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Department of Computer Science

Michigan Technological University
Houghton, MI 49931-1295

March 6, 2007

Abstract

For modern superscalar processors which implement
deeper and wider pipelines, accurate branch prediction is
crucial for feeding sufficient number of correct instruc-
tions into the superscalar’s highly-parallelized execution
core. In this paper, we show that what the branch predic-
tor is learning has significant implications for its ability to
make effective use of branch correlation and its ability to
exploit longer history lengths. Contrary to the commonly
employed approach of training each case using both suc-
cesses and failures of previous branch behavior, a Non-
Viable Path branch predictor learns those paths that the
program will never follow, given prior history; such a pre-
dictor is referred to as Non-Viable Path Predictor (NVPP).
An NVPP can learn any boolean function, given enough
space.

In this paper, we present an analysis of the design space
and arrive at a practically feasible implementation of the
concept which uses simple traditional one or two-bit ta-
bles and traditional table indexing mechanisms. Because
of its unique properties, NVPP can also exploit very long
global histories with only a linear increase in the space
requirement and provide rapid training times. Although
NVPP exploits large histories, its access time remains rel-
atively constant and it is comparable to small Gshare pre-
dictors, permitting a single cycle implementation. The
performance of NVPP is compared with most recently
published highly accurate predictors including piecewise
linear and the O-GEometric History Length predictors.
Our results indicate that the NVPP accuracy compares
well with these predictors while maintaining the advan-
tages of simplicity and the speed of a traditional style pre-
dictor design.

1 Introduction

Modern deeply pipelined wide-issue superscalar proces-
sors call for accurate branch predictors. During the past

two decades, the accuracy of branch predictors have im-
proved significantly. Unfortunately, for deeply pipelined
architectures the performance lost due to branch mispre-
dictions is quite significant even with a highly accurate
branch predictor.

Historically, dynamic prediction mechanisms have
gained wide acceptance since its introduction with the
early designs [18]. The introduction of a two-level adap-
tive scheme by Yeh and Patt in 1991 [21] greatly im-
proved the accuracy of dynamic branch prediction due
to its ability to exploit correlation among branch in-
structions. Following work concentrated on improving
the basic two-level schemes and improved the accuracy
of branch predictors by reducing the destructive alias-
ing [22, 19, 10, 3, 14], exploiting different properties [15],
utilizing data values [5, 20] or employing hybrid mecha-
nisms [11]. Relevant work in this regard is overwhelm-
ing, and is only partially covered in this paper. More
recently, radically different approaches such as the per-
ceptron predictor [8], as well as the prophet-critic ap-
proach [4] have been proposed. A recent publication,
namely, O-GEometric History Length (O-GEHL) predic-
tor [16] demonstrated very high accuracies by exploring
geometrically increasing history lengths.

We would like to point out that the common approach
in prior techniques is to learn from both successes and
failures of previous predictions; to summarize the accu-
mulated observations in some manner; and to use these
summaries for future predictions. For example, a two-bit
Smith predictor [18] learns if a branch is mostly taken
or not taken and summarizes the observations in a sat-
urating counter. A traditional correlating branch predic-
tor separates the context that this phenomenon is occur-
ing; for each history a separate counter is reserved either
directly (two-level [21]) or indirectly (gshare [12]). As
a result, given a history, the corresponding counter will
saturate up or down based on the actual outcome of the
branch. This approach is quite effective for smaller his-
tory lengths, but it cannot use longer histories because of
the resulting exponential growth in the counter space as



well as the growth in training time, as the training has to
be performed sufficient number of times for each counter
to capture the bias. From the same perspective, perceptron
based predictors also generate summaries. However, since
the generated summaries are weighted, they can overcome
the difficulty of separating the context to a large extend
and can exploit very long histories. On the other hand, the
use of such weighted summary information requires adder
networks, which may potentially increase the access time
of the predictor.

Contrary to existing approaches, a non-viable path pre-
dictor learns the exceptional cases, i.e., only those paths
that lead up to mispredictions. This is quite effective be-
cause such cases make-up a much smaller percentage of
the total paths. Simply put, NVPP learns whether there is
correlated behavior at a given point, since the number of
cases where there is no correlation or the cases where the
utilization of correlation is not essential for correct pre-
diction is much larger. Clearly, given non-viable paths
one can identify the viable ones, and vice versa. In this
paper, we adopt the convention of referring to the non-
viable paths. Any path we don’t have information about
is considered viable.

