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Abstract

We approach the problem of finding temporally contingent plans, i.easpléth branches that are based on the duration
of an action at execution time, using a hill-climbing algorithm. We find an optimigéin that is valid when all actions
complete quickly. We then use efficient temporal reasoning techniquéetéomine when the plan may fail. At time
points that cause an unsafe situation, we insert temporal contingeswoghiers. We describe our implemented planner
PHocus-HC and provide experimental results.

I ntroduction

Constructing optimal plans for domains with uncertaintg shallenging problem. Such domains often include uncer-
tain discrete or continuous effects, oversubscribed gaal$ possibly parallel actions. Many planners have bedh bui
that prepare contingency plans when actions may affect tdrlelin uncertain ways (see Bresina et al's paper (2002)
for a survey). However, most work in planners that assumentaic resources has focused on finding plans that are
safe considering maximal resource usage. In other wordgbice of actions during execution time does not depend
on resource levels. Recent work (Mausatal. 2005) relaxes this assumption by explicitly representespurces as
part of the state in the context of the AO* (Nilsson 1980) aipon. The advantage of this approach is its ability to
handle any uncertain continuous resource as well as time.dtawback of using AO* is that the solution plans are
sequential whereas executing actions in parallel is a fagdusay to optimize plans.

We approach the problem of finding temporally contingentipld.e., plans with branches that are based on the
duration of an action at execution time, using a hill-climdpalgorithm. Such an algorithm was shown to be effective
for generating policies for continuous-time stochastimdms (Younes & Simmons 2004). We take an optimistic
approach by first finding a plan that is valid when all actioomplete quickly. We then use the methods described
in (Dechter, Meiri, & Pearl 1991) to determine when the plaayrfail. At time points that cause an unsafe situation,
temporal contingency branches are inserted. The probleenarevstudying satisfy the following criteria: (1) there
is more than one solution plan, (2) solution plans are raritkedn objective function that is not fully based on
makespan, (3) actions have uncertain durations, (4) thieastd/or end times of some actions are constrained, (5)
as actions require more time to complete, plans with higityubhecome invalid, and (6) actions can be executed in
parallel unless they are ordered explicitly.

As an example, consider the problem of traveling from homa tmnference. One solution plan is to drive to
the airport, fly to the destination city, take a shuttle to ¢beference venue, and finally register for the conference.
Another solution plan could involve taking a taxi insteadao§huttle to the venue. Assuming the objective is to
minimize money spent, the plan with the shuttle action wdddreferred. However, the taxi may be faster than the
shuttle and because there exist constraints on the timeameegister for the conference, there may only be enough
time for the more expensive taxi option depending on how liwegflight takes. To always have a safe plan, and be
able to save money when possible, our approach would genar@mporally contingent plan: drive to the airport,
fly to the destination, take the shulttle if there is enougletiotherwise take the taxi, and register for the conference.
In addition, the utility of the plan can be increased by hgysarallel tasks such as reading a paper or grading exams
during flights or airport wait periods. Throughout this paper running example will be this conference domain.

We have several contributions: (1) we define the notion ofpmally contingent plans, (2) we provide a hill-
climbing algorithm that uses efficient temporal reasoniechhiques to insert branches based on time rather than
world conditions, (3) we show that plans with maximal expédattility can be generated in this framework by using



our implemented plannerHdcus-Hct, (4) we provide example domains including a disaster ev@muaomain
which can benefit from our approach. In the remainder of thigep we first define temporal uncertainty and what
constitutes a solution plan. We then explain our algoritbncfeating temporally contingent plans. This is followed
by a description of experimental results, related work, faare work.

Planning problems with Temporal Uncertainty

Our framework deals with several temporal aspects of pfanproblems. First, we deal with problems where action
durations are uncertain. We define this uncertainty by aggigeach action a closed interval duratiomif-d max-d,
wheremin-d and max-dare the minimum and maximum reasonable durations requiyatidoaction, respectively.
We assume that a probability distribution function such &aassian or Weibull distribution is associated with each
interval. When intervals are used to define action duratithrese are two possible interpretations (Vidal & Fargier
1999). The first and most common interpretation is to assieethe agent can determine the duration of the action
by choosing any value from the interval. We call thassignable durations(Vidal and Fargier refer to these fise
constraints(1999).)

