not be enabled from I2. If Pg is Byzantine, then F2 will not be enabled from

I1, thereby preserving the closure of I1. In this case, a similar reasoning as that for F1 would

yield I2 as the set of states reachable from I2 by F2.

Since the state predicate I1 ∨ (b.g∧¬b.j ∧¬b.k∧¬b.l) is closed in all program and fault actions,

the fault-span of the BG program is equal to FSBG, where

FSBG = I1 ∨ (b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l).

Reachability Coordinator(Base: state predicate)
{ // N denotes the total number of program and fault actions.

- X := Base;
- repeat {

- Send X to all nodes;
- Wait for reachedStatesi from Nodei;
- reachedStates := reachedStates1 ∨ · · · ∨ reachedStatesN ;
- X := X ∨ reachedStates;

- } until(reachedStates = ∅);
- Send termination signal to all nodes;
- return X;

}

Figure 3: Reachability coordinator in DiConic forward reachability.

Both fault actions may violate safety if they start in a state in UnPrimed(R1) (see Section 2);

i.e., the base set for backward reachability is R1. Subsequently, we compute the set of all states

from where the execution of fault actions would yield a state in R1. The fault actions F1 and F2

yield a state in R1 only if they are enabled in UnPrimed(R1). Therefore, the second iteration of

the fixpoint computation is the last iteration, returning UnPrimed(R1) as the set of offending

16

states.

5.2 Removing Offending Transitions

We decompose the removal of the offending transitions into the elimination of such transitions

in each action without actually creating an integrated model of the program. Specifically,

each synthesis node investigates two cases for the existence of offending transitions in the

set of transitions represented by its associated action. Steps 1 and 2 in Figure 4 identify and

exclude a subclass of the offending transitions that start outside the set of offending states

and reach an offending state. The motivation behind these steps is that such transitions take

the program to states from where the occurrence of faults may violate safety. Thus, in order

to preserve safety even when faults occur, the program must not take such transitions. Steps

3 and 4 in Figure 4 determine and remove another subclass of the offending transitions that

start outside the invariant in the fault-span FS and directly violate the safety specification.

In the next subsection, we describe how to divide the task of resolving deadlock states that

may be created due to the elimination of offending transitions.

BG example. We create two synthesis nodes corresponding to the actions BG1 and BG2. The

execution of Steps 1 and 2 in Figure 4 for the action BG1 returns an empty set since the only way

the execution of BG1 generates a state in the set of offending states is that BG1 is enabled in

an offending state. In other words, the action BG1 may violate safety if it is enabled in a state in

the fault-span where the general is Byzantine and the other two non-generals have finalized with

different decisions. However, since such states have already been included in the set of offending

states and Steps 1 and 2 of the Synthesis Node ensure that the offending states are not reached,

we do not have to exclude such transition from the action BG1. Therefore, the first two steps

of the Synthesis Node algorithm do not change action BG1.

The synthesis node corresponding to BG2 revises BG2 in the following way. Specifically, if

the action BG2 is enabled from a state outside the set of offending states where a non-general

non-Byzantine process has finalized with a different decision from that of Pj , then the safety

of specification will be violated if Pj finalizes its decision. Thus, a set of transitions starting in

(d.k 6= ⊥ ∧ d.j 6= d.k) ∨ (d.l 6= ⊥ ∧ d.j 6= d.l) would be excluded from BG2 in Steps 1 and

17

Synthesis Node(grd → stmt: action; OS, Inv, FS: state predicate;
S, rwRest: transition predicate)

/* S denotes the safety specification and FS denotes the fault-span. */
/* OS denotes the set of offending states. */
{

/* Does grd → stmt start outside OS and reach OS? */
- transPred := (grd ∧ ¬OS)∧

(Primed(stmtExpr ∧ OS)) ∧ rwRest; (1)
- If (transPred is satisfiable) then

- Exclude(transPred, grd → stmt); (2)

/* Does grd → stmt directly violate safety in FS − Inv? */
- transPred := (FS ∧ ¬Inv ∧ grd∧ Primed(stmtExpr) ∧

rwRest ∧ S); (3)
- If (transPred is satisfiable) then

- Exclude(transPred, grd → stmt); (4)

/* Synchronize this node with the synthesis coordinator. */
repeat {

- Send grd to the synthesis coordinator; (5)
- If (grd is unsatisfiable) then declare that

grd → stmt is removed; exit(); (6)
- Wait to receive a new invariant Invnew and DeadlockStates; (7)

/* Does the revised action contain closure-violating transitions? */
- closureV iolatingTrans := grd ∧ Invnew ∧ Primed(stmtExpr) ∧

Primed(¬Invnew) ∧ rwRest; (8)
- If (closureV iolatingTrans is satisfiable) then

- Exclude(closureV iolatingTrans, grd → stmt); (9)
until ((Invnew is unsatisfiable) ∨ (DeadlockStates is unsatisfiable));
- If (Invnew is satisfiable) then return grd → stmt; (10)
- declare failure in synthesizing a failsafe program; (11)

}

ExcludeTransitions(transPred: transition predicate, grd → stmt: action)
// exclude the set of transitions represented by transPred

// from the action grd → stmt.
{ - transPred := grd ∧ Primed(stmtExpr) ∧ ¬transPred;

- grd := getUnPrimed(transPred); }

Figure 4: Synthesis node.

2 of Synthesis Node. Steps 3 and 4 do not exclude any additional transitions from BG2 as the

only transitions that directly violate safety upon finalization are the same transitions excluded in

Steps 1 and 2. Therefore, the revised action BG2 is as follows:

BG2 : (d.j 6= ⊥ ∧ f.j = 0) ∧ (d.k = ⊥ ∨ d.j = d.k) ∧ (d.l = ⊥∨ d.j = d.l)
−→ f.j := true

In the case of the BG program, the synthesis nodes associated with the actions of Pk and Pl

perform revisions similar to that of synthesis nodes associated with BG1 and BG2.

18

5.3 Computing a New Invariant

In this section, we illustrate how our DiConic approach decomposes the problem of calcu-

lating a new invariant for the failsafe program by the collaboration of the Synthesis Node

and the Synthesis Coordinator algorithms (see Figures 4 and 5). First, the Synthesis Coordinator

algorithm ensures that the removal of offending states does not lead to the removal of all

invariant states (see Steps 1 and 2 in Figure 5). Then the Synthesis Coordinator enters a loop

which synchronizes the activities of all synthesis nodes once they start participating in the

calculation of the new invariant (see the loop in Steps 5-9 in Figure 4). These two loops

are in fact a DiConic implementation of the loop that includes Steps 4 and 5 in Figure 1.

The Synthesis Coordinator waits to receive the revised guards from all synthesis nodes after

the removal of offending transitions in Steps 1-4 of the Synthesis Node algorithm. The syn-

thesis nodes enter a waiting state after sending their revised guard to the coordinator. The

Synthesis Coordinator calculates the set of all invariant states from where no action is enabled

(see Steps 4 and 5 in Figure 5); i.e., deadlock states. Afterwards, the coordinator computes

a new invariant by removing the deadlock states. The Synthesis Coordinator sends the new

invariant and a state predicate representing deadlock states to all synthesis nodes. If the new

invariant becomes empty, then Synthesis Coordinator declares failure in the addition of failsafe

fault-tolerance. After receiving the new invariant, each synthesis node determines whether or

not its associated action includes transitions that reach a state outside the invariant Invnew

(Steps 8 and 9 in Figure 4); i.e., violates the closure of the invariant. An action violates the

closure of the invariant if it contains transitions that reach states that have been excluded

by other actions in other synthesis nodes. Afterwards, each synthesis node starts another

iteration by sending its revised guard grd to the coordinator. The collaboration between

the synthesis coordinator and synthesis nodes continues until either a valid new invariant is

found or the synthesis fails.

BG example. Since the invariant IBG does not include any offending states (i.e., IBG ∩

UnPrimed(R1) = ∅), the revision of the action BG2 does not create new deadlock states

in the invariant. Thus, the predicate DeadlockStates computed in Step 5 of Figure 5 is equal

to the empty set. As a result, the synthesis nodes exit the repeat-until loop in the first iteration.

19

Synthesis Coordinator(Inv, OS: state predicate)
{ /* OS denotes the set of offending states. */

/* n denotes the number of program actions. */
- Invnew := Inv ∧ ¬OS; (1)
- If (Invnew is unsatisfiable) then

- declare that a failsafe program cannot be synthesized; exit(); (2)
repeat {

- Wait for the revised guards grd1, · · · , grdn

from synthesis nodes Node1, · · · , Noden; (3)
- Guards := grd1 ∨ · · · ∨ grdn; (4)
- DeadlockStates := (Invnew ∧ ¬Guards); (5)
- Invnew := Invnew ∧ ¬DeadlockStates; (6)
- Send Invnew and DeadlockStates to nodes Node1, · · · , Noden; (7)

} until ((Invnew is unsatisfiable) ∨ (DeadlockStates is unsatisfiable));
- If (Invnew is unsatisfiable) then

- declare failure in synthesizing a failsafe program; exit(); (8)
- Notify nodes of successful termination;

}

Figure 5: Synthesis coordinator.