In the rest of the paper, first in Section 2 we discuss
the idea of non-viable paths and its relationship to branch
correlation. We discuss the effect of limited history length
on the accuracy of predictions and present a conceptual
level design. We then illustrate through experimental data
that the idea is workable. In Section 3 we present a practi-
cal implementation of the non-viable path predictor which
can exploit very long histories. We illustrate that by using
the non-viable paths idea and well established techniques
from the branch prediction repertoire we can maintain a
design that would permit a single clock cycle implemen-
tation. In Section 4 we evaluate the performance of our
predictor and compare it to other recently proposed pre-
dictor designs. In Section 5 we provide a brief summary
of the most relevant work to ours and discuss various sim-
ilarities among these techniques. Finally, in Section 6 we
present our conclusions and future work.

2 Correlation and Non-Viable Paths

In order to see why using non-viable paths makes sense,
let us consider a simple example where the outer loop exe-
cutes a significant number of iterations and the inner loop
initializes a given array:

for (int j=0; j < somebignumber; j++) {
...
for (int i=0; i<N; i++)

A[i] = 0;
.. }

Considering the inner loop back-edge branch, a simple
Smith predictor will correctly predict all but the last itera-
tion of this loop. A two-level predictor can predict all in-
stances of the branch if the global history is large enough
to hold N branch histories. Unfortunately, in traditional
approaches, the hardware budget doubles for every bit of
additional global history. If the above inner loop is ex-
ecuting 50 times, in order to successfully predict all it-
erations, a traditional two-level predictor would need 256
Tera Bytes of space. Even when one does not consider the
hardware budget involved, exploiting long histories in this
manner causes the same static branch to occupy too many
entries in the Pattern History Table (PHT). For a global
history length of p, there will be 2p possible entries corre-
sponding to this branch. These counters should be trained
for any combination of global histories leading upto the
relevant branch. This increased training time is the lead
cause of performance loss that is observed after a certain
history length is reached [8].

2.1 Non-Viable Path Prediction

A non-viable path predictor is a simple combination of
any local predictor (such as a two-bit saturating counter
predictor) and a predictor that memorizes misprediction
behavior of the first and correlates it to the observed global
history. If the correlator does not know a given history, the
local predictor’s output is assumed. Observe that, in the
above example, after one iteration of the inner loop the
correlator learns that a history of N consecutive 1s (one
coming from the outer loop back-edge and N � 1 coming
from the inner loop back-edge) results in a misprediction
by the local predictor. As a result, it learns only this his-
tory which represents a non-viable path in the example.
It can then present a not-taken output each time this his-
tory is observed. Note that, once this history is learned,
the predictor will never misspredict. Also note that the
training time of such a predictor is a function of the mis-
predictions experienced by the local predictor and not a
function of the history length. Although we have used a
simple loop example to demonstrate the problem, ability
to correctly predict using failure histories is not limited to
loop-back edges. In fact, when complex control flow is in-
volved where only few histories result in mispredictions,
a non-viable path predictor will learn only these histories
and never mispredict whereas a traditional predictor has to
learn all involved combinations until it can predict equally
well.

2.2 Effect of Limited History Lengths

For global history based predictors the use of summarized
information such as trained counters presents other prob-
lems as well, particularly when the examined history is
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not sufficient to capture the correlation (i.e., when the cor-
relation is distant). Let us examine the sequence of branch
outcomes shown in Figure 1.
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Figure 1: Limited History and Explicit Correlation

Considering the first set of data shown in Figure 1(a)
branches b2 and b3 appear to be correlated, whereas the
actual correlation is between b0 and b3. Since b0 is out-
side the history window, this fact cannot be observed and
learned by a correlating branch predictor. As it can be
seen, a two bit saturating counter predictor predicts the
first three instances of b3 correctly, but fails to predict
the last two. Similarly, a simple correlating branch pre-
dictor that allocates a separate counter for each branch
experiences difficulty training its counters. In the ex-
ample, using the outcomes of b1 and b2 as the contents
of the global history shift register, table indexes 01 and
11 start changing the bias towards taken. Unfortunately,
when the second wave of data shown in 1(b) is processed,
the bias of 00 and 10 needs to be changed. If the illus-
trated data sequences are observed in that succession re-
peatedly, the correlating predictor can never train its coun-
ters and leaves them in a lingering state. Even though the
above sequence is a synthetic sequence to illustrate the
point, examining counter values in a gshare predictor [12]
with small history lengths indicate that the phenomenon
is quite frequent.