The second interpretation is to assume that the agent hasntimicover the duration and the actual duration of an
action is only known after it completes execution. This is itterpretation that our work centers around and we call
theseunassignable durationgVidal and Fargier refer to these egntingent constraint€1999).)

Unassignable durations are more difficult to plan for beedghs agent must be prepared for any action duration.
Therefore, the simplest approach to dealing with unasbigradurations is to assume that every action always requires
its maximum duration, and plan accordingly. However, itidikely that all actions will require that much time, so
taking this pessimistic approach results in a safe plan evhesources (money, fuel, time, etc.) are often not used
efficiently. We define a plan asfeif it is guaranteed to execute to completion, regardles®uflong its actions take.

A conservative approach to conference travel is to alwakes dataxi because it is faster than the bus, when in reality
there is often enough time to take the bus to save money. &nettample is planetary exploration by a rover, where
planning conservatively could result in much idle time, éwimg the number of experiments (Bresetal. 2002). Our
approach combines the need to have a safe plan with the tiesise resources as efficiently as possible by creating a
plan with branches based on temporal conditions.

Deadlines are another temporal aspect that our planneidesas Rather than assuming that any action can be
executed at any time, actions can be defined to occur onlyingilren temporal constraints. This complicates the
problem further because an efficient plan may include aromatihose execution is only possible when previous
actions in the plan complete quickly. Our approach of cnegd plan with branches based on temporal conditions
allows us to include the efficient action while also addingssl efficient branch to be executed when necessary.
Finally, our planner optimizes solutions based on an objedtinction which includes time and other metrics.

We have extended PDDL2.2 (Edelkamp & Hoffman 2004) to repreisiterval durativeactions as opposed to
single point durative actions. In Figure 1 we show a codinthefconference domain. In this example the flight takes
between 45 to 90 time units and starts at time 30. Notice tagat - meal action has an assignable duration but
the other actions have unassignable durations. For codingeaience, we have also added a syntax that associates
actions with their execution time constraints more digetithn thetimed initial literalsof PDDL2.2.

Formally, aplanning probleris defined as a quadrupieD, I, G, M>, whereD is a domain description that lists
the actions that are availablejs a description of the initial stat& is a description of the goals, ai is a plan
metric that represents the objective function. In the negtien, we describe our solution approach.

Creating Temporal Contingency Plans

When creating a temporal contingency plan, it is importarin a plan that is both safe and has high utility. We do
this by using a Just-In-Case style algorithm (DrummondsBi& & Swanson 1994) where we generate a seed plan,
find points where it is likely to fail, and then insert contémgy branches at those points (Figure 2).

To generate the seed plan (line 1 in Figure 2), we assignd as the duration of each action. This yields a plan
with high utility. Next, we analyze the seed plan to find oetnporally speaking, when it becomes unsafe (lines 4
through 6). At any time point where the seed plan becomedeinsa generate and insert a branch that is safe. This
technique creates a plan that includes a path that can g eaésuted when all of its actions require their maximum
duration, but also includes branches that yield a more algsiresult.

Setting the duration of each action moin-d removes all uncertainty at planning time. This allows the o§
any planner that understands PDDL2.2. A pRireturned by such a planner will be temporally determinis@air

IPhocus means “planner with an algorithmic focusgid®us-Hc has a hill-climbing algorithm focus and is one of our set of
planners which have different algorithmic foci for dealing with temparadertainty.



Domain description

(define (donmain conference-travel)
(:requirenments :fluents :equality :execution-times
sinterval -durative-actions)
(:predicates (at_airportl) (at_airport2) (at_hotel)
(not _hungry) (attending_conference))
(:functions  (noney_spent))

(:interval-durative-action fly airport2 airportl
> unassi gnabl e-interval -duration
(and (mn ?duration 45) (max ?duration 90))

ccondition (at start (at_airportl))
;effect (and (at end (at_airport2))

(at start (not (at_airportl)))

(at start (increase (noney_spent) 200)))
rexecution-time (start at 30))

(:interval -durative-action taxi _hotel airport2
:unassi gnabl e-interval -duration
(and (min ?duration 15) (max ?duration 20))
ccondition (at start (at_airport2))
;effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (noney_spent) 120))))

(:interval -durative-action shuttle_hotel airport?2
:unassi gnabl e-interval -duration
(and (min ?duration 30) (max ?duration 60))
;condition (at start (at_airport2))
;effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (noney_spent) 20))))