Therefore, the invariant of the failsafe program is equal to IBG.

Theorem 5.1 DiConic addition of failsafe fault-tolerance is sound.

Proof. Let p = 〈Vp, Πp〉 be the input fault-intolerant program with its invariant I, its

specification spec, and a fault-type F . Also, let pf = 〈Vp, Π
f
p〉 be the program synthesized by

our DiConic method (i.e., algorithms Synthesis Coordinator and Synthesis Node) and If be the

invariant of pf . Since the Synthesis Coordinator algorithm only removes states from I, If is a

subset of I. Also, by construction, we have If ∧ OS ≡ false. Likewise, the Synthesis Node

algorithm only removes offending and closure-violating transitions from an action. Thus, by

construction, no action in pf includes new transitions, and all actions of pf satisfy the safety

of spec. Therefore, pf meets the first and second requirements of the addition problem (see

Section 3).

Moreover, if the synthesis is successful, then If is non-empty and does not have any deadlock

states. Since no new transitions are included in the actions of pf , starting from If , the set

of computations of pf in the absence of faults is a subset of the set of computations of p

starting in If . Thus, in the absence of faults, pf satisfies spec from If .

Now, let c = 〈s0, s1, · · ·〉 be a computation of pf in the presence of F in which a transition

20

(si, si+1), for i ≥ 0, violates the safety of spec. If (si, si+1) is a program transition, then there

must be an action in pf that includes (si, si+1) and violates safety. This is a contradiction

with the fact that all offending transitions have been removed from pf . If (si, si+1) is a

fault transition, then si is a reachable offending state. The transition (si−1, si) cannot be a

program transition because it would be an offending transition. Thus, (si−1, si) is a fault

transition and si−1 is an offending state. By induction, it follows that s0 is an offending

state. However, since all computations start in the invariant, we have s0 ∈ If , which is a

contradiction as all offending states have been removed from If . Therefore, pf is failsafe

F -tolerant from If for spec.

Comment on the completeness of our approach. The elimination of closure-violating

transitions in each synthesis node may create new deadlock states in the invariant. The

number of such deadlock states depends on how appropriate closure-violating transitions are

selected for elimination among all program actions. The current strategy for eliminating

closure-violating transitions may result in the removal of an inappropriate set of such tran-

sitions, thereby leading to the failure of the addition of fault-tolerance to the program at

hand; i.e., our algorithm may fail to find a failsafe program while there exists one.

6 Case Studies

In this section, we present three additional case studies of the application of our DiConic

approach in adding failsafe fault-tolerance. Specifically, in Subsection 6.1, we add failsafe

fault-tolerance to a simplified version of an altitude switch (ASW) controller. We have

chosen this example to compare the failsafe fault-tolerant program synthesized in a divide-

and-conquer approach with the ASW program that has been manually designed in [16].

In Subsection 6.2, we illustrate how to add failsafe fault-tolerance in a DiConic way to

the controlling program of a Cruise Control System (CCS) (adapted from [24]). Finally,

in Subsection 6.3, we demonstrate how DiConic addition of fault-tolerance simplifies the

synthesis of a token ring program that tolerates state-corruption faults without violating its

safety specification. We note that we have formulated these case studies in terms of the

satisfiability problem and have employed the Yices SMT solver to validate our approach.

21

The Yices specifications of these case studies are available in the Appendix.

6.1 Altitude Switch Controller

In this section, we demonstrate the application of our DiConic approach in adding fail-

safe fault-tolerance to a simplified version of an altitude switch (ASW) controller program

(adapted from [16]).

The fault-intolerant altitude switch (ASW). The ASW program monitors a set of

input variables and generates an output. Also, the program has a set of internal variables

as follows: (i) AltBelow is equal to 1 if the altitude is below a specific threshold, otherwise,

it is equal to 0; (ii) ActuatorStatus is equal to 1 if the actuator is powered on, otherwise, it

is equal to 0; (iii) Inhibit is equal to 1 when the actuator power-on is inhibited, otherwise,

it is equal to 0, and (iv) Reset is equal to 1 if the system is being reset.

The ASW program has a mode variable Mode and can be in three different modes: (i) the

Initialization mode when the ASW system is initializing, denoted Mode = I; (ii) the Await-

Actuator mode if the system is waiting for the actuator to power on, denoted Mode = AA,

and (iii) the Standby mode, denoted Mode = SB.

Moreover, we model the signals that come from the input sensors to indicate the occurrence

of faults using the following variables: (i) if the system fails in the initialization mode, then

the variable InitFail will be set to 1, otherwise, InitFailed remains 0; (ii) if the altitude

sensors fail and do not recover in a certain number of built-in reset attempts, then the variable

AltFail will be equal to 1, otherwise, AltFail remains 0, and (iii) if the Actuator fails in

the Await-Actuator mode, then the variable ActFail will be equal to 1, otherwise, ActFail

remains 0. The domain of all variables except Mode is equal to {0, 1}. The fault-intolerant

program consists of only one process with the following actions:

22

A1 : (Mode = I) −→ Mode := SB;
A2 : (Mode = SB) ∧ (Reset = 1) −→ Mode := I; Reset := 0;
A3 : (Mode = SB) ∧ (AltBelow = 1) ∧ (Inhibit = 0) ∧

(ActuatorStatus = 0) −→ Mode := AA;
A4 : (Mode = AA) ∧ (ActuatorStatus = 0) ∧ (Inhibit = 0)

−→ Mode := SB; ActuatorStatus := 1;
A5 : (Mode = AA) ∧ (Reset = 1) −→ Mode := I; Reset := 0;

The program changes its mode from Initialization to Standby. The program goes to the

Initialization mode when it is either in Standby or in Await-Actuator mode and the reset

signal is received. If the program is in the Standby mode, the altitude is below a pre-

determined threshold, the actuator power-on is not inhibited and the actuator is not powered

on, then the program changes its mode to Await-Actuator. In the Await-Actuator mode,

the program either powers on the actuator and goes to the standby mode, or enters the

initialization mode upon receiving the reset signal.

Read/Write restrictions. All variables can be read. However, the program cannot write

the variables InitFail, AltFail, ActFail, AltBelow and Inhibit.

Faults. If the altitude sensors incur malfunction then the state of the program will be

perturbed to a faulty state. We represent the fault actions as follows:

F1 : (InitFail = 0) −→ InitFail := 1;
F2 : (AltFail = 0) −→ AltFail = 1;
F3 : (ActFail = 0) −→ ActFail = 1;

The guards of the above actions represent conditions under which the program detects the

occurrence of faults.

Safety specification. The problem specification requires that the program does not change

its mode from Standby to Await-Actuator if the altitude sensors are failed; i.e., AltFail is

equal to 1. Moreover, if the initialization has failed, then the ASW program must not enter

the Standby mode. Finally, if the actuator fails in the AA mode, then the ASW program

should not power on the actuator. Thus, we represent the safety specification of the ASW

program by the transition predicate SASW , where

23

SASW = ((AltFail = 1) ∧ (Mode = SB) ∧ (Mode′ = AA)) ∨
((InitFail = 1) ∧ (Mode = I) ∧ (Mode′ = SB)) ∨
((ActFail = 1) ∧ (Mode = AA) ∧ (ActuatorStatus = 0) ∧ (ActuatorStatus′ = 1))

This transition predicate specifies the set of transitions that must not appear in any compu-

tation of the ASW program even when faults occur.

Invariant. If the Inhibit is activated, then the actuators should not be powered on.

Moreover, the program should not be in a faulty mode. Thus, the invariant of the ASW

program is equal to IASW , where

IASW = ((Inhibit = 1) ⇒ (ActuatorStatus = 0)) ∧
((InitFail = 0) ∧ (AltFail = 0) ∧ (ActFail = 0))

DiConic calculation of the fault-span and offending states. In DiConic forward

reachability on fault actions, in the first iteration, the fault action F1 reaches the state

predicate reachedStates1 ≡ ((Inhibit = 1) ⇒ (ActuatorStatus = 0)) ∧ (InitFail = 1) from

the invariant IASW . Likewise, the reachability nodes corresponding to F2 and F3 respectively

send the following set of reached states to the reachability coordinator: reachedStates2 ≡

((Inhibit = 1) ⇒ (ActuatorStatus = 0))∧ (AltFail = 1) and reachedStates3 ≡ ((Inhibit =

1) ⇒ (ActuatorStatus = 0))∧ (ActFail = 1). Thus, since program actions are closed in the

invariant, the set of states reachable by fault and program actions in the first iteration of

the repeat-until loop in Figure 3 is equal to FSASW = ((Inhibit = 1) ⇒ (ActuatorStatus =

0)) ∧ ((AltFail = 1) ∨ (InitFail = 1) ∨ (ActFail = 1)). The set of states reachable from

FSASW by fault and program actions would yield no new states outside FSASW , thereby

returning FSASW as the fault-span of the ASW program for fault actions F1, F2 and F3.

Since fault actions do not directly violate safety specification, the base set of states for

backward reachability is empty. Therefore, the set of offending states is empty.