A non-viable path predictor on the other hand would
learn two non-viable paths, namely, a given history that
is followed by a taken as well as the same history that is
followed by a not taken, both as non-viable paths. This in-
dicates that the history that is being examined is not suf-

ficient to capture the correlation, or, simply, there is no
correlation that could be exploited. In other words, a non-
viable path predictor will know when it does not know the
answer.

In summary, traditional means of exploiting correlation
by using counters fails on a number of fundamental issues:

1. It has to see the same positive (negative) example re-
peatedly before it can train the counters for correct
predicton.

2. The counter’s information content is weak. It only
illustrates the bias of the particular branch instruction
given a history of predictions.

3. The predictor does not know when its predictions
are flawed. In other words, the predictor cannot tell
when the correlation exists and and when it no longer
holds. Fundamentally, this is the main reason be-
hind the success of hybrid predictors where a sep-
arate confidence predictor learns when a particular
predictor’s predictions are flawed.

4. The effects of using one counter for another branch
is usually destructive. The predictor is prone to de-
structive aliasing.

In the following sections, we will iteratively develop a
practical non-viable path predictor (NVPP). Doing so, we
will employ well established techniques commonly used
in the design of branch predictors and demonstrate that
the above problems can naturally be eliminated when one
uses the concept of non-viable paths to design the predic-
tor.

2.3 Conceptual Level Design

As indicated before, contrary to a counter based correlat-
ing predictor, a non-viable path predictor learns only the
exceptional cases. To illustrate the point, we will take a
table of two-bit entries indexed by a global history reg-
ister similar to a counter based correlation predictor. We
will however interpret the bits of the entry differently as
shown in Figure 2.3 (a).

The interpretation of the table entries are as follows.
No clue means the predictor has not seen this history be-
fore. As long as there is no misprediction at this history,
leading upto this branch, the entry will maintain no clue
status. If a misprediction is observed at this history lead-
ing upto this branch, the incorrect (correct) prediction is
recorded in here (corresponding to the taken and not taken
cases). In other words, the predictor learns that the his-
tory value indexing the table entry is a non-viable prefix
for this branch and the predictor should never (always)
predict the value indicated in the table when the entry is
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Figure 2: Non Viable Path Prediction

either taken or not-taken. The don’t know value indicates
that the predictor have seen this branch both taken and not
taken at this particular history. It means that the amount
of history that is used is not sufficient to distinguish the
non-viable (viable) paths. In this design, the local pre-
dictor can be any local predictor. For simplicity, we will
consider it to be a simple two-bit Smith predictor. It is
interesting to note that the NVP predictor shown acts very
much like a confidence predictor.

With the above design, our example sequence yields in-
teresting results. Consider the example sequences shown
in Figure 1(a) and (b) again. The first three probes for
branch b3 yields success as the two-bit predictor cor-
rectly predicts them. For these probes, the NVP compo-
nent will not be updated, as no mispredictions have been
recorded. The remaining probes b1=T b2=T and b1=N
b2=T will both cause the local predictor to provide the
prediction and will result in mispredictions. The corre-
sponding counters in NVP component will switch to pre-
dict taken. If the set of data in (a) is seen again without
a visit to (b) all branches will be correctly predicted the
second time. In this case, b2 is indeed correlated with
b3 and the predictor has learned this correlation with only
one misprediction. If however, the second set of data (b) is
observed, table entries for 01, 10, and 11 will all switch to
don’t know status. In this case, the predictor will provide
the result of the local prediction. The table entries will
stay in don’t know status until they are reset by another
means. Even though this appears to be less than desirable,

knowing that the provided history is not long enough to
distinguish paths is extremely valuable. In the next sec-
tion, we show how this information can be used to exploit
very large global histories.

Note that we have addressed all the concerns about
the counter based correlation predictor, even though we
haven’t built a predictor that can handle the example case
successfully:

1. NVPP needs one example to learn the possibility of
a correlation.

2. The infomation content of the counter is high.

3. The confidence in the result is built in. When it pro-
vides the prediction (i.e., 01,10 cases), it is confi-
dent. When it does not know, it knows that it does
not know.

4. The entry values 00 and 11 are benign. In case of
aliasing of these entries, the predictor won’t perform
any worse than the local predictor.