(:interval-durative-action eat_nea
. assi gnabl e-interval -duration
(and (min ?duration 20) (max ?duration 60))
;condition (at start (attending_conference))
;effect (at end (not_hungry))
(at start (increase (noney_spent) 20))))

(:interval -durative-action register _for_conference
:unassi gnabl e-interval -duration
(and (mn ?duration 5) (max ?duration 10))
ccondition (over all (at_hotel))
reffect (at end (attending_conference))
.execution-time (and (start after 84) (start before 141))))

Problem description

(define (problemconference-travel-1)
(:domai n conference-travel)

(:init (at_airportil)

(= (money-spent) 0))
(:goal (at t endi ng_conf erence))
(:metric m nimze (noney-spent)))

Figure 1: Conference travel domain and problem.
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PHocusHc (D, I, G, M)

1: Py +— GENERATE-SEED-PLAN (D, I, G, M)

2: Peurrent <+ Po

3: loop do

4: DG« CONSTRUCTFDISTANCE-GRAPH(P.yrrent: D, 1)
if SAFE-PLAN (Peyrrents DG, D, |, G, M) return Peyrrent
Prext <— MAKE-PLAN-SAFE (Peurrents DG, D, I, G, M)
if Phextis null return failure

Peurrent < Prext

Figure 2:The top-level algorithm.

algorithm factors temporal uncertainty back in by convey® to a directed, edge-weighted graph calledistance
graph thus expressing as a simple temporal network (STN) (Dechter, Meiri, & Ped@91). STNs are widely
used in temporal reasoning and include nodes represeirtiegobints and edges between pairs of nodes representing
temporal constraints between time points. Figure 3 shoyhéaseed plan that would be generated for the problem in
Figure 1 and (b) the corresponding distance graph as coohputgep 4 of the algorithm.

In construction of the distance grapi@, each action is dealt with individually to allow any possibbncurrency in
P to be present iDG. The first step is to add a nodgrepresenting time 0, and two nodes for each adtione for its
start times and one for its end timg. Edges are then added in pairs to represent temporal redatir each action
i, a pair of edges is added betwegmandeg. The edges — g is weighted with fhnax-d of i) and the edge; — s is
weighted with -1x (min-d of i). Next, pairs of edges are added betwsgand eacls node to represent constrained
start times. This is shown with the fly and register actionSigure 3(b). When an action does not have a constrained
start time, the edgsy — s is weighted witheo and the edgs — 9 is weighted with 0, signifying that the start of
actioni comes after time 0, but there are no other constraints. Batylthese edges are not included in Figure 3(b).

The final step in constructing the distance graph is to inséges that represent relationships between actions.
ThoughP contains a sequence of steps, some concurrency may belpoSsitproperly discover and encode this in
D, causal links and threats A must be identified. This is done using an algorithm similathi® one described by
(R-Morenoet al. 2002). For every condition of each action, a causal link is added to the closest actjan the
plan that appears befor@and produces as an effect. The causal link forces the producer agtioroccur before the
consumer action Threats occur when the effect of one action negates th@pdé&mn of another action. A threat
link is added between an actiband an actiofn when an effect of negates a precondition of This is done to ensure
the precondition is true wheinexecutes. This algorithm discovers no knowledge about ¢eahmlistance, so pairs
of edges labeled with O arvd are added to the graph simply expressing that one action ecust before the other.
There are no threats or concurrency in the plan of Figure 8dges representing causal links are added from the start
of each action to the end of the previous action.

SinceD contains all temporal constraints given in the domain, iitlce used to determine wh&becomes unsafe.
This procedure is given in Figure 4. In (Dechter, Meiri, & HekD91) it is proved that the absolute bounds on the
temporal distance between any two time points representedtesa andb (assuminga < b) in D, is given by the
interval [-1 x (weight of shortest path from b to,ajeight of shortest path from a td.bThe shortest path can be
found using an algorithm such as tBellman-Fordsingle source shortest path algorithm with a runtimeg¥ ||E|)
(Cormenet al. 2001). In Figure 3(b) we see that the duration of the fly acisoexpressed by the interval [45, 90].
However, using the shortest path method (step 2 in Figuri¢ ¥)found that the absolute bounds on the duration of
the fly action are expressed by the interval [45, 80]. Thisciaies that if the fly action takes more than 80 time units,
the rest of the plan becomes unsafe. To have a safe soluttamtimgency must be generated that can reach the goal
safely when the fly action takes more than 80 time units. Thidation which makes the rest of the plan unsafe is
found by looping through the steps in reverse order as showtep 1 in Figure 4. If an action is found to be safe in
line 3 the domain and the corresponding distance graph al@eqhto provide topmost flexibility to the earlier actions.