Removing the set of offending transitions. We create five synthesis nodes correspond-

ing to the actions A1-A5. In addition to an action Ai (1 ≤ i ≤ 5), each synthesis node Nodei

takes the invariant IASW , the fault-span FSASW , the safety specification SASW , the set of

offending states OS and the write restrictions as its inputs. Since OS = ∅, the first two steps

24

in Figure 4 result in an unsatisfiable transition predicate. Next, we describe the results of

executing Steps 3 and 4 in each Nodei.

• Action A1. Step 3 calculates the transition predicate (Mode = I) ∧ (InitFail =

1) ∧ (Mode′ = SB) as the set of transitions that violate the safety specification and

should be excluded from action A1. Therefore, action A1 would be revised as follows:

(Mode = I) ∧ (InitFail = 0) −→ Mode := SB;

• Action A2. Since the safety specification SASW does not stipulate anything about

changing the program mode to initialization, this action does not include any offending

transitions. Therefore, A2 remains unchanged.

• Action A3. The safety specification SASW states that the ASW program must not

enter the AA mode if the altitude sensors have failed (i.e., AltFail = 1). Thus, the

synthesis node corresponding to action A3 revises A3 as follows:

(Mode = SB) ∧ (AltBelow = 1) ∧ (Inhibit = 0) ∧ (ActuatorStatus = 0)∧
(AltFail = 0) −→ Mode := AA;

• Action A4. If faults cause the actuator to fail, then the program should not power

on the actuator. Thus, due to the execution of the fault action F3, action A4 may be

enabled in states where ActFail = 1 holds, thereby leading to the violation of safety.

The elimination of such transitions originated in the fault-span outside the invariant

results in the following revised action:

(Mode = AA) ∧ (ActuatorStatus = 0) ∧ (Inhibit = 0)∧ (ActFail = 0)
−→ Mode := SB; ActuatorStatus := 1;

• Action A5. This action remains unchanged for the same reason as that of action A2.

Since the set of offending states is empty, no state is removed from the invariant. Therefore,

the invariant of the failsafe program is equal to IASW . We note that the failsafe ASW

program synthesized in this section is similar to the ASW program that has been manually

designed in [16].

25

6.2 Cruise Control System

In this section, we present a case study on the application of our DiConic approach in adding

failsafe fault-tolerance to the controlling program of a Cruise Control System (CCS). The

cruise control example in this section is a simplified version of the example in [24].

The fault-intolerant CCS program. The CCS program has 4 input variables Ignition,

EngState, Brake, and Lever that represent the values of the input signals. (To distinguish

variables from their values, system variables start with capitalized letters.) The domain of

the variable Ignition contains values of on and off that represent the state of the ignition

switch. The variable EngState represents the working state of the engine with the domain

{running, off}. The variable Brake illustrates the state of an input signal from the brakes

that shows whether or not the driver has applied the brakes. The domain of Brake is equal

to {notApplied, applied, unknown}. The Lever variable represents the position of the cruise

control lever set by the driver. The cruise control lever can be in three positions off, constant,

and resume. The CCS program also has a variable SysMode that stores its operating mode.

The CCS program can be in the following modes: off, inactive, cruise, and override. If

the CCS program is in none of the above-mentioned modes then its mode is unknown. We

represent the fault-intolerant CCS program by the actions A1-A9.

A1 : ((SysMode = off) ∧ (Ignition = on)) −→ SysMode := inactive;
A2 : ((SysMode = inactive) ∧ (Ignition = off)) −→ SysMode := off ;
A3 : ((SysMode = inactive) ∧ (Lever = constant) ∧ (Ignition = on) ∧

(EngState = running))
−→ SysMode := cruise;

A4 : ((SysMode = cruise) ∧ (Ignition = off)) −→ SysMode := off ;
A5 : ((SysMode = cruise) ∧ (EngState = off)) −→ SysMode := inactive;
A6 : ((SysMode = cruise) ∧ ((Brake = applied) ∨ (Lever = off)))

−→ SysMode := override;
A7 : ((SysMode = override) ∧ (Ignition = off)) −→ SysMode := off ;
A8 : ((SysMode = override) ∧ (EngState = off)) −→ SysMode := inactive;
A9 : ((SysMode = override) ∧ (Ignition = on) ∧ (EngState = running) ∧

((Lever = constant) ∨ (Lever = resume))) −→ SysMode := cruise;

If the program is in the off mode and the ignition is on then the program transitions to the

inactive mode (Action A1). The program transitions to the off mode if it is in the inactive

26

mode and the ignition turns off (Action A2). In the inactive mode, if (i) the lever is set on

constant, (ii) the ignition is on, and (iii) the engine is running, then the program transitions

to the Cruise mode (Action A3). In the cruise mode, the program transitions to (i) the off

mode if the ignition turns off (Action A4), or (ii) the inactive mode when the engine turns off

(Action A5). If the lever is off or the driver has applied the brakes, then the program moves

to the override mode from cruise mode (Actions A6). In the override mode, the program

goes to the off mode if the ignition turns off (Action A7). If the engine turns off then the

program will transition to the inactive mode from the override mode (Action A8). Finally,

in the override mode, the program transitions to the cruise mode if (i) the ignition is on,

(ii) the engine is running, and (iii) the lever is on constant or resume (Action A9).

The invariant of the CCS program. In general, the CCS program should be in one

of the modes off, inactive, cruise, or override, and the brakes subsystem should also be

working properly. Also, if the program is in the off mode then the ignition should be off. If

the program is in the inactive mode then the ignition should be on. If the program is in the

cruise mode, then the ignition should be on, the engine should be running, the lever should

not be off, and the brakes must not be applied. In the override mode, the ignition is on and

the engine should be running. Hence, we represent the invariant of the CCS program by the

state predicate ICCS, where

ICCS = ((SysMode 6= unknown) ∧ (Brake 6= unknown)) ∧ I1, where

I1 = ((SysMode = off) ∨ (SysMode = inactive)∨
(SysMode = cruise) ∨ (SysMode = override)) ∧

((SysMode = off) ⇒ (Ignition = off)) ∧
((SysMode = inactive) ⇒ (Ignition = on)) ∧
((SysMode = cruise) ⇒ ((ignition = on) ∧ (EngState = running)∧

(Brake 6= applied) ∧ (Lever 6= off))) ∧
((SysMode = override) ⇒ ((Ignition = on) ∧ (EngState = running)))

Read/Write restrictions. The CCS program can read all variables, however, it cannot

write the variables Ignition, EngState, Brake, and Lever as they represent the values of the

input signals.

27

Fault actions. The malfunction of the brake subsystem may corrupt the value of Brake to

an unknown value. In addition, faults may perturb the cruise control system to an unknown

operating mode. We represent the set of fault transitions by the following actions:

F1 : (Brake 6= unknown) −→ Brake := unknown;
F2 : (SysMode 6= unknown) −→ SysMode := unknown;

The safety specification of the CCS program. The specification of the CCS program

stipulates that as long as the driver has applied the brakes the CCS program must never

transition to the cruise mode. Also, in cases where the signal coming from the brake subsys-

tem is corrupted then it is not safe for the program to transitions to the cruise mode. Finally,

the program must not transition to the cruise mode in cases where it is in an unknown mode.

Hence, we represent the safety specification of the CCS program by the following transition

predicate:

SCCS = ((Brake = applied) ∧ (Brake′ = applied) ∧ (SysMode′ = cruise)) ∨
((Brake = unknown) ∧ (SysMode′ = cruise)) ∨
((SysMode = unknown) ∧ (SysMode′ = cruise))

DiConic calculation of the fault-span and offending states. We instantiate two

forward reachability nodes corresponding to the fault actions F1 and F2 and nine forward

reachability nodes corresponding to program actions A1-A9. The state predicates computed

by the reachability nodes of F1 and F2 are as follows:

• Action F1. This action may set the Brake to an unknown value, thereby falsifying

the state predicate (SysMode 6= unknown) ∧ (Brake 6= unknown). However, F1 does

not violate the closure of I1. Therefore, the program may be perturbed to I1 by F1.

• Action F2. The execution of the fault action F2 violates the closure of both state

predicates I1 and (SysMode 6= unknown) ∧ (Brake 6= unknown).

Since the invariant is closed in program actions, in the first round of the forward reachability

the set of reachable states would be equal to FSCCS = I1 ∨ (SysMode = unknown) ∨

(Brake = unknown). Subsequent iterations of forward reachability would yield the same

predicate FSCCS as the reachable state predicate from FSCCS by fault and program actions.

28

This is because if only (SysMode = unknown) holds, then no program actions is enabled,

thereby no new states are reached. If only (Brake = unknown) holds, then I1 is the set of

reachable states from FSCCS. For this reason, the fault-span of the CCS program is FSCCS .

Since fault actions do not directly violate the safety of specification, the base set of states

for backward reachability is empty. Therefore, the set of offending states is empty.