As previously stated, the basic predictor could be any
one which uses only local information to make the predic-
tion. In fact, the local predictor can be a constant valued
predictor such as predict taken or compiler encoded, such
as forward not taken, backward taken and NVPP still per-
forms quite well. In these cases however, more mispre-
diction information need to be learned by the NVP com-
ponent.

In our implementation, we chose to use the simple two-
bit saturating counter predictor [18] as our base predic-
tor. Using a two-bit saturating counter predictor we ob-
served that the accuracy of both the NVP component and
the two-bit predictor become extremely high. In fact, the
accuracy of the NVP component is high across all bench-
marks. When NVP provides a prediction, it is almost
always correct (over 99%). The reason behind the in-
crease in the accuracy of the two-bit predictor is the filter-
ing effect provided by the NVP predictor. The predicted
branches by NVP are those which are hard to predict but
can be predicted well by using proper correlation infor-
mation. Obviously, we do not update the two-bit predic-
tor when the prediction is provided by the NVP predictor.
This way, those instances of branches which are prone
to be mispredicted by the base predictor are effectively
screened out, whether these branches require correlation
to correctly predict, or, they are mispredicted because of
ill effects of aliasing. As a result, the base predictor will
not be polluted by them.

2.4 Observation and Analysis

By using a straightforward implementation of the NVP
predictor at various history lengths, from 8 to 128
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bits, we analyzed the behavior of the NVP module
and the base predictor. We classified all the branch
instances into three categories: those predicted by the
base predictor when the NVP module produced a no
clue (i.e., 00), those predicted by the base predictor
when the NVP module produced a don’t know (i.e.,
11), and those predicted by the NVP module when the
NVP returns a 01 or 10. In each subcategory, branch
instances were further subcategorized into two parts:
those are correctly predicted and those are mispre-
dicted. The results are shown in Figure 3. In the figure,
’00 hits’,’00 misses’,’nvp hits’,’nvp misses’,’11 hits’
and ’11 misses’ represent the fraction of branch instances
that are correctly and incorrectly predicted when the
NVP output is 00, 01 or 10, and 11 respectively. The
experiment is based on the average over all benchmarks
that we use in this paper, as will be illustrated in more
detail in later sections. As it can be easily seen the accu-
racy of both the NVP and the base component increase
as the history length is increased. This is because more
and more of difficult to predict branches are correctly
predicted by the NVP module which filters them out
from the base predictor, in turn increasing its accuracy.
Branch instances that are falling into the case when the
NVP module outputs don’t know are intrinsically hard
to predict ones. As expected, the two-bit predictor’s
prediction for these branches is not accurate.
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Figure 3: NVP Coverage Experimental Results

So far, we have not shown how having more informa-
tion content on the NVP predictor entries would be help-
ful. After all, if a program is executed for a sufficient
number of branch instructions, it is possible that even-
tually each NVP entry will become saturated (i.e., don’t
know case) because of aliasing. The NVP predictor would
stop providing predictions and the accuracy of the over-
all prediction will go down to that of the base predictor.
Although periodic clearing of the entries can prevent this
problem, the intent is not to destroy this useful informa-
tion, but to use it to our advantage. Going back to our mo-
tivating example, we see that it can be predicted well if we

had used a longer history. But a naive approach would ex-
ponentially increase the space requirement as well as the
training time. In the next section, we show how the addi-
tional information content help us exploit longer history
lengths with a linear increase in space requirement.

3 A Practical Implementation

3.1 Exploiting Longer and Variable Length
Branch Histories

In order to exploit a longer history with only a linear in-
crease in space requirement, we use segmented histories
[13]. The segmented history technique divides the branch
history register to segments and uses the fragments of the
history as input to individual predictors as shown in Fig-
ure 4.

There are several good reasons behind this choice: (a)
By using segmented histories, a predictor can record long
non-viable path information with a linear increase in the
space requirement. (b) By using the don’t know informa-
tion recorded by the NVPP, we can exploit variable length
histories. (c) With longer histories, the access time of the
predictor remains relatively constant. This is because all
the tables in the predictor are accessed in parallel and the
access time will typically be dominated by the access time
of the tables.

Of course, the technique will also bring in the prob-
lem of aliasing in the tables; the space provided by two
segments of 16 bits (2 � 216 entries) cannot record all the
combinations of 32 bits of history amounting to 232 en-
tries. However, the don’t know case helps us distinguish
the aliasing in the table entries as well since the destruc-
tive aliasing rapidly turns table entries into don’t know sta-
tus.