If the execution of an action is not safe for a certain durgttbe domain and problem are modified so that the action
minimally takes that duration. A new plan that meets the nemstraints is sought for at lines 7 through 9. If the

new plan shares a head with the current plan, a contingeacyipformed and returned to the top level algorithm (at
step 11). Otherwise, the new plan is returned to the top kdgalrithm to becomes a new seed plan (step 13). In the



Execution Time| Action

30 flyairport2airportl

76 shuttle_hotel _airport2

107 regi ster for _conference
(a)

45

10
start: regisﬂd: register
-5 /

Figure 3: (a) A seed plan for the problem in Figure 1. Note thattimes given by the seed plan assume actions
require their minimum durations. (b) The distance graphtierseed plan ia), incorporating temporal uncertainty.
For clarity, only the most important edges are shown.

(b)

example problem, a contingency plan is formed (Figure 5(a))

To verify that the the plans generated are sound assuméntdhratis a plaf® which has been generated. Every time
a possibility of failure is detected iR, the domain is modified in such a way thHts invalidated. Therefore? will
not be generated again. This leaves 2 possibilities: eitfferent planP’ will be found, or no plan will be found.
If no plan is found, then there is not a 100% safe solutionti@ problem. IfP’ is found, it will either be a new seed
plan (totally replacind®) or contain actions that can be used to form a branch on P. filiy o replace the seed plan
with a new one in line 13 allows the hill-climbing to escapedbmaxima because it might not always be possible
to repair the first seed plan by adding contingency branchéstas better to start with a new plan. Once all actions
in P have been verified, the temporal contingency plan (TCP)fes da the next section, we formally explain a data
structure that can be used to represent TCPs.

Temporal Contingency Networks

We represent TCPs using a new data structure calleahaoral Contingency Planning NetwdfkCPN). TCPNs are
an extension of STNs and are inspired by the STPU model defin@lidal & Fargier 1999). TCPNs extend STNs in
two dimensions. First, interval durations are labeled &s assignable or not; second, some nodes represent dscision
based on observations of time to enable the representdtib@i®s. Figure 5(b) depicts a TCPN for the TCP in part
().

Formally, a TCPN is a quadrupleT, O, E, B>. T is a set of nodes representing start and end times of actfons.
node representing the absolute start time is also includ@d Each node irT is referred to as éime point Nodes
in T that are not included in all paths of execution contain a@driibel (Peot & Smith 1992) identifying the branch
of execution they belong to. The oval nodes in the figure ekonT. The shuttle and taxi nodes contain context
labels because these actions do not belong to all paths ofigxe. O is a (possibly empty) set of observation nodes
representing decisions about which subsequent actionetmte. Observations of time are assumed to be executable
at any time (no preconditions) and instantaneous; and dhmmuéxecuted immediately after the preceding time point.
In the figure, the diamond represents an observation ribikea set of interval labeled edges representing constraints
between time points. Edgeshcan be marked as unassignable, assignable, or unmarkedPAN Wah observation



MAKE-PLAN-SAFE (PlanP, DistanceGrapldG, D, I, G, M)

1. for i=downtolinP

2 maxAllowedDuration— SHORTESFPATH-DISTANCE(S, &, DG)

3: if maxAllowedDuratior> max-d ofi

4 DG, D — DG, D updated to constrainto always require max-d of

5: DG, D «— DG, D updated to constrainto always start at latest possible time that allows max-d |of
6: e€else

7 newMinDuration— maxAllowedDuration+ 1

8 D — D modified so that actionrequiresnewMinDuration

9: Prew < generate plan with g

10: if P andP,ew have the same steps through step

11: return a contingency plan created out®fandP,ew
12: else
13: return Phew

Figure 4: The M\KE-PLAN -SAFE algorithm.

nodes is safe if all the possible paths are safe. The nondués in the figure belong ®. Edges representing
assignable durations are marked wathnd those representing unassignable durations are martted.viEdges with
intervals representing an exact amount of time (suchime 0— start: fly) are unmarkedB is a set of temporally
labeled edges leaving observation nodes. The bold edghks figure belong t®. As shown, these edges are given a
label indicating when each branch can safely be taken. Tt structure provides a rich context for reasoning about
TCPs.