Removing the set of offending transitions. We create nine synthesis nodes correspond-

ing to the actions A1-A9. Since the only actions that cause the CCS program to transition

to the cruise mode are actions A3 and A9, the only actions that may directly violate safety

would be A3 and A9. Thus, only the corresponding synthesis nodes of these actions perform

revisions and the rest of the actions remain unchanged in the failsafe program. We present

the revised actions A3 and A9 as follows:

• Action A3. Step 3 of the corresponding synthesis node calculates the transition predi-

cate (((Brake = applied)∧(Brake′ = applied))∨(Brake = unknown))∧(SysMode′ =

cruise) as the set of transitions that violate the safety specification and should be ex-

cluded from action A3. Therefore, action A3 would be revised as follows:

A3 : ((SysMode = inactive) ∧ (Lever = constant) ∧ (Ignition = on) ∧
(EngState = running) ∧ (Brake = notApplied))

−→ SysMode := cruise;

• Action A9. For a similar reason, the synthesis node corresponding to the action A9

returns the following revised action:

A9 : ((SysMode = override) ∧ (Ignition = on) ∧ (EngState = running) ∧
(Brake = notApplied) ∧ ((Lever = constant) ∨ (Lever = resume)))

−→ SysMode := cruise;

Since the set of offending states is empty, no state is removed from the invariant. Therefore,

the invariant of the failsafe program is equal to ICCS. We would like to emphasize that our

DiConic approach significantly simplifies the addition of failsafe fault-tolerance by focusing

on each of the above nine actions separately instead of adding fault-tolerance to all of them

at once.

29

6.3 Token Ring

In this section, we synthesize a token ring program that is failsafe fault-tolerant to process

restart faults. The fault-intolerant Token Ring (TR) program consists of four processes

P0, P1, P2, and P3 arranged in a ring. Each process Pi, 0 ≤ i ≤ 3, has a variable xi with the

domain {−1, 0, 1}. We say that process Pi, 1 ≤ i ≤ 3, has the token if and only if (xi 6= xi−1)

and fault transitions have not corrupted Pi and Pi−1. And, P0 has the token if (x3 = x0)

and fault transitions have not corrupted P0 and P3. Process Pi, 1 ≤ i ≤ 3, copies xi−1 to

xi if the value of xi is different from xi−1. This action passes the token to the next process.

Also, if (x0 = x3) holds then process P0 copies the value of (x3 +1) mod 2 to x0. Thus, if we

initialize every xi, 0 ≤ i ≤ 3, with 0, then process P0 has the token and the token circulates

along the ring. We specify the action of P0 as follows.

A0 : (x0 = x3) −→ x0 := (x3 + 1) mod 2;

Since processes P1, P2, and P3 are similar, we present their actions in a parameterized format,

where 1 ≤ i ≤ 3.

Ai : (xi 6= xi−1) −→ xi := xi−1;

Read/Write restrictions. Each process Pi, 1 ≤ i ≤ 3, is only allowed to read xi−1 and

xi, and allowed to write xi. Process P0 is allowed to read x3 and x0, and write x0.

State-corruption faults. The faults may corrupt the value of a process if that process

and its predecessor (i.e., its locality) are not already corrupted. We model the effect of faults

on a process Pi by setting xi = −1. Thus, the fault actions are as follows:

F0 : (x0 6= −1) ∧ (x3 6= −1) −→ x0 := −1;
F1 : (x1 6= −1) ∧ (x0 6= −1) −→ x1 := −1;
F2 : (x2 6= −1) ∧ (x1 6= −1) −→ x2 := −1;
F3 : (x3 6= −1) ∧ (x2 6= −1) −→ x3 := −1;

Note that there exist no read/write restrictions for the fault actions because we assume that

fault actions can read and write arbitrary program variables.

30

Safety specification. Based on the problem specification, the fault-tolerant program is

not allowed to take a transition where a non-corrupted process copies a corrupted value from

its predecessor.

STR : ((x0 = −1) ∧ (x1 6= −1) ∧ (x′

1 = −1)) ∨
((x1 = −1) ∧ (x2 6= −1) ∧ (x′

2 = −1)) ∨
((x2 = −1) ∧ (x3 6= −1) ∧ (x′

3 = −1)) ∨
((x3 = −1) ∧ (x0 6= x′

0))

Invariant. The invariant of the program consists of the states where no process is corrupted

and there exists only one token in the ring. The state predicate ITR represents the invariant

of the token ring program, where

ITR : ((x0 = 0) ∧ (x1 = 0) ∧ (x2 = 0) ∧ (x2 = 0)) ∨
((x0 = 1) ∧ (x1 = 0) ∧ (x2 = 0) ∧ (x2 = 0)) ∨
((x0 = 1) ∧ (x1 = 1) ∧ (x2 = 0) ∧ (x2 = 0)) ∨
((x0 = 1) ∧ (x1 = 1) ∧ (x2 = 1) ∧ (x2 = 0)) ∨
((x0 = 1) ∧ (x1 = 1) ∧ (x2 = 1) ∧ (x2 = 1)) ∨
((x0 = 0) ∧ (x1 = 1) ∧ (x2 = 1) ∧ (x2 = 1)) ∨
((x0 = 0) ∧ (x1 = 0) ∧ (x2 = 1) ∧ (x2 = 1)) ∨
((x0 = 0) ∧ (x1 = 0) ∧ (x2 = 0) ∧ (x2 = 1)) ∨

DiConic calculation of the fault-span and offending states. In DiConic forward

reachability on fault actions, in the first iteration, the fault action F0 reaches the state

predicate RS0 from the invariant ITR, where RS0 ≡ ((x′

0 = −1) ∧ (((x′

1 = 0) ∧ (x′

2 =

0)) ∨ ((x′

2 = 1) ∧ (x′

3 = 1)) ∨ ((x′

1 = 1) ∧ (x′

3 = 0)))) from the invariant ITR. Likewise, the

reachability nodes corresponding to F1, F2 and F3 respectively send the state predicate RS1,

RS2, and RS3 to the reachability coordinator, where

RS1 ≡ (x′

1 = −1) ∧
((x′

0 = 0) ∧ (x′

2 = 0)) ∨ ((x′

2 = 1) ∧ (x′

3 = 1)) ∨ ((x′

0 = 1) ∧ (x′

3 = 0))),
RS2 ≡ (x′

2 = −1) ∧
(((x′

0 = 0) ∧ (x′

1 = 0)) ∨ ((x′

1 = 1) ∧ (x′

3 = 1)) ∨ ((x′

0 = 1) ∧ (x′

3 = 0))), and
RS3 ≡ (x′

3 = −1) ∧
(((x′

0 = 0) ∧ (x′

1 = 0)) ∨ ((x′

1 = 1) ∧ (x′

2 = 1)) ∨ ((x′

0 = 1) ∧ (x′

2 = 0))).

At the end of the first round of the forward reachability computation, the reachability co-

ordinator computes the state predicate reachedStates (see Figure 3), which is equal to

31

RS0 ∨ RS1 ∨ RS2 ∨ RS3. Note that, in the first round of forward reachability, the execu-

tion of program actions from the invariant ITR does not yield states outside the invariant.

In the second round, the actions of the fault-intolerant program that start in a state in

reachedStates may propagate the corrupted value and result in states in which more than

one process is corrupted. Thus, all possible states in the state space may be reached due to

the occurrence of faults and execution of program actions outside the invariant. Therefore,

the fault-span of the token ring program for fault actions F0-F3 from the invariant ITR is

equal to true (i.e., the universal set). Since in this case fault actions do not directly violate

safety specification, the base set of states for backward reachability is empty. Therefore, the

set of offending states is empty.

Removing the set of offending transitions. We create four synthesis nodes corre-

sponding to the actions of A0-A3. Since the set of offending states is empty, Steps 1 and 2

in Synthesis Node (see Figure 4) do not result in the exclusion of any transitions. Nonethe-

less, program actions violate the safety of specification when they propagate a corrupted

value outside the invariant. The synthesis nodes eliminate such transitions in Steps 3 and 4,

thereby revising program actions as follows:

• Action A0. Step 3 calculates the transition predicate (x3 = −1)∧ (x0 = x3)∧ (x′

0 = 0)

as the set of transitions that violate the safety specification and should be excluded

from action A0. Therefore, the revised action A0 is as follows:

(x0 = x3) ∧ (x3 6= −1) −→ x0 := (x3 + 1) mod 2;

• Actions A1-A3. We present the revised actions A1-A3 as follows, for 1 ≤ i ≤ 3:

(xi 6= xi−1) ∧ (xi−1 6= −1) −→ xi := xi−1;

Since the set of offending states is empty, no state is removed from the invariant. Therefore,

the invariant of the failsafe program is equal to ITR.

32

7 Related Work

In this section, we discuss related work on existing divide-and-conquer synthesis meth-

ods [25, 26] and techniques for reducing the time/space complexity of automatic addition

of fault-tolerance [11, 13, 17, 23, 27]. Specifically, Smith [25] presents a divide-and-conquer

approach for synthesizing programs from their algebraic specifications, where he decomposes

the program specification into the specifications of sub-problems and combines the results

of synthesizing solutions for sub-problems. Puri and Gu [26] propose a divide-and-conquer

synthesis method for asynchronous digital circuits, where they decompose circuit specifica-

tions and satisfy design constraints for each sub-specification. While the aforementioned

approaches inspire our work, they are essentially specification-based approaches and do not

directly focus on adding failsafe fault-tolerance to existing programs.

