
Computer Science Technical Report

UPC Collective Conformance Suite
Lisa Begum Charles Wallace

Michigan Technological University

{kbegum,wallace}@mtu.edu

Michigan Technological University

Computer Science Technical Report

CS-TR-06-01

January 16, 2006

Department of Computer Science

Houghton, MI 49931-1295

www.cs.mtu.edu

UPC Collective Conformance Suite

Lisa Begum Charles Wallace

Michigan Technological University

{kbegum,wallace}@mtu.edu

January 16, 2006

1 Overview

The UPC collective conformance suite is a collection of tests that help determine how closely a given im-
plementation of the UPC collective operations conform to the specifications. The test suite is based on
Version 1.1 of the UPC specification [1] and Version 1.0 of the UPC collectives specifications [2]. It has been
used on the MuPC and HP UPC platforms. These tests exercise all of the collective operations, with the
exception of the deprecated upc all sort operation, and notify the tester of behavior that departs from the
specifications. This document describes the tests in the suite and explains why they were chosen.

It is quite easy to construct pathological instances of UPC collectives use, which run contrary to the intended
use of these operations. For such cases, the specifications state that the resulting behavior is “undefined”:
in other words, the specifications place no constraints on program behavior. Hence from the viewpoint of
conformance, such cases are irrelevant. Of course, it may be of interest to build in robust responses to such
cases, in which the UPC program fails gracefully or provides debugging information to the programmer. A
suite of tests for the robustness of a UPC implementation would be useful; however, they are outside the
scope of this conformance suite.

Each collective operation implies a choice for each of the following variables:

• Compilation environment: static threads, dynamic threads

• sync mode: 0, UPC IN XSYNC, UPC OUT Y SYNC, UPC IN XSYNC| UPC OUT Y SYNC (X,Y in NO,MY,ALL)

• nbytes: 1. . . MAX BLOCK SIZE1

Each individual test is identifed by a string of the form A.B.C.D. . . ., where A through D are defined below
and the rest will be defined in the section of each collective operation.

A identifies the collective operation being tested:

1
MAX BLOCK SIZE is fixed at 1024 based on the maximum block size allowed in the HP UPC implementation.

A operation
0 upc all broadcast

1 upc all scatter

2 upc all gather

3 upc all gather all

4 upc all exchange

5 upc all permute

6 upc all reduce

7 upc all prefix reduce

B identifies the compilation environment:

B compilation environment
0 static
1 dynamic

C identifies the value of sync mode. The following choices cover all possible combinations of IN and OUT

synchronization:

C sync mode

0 0 (UPC IN ALLSYNC|UPC OUT ALLSYNC)
1 UPC IN NOSYNC (|UPC OUT ALLSYNC)
2 UPC IN MYSYNC (|UPC OUT ALLSYNC)
3 UPC OUT NOSYNC (|UPC IN ALLSYNC)
4 UPC OUT MYSYNC (|UPC IN ALLSYNC)
5 UPC IN NOSYNC|UPC OUT NOSYNC

6 UPC IN NOSYNC|UPC OUT MYSYNC

7 UPC IN MYSYNC|UPC OUT NOSYNC

8 UPC IN MYSYNC|UPC OUT MYSYNC

D identifies the affinity of *src. The boundary cases of 0 and THREADS-1 are tested:

D *src affinity
0 0
1 THREADS/2
2 THREADS-1

Compliance with the selected synchronization modes is tested through the following actions:

1. initialization of the *src and *dst blocks;

2. upc barrier;

3. remote updates of the *src block (i.e., updates by threads to which the updated memory locations do
not have affinity);

4. execution of the collective operation;

5. reading of the resulting values.

The updates before the collective operation are done remotely in order to test the performance of the
necessary synchronization in the MY SYNC and ALL SYNC cases.

Note that a race condition has been observed in the tests for upc all reduce, however, it has been irrepro-
ducible.

2

2 upc all broadcast

upc all broadcast is called in different test cases and checked for correctness. The function upc all broadcast2

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_broadcast(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all broadcast function copies a block of memory with affinity to a single thread to a block of
shared memory on each thread. The number of bytes in each block is nbytes.