The operation of the predictor is as follows. On a query,
the predictor selects the output of the first predictor table
that is not a don’t know, examining tables from the least
significant position towards the most significant position.
As a result, one can also exploit variable length histories
by using a simple policy. A misprediction is first recorded
on the least significant table using only a history length of
one segment. If the length of one segment is sufficient to
capture the correlation, then the entry will provide correct
predictions as long as there is no aliasing. If the history
length is not sufficient, or, there is destructive aliasing,
the corresponding entry will become don’t know. A sec-
ond misprediction will record it in the next table, since the
entry in the first is in don’t know status, in effect utilizing
twice the amount of history. This process effectively uses
only the necessary amount of history to distinguish and
exploit the correlation. When the last segment entry re-
ports don’t know, all entries are in don’t know status. In
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this case, we assume that the event is because of aliasing
and reset all segment entries to no clue and start retrain-
ing.

Returning back to our motivating example, if we pro-
vide two NVP predictors and use two bit history segments,
after sequences (a) and (b) are observed once the first
NVP predictor will switch to don’t know status. The sec-
ond NVP predictor however will start providing perfect
predictions as long as the corresponding entry can stay in
the second NVP predictor.

Note that the distant correlation among branches is
sparse. Most correlation occurs within the vicinity of the
branch which is typically captured by the first predictor.
Our experiments indicate that the bulk of the NVP predic-
tions are provided by the first predictor, whereas the ad-
ditional predictors increasingly improve the performance
by handling difficult to predict branches quite well using
long histories as long as these entries can remain in the
tables. Unfortunately, there are many distinct histories
which share the same bit pattern as a substring. This re-
sults in the loss of misprediction information from higher-
level tables. In order to alleviate this problem, we exclu-
sive or the history segments. In other words, the least
significant segment that is input to predictor #1 is also
input the second predictor and exclusive or’ed with the
second segment. The process is repeated by exclusive
or’ing the second segment with the third before it is ap-
plied to the third predictor and so on. This approach sig-
nificantly improves the survival rates of correlation infor-

mation when parts of a complete history is destroyed due
to aliasing some fragments still remain and continue to
provide highly accurate predictions. We call this approach
history distribution. With these changes, the global orga-
nization of the predictor becomes the one shown in Fig-
ure 5.

In this paper, we studied segment sizes up to 21 bits and
number of predictors up to 8, ranging from 4KB of NVP
space to 1MB. As a result, we have collected data up to
152 bits of history (8 tables, 19 bit segment size). Utiliza-
tion of such large histories by predictors such as gshare is
simply not possible. On the other hand, the access time of
NVP will be comparable to the access time of a gshare
predictor where the global history length of the gshare
predictor is equal to the segment size. Despite this posi-
tive picture, one cannot carry the idea of segmentation too
far. In other words, there is a minimum segment size be-
low which destructive aliasing becomes quite significant.
Experimentation shows that a segment size of at least 12
bits or more is needed. Above this treshold, NVPP pro-
vides excellent predictor performance, yielding not only
very accurate but also a very fast predictor.

The design space of history segmentation is large and it
is beyond the scope of this paper. In this paper, we assume
that all the segments are of equal length and change the
number of segments, given the segment size. It would be
interesting to explore the design space where the segments
are of different lengths. We leave this part of the design
space as future work.

3.2 Handling Cross Interference

So far, we have ignored a significant problem, not only
for NVPP but in general a problem for any global history
based technique; namely the cross interference between
different histories leading to different branch instructions.
Simply put, throughout the execution, programs generate
history patterns which are identical, but they lead to differ-
ent branches. Using the information collected for one par-
ticular branch history path leading to a particular branch
instruction for another branch instruction is detrimental.
This is particularly true for the non-viable path predictor.
Our solution builds on prior art as well as reasoning using
simple set theory.

The set theory comes into the picture because given a
particular history there are a number of branches which
have observed that the base predictor had a misprediction.
Alternatively, one could envision all the histories a partic-
ular branch instruction have experienced a misprediction.
We find that the former is substantially smaller than the
latter. Therefore, we choose to split the individual NVP
predictor into two tables as in YAGS [22, 3] so that the
cases 01 and 10 are recorded in separate tables. One can
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implement the set concept in one of two ways. The PC
signature can be concatenated to the history, which in-
effect provides a distinct position for each branch at a par-
ticular history, or, one can design a predictor where each
entry is a bit vector indexed by a PC signature indicating
set membership. In other words, if a given PC signature s
we have observed a misprediction at the history segment
h, we set the corresponding entry by calculating :

table[h] = table[h] | (1 << s)

In other words, instead of merely storing a yes/no in-
formation in each entry, we make each entry a bit set such
that it contains a 2i bit pattern. Taking 4 bits of PC sig-
nature requires 2 bytes of information on each table since
for a 4-bit PC signature, there are sixteen possible pat-
terns: 0X0000,0X0001,. . . ,0XFFFF . For each reference
in the table, the corresponding PC signature is used to set
or test the corresponding bit.