Previous work on automatic addition of fault-tolerance [11, 13, 17, 23, 27] mostly focuses on

techniques for reducing time/space complexity of synthesis. For example, Kulkarni et al. [17]

present a set of heuristics based on which they reduce the time complexity of adding fault-

tolerance to integrated models of distributed programs. Kulkarni and Ebnenasir [11] present

a technique for reusing the computations of an existing fault-tolerant program in order to

enhance its level of tolerance. They also present a set of pre-synthesized fault-tolerance com-

ponents [27] that can be reused during the addition of fault-tolerance to different programs.

We have presented a SAT-based technique [23] where we employ SAT solvers to solve some

verification problems during the addition of fault-tolerance to integrated program models.

Bonakdarpour and Kulkarni [13] present a symbolic implementation of the heuristics in [17]

where they use BDDs to model distributed programs.

Our DiConic approach significantly differs from the previous work in that we present a

new paradigm for decomposing the problem of adding failsafe fault-tolerance instead of

adding failsafe fault-tolerance to an integrated combinatorial model of the entire program.

More specifically, our DiConic approach is orthogonal to time/space complexity issues since

one can benefit from existing techniques to mitigate the time/space complexity of revising

individual program actions. While we have used the Yices SMT solver to implement our

33

DiConic approach, the distributed nature of our algorithm enables us to implement different

techniques and data structures for the revision of different program actions depending on

their granularity (e.g., single variable updates, nested iterative instructions, etc.).

8 Conclusions and Future Work

We presented a divide-and-conquer approach, called DiConic, for the addition of failsafe

fault-tolerance to (distributed) programs, where in the presence of faults a failsafe program

guarantees to satisfy at least its safety specification. We specifically focused on the following

question: Given a fault-intolerant program and a specific fault-type, how can we revise each

program action separately so that the entire program becomes failsafe fault-tolerant? To

address this question, we decomposed the problem of adding failsafe fault-tolerance into

sub-problems. In each sub-problem, we concentrated on one program action and determined

how that action should be revised so that the entire program would be failsafe fault-tolerant.

We validated our approach for the classic problem of Byzantine Generals problem and for a

simplified version of an altitude switch controller.

As an extension of this work, we are investigating the DiConic addition of recovery to

programs, where we revise program instructions in isolation so that the entire program

would eventually recover to its invariant after faults stop occurring. Another extension of

this work is to enhance the efficiency of the synthesis coordinator by developing its distributed

version. DiConic addition of fault-tolerance is a special case of a more general problem in

which new Temporal Logic [28] properties are incrementally added to an existing program (as

defined and addressed in our previous work [29]). Towards this end, we plan to develop new

DiConic algorithms for automatic addition of new properties to (concurrent and distributed)

programs.

34

References

[1] Sandeep S. Kulkarni and Ali Ebnenasir. Complexity issues in automated synthesis

of failsafe fault-tolerance. IEEE Transactions on Dependable and Secure Computing,

2(3):201–215, 2005.

[2] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[3] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synchronize

synchronization skeletons. Science of Computer Programming, 2:241–266, 1982.

[4] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symposium

on Principles of Programming Languages, pages 179–190, Austin, Texas, 1989.

[5] S. Lafortune and F. Lin. On tolerable and desirable behaviors in supervisory control

of discrete event systems. Discrete Event Dynamic Systems: Theory and Applications,

1(1):61–92, 1992.

[6] Wolfgang Thomas. On the synthesis of strategies in infinite games. In STACS, pages

1–13, 1995.

[7] K.H. Cho and J.T. Lim. Synthesis of fault-tolerant supervisor for automated manu-

facturing systems: A case study on photolithography process. IEEE Transactions on

Robotics and Automation, 14(2):348–351, April 1998.

[8] N. Wallmeier, P. Hütten, and Wolfgang Thomas. Symbolic synthesis of finite-state

controllers for request-response specifications. In CIAA, LNCS, Vol. 2759, pages 11–22,

2003.

[9] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent pro-

grams. ACM Transactions on Programming Languages and Systems (TOPLAS). (A

preliminary version of this paper appeared in Proceedings of PODC ’98.), 26(1):125 –

185, 2004.

35

[10] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In In Pro-

ceedings of the 6th International Symposium on Formal Techniques in Real-Time and

Fault-Tolerant Systems, pages 82–93, 2000.

[11] Sandeep S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking

programs. In Proceedings of the 23rd International Conference on Distributed Computing

Systems, pages 441–449, 2003.

[12] Ali Ebnenasir and Sandeep S. Kulkarni. FTSyn: A framework for automatic synthesis

of fault-tolerance. http://www.cs.mtu.edu/~aebnenas/research/tools/ftsyn.htm.

[13] B. Bonakdarpour and Sandeep S. Kulkarni. Exploiting symbolic techniques in auto-

mated synthesis of distributed programs. In IEEE International Conference on Dis-

tributed Computing Systems (to appear), 2007.

[14] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).

In Proceedings of the 18th Computer-Aided Verification conference, volume 4144 of

LNCS, pages 81–94. Springer-Verlag, 2006.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[16] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems with

the SCR requirements method. In Proceedings of the 19th Digital Avionics Systems

Conference, Philadelphia, PA, October 2000.

[17] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine

agreement. In Symposium on Reliable Distributed Systems, pages 130 – 139, 2001.

[18] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,

21:181–185, 1985.

[19] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

36

[20] A. Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance

components. In International Conference on Distributed Computing Systems, pages

436–443, May 1998.

[21] P. Attie and A. Emerson. Synthesis of concurrent programs for an atomic read/write

model of computation. ACM TOPLAS (a preliminary version appeared in PODC ’96),

23(2), March 2001.

[22] Ali Ebnenasir. Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan State

University, May 2005.

[23] Ali Ebnenasir and Sandeep S. Kulkarni. SAT-based synthesis of fault-tolerance. Fast

Abstracts of the International Conference on Dependable Systems and Networks, Palazzo

dei Congressi, Florence, Italy, June 28 - July 1, 2004.

[24] R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from require-

ments specifications. Proceedings of the 6th ACM SIGSOFT international symposium

on Foundations of software engineering, pages 56 – 69, 1998.

[25] D.R. Smith. A problem reduction approach to program synthesis. Proceedings of the

Eighth International Joint Conference on Artificial Intelligence, pages 32–36, 1983.

[26] R. Puri and J. Gu. A divide-and-conquer approach for asynchronous interface synthesis.

In ISSS ’94: Proceedings of the 7th international symposium on High-level synthesis,

pages 118–125, 1994.

[27] Sandeep S. Kulkarni and Ali Ebnenasir. Adding fault-tolerance using pre-synthesized

components. Fifth European Dependable Computing Conference (EDCC-5), LNCS, Vol.

3463, p. 72, 2005.

[28] E. A Emerson. Handbook of Theoretical Computer Science, volume B, chapter 16:

Temporal and Modal Logics, pages 995–1067. Elsevier Science Publishers B. V., 1990.

[29] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs: Possi-

bilities and limitations. In International Conference on Principles of Distributed Systems

(OPODIS), pages 275–290, 2005.

37

Appendix A: The Yices Specifications

In this section, we illustrate how we employ the Yices SMT solver to apply the algorithms

Synthesis Node and Synthesis Coordinator (see Figures 4 and 5) to each case study presented

in Section 6. Specifically, for each case study, we define a logical context that specifies a

static structure for the fault-intolerant program based on the program and fault actions.

The synthesis coordinator distributes a copy of this logical context to each synthesis node.

A synthesis node uses this context to interact with an instance of the Yices SMT solver

(running locally) towards revising its associated action. In Subsection A.1, we present the

Yices specification of the Byzantine Generals problem and the assertions used to verify the

conditions in algorithms Synthesis Node and Synthesis Coordinator. Then, in Subsection A.2, we

demonstrate how to add failsafe fault-tolerance to the altitude switch program. Subsequently,

in Subsection A.3, we present the Yices specification of the cruise control system. Finally,

in Subsection A.4, we discuss the specification of the token ring program.

Appendix A.1: Byzantine Generals Problem

In this section, we present the logical context in which we specified the Byzantine Generals

problem.