Each test of the form 0.B.C.D.E.F performs a broadcast from a block specified by *src and then checks
that exactly nbytes bytes of data were broadcast to the block specified by *dst. The block *dst must have
affinity to thread 0. Each test involves a choice for each of the following variables:

• affinity of *src: 0 . . . THREADS-1

• *src block size: nbytes. . .MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-nbytes

• *dst block size: nbytes. . .MAX BLOCK SIZE

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE

F identifies the block sizes and phase of src. The boundary cases are tested through the following choices:

F block sizes and phase of src
0 *src block size = *dst block size = nbytes; phase = 0
1 *src block size = MAX BLOCK SIZE, *dst block size = nbytes; phase = MAX BLOCK SIZE-nbytes

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and
F = 0.

2As described in the UPC Collective Operations Specifications [2].

3

3 upc all scatter

upc all scatter is called in different test cases and checked for correctness. The function upc all scatter

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_scatter(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all scatter function copies the ith block of an area of shared memory with affinity to a single
thread to a block of shared memory with affinity to the ith thread. The number of bytes in each block is
nbytes.

Each test of the form 1.B.C.D.E.F performs a scatter from a block specified by *src and then checks that
exactly nbytes*THREADS bytes of data were scattered to the block specified by *dst. The block *dst must
have affinity to thread 0. Each test involves a choice for each of the following variables:

• affinity of *src: 0 . . . THREADS-1

• *src block size: nbytes*THREADS. . . MAX BLOCK SIZE

• *dst block size: nbytes. . . MAX BLOCK SIZE / THREADS

• phase of src within block: 0. . . MAX BLOCK SIZE-(nbytes*THREADS)

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE / THREADS are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE / THREADS

F indicates the block sizes and phase of src. The boundary cases are tested through the following choices:

F block sizes and phase
0 *src block size = nbytes*THREADS, *dst block size = nbytes ; phase = 0
1 *src block size = MAX BLOCK SIZE*THREADS, *dst block size = nbytes;

phase = (MAX BLOCK SIZE-nbytes) * THREADS

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and
F = 0.

4

4 upc all gather

upc all gather is called in different test cases and checked for correctness. The function upc all gather

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_gather(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all gather function copies a block of shared memory that has affinity to the ith thread to the ith
block of a shared memory area that has affinity to a single thread. The number of bytes in each block is
nbytes.

Each test of the form 2.B.C.D.E.F performs a gather from a block specified by *src and then checks that
exactly nbytes bytes of data were gathered to the block specified by *dst. Each test involves a choice for
each of the following variables:

• affinity of *src: 0 . . . THREADS-1

• *src block size: nbytes. . .MAX BLOCK SIZE

• *dst block size: nbytes*THREADS. . .MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-nbytes

Since the block *src must have affinity to thread, there are no test cases for D=1,2.

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE / THREADS are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE / THREADS

F indicates the block sizes and phase of src. The boundary cases are tested through the following choices:

F block sizes and phase
0 *src block size = nbytes, *dst block size = nbytes * THREADS; phase = 0
1 *src block size = MAX BLOCK SIZE, *dst block size = nbytes * THREADS;

phase = MAX BLOCK SIZE-nbytes

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and
F = 0.

G indicates the affinity of *dst. The boundary cases of 0 and THREADS-1 are tested:

G *dst affinity
0 0
1 THREADS/2

2 THREADS-1

5

5 upc all gather all

upc all gather all is called in different test cases and checked for correctness. The function upc all gather all

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_gather_all(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all gather all function copies a block of memory from one shared memory area with affinity to
the ith thread to the ith block of a shared memory area on each thread. The number of bytes in each block
is nbytes.

Each test of the form 3.B.C.D.E.F performs an all-all gather from a block specified by *src and then checks
that exactly nbytes * THREADS bytes of data was all-all gathered to the block specified by *dst. The blocks
*src and *dst must have affinity to thread 0. Each test involves a choice for each of the following variables:

• *src block size: nbytes. . .MAX BLOCK SIZE

• *dst block size: nbytes*THREADS. . .MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-nbytes

Since the block *src must have affinity to thread 0, there are no test cases for D=1,2.

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE / THREADS are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE / THREADS

F indicates the block sizes and phase of *src. The boundary cases are tested through the following choices:

F block sizes and phase
0 *src block size = nbytes; *dst block size = nbytes * THREADS; phase =0
1 *src block size = MAX BLOCK SIZE*dst block size = nbytes * THREADS;

phase = MAX BLOCK SIZE-nbytes

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and
F = 0.