Experiments and Discussion

In this section we provide preliminary experimental resuffo the best of our knowledge, there are no planners that
prepare contingency branches based on time. We therefsignaéel our experiments to show that our algorithm works
and to help identify the ways in which it can be improved. LPB{Gereviniet al. 2004) was the planner that we
used for generating seed plans and branches. We choselDRggcause it can handle the timed initial literals of
PDDL2.2 and can optimize for temporal and nontemporal r&t/ll the experiments were performed on a machine
with a 3.0GHz Pentium 4 CPU and 1GB of RAM. We tested PHOCUSwlt6 2 different domains, the conference
domain and an evacuation domain. Less than two seconds efutigne required to produce any of the conditional
plans which contain from 1-3 branches and up to 13 steps.|8orahkins and problems were used in these preliminary
experiments to more easily control branching in the plambswvanify the correctness of the results.

We tested with both a sequential and a parallel version oEtiméerence domain. The sequential version consists
of traveling from home to a conference and requires bothrgt@nd air transportation with the objective of arriving
at the conference venue in time to register while minimizingney spent. The domain used for testing includes
two different flight paths from the home airport to the coefare city airport and three different options for ground
transportation from the conference city airport to the eosfice venue. The parallel version of the conference domain
also includes actions to read a short and/or long paper adbgrxams, which must complete before registering for
the conference. Also, the objective for the parallel protdés modified to prefer reading the long paper. The costs
and durations of actions were varied to produce differingditional plans.

The second domain that we tested is an evacuation domaiwvatesti by the difficulty involved in planning to
successfully evacuate during a natural disaster, like flgpd Complications arise when deciding the best way to
allocate available resources (buses, emergency vehiadisppters, etc.) to save the most lives. Because it is not
always possible to save all lives, oversubscription besoameissue in this domain. In our simplified version of the
evacuation domain there are one bus and one helicopteableaib evacuate a school and a hospital with the objective
being to save the largest number of lives. The children ab@chnd most of the patients in the hospital must be
evacuated by bus while the critical patients at the hospéalonly be evacuated by helicopter. It takes two trips to
evacuate all of the critical patients at the hospital antiéffirst trip takes too long, there are less critical pati¢mts



At time 30: fly airport2 airportl
IF (time < 85)
Before time 85: shuttle hotel _airport2
Before time 140: register _for_conference
ELSE
Before time 120: taxi_hotel _airport2
Before time 140: register _for_conference

[30, 30]

end: shuttle end: taxi
<85 > 85
a
[0, oo]

(b)
Figure 5: (a) A TCP for the problem in Figure 1. (b) The TCPNtfog plan in(a).

evacuate on the second trip. The amount of time requiredafcin action was varied to produce different conditional
plans.

In addition to generating the conditional plan using PHOGHG, we also generated plans using LFG; assum-
ing all actions always require their minimum, maximum, amdrage durations respectively (min, max and average
plans respectively). The max plan and the conditional plaaays succeed, but may have a lower utility than the min
and average plans. However, the min and average plans lde.rifo factor in both safety and utility, expected utility
(EU) was calculated for each plan §ig probability(b) x utility(b) where b is a complete branch or path that can be
taken in a plan. Table 1 shows a comparison of the EU for the ddferent plans generated for each problem. In
each instance, the conditional plan had the highest EU.dasavhere probability of success was very low, as in the
min version of c-2a, the EU was negative because the largestirat of utility was gained by reaching the final goal
which would rarely happen with this plan. It should also b&eddhat in this domain, the conditional plan gains only
a small amount of EU over the avg and max plans because thedéwaachieving the goal is much larger than the
transportation expenses.