1(define-type decision(scalar undecided attack retreat))

2;; defining the unprimed variables

3(define bg::bool)

4(define dg:: (subtype (gendec::decision) (or (= gendec attack) (= gendec retreat))))

5(define b1::bool)

6(define d1::decision)

7(define f1::bool)

8(define b2::bool)

9(define d2::decision)

10(define f2::bool)

11(define b3::bool)

12(define d3::decision)

13(define f3::bool)

14

15;; defining the primed variables

16(define bgp::bool)

17(define dgp:: (subtype (gendec::decision) (or (= gendec attack) (= gendec retreat))))

18(define b1p::bool)

19(define d1p::decision)

20(define f1p::bool)

38

21(define b2p::bool)

22(define d2p::decision)

23(define f2p::bool)

24(define b3p::bool)

25(define d3p::decision)

26(define f3p::bool)

27

28;; defining an invariant

29(define Inv1::bool (and

30(and (not bg) (or (not b1)(not b2)) (or (not b1)(not b3)) (or (not b2)(not b3)))

31(=> (not b1) (or (= d1 undecided) (= d1 dg)))

32(=> (not b2) (or (= d2 undecided) (= d2 dg)))

33(=> (not b3) (or (= d3 undecided) (= d3 dg)))

34(=> (and (not b1) (= f1 true)) (/= d1 undecided))

35(=> (and (not b2) (= f2 true)) (/= d2 undecided))

36(=> (and (not b3) (= f3 true)) (/= d3 undecided))))

37

38(define Inv2::bool

39(and (= bg true) (not b1) (not b2) (not b3) (= d1 d2) (= d1 d3)

40 (/= d1 undecided)))

41

42(define Inv::bool (or Inv1 Inv2))

43

44;; defining a primed version of the invariant

45(define Inv1p::bool (and

46(and (not bgp) (or (not b1p)(not b2p)) (or (not b1p)(not b3p)) (or (not b2p)(not b3p)))

47(=> (not b1p) (or (= d1p undecided) (= d1p dgp)))

48(=> (not b2p) (or (= d2p undecided) (= d2p dgp)))

49(=> (not b3p) (or (= d3p undecided) (= d3p dgp)))

50(=> (and (not b1p) (= f1p true)) (/= d1p undecided))

51(=> (and (not b2p) (= f2p true)) (/= d2p undecided))

52(=> (and (not b3p) (= f3p true)) (/= d3p undecided))))

53

54(define Inv2p::bool

55(and (= bgp true) (not b1p) (not b2p) (not b3p) (= d1p d2p)

56(= d1p d3p) (/= d1p undecided)))

57

58(define Invp::bool (or Inv1p Inv2p))

59

60;; defining the safety of specification

61(define safety::bool (or

62(and (not b1p) (not b2p) (/= d1p undecided) (/= d2p undecided) (= f1p true)

63 (= f2p true) (/= d1p d2p))

64(and (not b1p) (not b3p) (/= d1p undecided) (/= d3p undecided) (= f1p true)

65 (= f3p true) (/= d1p d3p))

66(and (not b3p) (not b2p) (/= d3p undecided) (/= d2p undecided) (= f3p true)

67 (= f2p true) (/= d3p d2p))

68(and (not bgp) (not b1p) (/= d1p undecided) (= f1p true) (/= d1p dgp))

69(and (not bgp) (not b2p) (/= d2p undecided) (= f2p true) (/= d2p dgp))

70(and (not bgp) (not b3p) (/= d3p undecided) (= f3p true) (/= d3p dgp))

71(and (not b1) (not b1p) (= f1 true) (or (/= d1 d1p) (/= f1 f1p)))

72(and (not b2) (not b2p) (= f2 true) (or (/= d2 d2p) (/= f2 f2p)))

73(and (not b3) (not b3p) (= f3 true) (or (/= d3 d3p) (/= f3 f3p)))

39

74))

75

76;; defining fault actions as transition predicates

77(define faultAC1::bool (and

78((not bg) (not b1) (not b2) (not b3))

79(or

80(and (= bgp true) (not b1p) (not b2p) (not b3p))

81(and (not bgp) (= b1p true) (not b2p) (not b3p))

82(and (not bgp) (not b1p) (= b2p true) (not b3p))

83(and (not bgp) (not b1p) (not b2p) (= b3p true)))

84))

85

86(define faultAC2::bool (or

87(and (= b1 true) (= d1 attack) (= d1p retreat) (= f1 false) (= f1p true))

88(and (= b1 true) (= d1p attack) (= d1 retreat) (= f1 false) (= f1p true))

89(and (= b1 true) (= d1 attack) (= d1p retreat) (= f1p false) (= f1 true))

90(and (= b1 true) (= d1p attack) (= d1 retreat) (= f1p false) (= f1 true))

91))

92

93(define faultAC3::bool (or

94(and (= b2 true) (= d2 attack) (= d2p retreat) (= f2 false) (= f2p true))

95(and (= b2 true) (= d2p attack) (= d2 retreat) (= f2 false) (= f2p true))

96(and (= b2 true) (= d2 attack) (= d2p retreat) (= f2p false) (= f2 true))

97(and (= b2 true) (= d2p attack) (= d2 retreat) (= f2p false) (= f2 true))

98))

99

100(define faultAC4::bool (or

101(and (= b3 true) (= d3 attack) (= d3p retreat) (= f3 false) (= f3p true))

102(and (= b3 true) (= d3p attack) (= d3 retreat) (= f3 false) (= f3p true))

103(and (= b3 true) (= d3 attack) (= d3p retreat) (= f3p false) (= f3 true))

104(and (= b3 true) (= d3p attack) (= d3 retreat) (= f3p false) (= f3 true))

105))

106

107;; defining read/write restrictions

108(define rwRest1::bool

109(and (= b1 b1p) (= b2 b2p) (= b3 b3p) (= bg bgp) (= f2 f2p) (= f3 f3p)

110 (= d2 d2p) (= d3 d3p) (= dg dgp)))

111

112(define rwRest2::bool

113(and (= b1 b1p) (= b2 b2p) (= b3 b3p) (= bg bgp) (= f1 f1p) (= f3 f3p)

114 (= d1 d1p) (= d3 d3p) (= dg dgp)))

115

116(define rwRest3::bool

117(and (= b2 b2p) (= b1 b1p) (= b3 b3p) (= bg bgp) (= f2 f2p) (= f1 f1p)

118 (= d1 d1p) (= d2 d2p) (= dg dgp)))

119

120;; defining the fault-span

121(define fs::bool (or Inv1 (and bg (not b1) (not b2) (not b3))))

122

123;; defining program actions as transition predicates

124(define grd11::bool (and (= f1 false) (= d1 undecided)))

125(define st11::bool (and (= d1p dgp) (= f1p false) (= d2 d2p) (= d3 d3p) (= dg dgp)))

126(define AC11::bool (and grd11 st11 rwRest1))

40

127

128(define grd12::bool

129(and (not b1) (= f1 false) (/= d1 undecided)

130;; uncomment these two constraints and you will get the failsafe program

131;; (or (= d2 undecided) (= d1 d2))

132;; (or (= d3 undecided) (= d1 d3))

133)

134)

135

136(define st12::bool (and (= d1 d1p) (not b1p) (= f1p true)

137 (= d2 d2p) (= d3 d3p) (= dg dgp)))

138(define AC12::bool (and grd12 st12 rwRest2))

139

140;; defining the set of offending states

141(define os::bool (or

142(and (not b1) (not b2) (/= d1 undecided) (/= d2 undecided)

143 (= f1 true) (= f2 true) (/= d1 d2))

144(and (not b1) (not b3) (/= d1 undecided) (/= d3 undecided)

145 (= f1 true) (= f3 true) (/= d1 d3))

146(and (not b3) (not b2) (/= d3 undecided) (/= d2 undecided)

147 (= f3 true) (= f2 true) (/= d3 d2))

148(and (not bg) (not b1) (/= d1 undecided) (= f1 true) (/= d1 dg))

149(and (not bg) (not b2) (/= d2 undecided) (= f2 true) (/= d2 dg))

150(and (not bg) (not b3) (/= d3 undecided) (= f3 true) (/= d3 dg))

151))

152

153;; defining a primed version of the set of offending states

154(define osp::bool (or

155(and (not b1p) (not b2p) (/= d1p undecided) (/= d2p undecided)

156 (= f1p true) (= f2p true) (/= d1p d2p))

157(and (not b1p) (not b3p) (/= d1p undecided) (/= d3p undecided)

158 (= f1p true) (= f3p true) (/= d1p d3p))

159(and (not b3p) (not b2p) (/= d3p undecided) (/= d2p undecided)

160 (= f3p true) (= f2p true) (/= d3p d2p))

161(and (not bgp) (not b1p) (/= d1p undecided) (= f1p true) (/= d1p dgp))

162(and (not bgp) (not b2p) (/= d2p undecided) (= f2p true) (/= d2p dgp))

163(and (not bgp) (not b3p) (/= d3p undecided) (= f3p true) (/= d3p dgp))

164))

165

166;; defining the Guards predicate that is computed by the coordinator

167(define revisedGuards::bool

168(or

169(or

170(and (not b1) (= f1 false) (= d1 undecided))

171(and (not b1) (= f1 false) (/= d1 undecided)

172 (or (= d2 undecided) (= d1 d2))

173 (or (= d3 undecided) (= d1 d3))))

174(or

175(and (not b2) (= f2 false) (= d2 undecided))

176(and (not b2) (= f2 false) (/= d2 undecided)

177 (or (= d1 undecided) (= d1 d2))

178 (or (= d3 undecided) (= d2 d3))))

179(or

41

180(and (not b3) (= f3 false) (= d3 undecided))

181(and (not b3) (= f3 false) (/= d3 undecided)

182 (or (= d2 undecided) (= d3 d2))

183 (or (= d1 undecided) (= d1 d3))))

184))

185

186(define guards::bool

187(and (not b1) (not b2) (not b3) (not f1) (not f2) (not f3)

188(or

189(or

190(and (not b1) (= f1 false) (= d1 undecided))

191(and (not b1) (= f1 false) (/= d1 undecided)

192)

193)

194(or

195(and (not b2) (= f2 false) (= d2 undecided))

196(and (not b2) (= f2 false) (/= d2 undecided)

197)

198)

199(or

200(and (not b3) (= f3 false) (= d3 undecided))

201(and (not b3) (= f3 false) (/= d3 undecided)

202)

203)

204))

205)

206

207(define removedStates::bool

208(or

209(not (and

210 (or (= d2 undecided) (= d1 d2))

211 (or (= d3 undecided) (= d1 d3))))

212(not (and

213 (or (= d1 undecided) (= d1 d2))

214 (or (= d3 undecided) (= d2 d3))))

215(not (and

216 (or (= d2 undecided) (= d3 d2))

217 (or (= d1 undecided) (= d1 d3))))

218)

219)

220

221(define revisedG1::bool

222(or

223(and (not b1) (= f1 false) (= d1 undecided))

224(and (not b1) (= f1 false) (/= d1 undecided)

225 (or (= d2 undecided) (= d1 d2))

226 (or (= d3 undecided) (= d1 d3))))

227)

228

229;; The list of queries exchanged with Yices by the reachability nodes,

230;; reachability coordinator, synthesis nodes, and the synthesis coordinator.