6

6 upc all exchange

upc all exchange is called in different test cases and checked for correctness. The function upc all exchange

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_exchange(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all exchange function copies the ith block of memory from a shared memory area that has affinity
to thread j to the jth block of a shared memory area that has affinity to thread i. The number of bytes in
each block is nbytes.

Each test of the form 4.B.C.D.E.F performs an exchange from a block specified by *src and then checks
that exactly nbytes * THREADS * THREADS bytes of data were exchanged to the block specified by *dst.
The blocks *src and *dst must have affinity to thread 0. Each test involves a choice for each of the following
variables:

• *src block size: nbytes*THREADS. . . MAX BLOCK SIZE

• *dst block size: nbytes*THREADS. . .MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-nbytes

Since the block *src must have affinity to thread 0, there are no test cases for D=1,2.

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE / THREADS are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE / THREADS

F indicates the block sizes of *src. The boundary cases are tested through the following choices:

F block sizes and phase
0 *src block size = *dst block size = nbytes * THREADS; phase =0
1 *src block size = MAX BLOCK SIZE; *dst block size = nbytes * THREADS;

phase = MAX BLOCK SIZE-nbytes

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and
F = 0.

7

7 upc all permute

upc all permute is called in different test cases and checked for correctness. The function upc all permute

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_permute(shared void *dst, shared const void *src,

shared const int *perm, size_t nbytes,

upc_flag_t sync_mode);

nbytes: the number of bytes in a block

The upc all permute function copies a block of memory from a shared memory area that has affinity to the
ith thread to a block of a shared memory that has affinity to thread perm[i]. The number of bytes in each
block is nbytes.

Each test of the form 5.B.C.D.E.F performs a permute from a block specified by *src and then checks that
exactly nbytes bytes of data were permuted to the block specified by *dst. The blocks *src, *dst, and
*perm must have affinity to thread 0. Each test involves a choice for each of the following variables:

• *src block size: nbytes. . .MAX BLOCK SIZE

• *dst block size: nbytes. . . MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-nbytes

Since the block *src must have affinity to thread 0, there are no test cases for D=1,2.

E identifies the value of nbytes. The boundary cases of 1 and MAX BLOCK SIZE are chosen:

E nbytes

0 1
1 MAX BLOCK SIZE

F indicates the block sizes. The boundary cases are tested through the following choices:

F block sizes
0 *src block size = *dst block size = nbytes

1 *src block size = MAX BLOCK SIZE, *dst block size = nbytes

There are no test cases with E = 1 and F = 1 since they would be identical to the cases with E = 1 and F = 0.

Since the block *dst must have affinity to thread 0, there are no test cases for G=1,2.

H indicates the contents of the perm array.

H contents of perm
0 0, 1, . . .
1 THREADS-1, THREADS-2, . . .
2 0, THREADS-1, 1, THREADS-2, . . .

8

8 upc all reduce

upc all reduce is called in different test cases and checked for correctness. The function upc all reduce

is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_reduceT(shared void *dst, shared const void *src,

upc_op_t op, size_t nelems, size_t blk_size,

upc_flag_t sync_mode);

nelems: the number of elements

blk_size: the number of elements in a block

Each test of the form 6.B.C.D.E.F.. . . L performs a reduce from a block specified by *src and then checks
that exactly nelems elements of the specified data type were reduced to the block specified by *dst.

Each test involves a choice for each of the following variables:

• affinity of *src: 0. . .THREADS-1

• blk size: 0. . . MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-1

• op: UPC ADD, UPC MULT, UPC AND, UPC OR, UPC XOR, UPC LOGAND, UPC LOGOR, UPC MIN, UPC MAX, UPC FUNC,
UPC NONCOMM FUNC

• nelems: 1 . . . THREADS * MAX BLOCK SIZE

I indicates the type of the elements involved. All possible types are tested through the following choices:

I Type of elements involved
0 C (signed char)

1 UC (unsigned char)

2 S (signed short)

3 US (unsigned short)

4 I (signed int)

5 UI (unsigned int)

6 L (signed long)

7 UL (unsigned long)

8 F (float)

9 D (signed double)

10 UD (unsigned double)

9

J indicates the value of op. All possible values are tested through the following choices:

J op

0 UPC ADD

1 UPC MULT

2 UPC AND

3 UPC OR

4 UPC XOR

5 UPC LOGAND

6 UPC LOGOR

7 UPC MIN

8 UPC MAX

9 UPC FUNC

10 UPC NONCOMM FUNC

There are no test cases with I ∈ {8, 9, 10} and J ∈ {2, 3, 4} since results are undefined for bitwise operations
on floating point values. The test case with J = 9 is performed with the function f(x, y) = (x2 + y2). There
is no test case for J = 10 since the behavior is undefined.