Implementing the set concept has proved to be invalu-
able in the success of the predictor. It significantly im-
proves the accuracy of the NVP component as well as
increasing the coverage. The coverage is increased be-
cause destructive aliasing in NVP tends to convert en-
tries to don’t know, which in turn reduces the covered
cases. Ideally, the PC signature uniquely identifies this
branch instruction. However, reducing the space require-
ment forces us to use only a small number of bits from the
PC signature. We therefore choose to exclusive or the re-
mainder of the PC signature with the history index to dis-
tribute the entries. This technique works extremely well.
With these changes, an individual NVP component is il-
lustrated in Figure 6.

A simple way to compute the PC signature is to use the
least significant bits of the PC for this purpose. However,
the sparseness of the field demands much bigger hardware
budgets than needed. Furthermore, the program can reach
a branch PC that has the same computed signature with
the same history pattern, but the two branches can be com-
pletely unrelated. We therefore incorporate the path infor-

Segmental History Patterns
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Path CRC
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CRC Circuit

Multiplexer

Smith

Predictor

NVP #1NVP #2NVP #3NVP #4

Basic Prediction

Final
Prediction

nvp prediction

Figure 7: NVPP with History Distribution and Path CRC
Information

mation computed from branch instruction PCs by using
two techniques for both of which we present results. The
first technique continuously computes the exclusive-or of
the last 3 branch PCs and use it as the current PC signa-
ture. We then select the low order bits of the signature to
index the set bit and high order bits as part of the hashing
with the global history. Alternatively, we compute CRC7
of the least significant 7 bits of last 3 branch instruction
PCs. This implementation is shown in Figure 7. Note that
the current PC is not used in the computation of the CRC
that is used in the current access but used to compute the
CRC that will be used in the next access. As a result, CRC
computation is not on the critical path of the predictor and
the access time of the predictor is increased by only one
gate delay compared to the case without the CRC. In a
single cycle implementation of the NVPP, the whole cy-
cle is available to compute the crc to be used in the next
access by using the current PC and two prior PCs.

4 Experimental Evaluation

We have simulated the two final designs of the NVPP for a
collection of Spec2000 benchmarks which includes 8 in-
teger and 7 floating point benchmarks. Benchmarks writ-
ten in C++ or Fortran 90 are excluded as currently we do
not have cross-compilers to compile them to MIPS code.
Benchmarks 253,254,255,168,188 and 200 are excluded
because they can’t be simulated correctly in our test bed.
We will incorporate these benchmarks in the final ver-
sion of the paper. Benchmarks are all compiled with gcc
3.2.2 with -O3 optimization flags. All benchmarks were
run with data set ref after skipping the first half billion
instructions and collecting statistics for 1 billion instruc-
tions. A random selection of few benchmarks (164.gzip
and 176.gcc) which were executed to completion indicate
some minor change in the performance of the predictors
with respect to the data collected with 1 billion instruc-
tions, but the relative performance of the five predictors
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studied remains constant.
The prediction performance of the NVPP predictor has

been explored by varying the total predictor space from
4KB to 1MB. For a given area size, the number of predic-
tor tables (2,4 and 8 tables) and the number of set elements
(1, 2, 4, 8, and 16 elements) have been varied and a large
enough segment size have been used to utilize the given
space. In addition to NVPP, we have implemented and
evaluated three recently proposed predictors, namely, per-
ceptron, piecewise linear, and O-GEHL predictors in the
same environment. All of these predictors attain very high
branch prediction accuracy by exploiting very long branch
histories. Piecewise linear and perceptron predictors have
not been evaluated beyond 256KBs since we did not have
the optimal settings beyond 256KB for these predictors.
O-GEHL predictor have been evaluated using the optimal
settings used in the branch prediction contest and the ta-
bles have been enlarged to utilize the additional space.