231

232;; Calculating the f-span

42

233;; (assert (and Inv faultAC1 (not Invp)))

234

235;; the first action can only reach os if it is enabled in os

236;; (assert (and fs grd11 (not os) rwRest1 st11 osp))

237

238

239;; Does the first action directly violate safety?

240;;(assert (and fs (not Inv) grd11 st11 rwRest1 safety))

241

242

243;; Does action 2 reach os from states outside mo?

244;; (assert (and fs grd12 (not os) rwRest1 st12 osp))

245

246;; Does the second action directly violate safety?

247;; (assert (and fs (not Inv) grd12 st12 rwRest1 safety))

248

249;; Remove os states from the invariant

250;; (assert (and Inv os))

251;; no deadlocks are introduced in the invariant.

252(check)

Appendix A.2: Altitude Switch Controller

In this section, we present the logical context in which we specified the altitude switch

program.

1(define-type mode(scalar Init Standby AwaitActuator))

2

3;; defining unprimed variables

4(define m::mode)

5(define rst::bool) ;; reset

6(define inhibit::bool)

7(define altBelow::bool)

8(define actStatus::bool)

9(define initFail::bool)

10(define altFail::bool)

11(define actFail::bool)

12

13;; defining the primed variables

14(define mp::mode)

15(define rstp::bool)

16(define inhibitp::bool)

17(define altBelowp::bool)

18(define actStatusp::bool)

19(define initFailp::bool)

20(define altFailp::bool)

21(define actFailp::bool)

22

43

23;; defining invariant

24(define Inv::bool

25(and

26 (=> inhibit (not actStatus))

27 (and (not initFail) (not altFail) (not actFail))

28))

29

30;; defining the safety of specification

31(define safety::bool

32(or

33(and altFail (= m Standby) (= mp AwaitActuator))

34(and initFail (= m Init) (= mp Standby))

35(and actFail (= m AwaitActuator) (not actStatus) actStatusp)

36))

37

38

39;; defining the fault-span

40(define fs::bool

41(and

42 (=> inhibit (not actStatus))

43 (or initFail altFail actFail)

44))

45

46;; defining read/write restrictions

47(define rwRest::bool

48(and (= inhibit inhibitp) (= altBelow altBelowp)

49 (= initFail initFailp)

50 (= altFail altFailp)

51 (= actFail actFailp)

52))

53

54;; Defining the first program action

55(define grd1::bool (and (= m Init) (not initFail)))

56(define st1::bool (= mp Standby))

57(define A1::bool (and grd1 st1 rwRest))

58

59

60;; Defining the second program action

61(define grd2::bool (and (= m Standby) rst))

62(define st2::bool (and (= mp Init) (not rstp)))

63(define A2::bool (and grd2 st2 rwRest))

64

65;; Defining the third program action

66(define grd3::bool

67(and (= m Standby) altBelow (not inhibit) (not actStatus) (not altFail)))

68(define st3::bool (= mp AwaitActuator))

69(define A3::bool (and grd3 st3 rwRest))

70

71;; Defining the forth program action

72(define grd4::bool

73(and (= m AwaitActuator) (not inhibit) (not actStatus)

74(not actFail)))

75(define st4::bool (and (= mp Standby) actStatusp))

44

76(define A4::bool (and grd4 st4 rwRest))

77

78

79;; Defining the fifth program action

80(define grd5::bool (and (= m AwaitActuator) rst))

81(define st5::bool (and (= mp Init) (not rstp)))

82(define A5::bool (and grd5 st5 rwRest (= actStatus actStatusp)))

83

84;; Defining the fault actions

85(define F1::bool (and (not initFail) initFailp))

86(define F2::bool (and (not altFail) altFailp))

87(define F3::bool (and (not actFail) actFailp))

88

89

90;; Calculating the f-span

91;; check whether fault actions violate the closure of the invariant

92;; uncomment the following actions one by one

93

94;; (assert (and Inv F1 (not Invp)))

95;; (assert (and Inv F2 (not Invp)))

96;; (assert (and Inv F3 (not Invp)))

97

98;; Does any fault action (starting in the f-span) directly violate safety?

99;; uncomment the following actions one by one

100

101;; (assert (and fs F1 safety)) ;; this action does not!

102;; (assert (and fs F2 safety)) ;; this action does not!

103;; (assert (and fs F3 safety)) ;; this action does not!

104

105;; Therefore, the set of offending state is empty.

106;; No need to execute Steps 1 and 2 of the synthesis node

107

108;; Does each action directly violate safety from f-span outside the invariant?

109

110;; (assert (and fs (not Inv) A1 safety))

111;; (assert (and fs (not Inv) A3 safety))

112;; (assert (and fs (not Inv) A4 safety))

113

114;; since the set of offending states is empty,

115;; no deadlock states are created in the invariant.

116;; the invariant remains unchanged.

117

118(check)

Appendix A.3: Cruise Control System

In this section, we present the Yices specification of the Cruise Control System.

45

1(define-type mode(scalar Off Inactive Cruise Override Unknown))

2(define-type leverState(scalar leverOff Constant Resume))

3(define-type brakeState(scalar brakeUnknown Applied notApplied))

4

5;; defining unprimed variables

6(define SysMode::mode)

7(define Ignition::bool)

8(define Lever::leverState)

9(define EngState::bool)

10(define Brake::brakeState)

11

12;; defining the primed variables

13(define SysModep::mode)

14(define Ignitionp::bool)

15(define Leverp::leverState)

16(define EngStatep::bool)

17(define Brakep::brakeState)

18

19;; Defining the invariant

20(define I1::bool

21(and (/= SysMode Unknown)

22(=> (/= SysMode Off) (= Ignition false))

23(=> (/= SysMode Inactive) (= Ignition true))

24(=> (/= SysMode Cruise) (and (= Ignition true) (= EngState true)

25 (/= Brake Applied) (/= Lever leverOff)))

26(=> (/= SysMode Override) (and (= Ignition true) (= EngState true)))

27))

28

29(define Inv::bool

30(and (/= SysMode Unknown) (/= Brake brakeUnknown) I1))

31

32;; Defining the primed version of the invariant

33(define I1p::bool

34(and (/= SysModep Unknown)

35(=> (/= SysModep Off) (= Ignitionp false))

36(=> (/= SysModep Inactive) (= Ignitionp true))

37(=> (/= SysModep Cruise) (and (= Ignitionp true) (= EngStatep true)

38 (/= Brakep Applied) (/= Leverp leverOff)))

39(=> (/= SysModep Override) (and (= Ignitionp true) (= EngStatep true)))

40))

41

42(define Invp::bool

43(and (/= SysModep Unknown) (/= Brakep brakeUnknown) I1p))

44

45

46;; Defining the safety of specification

47(define safety::bool

48(or

49(and (= Brake Applied) (= Brakep Applied) (= SysModep Cruise))

50(and (= Brake brakeUnknown) (= SysModep Cruise))

51(and (= SysMode Unknown) (= SysModep Cruise))))

52

53;; Defining the f-span

46

54(define fs::bool

55(or I1 (= SysMode Unknown) (= Brake brakeUnknown)))

56

57;; Defining read/write restrictions

58(define rwRest::bool

59(and (= Ignition Ignitionp) (= EngState EngStatep)

60(= Brake Brakep) (= Lever Leverp)))

61

62;; Defining the first action

63(define grd1::bool (and (= SysMode Off) Ignition))

64(define st1::bool (= SysModep Inactive))

65(define A1::bool (and grd1 st1 rwRest))

66

67;; Defining the second action

68(define grd2::bool (and (= SysMode Inactive) (not Ignition)))

69(define st2::bool (= SysModep Off))

70(define A2::bool (and grd2 st2 rwRest))

71

72;; Defining the third action

73(define grd3::bool

74(and (= SysMode Inactive) (= Lever Constant) Ignition EngState

75;; this additional constraint is added for the sake of failsafe fault-tolerance.