K indicates the value of blk size and the phase of src. The boundary cases are tested through the following
choices:

K blk size and phase of src
0 blk size = 0; phase = 0
1 blk size = 1; phase = 0
2 blk size = MAX BLOCK SIZE; phase = MAX BLOCK SIZE-1

L indicates the number of elements involved. The boundary cases of 1 and THREADS * MAX BLOCK SIZE are
tested:

L nelems

0 1
1 THREADS * MAX BLOCK SIZE

There is no test case for K = 1, L = 1 since the number of elements in *src is less than MAX BLOCK SIZE.
There is no test case for K = 2, L = 1 since it imposes that the blk size of the source array to be bigger
than MAX BLOCK SIZE.

10

9 upc all prefix reduce

upc all prefix reduce is called in different test cases and checked for correctness. The function
upc all prefix reduce is:

#include <upc.h>

#include <upc_collective.h>

void upc_all_prefix_reduceT(shared void *dst, shared const void *src,

upc_op_t op, size_t nelems, size_t blk_size,

upc_flag_t sync_mode);

nelems: the number of elements

blk_size: the number of elements in a block

Each test of the form 7.B.C.D.E.F . . . L performs a prefix reduce from a block specified by *src and then
checks that exactly nelems elements of the specified data type were prefix-reduced to the block specified by
*dst.

Each test involves a choice for each of the following variables:

• affinity of *src: 0. . .THREADS-1

• blk size: 0. . . MAX BLOCK SIZE

• phase of src within block: 0. . . MAX BLOCK SIZE-1

• op: UPC ADD, UPC MULT, UPC AND, UPC OR, UPC XOR, UPC LOGAND, UPC LOGOR, UPC MIN, UPC MAX, UPC FUNC,
UPC NONCOMM FUNC

• nelems: 1 . . . THREADS * MAX BLOCK SIZE

I indicates the type of the elements involved. All possible types are tested through the following choices:

I Type of elements involved
0 C (signed char)

1 UC (unsigned char)

2 S (signed short)

3 US (unsigned short)

4 I (signed int)

5 UI (unsigned int)

6 L (signed long)

7 UL (unsigned long)

8 F (float)

9 D (signed double)

10 UD (unsigned double)

11

J indicates the value of op. All possible values are tested through the following choices:

J op

0 UPC ADD

1 UPC MULT

2 UPC AND

3 UPC OR

4 UPC XOR

5 UPC LOGAND

6 UPC LOGOR

7 UPC MIN

8 UPC MAX

9 UPC FUNC

10 UPC NONCOMM FUNC

There are no test cases with I ∈ {8, 9, 10} and J ∈ {2, 3, 4} since results are undefined for bitwise operations
on floating point values. The test case with J = 9 is performed with the function f(x, y) = (x2 + y2). There
is no test case for J = 10 since the behavior is undefined.

K indicates the value of blk size and the phase of src. The boundary cases are tested through the following
choices:

K blk size and phase of src
0 blk size = 0; phase = 0
1 blk size = 1; phase = 0
2 blk size = MAX BLOCK SIZE; phase = MAX BLOCK SIZE-1

L indicates the number of elements involved. The boundary cases of 1 and THREADS * MAX BLOCK SIZE are
tested:

L nelems

0 1
1 THREADS * MAX BLOCK SIZE

There is no test case for K = 1, L = 1 since the number of elements in *src is less than MAX BLOCK SIZE.
There is no test case for K = 2, L = 1 since it requires the blk size of the source array to be bigger than
MAX BLOCK SIZE.

References

[1] T. A. El-Ghazawi, W. Carlson and J. Draper, UPC Language Specification V1.1.1, Technical Re-
port, George Washington University and IDA Center for Computing Sciences, October 7, 2003,
<http://www.gwu.edu/˜upc/docs/upc spec 1.1.1.pdf>, March 16, 2005.

[2] E. Wiebel, D. Greenberg, and S. Seidel, UPC Collective Operations Specifications V1.0, Technical
Report, George Washington University and IDA Center for Computing Sciences, December 12, 2003,
<http://www.gwu.edu/˜upc/docs/UPC Coll Spec V1.0.pdf>, March 16, 2005.

12