Related wor k

The main framework of our algorithm is very close to Justlase (JIC) scheduling (Drummond, Bresina, & Swanson
1994). The JIC scheduler analyzes a seed schedule, findblpdagure points, and inserts contingency branches so
that valuable equipment time is not lost when an experimaitg.f Our work extends this framework to multiple
planner goals, parallel plans, and nontemporal metridsjdes not consider probability of failure.
There are a number of domain independent planners that catiehdurative actions. We used LPI® because

it can optimize based on a nontemporal metric. Other tenhgdaaners include TGP, a planner that uses mutual
exclusion reasoning in a temporal context (Smith & Weld J98RPA, a heuristic forward chaining planner (Do &
Kambhampati 2002); HSP, a heuristic planner with time asdueces (Haslum & Geffner 2002); and CPT, an optimal
temporal POCL planner based on constraint programminga{\ddGeffner 2004). Tsamardinos et al. describe an



prob | min avg max cond
c-1 480.00 480.00 480.00] 480.00
c-2a | -467.33(0.03) | 450.00 450.00| 451.00
c-2b | 177.78(0.55) | 177.78(0.55) | 280.00| 391.11
c-3a | -467.330.03) | 189.50(0.70) | 380.00| 430.00
c-3b | -348.51(0.02) | 161.11(0.55) | 280.00| 541.66
c-3c | 177.78(0.55) | 177.78(0.55) | 250.00| 378.22
pc-1 | 510.00 510.00 510.00| 510.00
pc-2a | -437.33(0.03) | 480.00 480.00| 481.00
pc-2b | 207.78(0.55) | 207.78(0.55) | 310.00| 421.11
pc-2c | 504.71(0.82) | 504.71(0.82) | 490.00| 506.47
pc-3a | -437.33(0.03) | 219.50(0.70) | 410.00| 460.00
pc-3b | -318.51(0.02) | 191.11(0.55) | 310.00| 571.66
pe-1 | 140.00 140.00 140.00| 140.00
pe-2a| 84.89(0.31) | 84.890.31) | 80.00 | 98.67
pe-2b| 132.67(0.27) | 138.00 138.00| 138.53
pe-3a| 91.33(0.08) | 78.00 78.00 | 97.20
pe-3b| 130.50(0.05) | 136.90(0.09) | 137.00| 137.96

Table 1: EU for min, avg, max, and conditional plans for eacdbfem. When probability of success is less than 1, it
is given in parenthesis after EU. Number in problem name @smoumber of branches in conditional plan, assuming
a plan without conditions has 1 branch. Problems beginniitly pvcontain parallel steps. Problems with a c are
conference problems, while problems with an e are from thewstion domain.

algorithm for merging existing plans with assignable dors and nontemporal conditional branches (2000). We plan
to extend our algorithm with their plan merging framework.

Tempastic (Younes & Simmons 2004) is a planner that modelsramus time, probabilistic effects, probabilistic
exogenous events and both achievement and maintenance famles a “generate-test-debug” algorithm that gener-
ates an initial policy and fixes the policy after analyzing fhilure paths. In producing a better plan, the objective is
to decrease the probability of failure. Nontemporal resesirare not modeled. Mausam and Weld (2005) describe a
planner that can handle actions that are concurrent, daratid probabilistic. They use novel heuristics with saihple
real-time dynamic programming in this framework to generalicies that are highly optimal. The quality metric
includes makespan but nontemporal resources are not ndoiletee planning problem. Prottle (Little, Aberdeen,
& Thiebaux 2005) is a planner that allows concurrent actitvas have probabilistic effects and probabilistic effect
times. Prottle uses effective planning graph based h&sigi search a probabilistic AND/OR graph consisting of
advancement and placement nodes. Prottle’s plan metiiedi@s probability of failure but not makespan or metric
resources.

Conclusions and Future Work

We have presented a framework for characterizing and tlirédealing with temporal uncertainty. We define temporal
uncertainty by assigning actions interval durations, egatihan single point durations. We have implemented our
hill-climbing approach in a planner called PHOCUS-HC. Thanper starts by making an optimistic assumption
that all actions complete as quickly as possible and gezemmteed plan with high utility that may become invalid
when the assumption proves wrong. It then analyzes the pldmy@nerates more costly contingency branches to be
executed only when actions in the seed plan run long enouglathunsafe situation occurs. In addition to generating
contingency branches, our hill-climbing approach has theaatage of being able to replace the entire seed plan
when adding a contingency branch is not possible, or wheatirgjawith a new seed plan yields a better expected
utility. In the current version of PHOCUS-HC, a uniform diktition is assumed over all uncertain action durations.
In the future we plan to further develop the implementatioraltow user specified distributions. Also, the current
implementation always searches until a plan with 100% gasefound. We plan to improve PHOCUS-HC so that
the user can choose the level of safety that is required. Wedaaiso like to extend our work to be able to handle
actions with uncertain effects and uncertain consumptfaroatemporal resources.
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