Figure 8 illustrates the performance of the predictors
at various hardware budgets. As it can be seen from
these graphs, both Piecewise linear predictor and the O-
GEHL predictor perform quite well with integer bench-
marks with NVPP experiencing little over 1 percent more
mispredictions consistently over the budget range. On
the other hand, with the floating point benchmarks Piece-
wise linear experience little over 3 percent mispredic-
tions compared to both NVPP and O-GEHL. When the
entire set of programs which were studied is taken into
account we observe that NVPP experiences around 1 per-
cent more mispredictions than O-GEHL across the budget
range while Piecewise linear experiences more mispre-
dictions compared to both of these predictors.

Few branch prediction papers in the literature stud-
ied the misprediction behavior of floating point bench-
marks, and mainly presented results for integer bench-
marks. This perspective is based on the commonly
held belief that floating point benchmarks have negligi-
ble amount of branch mispredictions. Our studies indicate
otherwise. These benchmarks have significant amount of
branch mispredictions resulting from a large number of
nested loops where the inner-most loop executes a non-
negligible amount of times, as well as mispredictions re-
sulting from complex control flow, just like the integer
benchmarks.

The success of NVPP with floating point benchmarks is
possibly related to its ability to exploit long histories re-
sulting both from nested loops as well as complex control
flow.

We illustrate the individual benchmarks at a hardware
budget of 256KB by selecting their best performing con-
figuration in Figure 9. As it can be seen, some bench-
marks where NVPP indicates inferior performance such
as 256.bzip2 and 164.gzip share common properties. In
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Figure 9: Mispredictions at 256K Hardware Budget Individual Benchmarks

general, these benchmarks have a small branch footprint,
but the individual branches are executed many times,
mostly in a data dependent fashion. The current imple-
mentation of NVPP treats all mispredictions as originat-
ing from the use of inadequate history, and attempts to
use more and more history by shifting the predictions to
higher-order tables. This is not particularly good, since
the predictor goes through the cycles of turning all tables
to don’t know, resetting them and starting over. In such
cases, every prediction by NVP component is a mispre-
diction, and it is likely that the local predictor would have
done better. This is an area where we are working to in-
corporate ability to NVPP so that it can detect why NVP
provided prediction results in a misprediction and act ac-
cordingly.

Our results compare well with previously published
data on the performance of perceptron based predictors
with the integer benchmarks. However, in general, it
appears that the perceptron-based predictors do not per-
form as well with the floating point benchmarks and since
the previous perceptron based branch predictor papers we
have found in the literature did not incorporate results of
floating point benchmarks, we cannot cross-check our re-
sults with the previously published work in case of float-
ing point benchmarks. Among the floating point bench-
marks, the performance of Piecewise linear predictor on
301.apsi is notably poor. We have investigated the reasons
and found out that in the execution of 301.apsi, the func-
tion sqrt() is called extensively. Two branches in this func-
tion account for 72.71% of total dynamic branch instances
for the sampled duration (the first billion instructions after
half a billion instructions are skipped). The code involved
and the two branch instructions are shown below.

for (i = 1; i <= 51; i++)
{

t = s + 1;

x *= 4;
r /= 2;
if (t <= x)

{
s = t + t + 2, x -= t;
q += r;
}

else
s *= 2;

}

This for loop accounts for 36.71% of total branch in-
stances and the prediction accuracy of this branch by the
piece-wise-linear predictor is 98.08%. The if statement
inside the loop accounts for 36.00% of total branch in-
stances and its accuracy is only 51.50%. The correspond-
ing values for the NVPP are 99.60% and 88.10%, respec-
tively. Although the if statement in the above example is
data value dependent and would not typically permit bet-
ter prediction through correlation, it shows an interesting
behavior with very long histories. According to our find-
ings, each 51 groups of history repeats every 112 patterns
as shown below.

( 1 )110011011100110100001010001000000101011100100100110
( 2 )010000011001001001011000001110111101010001000001101

.............................................
(112)000110100000011110001100001001111011111110101010001

(113)110011011100110100001010001000000101011100100100110
(114)010000011001001001011000001110111101010001000001101

..............................................
(224)000110100000011110001100001001111011111110101010001

Obviously, with its explicit history recording, NVPP is
able to capture this long correlation, but the perceptron
based predictors are unable to capture it in their weighted
summaries. O-GEHL also successfully captures the be-
havior with its geometrically increasing history sizes.