76;;(= Brake notApplied)

77))

78(define st3::bool (= SysModep Cruise))

79(define A3::bool (and grd3 st3 rwRest))

80

81;; Defining the forth action

82(define grd4::bool (and (= SysMode Cruise) (not Ignition)))

83(define st4::bool (= SysModep Off))

84(define A4::bool (and grd4 st4 rwRest))

85

86;; Defining the fifth action

87(define grd5::bool (and (= SysMode Cruise) (not EngState)))

88(define st5::bool (= SysModep Inactive))

89(define A5::bool (and grd5 st5 rwRest))

90

91;; Defining the sixth action

92(define grd6::bool (and (= SysMode Cruise)

93 (or (= Brake Applied) (= Lever leverOff))))

94(define st6::bool (= SysModep Override))

95(define A6::bool (and grd6 st6 rwRest))

96

97;; Defining the seventh action

98(define grd7::bool (and (= SysMode Override) (not Ignition)))

99(define st7::bool (= SysModep Off))

100(define A7::bool (and grd7 st7 rwRest))

101

102;; Defining the Eight action

103(define grd8::bool (and (= SysMode Override) (not EngState)))

104(define st8::bool (= SysModep Inactive))

105(define A8::bool (and grd8 st8 rwRest))

106

47

107;; Defining the ninth action

108(define grd9::bool (and (= SysMode Override) Ignition EngState

109 (/= Lever leverOff)

110;; this additional constraint is added for the sake of failsafe fault-tolerance.

111(= Brake notApplied)

112))

113(define st9::bool (= SysModep Cruise))

114(define A9::bool (and grd9 st9 rwRest))

115

116

117;; Defining the first fault action

118(define F1::bool (and (/= Brake brakeUnknown) (= Brakep brakeUnknown) rwRest))

119

120;; The reason why we need to have rwRest here is to codify

121;; the fact that this fault action only updates the Brake variable;

122;; not that fault actions have read/write restrictions!

123

124;; Defining the second fault action

125(define F2::bool (and (/= SysMode Unknown) (= SysModep Unknown) rwRest))

126

127;; Calculating the f-span

128;; check whether fault actions violate the closure of the invariant

129;; uncomment the following actions one by one

130

131;; (assert (and Inv F1 (not Invp)))

132

133;; (assert (and Inv F2 (not Invp)))

134

135;; Does any fault action (starting in the f-span) directly violate safety?

136;; uncomment the following actions one by one

137

138;; (assert (and fs F1 safety)) ;; this action does not!

139;; (assert (and fs F2 safety)) ;; this action does not!

140

141;; Therefore, the set of offending state is empty.

142;; No need to execute Steps 1 and 2 of the synthesis node

143

144

145;; Does each action directly violate safety from f-span outside the invariant?

146

147;; (assert (and fs (not Inv) A3 safety))

148

149;; (assert (and fs (not Inv) A9 safety))

150

151;; since the set of offending states is empty,

152;; no deadlock states are created in the invariant.

153;; the invariant remains unchanged.

154

155(check)

48

Appendix A.4: Token Ring

In this section, we present the logical context in which we specified the token ring program.

1;; defining unprimed variables

2(define x0::(subtype (n::int) (and (> n -2) (< n 2))))

3(define x1::(subtype (n::int) (and (> n -2) (< n 2))))

4(define x2::(subtype (n::int) (and (> n -2) (< n 2))))

5(define x3::(subtype (n::int) (and (> n -2) (< n 2))))

6

7;; defining the primed variables

8(define x0p::(subtype (n::int) (and (> n -2) (< n 2))))

9(define x1p::(subtype (n::int) (and (> n -2) (< n 2))))

10(define x2p::(subtype (n::int) (and (> n -2) (< n 2))))

11(define x3p::(subtype (n::int) (and (> n -2) (< n 2))))

12

13;; defining the invariant

14(define Inv::bool

15(or

16(and (= x0 0) (= x1 0) (= x2 0) (= x3 0))

17(and (= x0 1) (= x1 0) (= x2 0) (= x3 0))

18(and (= x0 1) (= x1 1) (= x2 0) (= x3 0))

19(and (= x0 1) (= x1 1) (= x2 1) (= x3 0))

20(and (= x0 1) (= x1 1) (= x2 1) (= x3 1))

21(and (= x0 0) (= x1 1) (= x2 1) (= x3 1))

22(and (= x0 0) (= x1 0) (= x2 1) (= x3 1))

23(and (= x0 0) (= x1 0) (= x2 0) (= x3 1))))

24

25(define Invp::bool

26(or

27(and (= x0p 0) (= x1p 0) (= x2p 0) (= x3p 0))

28(and (= x0p 1) (= x1p 0) (= x2p 0) (= x3p 0))

29(and (= x0p 1) (= x1p 1) (= x2p 0) (= x3p 0))

30(and (= x0p 1) (= x1p 1) (= x2p 1) (= x3p 0))

31(and (= x0p 1) (= x1p 1) (= x2p 1) (= x3p 1))

32(and (= x0p 0) (= x1p 1) (= x2p 1) (= x3p 1))

33(and (= x0p 0) (= x1p 0) (= x2p 1) (= x3p 1))

34(and (= x0p 0) (= x1p 0) (= x2p 0) (= x3p 1))))

35

36;; defining the safety of specification

37(define safety::bool

38(or

39(and (= x0 -1) (/= x1 -1) (= x1p -1))

40(and (= x1 -1) (/= x2 -1) (= x2p -1))

41(and (= x2 -1) (/= x3 -1) (= x3p -1))

42(and (= x3 -1) (/= x0 x0p))))

43

44;; defining read/write restrictions

45(define rwRest0::bool

46(and (= x1 x1p) (= x2 x2p)

47 (= x3 x3p) ;; we need this to represent the atomicity of the action

48))

49

49

50(define rwRest1::bool

51(and (= x3 x3p) (= x2 x2p) (= x0 x0p)))

52

53(define rwRest2::bool

54(and (= x0 x0p) (= x1 x1p) (= x3 x3p)))

55

56(define rwRest3::bool

57(and (= x1 x1p) (= x0 x0p) (= x2 x2p)))

58

59;; Defining the first action

60(define grd0::bool

61(and (/= x3 -1) (= x0 x3)))

62(define st0::bool (= x0p (mod (+ x3 1) 2)))

63(define A0::bool (and grd0 st0 rwRest0))

64

65;; Defining the second action

66(define grd1::bool

67(and (/= x0 -1) (/= x0 x1)))

68(define st1::bool (= x1p x0))

69(define A1::bool (and grd1 st1 rwRest1))

70

71;; Defining the third action

72(define grd2::bool

73(and (/= x1 -1) (/= x2 x1)))

74(define st2::bool (= x2p x1))

75(define A2::bool (and grd2 st2 rwRest2))

76

77;; Defining the forth action

78(define grd3::bool

79(and (/= x2 -1) (/= x2 x3)))

80(define st3::bool (= x3p x2))

81(define A3::bool (and grd3 st3 rwRest3))

82

83;; Defining fault actions

84(define faultgrd::bool

85(or

86(and (/= x0 -1) (/= x1 -1))

87(and (/= x0 -1) (/= x2 -1))

88(and (/= x0 -1) (/= x3 -1))

89(and (/= x1 -1) (/= x2 -1))

90(and (/= x1 -1) (/= x3 -1))

91(and (/= x2 -1) (/= x3 -1)))))

92

93

94(define faultA0::bool

95(and (/= x3 -1) (/= x0 -1) (= x0p -1) (= x1 x1p) (= x2 x2p) (= x3 x3p)))

96

97(define faultA1::bool

98(and (/= x0 -1) (/= x1 -1) (= x1p -1) (= x0 x0p) (= x2 x2p) (= x3 x3p)))

99

100(define faultA2::bool

101(and (/= x1 -1) (/= x2 -1) (= x2p -1) (= x1 x1p) (= x0 x0p) (= x3 x3p)))

50

102

103(define faultA3::bool

104(and (/= x2 -1) (/= x3 -1) (= x3p -1) (= x1 x1p) (= x2 x2p) (= x0 x0p)))

105

106;; Calculating the f-span

107;; check whether fault actions violate the closure of the invariant

108;; uncomment the following actions one by one

109

110;; (assert (and Inv faultA0 (not Invp)))

111;; (assert (and Inv faultA1 (not Invp)))

112;; (assert (and Inv faultA2 (not Invp)))

113;; (assert (and Inv faultA3 (not Invp)))

114

115;; Does any fault action (starting in the f-span) directly violate safety?

116;; uncomment the following actions one by one

117

118;; (assert (and fs faultA0 safety)) ;; this action does not!

119;; (assert (and fs faultA1 safety)) ;; this action does not!

120;; (assert (and fs faultA2 safety)) ;; this action does not!

121;; (assert (and fs faultA3 safety)) ;; this action does not!

122

123;; Therefore, the set of offending state is empty.

124;; No need to execute Steps 1 and 2 of the synthesis node

125

126;; Does each action directly violate safety from f-span outside the invariant?

127;; yes when they propagate a corrupted value

128

129;; (assert (and fs (not Inv) A0 safety))

130;; (assert (and fs (not Inv) A1 safety))

131;; (assert (and fs (not Inv) A2 safety))

132;; (assert (and fs (not Inv) A3 safety))

133

134;; since the set of offending states is empty,

135;; no deadlock states are created in the invariant.

136;; the invariant remains unchanged.

137

138(check)

51