We have also studied the sensitivity of the performance
of NVPP with respect to number of tables. Figure 10
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shows that the segmentation technique works well as a ta-
ble count of 8 yields the lowest number of mispredictions
at a given hardware budget.

5 Related work

A large number of dynamic branch prediction techniques
have been developed since the introduction of the two bit
counter based Smith predictor [18] in 1981. In 1991, Yeh
and Patt introduced the Two-Level Adaptive Branch Pre-
dictor [21, 22]. McFarling proposed the Gshare predic-
tor [12] in 1993. These predictors shared the common
property of exploiting correlation among branches.

Although in principle one can view NVPP as a hybrid
predictor [2, 1], NVPP embodies neither an explicit con-
fidence predictor nor a selector. Instead, the global pre-
dictor serves both functions. An overriding predictor [7]
design attempts the combine the accuracy of a slow but ac-
curate predictor with the speed of a simpler predictor by
employing them in sequence in a pipelined design where
the decisions of the simpler fast predictor can be overrid-
den by the more accurate slow predictor. This is a gen-
eral concept that is orthogonal to NVPP. Since NVPP is a
highly accurate predictor that can permit a single clock cy-
cle implementation it can be used together with a slower
but better predictor (such as O-GEHL) in an overriding
pipeline design to further improve performance.

Branch confidence estimation [6] is a speculation con-
trol technique which evaluates the confidence level of cur-
rent speculation status so that actions can be taken on low-
confidence speculations to avoid misspeculations. Selec-
tive Branch Inversion [9] takes the idea of branch con-
fidence estimation and selectively inverts the predictions
when the confidence of a prediction is considered to be
low. As opposed to most confidence predictors, NVPP
confidence is binary valued, i.e., either there is a known
failure history at a given path and the global predictor
predicts the other path, or the global component does not
know the answer and assumes the local predictor’s out-

put. Contrary to SBI approach, local predictor’s predic-
tions are not inverted.

In order to explore very long history lengths while
keeping the hardware budget at reasonable size, NVPP
uses segmented histories. Segmented histories have been
employed by other predictors in the past, notably, the
PPM-like tag-based predictor [13] as well as O-GEHL in-
dexing mechanism. However, these mechanisms typically
employ increasing segment lengths and in case of PPM-
like tag based predictor additional tags for gluing different
segments together. In case of NVPP, each individual bank
explores a specific segment/part of the global history.

Neural-based branch predictors has been proposed by
Jimenez. Perceptron predictor [8] achieves high accu-
racies by exploring very long global histories while re-
quiring modest hardware sizes. Piecewise linear predic-
tor addresses a short-coming of perceptron based predic-
tors by enhancing the functions that perceptrons can learn.
O-GEHL predictor [17] proposed by Seznec gains high
accuracy by implementing dynamic history length fitting
based on geometric histories and the use of a perceptron
style adder tree. This adder tree is on the critical path and
as a result may not permit efficient single cycle implemen-
tations of these predictors.

Path based branch prediction mechanisms have been in-
troduced initially by Nair [15] and similar mechanisms
have been incorporated into various predictors including
the most recent O-GEHL predictor. NVPP is no excep-
tion since it also greatly benefits from the inclusion of the
path information in the indexing functions. We believe
there are a number of properties of NVPP which sets it
apart from other predictors, namely, its unique encoding
mechanism which permits the global predictor to serve
as a confidence predictor as well as a selector, and the
recording of only the wrong path information. Since mis-
prediction is a rare event in the execution, the information
that needs to be stored is considerably smaller than others.

6 Conclustion and Future Work

In this paper, we have proposed the concept of Non-Viable
Paths and described a possible application utilizing this
concept – the NVPP predictor, a new global two-level
branch prediction mechanism which could be used along
with other dynamic branch predictors to improve their
performance.

The main strength of NVPP is its access time. NVPP
access time is comparable to a Gshare predictor which has
the same size as one of the tables of NVPP and hence it
may permit a single clock cycle implementation. On the
other hand, both perceptron based and O-GEHL predic-
tors incorporate adder networks on the critical path of the
branch prediction and their implementation will likely re-
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quire pipelining of accesses. Such pipelining is not trivial
and potentially may impact their accuracy. Although the
integer performance of NVPP is lower than that of these
cutting edge branch predictors, a fair comparison between
these predictors should involve estimated timing informa-
tion, which we leave as future work.

We believe the concept will prove to be quite useful
in predicting multiple branches per cycle, which we also
leave as future work.
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